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Abstract. The climate models used in the IPCC AR4 show
large differences in monthly mean ice water path (IWP). The
most valuable source of information that can be used to po-
tentially constrain the models is global satellite data. The
satellite datasets also have large differences. The retrieved
IWP depends on the technique used, as retrievals based on
different techniques are sensitive to different parts of the
cloud column. Building on the foundation ofWaliser et al.
(2009), this article provides a more comprehensive compar-
ison between satellite datasets. IWP data from the Cloud-
Sat cloud profiling radar provide the most advanced dataset
on clouds. For all its unmistakable value, CloudSat data are
too short and too sparse to assess climatic distributions of
IWP, hence the need to also use longer datasets. We eval-
uate satellite datasets from CloudSat, PATMOS-x, ISCCP,
MODIS and MSPPS in terms of monthly mean IWP, in order
to determine the differences and relate them to the sensitivity
of the instrument used in the retrievals. This information is
also used to evaluate the climate models, to the extent that is
possible.

ISCCP and MSPPS were shown to have comparatively
low IWP values. ISCCP shows particularly low values in
the tropics, while MSPPS has particularly low values out-
side the tropics. MODIS and PATMOS-x were in closest
agreement with CloudSat in terms of magnitude and spa-
tial distribution, with MODIS being the better of the two.
Additionally PATMOS-x and ISCCP, which have a temporal
range long enough to capture the inter-annual variability of
IWP, are used in conjunction with CloudSat IWP (after re-
moving profiles that contain precipitation) to assess the IWP
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variability and mean of the climate models. In general there
are large discrepancies between the individual climate mod-
els, and all of the models show problems in reproducing the
observed spatial distribution of cloud-ice. Comparisons con-
sistently showed that ECHAM-5 is probably the GCM from
IPCC AR4 closest to satellite observations.

1 Introduction

Ice clouds are an important part of Earth’s climate system.
Knowledge of the distribution and properties of ice clouds
is central to understanding the atmospheric water budget, as
their distribution strongly affects precipitation and the wa-
ter cycle. Ice clouds also have a strong effect on the radi-
ation budget of the atmosphere. They cool the atmosphere
by reflecting incoming solar radiation, but also heat the at-
mosphere by absorbing and re-emitting outgoing terrestrial
radiation. The magnitude of both processes, hence the net
radiative impact of ice clouds, depends on macro-physical
properties such as cloud top temperature, and vertical and
horizontal extent, and on micro-physical properties such as
ice crystal shape, cloud optical thickness and effective ra-
dius (Ramanathan et al., 1989). One important ice cloud
quantity is the vertical column integral of the cloud Ice Wa-
ter Content (IWC), which includes all types of ice particles.
This quantity is called Ice Water Path (IWP) and commonly
has the units g/m2. There are large differences in IWP be-
tween climate models (e.g.,Waliser et al., 2009; John and
Soden, 2006). Waliser et al.(2009) highlighted that there is
a lack of adequate cloud property measurements with which
to constrain the models. The differing model assumptions
made about ice particle size, mass, and cross-sectional area
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also contribute to the large biases in the models, because the
assumptions directly effect particle fall velocities (Heyms-
field and Iaquinta, 2000). Although global and continuous
datasets of satellite retrieved cloud properties are now avail-
able, their use to validate climate models is fraught with
difficulties. This is largely due to the definition of IWP it-
self. Models make a clear distinction between precipitating
ice particles and suspended cloud ice particles, whereas re-
trieved IWP constitutes a mixture of both. Satellite derived
IWPs, are defined in the same manner for all datasets, but are
largely different from each other. This must be taken into ac-
count when comparing observational datasets to each other
and to models, as done in this article.

In a qualitative IWP comparison study,Waliser et al.
(2009) illustrated a large level of disagreement between the
available datasets. The objective of this paper is to pro-
vide a more quantitative comparison between the observed
datasets, based on the foundation provided byWaliser et al.
(2009), especially in terms of climatic distributions of IWP,
using monthly mean values. This information is in turn used
to compare observations to models, with an intent to eval-
uate both the variability and the mean. Basically, the most
important reason for the difference between the datasets is
that retrievals based on different measurement techniques are
inherently different, as they are sensitive to different parts
of the cloud column (described in Sect.2.2.6). Addition-
ally, the retrieval accuracy is limited by the uncertainties
made in the cloud microphysical assumptions, and the un-
certainties in the a priori background (e.g.,Wu et al., 2009;
Eriksson et al., 2008). Despite these shortcomings, satel-
lite data remain the most valuable source of information as
in situ measurements of IWP are few and far apart. There are
many satellite datasets available that provide an IWP prod-
uct, some with a temporal coverage of up to 25 years. The
range of datasets are based on techniques covering spectral
bands ranging from microwave to visible using passive sen-
sors or active instruments. Our knowledge on IWP has in-
creased significantly through the introduction of CloudSat,
and is therefore the main reference dataset in this article.

This article provides a comprehensive comparison of satel-
lite datasets, such comparison, in the long run can potentially
be used to constrain model IWP output. In particular, we an-
chored monthly mean IWP of long term satellite datasets to
CloudSat, as CloudSat retrieval accuracies have been previ-
ously quantified using in situ data from several campaigns
in Heymsfield et al.(2008). We also evaluated the perfor-
mance of various climate models in terms of the distribution
of monthly mean IWP on climatic time scales. The climate
models used in this study are a subset of those included in
the fourth assessment report (AR4) in theIntergovernmental
Panel on Climate Change(2007).

Section2 provides short descriptions of the chosen climate
models and satellite datasets. Section3 provides quantitative
and qualitative results from the comparison study. Compar-
isons of satellite datasets, and satellite-model comparisons,

are done in parallel throughout the results section. Section4
contains the discussion and conclusion.

2 Description of datasets

2.1 General circulation models

All models in AR4 provide monthly averages of IWP, which
contains only the suspended cloud-ice portion of the col-
umn, with a temporal range of at least 100 years from
1900. For the remainder of this article, model “cloud-
ice” will be simply referred to as IWP. Table1 shows the
details of the sub-set of AR4 models used in this article.
The table depicts model details such as the model resolu-
tion, the full name of the model, its institute, and the short
name further used in this article. They are presented in no
particular order. Further descriptions of the climate mod-
els in AR4 can be found athttp://www-pcmdi.llnl.gov/ipcc/
modeldocumentation/ipccmodeldocumentation.php. We
have chosen a somewhat ad hoc selection of 6 models which,
in themselves, roughly represent the inter-model variability
of IWP of all models in AR4. ECHAM is a high resolution
model with comparatively low IWP values, CCSM has the
highest resolution and the lowest IWP averages of all mod-
els, CSIRO has a relatively high horizontal resolution and
relatively high IWP averages, GISS has the coarsest resolu-
tion and has very high IWP averages, INM is a low resolution
model with very low IWP values in general, and UKMO has
a relatively high resolution and shows remarkably low IWP
values in the tropics compared to outside the tropics.

2.1.1 Common model features

In general, GCMs generate ice clouds through the conver-
gence of moist air masses leading to condensation by large-
scale dynamics. This is added to the existing cloudiness in
the grid box previously determined either diagnostically by
relative humidity or prognostically as cloudiness from an ear-
lier time step. Moist convection also adds cloud-ice to ex-
isting ice cloud. When comparing climate model output to
satellite data, it is important to recognise that the representa-
tion of IWP is only comparable to satellite observations to a
certain extent. Climate models distinguish between precipi-
tating ice, such as snow and graupel, and cloud-ice, which
remains suspended aloft. The precipitated ice is removed
at each time step and it either sublimates as it falls out or
reaches the ground as precipitation. Only the cloud-ice re-
maining from these processes is saved as a diagnostic vari-
able, and stored in the AR4 archive.Waliser et al.(2009)
suggest models may have ratios of suspended, or floating
cloud ice compared to the total column of ice particles, fur-
ther called cloud-ice column ratio, in the order of 0.1 to 0.3.
We compared the models in terms of absolute column water
mass (Precipitable Water, Liquid Water Path and IWP), and
detected large differences between the models (not shown).
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Table 1. IPCC Global Climate Models. This table provides an overview of the resolution and country of origin for the subset of IPCC AR4
models used in this study.

Short name Horizontal Atm. Model Name Institute
Resolution Layers

ECHAM 1.9×1.9◦ 19 ECHAM5/MPI-OM Max Planck Institute
for Meteorology
(Germany)

CCSM 1.4×1.4◦ 26 Community Climate System Model, National Centre for
version 3.0 (CCSM3) Atmospheric Research

(USA)

CSIRO 1.9×1.9◦ 18 CSIRO Mark 3.0, Commonwealth Scientific
Climate System Model and Industrial

Research Organisation
(Australia)

GISS 5×5◦ 15 GISS ModelE-R atmospheric, NASA Goddard Institute
General Circulation Mode for Space Studies (GISS)

(USA)

INM 5 ×4◦ 21 INMCM3.0 Institute of Numerical
Mathematics, Russian
Academy of Science

UKMO 1.25×1.875◦ 38 Hadley Centre Hadley Centre for Climate
Global Environmental Model, Prediction and Research
version 1 (HadGEM1) and UK Met office

Therefore, statements about the absolute differences in IWP
between the models should take the column cloud-ice ratio
into account.

2.2 Satellite IWP datasets

IWP is retrieved over a wide radiative spectrum, ranging
from microwave to visible wavelengths. We have chosen
datasets with retrievals throughout this range. The satel-
lite datasets used in this survey are presented in no partic-
ular order below. In contrast to models, satellite retrievals
of ice clouds do not make a distinction between ice parti-
cles, whether precipitating or suspended, and this must also
be taken into account in all model-satellite comparisons.

2.2.1 CloudSat

CloudSat data are provided by Colorado State University and
NASA Jet Propulsion Laboratory. CloudSat is part of the A-
train, which is a constellation of satellites flying in close for-
mation enabling maximum collocations between these satel-
lites (Stephens et al., 2002). To date, CloudSat provides
the most advanced satellite dataset on clouds. In contrast to
the other satellite datasets in the survey, which are based on
passive remote sensing techniques, CloudSat has a 94GHz,
0.16◦ off-nadir looking Cloud Profiling Radar. It has a high

vertical resolution of 500m, enabling the retrieval of cloud
vertical structures, and has a small horizontal footprint of ap-
proximately 1.5km.

The IWP product used in this study is ROice waterpath
from the 2B-CWC-RO CloudSat dataset, version 008. IWP
is retrieved from the detected back-scatter from the Cloud
Profiling Radar in conjunction with model temperature data
from the ECMWF model (the CloudSat ECMWF AUX prod-
uct). The algorithm used for this product is described in
Austin et al.(2009). On-line descriptions of CloudSat prod-
ucts are also available at the website:http://www.cloudsat.
cira.colostate.edu/dataSpecs.php.

Although precipitating ice is part of the ice column that
makes up IWP, from the model standpoint, large precipi-
tating particles in observations lead to larger IWP than in-
tended in the definition of IWP. Therefore, for comparisons
of CloudSat IWP to modelled IWP, we removed all profiles
that are flagged to contain precipitation at the surface in a
similar manner as done inWaliser et al.(2009). The pre-
cipitation flag used is in the 2C-PRECIP-COLUMN Cloud-
Sat dataset (version 0). This product is only valid over open
ocean. (Haynes et al., 2009). The dataset created by apply-
ing the precipitation flag to CloudSat profiles is known as
IWPnoPrecip.
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Despite probably providing the best estimate of IWP, there
are some major uncertainties that must be considered. Firstly,
the retrieval uncertainty has been quantified inHeymsfield
et al.(2008), where CloudSat IWC retrievals were shown to
be within±40% of in situ measurements (Austin et al., 2009;
Waliser et al., 2009). However, the sample from which the
40% error estimate is determined is small, and the study used
simulated satellite data rather than real data, so the true re-
trieval error may be larger than 40%. Secondly, another im-
portant, but unquantified source of uncertainty is the cloud
phase classification. CloudSat retrievals use a linear liquid
to ice ratio as a function of modelled temperature, where all
clouds warmer than 273K are liquid clouds and all clouds
colder than 253K are ice clouds. Thirdly, although precipi-
tation in a profile is not an error source, by attempting to re-
move precipitation for model comparison additional uncer-
tainties arise. Aside from the uncertainties in determining
surface precipitation, one inevitably introduces a dry bias as
all cloud-ice associated with precipitation events is removed.

Despite the uncertainties in the IWPnoPrecipdataset, even
if this observed estimate of cloud-ice column ratio is off by
a factor 2, the uncertainty is still small than the one or two
orders of magnitude between models (Waliser et al., 2009).
In the absence of other information, we assume that 40% is a
realistic error estimate for CloudSat IWP, and for the model
comparison we additionally use the IWPnoPrecipdataset mi-
nus 40% for the low end of the CloudSat uncertainty. We
have used CloudSat IWP data covering the temporal range
of July 2006 to June 2009.

2.2.2 ISCCP

IWP data are provided by the International Satellite Cloud
Climatology Project (ISCCP). The D2 dataset, which con-
tains monthly averages, is based on one Infrared (IR) chan-
nel around 11µm and one visible channel around 0.6µm.
This is the only dataset that uses data from geostationary
satellites. Radiance data are collected from five geostation-
ary satellites and two polar orbiting satellites, although data
from polar-orbiting satellites are complementary and used
mainly at high latitudes. The geostationary satellites include
the satellites from the METEOSAT (EUMETSAT), GOES
(USA), INSAT (India), FY-2C (China), and MTS and GMS
(Japan) series. The polar orbiting satellites are from the
NOAA series from USA (Rossow and Schiffer, 1991). As
ISCCP is mainly based on geostationary satellites, it is best
at tropical latitudes. However, until 1997 there was a sys-
tematic gap in data coverage over the Indian Ocean and this
effect can be seen in the merged data prior to this date. Data
from ISCCP are gridded using an equal area grid described
in Rossow and Garder(1984), and have a horizontal reso-
lution of 2.5×2.5◦ at the equator. ISCCP does not provide
IWP directly. Instead, Water Path monthly means are pro-
vided for 15 distinct cloud types, classified according to their
cloud top temperature, cloud top pressure, and cloud optical

thickness. According to these classifications, an ice cloud is
a cloud that has a cloud top temperature colder than 260K
or has a cloud top pressure less than 440hPa. In much the
same approach used inStorelvmo et al.(2008), IWP is cal-
culated from the sum of Water Path values from all cloud
types classified as ice clouds and multiplied by the cloud
fraction. The difference in approaches lies in thatStorelvmo
et al. (2008) partly reclassify ice clouds in the tropics into
liquid clouds, whereas we have decided not to reclassify
any clouds. Refer toRossow and Schiffer(1991) or the
web page: http://isccp.giss.nasa.gov/docs/D-toc.htmlfor a
detailed description of the algorithms used in the ISCCP re-
trievals. We have used data that extend from July 1983 to
April 2008.

2.2.3 PATMOS-x

The Pathfinder Atmospheres- Extended (PATMOS-x) dataset
is from the Cooperative Institute for Meteorological Satel-
lite Studies, Madison USA. The IWP data product is based
on visible, near infrared, and infrared radiances from the
AVHRR instrument on board the NOAA Polar- orbiting
Operational Environmental Satellites (POES). An algorithm
based onHeymsfield et al.(2003) is used to derive IWP using
solar reflection and radiance measurements. The PATMOS-
x data used in this survey are monthly mean IWP, gridded
on a similar grid as ISCCP, but with a resolution of 0.5◦ at
the equator. Data from PATMOS-x span the longest time
period in the survey (January 1982 to April 2008). Infor-
mation about the dataset is available at the web site:http:
//cimss.ssec.wisc.edu/patmosx/.

2.2.4 MODIS

IWP data are also available from the NASA Moderate Res-
olution Imaging Spectroradiometer (MODIS). The product
used here is from the MODIS Science Team. As with
PATMOS-x, IWP is retrieved from visible, near infrared, and
infrared channels, yet at a higher spectral resolution. The
MODIS instrument is down-looking with a total of 36 spec-
tral channels, and 13 of them are used for retrieving cloud
properties. The MODIS instrument is on board the Earth
Observing Satellites, Aqua and Terra, where Aqua is located
in the A-train (Stephens et al., 2002). All MODIS data are
screened using a cloud mask described inAckerman et al.
(1998), and details on the retrieval are described inKing
et al. (1997). The MODIS data used in this survey are the
level 3 monthly cloud product (MYD0803, collection ver-
sion 5), column integrated IWP, with a 1◦ gridded spatial res-
olution. We have chosen to focus solely on data from Aqua
as its data are collocated with CloudSat. The MODIS data
used in this survey extend from June 2006 to April 2008.
Information about the dataset is available at the web site:
http://modis-atmos.gsfc.nasa.gov/index.html.
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Table 2. Satellite datasets. The first part of the table contains the short name of the satellite dataset used in this study, the on-board instrument,
and the number of channels in the radiance spectrum used for the retrieval. The second part shows the type of IWP product and the temporal
range used in this study. MODIS pertains to IWP data from the Aqua satellite only and MSPPS pertains to data from NOAA18 only.

Short Name Type Platform(s) Sensor Spectrum No. Ch.

ISCCP VIS/IR Geostationary: Spectrometers 0.6, 11 µm 2
GOES, GMS, METEOSAT
Polar: NOAA

PATMOS-x VIS/IR NOAA-15,16,17,18 AVHRR 0.6–12 µm 5
MODIS VIS/IR Aqua MODIS 0.6–14.2 µm 13
MSPPS MW (passive) NOAA-18 MHS 89–183GHz 5
CloudSat MW (active) CloudSat CPR 94GHz 1

Short Name IWP Data Product temporal range

ISCCP Level 3 mean Water Path from different cloud classes 198307-200804
on an equal area grid (ca. 250×250km).

PATMOS-x Level 3 mean IWP product on equal area grid (ca. 50×50km). 198201-200804
MODIS Level 3 mean IWP product on 1◦ grid 200606-200804
MSPPS Level 2, granule 200606-200804
CloudSat Level 2, granule (2B-CWC-RO) 200606-200906

2.2.5 MSPPS

Satellite IWP data from passive microwave sensors are pro-
vided by the Microwave Surface and Precipitation Products
System (MSPPS) from the National Environmental Satellite
Data and Information Service (NESDIS). The MSPPS IWP
product is retrieved using the AMSU-B sensor which has 5
channels ranging from 89 GHz to 183.3 GHz. In short, IWP
is retrieved from the dampened microwave emission from
the surface, where the dampening of the emitted radiation
is due to scattering by large particles. AMSU is flown on
the NOAA POES satellites. For further details regarding the
AMSU-B instrument, refer toAtkinson (2001). For a de-
scription of the MSPPS IWP product and others derived from
AMSU refer toFerraro et al.(2005). As the satellite NOAA-
18 has the largest number of collocations with CloudSat, we
have chosen to focus on MSPPS data from NOAA-18 only.
AMSU-B was replaced by the Microwave Humidity Sounder
(MHS), which is very similar in design to its predecessor on
NOAA18. MSPPS data used in this survey extend from Oc-
tober 2005 to December 2009.

2.2.6 Satellite dataset summary

IWP from all gridded datasets (MODIS, PATMOS-x and IS-
CCP) are multiplied by the corresponding cloud fraction for
comparability with granule datasets (CloudSat and MSPPS)
and climate models. Refer to Table2 for an overview of
the datasets used in this survey. The table provides the
short name, the instruments used in the retrievals, the satel-
lite platforms and the institutions associated with these prod-
ucts. Comparing satellite datasets of retrieved IWP is not
straightforward. One major retrieval uncertainty comes from

the uncertainty in determining the cloud top and cloud base
from retrievals (Wu et al., 2009). This uncertainty is in-
evitable as cloud-ice signals are generally stronger for high
frequencies (VIS, IR) than for low frequencies (passive mi-
crowave, radar). This is due to the relation of wavelength
and particle size, influencing the particle’s scattering prop-
erties. Retrievals of IWP based on microwave frequencies
such as used by MSPPS and CloudSat, have difficulties de-
tecting thin cirrus clouds, but can retrieve cloud information
from thicker ice clouds than retrievals based on IR or VIS
instruments can. On the other hand, retrievals such as used
in ISCCP, PATMOS-x and MODIS, detect more thin clouds.
In truth, each satellite IWP retrieval portrays only part of
the true IWP column (Waliser et al., 2009). Figure1 shows
a simple schematic of a cloud, that outlines approximately
where cloud property information is obtained depending on
the wavelength regions used for the measurement. From this,
it is intuitive that retrievals based on different measurement
techniques will give different solutions.

As a consequence, the distribution and, especially, the
magnitude of IWP is expected to vary between datasets and
this must be taken into account when comparing datasets.
Although CloudSat gives the best instantaneous measure-
ment of IWP, CloudSat’s temporal range is too short to ac-
cess variability in the monthly mean IWP in the models. The
ENSO index had a tendency to positive values (La Nina),
throughout the time period that CloudSat has been opera-
tional, leading to changes in the IWP spatial distribution. Al-
though the models capture inter-annual variations and may
predict the correct variability, the timing of these events will
not necessarily coincide with the inter-annual variations of
the real world. Also, for assessing the spatial variability of
the models, CloudSat’s sparse horizontal coverage must be
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taken into account. The relative sparsity of measurements
introduces sampling effects for gridded data, that the longer
datasets, based on scanning instruments, are not suscepti-
ble to. Choosing a 5◦ grid for CloudSat generally mitigates
this effect. Due to this, we also use satellite datasets with
longer temporal ranges and a higher spatial coverage. As
both PATMOS-x and ISCCP have long temporal ranges, they
capture the inter-annual variations of IWP, and are there-
fore suitable for validation of models in terms of variabil-
ity. PATMOS-x, MODIS and MSPPS have high spatial cov-
erage which is useful for spatial distribution comparisons
to models.

3 Observations and results

3.1 Zonal averages

Figure2 shows the zonal mean IWP for the satellite datasets,
compared on a common period (July 2006 to April 2008).
The uncertainty interval, indicated by the grey shaded area,
is based on the uncertainty of CloudSat measurements, esti-
mated to be 40% byHeymsfield et al.(2008). For the ob-
servational datasets in Fig.2, the uncertainty is in the range
between CloudSat minus 40% and CloudSat plus 40%. For
example, at the Equator, the average of CloudSat IWP is
92 g/m2. Multiplying by a factor 0.6 and 1.4 for the lower
and upper uncertainty bounds respectively, gives an uncer-
tainty interval of 55–128 g/m2 at the Equator. For Fig.3,
IWPnoPrecipis instead used as the reference dataset, to facil-
itate comparison to the models, which do not include pre-
cipitation in their IWP column. In the same manner as for
the uncertainty of the observations, the uncertainty is in the
range±40% of the zonal averages of IWPnoPrecip. As this
reference dataset is only valid over ocean, IWP values over
land are masked out in both the observations in Fig.2 and the
models in Fig.3 for the zonal comparison.

As seen in Fig.2, there are large differences in the IWP
magnitude between the satellite datasets. As mentioned in
Sect.2.2.6, these differences can be attributed to instrumen-
tal sensitivities and, to some extent, the retrieval techniques
used. For the individual datasets, PATMOS-x and MODIS
(AQUA) are in best agreement with CloudSat. Within
±60◦ latitude, statistical comparisons also including MODIS
data from the TERRA satellite (not shown) indicate that
PATMOS-x lies between the two MODIS datasets in terms
of correlation, and root mean square difference compared to
CloudSat. MODIS (TERRA) is always un-collocated with
CloudSat, and as mentioned earlier, MODIS (AQUA) is col-
located with CloudSat and PATMOS-x contains both collo-
cated and un-collocated data. PATMOS-x has a very large
positive bias outside±60◦ latitude, and as MODIS’s zonal
average generally lies inside the uncertainty interval at all
latitudes, it is in better agreement with CloudSat overall.

RADAR
Passive MW
IR+VIS
IR only
LIDAR

Fig. 1. A schematic figure of a thick cloud. The columns indicate
approximately where in the vertical cloud the different measure-
ment techniques are sensitive (figure by Oliver Lemke).
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Fig. 2. Zonal averages of IWP of satellite datasets over ocean. The
grey shaded area is the uncertainty interval, as described in the text.
The averages are for the period July 2006 to April 2008.

ISCCP appears to have low IWP values in general com-
pared to the other datasets, with particularly low values in
the tropics. Importantly, ISCCP appears to be in good agree-
ment with the IWPnoPrecipdataset in the tropics, but has larger
values outside the tropics. MSPPS has the lowest zonal aver-
ages of IWP, probably because many clouds are completely
undetected. MSPPS is far below both the lower bounds of the
uncertainty interval outside the tropics. In mid-latitudes re-
gions, which are dominated by less thick ice clouds, MSPPS
has very low values. In contrast to ISCCP, MSPPS has its
largest IWP averages in tropical areas. It is close to the
IWPnoPrecipdataset in the tropics in terms of absolute IWP,
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Fig. 3. Zonal averages of IWP for climate models from 100 years
of monthly mean data. The uncertainty level is based on CloudSat
data and applied to the IWPnoPrecipdataset, as described in the text.
A factor 0.5 is applied here to AR4-GISS in order to visualise it in
the domain of this figure.

although for different reasons than ISCCP. This can be ex-
plained insofar as MSPPS retrievals mainly have sensitivity
to large ice particles associated with convective clouds. All
passive satellite datasets perform very poorly over snow cov-
ered regions, including ice shelves (not shown), as a signal
from the cold surface is often indecipherable from a signal
from thick ice clouds, and therefore erroneously detected as
clouds with high IWP values. For this reason most compar-
isons are for data inside the latitude range 60◦S–60◦N, a re-
gion henceforth known as the “total”-region,

Figure 3 shows the zonal mean IWP for the models us-
ing all available data, albeit for ocean grid boxes only. To
reiterate from Sect.2.2.1, the IWPnoPrecipdataset should be
a low estimate of IWP as it contains an additional dry bias
introduced by removing all cloud-ice where there was sur-
face precipitation. It is clear that there are large differences
between observed and modelled IWP averages (Figs.2 and
3), but also between the models themselves. Within tropi-
cal latitudes, about half of the models are below or far below
the uncertainty range defined using IWPnoPrecip, indicating an
underestimation of IWP. Outside the tropics, the models are
widely spread and, as they do not contain precipitation, prob-
ably overestimate IWP. GISS is the exception, as it clearly
overestimates IWP at all latitudes (a factor 0.5 is applied to
GISS averages in Fig.3). However, statements on overesti-
mation or underestimation of IWP in the models is somewhat
uncertain, as the actual cloud-ice column ratio (suspended
amount divided by the total) of the models is not provided.

Additional uncertainties in comparing satellite to model
data were highlighted inWaliser et al.(2009). One must ac-
count for satellite overpass times when pairing datasets and

models. If the sampled data have different overpass times
from the model run time, they are essentially sampling differ-
ent parts of the diurnal cycle. IWP may fluctuate on the order
of ±50% from the mean in the tropics. They also mentioned
the need to take sensor and algorithm sensitivities into con-
sideration when comparing satellite to model measurements.
There are maximum and minimal retrieval values, which de-
pend on the sensitivities of the retrieval and instruments. The
models don’t suffer from this, and therefore one should re-
move modelled cloud properties outside the detectable range
of the dataset before comparison. However, we have decided
to neglect these effects, as this paper concerns the compari-
son of modelled monthly mean IWP, to several satellite data
on a climatic time scale.Waliser et al.(2009) reported that
even amongst some more sophisticated models, their zonal
averages of IWC were in disagreement with CloudSat data.
Figures2 and3 verify this, but information on the longitu-
dinal inhomogeneity of IWP is lost. Therefore, in order to
learn more about the differences in IWP between datasets,
we also assess the spatial distribution of IWP. In this way we
may understand if the differences are larger in some regions
than others.

3.2 Spatial distribution of IWP

Figure 4 shows the spatial distribution of CloudSat IWP
(left) and the spatial distribution of the ratio of CloudSat
IWPnoPrecip to IWP (right) between 60◦ N and 60◦ S on a
5◦ grid. The ratio between these two datasets provides a
rough estimate of the cloud-ice column ratio, in order to re-
late the IWP from CloudSat to the model version of IWP
(which has no precipitation). According to CloudSat data,
the area around the Indonesian archipelago has the highest
IWP globally. This region is often referred to as the Trop-
ical Warm Pool (TWP). High values of IWP are also ob-
served at the Inter-Tropical Convergence Zone (ITCZ) and
mid-latitude storm tracks, and the smallest IWP averages are
found over the subsidence regions in the South Eastern Pa-
cific and Atlantic oceans. Figure4 (right) shows that for re-
gions with the strongest convection, e.g. associated with the
ITCZ and the TWP, the mean of IWPnoPrecipis around 20%
of the mean IWP. The fraction is around 40% for regions of
westerlies in the northern and southern hemispheres, and in
the subsidence regions the fraction is closer to 90%. These
cloud-ice column ratios are roughly consistent with cloud-
ice column ratios of the RAVE-GCM as described inWaliser
et al. (2009), and especially its latitudinal dependence (see
Fig. 10e therein).

To enable a better qualitative inter-comparison of the spa-
tial distributions of IWP, the data shown in Figs.5 and6, are
in percentiles. If the data were presented as absolute IWP, the
large differences in IWP magnitudes, and the outlier values
for each dataset, impact in such a way that many spatial fea-
tures in the distribution of IWP are harder to discern from
the figure. The distribution of gridded IWP values is not
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Table 3. Quartile values of the cumulative distribution of gridded IWP data, and the total mean as shown in Figs.5 and 6. All datasets and
statistics are based on a 5◦ grid, and the unit for IWP is g/m2.

Observations
CloudSat IWPnoPrecip MODIS ISCCP PATMOS-x MSPPS

1st quartile 41 15 35 17 75 3
Median 72 29 63 34 115 7
Mean 78 27 60 35 117 11
3rd quartile 108 38 85 50 152 16

Models
ECHAM CCSM CSIRO GISS INM UKMO

1st quartile 21 11 20 81 7 8
Median 35 19 38 180 12 25
Mean 36 20 47 232 11 46
3rd quartile 49 28 70 331 15 78
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Fig. 4. CloudSat IWP (left), and the ratio (%) of CloudSat IWPnoPrecipand IWP (right) from the period July 2006–June 2009.

Gaussian and have quite different shapes from each other.
Therefore they are not readily normalised using mean and
standard deviations. The quartiles and the mean are given in
Table3.

Figure5 shows the spatial distribution of IWP for the satel-
lite datasets for the period July 2006 to April 2008. From left
to right, the top panels are IWP and IWPnoPrecipdata (both
from CloudSat), the middle panels are MSPPS and ISCCP,
and the bottom panels are MODIS and PATMOS-x. In gen-
eral, the satellite datasets agree on the spatial distribution of
key dynamical features such as the extent of the TWP and
ITCZ, but do not show the same level of agreement at higher
latitudes. As mentioned in Sect.2.2, differences in the abso-
lute IWP are expected due to instrument sensitivities. Conse-
quently, judging from the spatial distribution of MSPPS, es-
pecially the relatively high IWP values of the tropical conti-
nental regions, indicate that its strength lies in detecting IWP
of thick ice clouds, e.g. associated with deep convection.
This is due to the passive microwave radiation’s sensitivity to
large ice particles. As indirectly indicated from Fig.4, deep
convective clouds probably contain the highest fraction of ice
particles which are large enough to induce detectable damp-
ening of the microwave emission through scattering. Con-

versely, outside the tropics and in the oceanic subsidence re-
gions, clouds are largely undetected, resulting in very low
absolute values compared to the other observations and in
the median IWP being well below the mean IWP. The spatial
distribution of datasets using IR/VIS techniques (PATMOS-
x, ISCCP and MODIS) have more likeness to CloudSat. In
terms of magnitude, ISCCP has low IWP averages in gen-
eral compared to CloudSat, PATMOS-x and MODIS, and has
particularly low IWP in the convection dominated regions of
the tropics. Waliser et al.(2009) argue that ISCCP IWP is
expected to roughly coincide with the suspended cloud-ice
portion of the atmospheric column, as it is insensitive to pre-
cipitation. ISCCP’s close agreement with IWPnoPrecipshown
in Fig 2 support this notion. Although PATMOS-x exhibits
larger values of IWP while MODIS somewhat lower values
than CloudSat, both of their relative spatial distributions ap-
pear to be in general agreement with CloudSat. As can be
seen in Fig.5, the IWPnoPrecipdataset has a mean at about
1/3 of the total IWP from CloudSat over the latitude inter-
val, but has relatively less IWP in the convective regions in
the tropics.
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CloudSat
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MSPPS−noaa18
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PATMOS−x
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Fig. 5. IWP spatial distribution of satellite data for their common temporal range (July 2006 to April 2008). Based on a polar colour table,
the colour “steps” represent 100×

1
32-percentile intervals, the “colours” are in reference to the percentile box that contains the mean (which

is coloured white), and the values in the legend are the absolute IWP [g/m2], corresponding to the percentiles at 0%, 1st quartile, median,
3rd quartile and at the 100× 31

32 percentile ( 96%). See also Table3 for the gridded statistics referred here.

AR4−ECHAM

2 21 35 49 70

AR4−CSIRO

2 20 38 70 114

AR4−CCSM

1 11 19 28 43

AR4−GISS

10 81 180 331 622

AR4−INM

1 7 12 15 20

AR4−UKMO

0 8 25 78 140

Fig. 6. Same as Fig.5, except for model data, and all available monthly IWP data are used.
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Table 4. IWP Statistics using monthly means [g/m2] for selected satellite datasets and climate models. Statistics are provided for the total
region (60◦S–60◦N) and the tropical region (30◦S–30◦N). The Satellite data comparison is from 2007, using a common spatial resolution
of 5◦, and with CloudSat as the reference dataset. Model statistics are based on the month averages derived from 100 years of data, which
has been re-gridded to a 5◦ grid for comparison. As model IWP can not be readily compared to satellite data, and the IWPnoPrecipdataset is
only valid over ocean, ECHAM has been arbitrarily chosen as the reference model for the subset of models. RMSD is the root mean square
difference and R stands for the spatial and temporal correlation of a dataset compared to the reference dataset.

Total Tropics
Datasets Mean Std Bias RMSD RMean Std Bias RMSD R

CloudSat 77 90 0 0 1.00 75 104 0 0 1.00
ISCCP 33 28 −44 88 0.61 23 23 −52 101 0.79
PATMOS-x 109 83 32 71 0.73 105 97 31 72 0.80
MODIS-aqua 58 44 −19 67 0.75 48 47 −27 76 0.82
MSPPS-noaa18 12 18 −65 103 0.64 15 22 −60 108 0.74

AR4-ECHAM 34 18 0 0 1.00 24 13 0 0 1.00
AR4-CCSM 18 11 −15 17 0.93 12 7 −12 14 0.82
AR4-CSIRO 42 31 8 19 0.90 25 17 1 10 0.80
AR4-GISS 211 197 178 257 0.62 115 127 91 154 0.29
AR4-INM 11 5 −23 27 0.67 10 6 −15 18 0.65
AR4-UKMO 39 43 6 30 0.82 11 10 −13 19 0.35

Figure6 shows the spatial distribution of IWP percentiles
for the selected climate models, averaged over all available
years (~100 years). The size and location of key dynamical
features differs between the models. All models show ele-
vated IWP averages, in relation to their total mean, around
the oceanic westerlies of both hemispheres, although the
magnitude of absolute IWP varies considerably. The mod-
els also depict, to a varying extent, large regions of low IWP,
in relation to their total mean, in the tropical and subtropical
Eastern Pacific and Indian Oceans. Notably, the ratio of IWP
magnitudes between tropical regions and temperate regions
varies greatly from model to model. Figure6 (and Table4,
introduced later) indicate that it is at tropical latitudes that the
models are in greatest disagreement. Compared to observed
dynamical features seen in Fig.5 (e.g. TWP, ITCZ), some
models, such as GISS and INM, show large areas of rela-
tively elevated IWP, misplaced well west of the TWP. Some
models, such as GISS, present a region of relatively low IWP
along the equator deep into the TWP, also diminishing the
ITCZ. In an absolute IWP sense, the GISS model uniquely
has higher IWP values than the observations. Some mod-
els have strong local maximum over Southern China, whilst
other models completely lack this feature. The GISS model
has extremely elevated values in this area (several orders of
magnitude higher than its total absolute mean IWP). Such
features are not seen in any of the satellite datasets. It is also
clear that some models, such as UKMO, have very low IWP
values in the Tropics, both in a relative and absolute sense.
This indicates that the models are probably incorrect or the
model data are incomplete here. Compared to observations,
large-scale dynamical features of modelled IWP are seen to

largely deviate from observations, even after attempting to
remove the difference caused by precipitation, as done in the
IWPnoPrecipdataset.

3.3 Monthly mean IWP

Modelled monthly mean IWP only very roughly represents
the amount of ice in the atmosphere, where small scale pro-
cesses, such as convection, and processes dependent on the
diurnal cycle are parametrised. Figure7 shows the histogram
distributions of CloudSat IWP (level 2, granule data) for
March 2007. The figure on the left shows data from com-
bined regions with equatorial continental convection in South
America and Africa, called tropcont (see Fig.9). The figure
on the right shows the global IWP distribution. The total
mean (black), the cloudy mean (red) and the cloudy median
(blue) IWP value for the month is shown as vertical lines in
the figure.

For the given month, frequent convection in the tropcont
contributes to a mean IWP of 182g/m2 and for cloudy foot-
prints, defined as IWP> 0 as seen by CloudSat, the average
IWP is 420g/m2. Despite the highest IWP values in this re-
gion, the ratio of cloudy pixels is only ~44%. The median
IWP value of the cloudy pixels is only 39g/m2. By com-
parison, the global mean of all CloudSat IWP measurements
for the same month is 73g/m2, and 190g/m2 for the mean
cloudy IWP. The median cloudy IWP value is 33g/m2, and
the ratio of cloudy pixels is 38%.

From Fig. 7, it is easy to understand that the monthly
mean IWP is generally far from the IWP expected for the
most common atmospheric states. For the studied region, the
common state is cloud free (CloudSat IWP = 0), or cloudy,
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Fig. 7. Histogram of CloudSat IWP in a region of frequent strong convection (left) and the global IWP distribution (right). The region studied
here is the combined region of equatorial continental convection in South America and Africa (see Fig. 9.). The IWP data (level 2, granule)
are shown in intervals of log10(IWP). The sample month chosen for both histograms is March 2007. The vertical lines represent: the total
mean including cloud free footprints (black), the cloudy mean excluding cloud free (red), and the cloudy median (blue) for the given month.

with IWP less than1
4 of the month mean. As the distribution

of IWP values is highly non-Gaussian, the use of Gaussian
statistics, such as mean and standard deviation, is not entirely
suitable for representing the monthly state of cloud proper-
ties, such as IWP. For example, for some physical process
F (e.g. radiative forcing) that is a non-linear but monotonic
function ofx (e.g. IWP), the median value of x can be used
to infer the median value of theF . The same cannot be said
of the mean values owing to the non-linearity ofF . Hence,
estimating the monthly cloud radiative forcing from monthly
mean IWP is inappropriate (e.g.,Atlas et al., 1995). This ap-
pears to be especially serious for convective regions, where
the mean and median cloud values have the largest differ-
ences. Despite this, mean IWP is the common statistic used
by models and satellite datasets for representing the data on
a monthly basis.

3.4 Total statistics

Table 4 contains the area-weighted mean IWP of the se-
lected satellite and climate model datasets for the total region
(60◦S–60◦N) and the tropical region (30◦S−−30◦N). These
statistics are based on all monthly mean values in the given
period and grid. This differs from the statistics provided in
Table3 for the spatial distribution of IWP expressed in per-
centiles, which are based on the average gridded IWP for the
entire period. The satellite comparison is based on monthly
mean values from 2007. The IWPnoPrecipdataset has not been
included here as it is only valid over open ocean. As indi-
cated, the satellite datasets are in better agreement, in terms
of spatial and temporal correlation in the tropical region than
in the total region. MODIS and PATMOS-x are in closest
agreement with CloudSat and are within, or close to Cloud-
Sat’s±40% uncertainty interval in both regions. MODIS ap-
pears closer to CloudSat in the total region (which includes
the tropics) than in the tropical region, whereas PATMOS-x

may agree slightly better with CloudSat in the tropics. How-
ever, PATMOS-x deviates strongly from the other datasets
at latitudes greater than 60◦N/S (not shown). MSPPS has
a large negative IWP bias in both regions, largely due to
its technical inability to detect most ice clouds. For de-
tected clouds MSPPS generally reports a factor 5 less IWP
than CloudSat (Holl et al., 2010). As previously shown in
Fig.2, ISCCP IWP is close to the averages of the IWPnoPrecip
dataset, hence against CloudSat, ISCCP has a large negative
bias, tending towards a larger negative bias in the tropics. A
more detailed regional analysis of IWP averages is further
presented in Sect.3.6.

Monthly averages, based on model data from 1900–2000,
were used for the model statistical comparison. Compared
to the satellite data, the models, with the exception of GISS,
clearly have much smaller IWP magnitudes, with averages
ranging from 30–50% of the CloudSat average. As men-
tioned earlier, this is expected as model IWP pertains to
the suspended cloud-ice portion of the IWP column only.
The models are therefore in better agreement with the ocean
only IWPnoPrecipdataset, which simulates CloudSat measure-
ments without precipitation (but has a dry bias), in terms of
magnitude. As the available datasets are not suitable for di-
rect comparison to model data here, we have arbitrarily cho-
sen ECHAM as a reference model for the subset of models.
In terms of spatial-monthly correlation, the models appear in
better agreement with each other in the total region, whereas
in the tropical region, the models deviate strongly from one
another. The models, except for INM, also have much higher
IWP averages in the total region than in the tropical region.
UKMO exhibits nearly a factor 4 higher IWP values in the
total region, whereas INM has the same average for both re-
gions. ECHAM, CCSM and CSIRO are generally well cor-
related in both regions, but CCSM has much lower IWP val-
ues. GISS has a very large IWP magnitude across all lati-
tudes and clearly exhibits problems modelling this quantity.
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In summary, the satellite datasets are in better agreement in
the tropics than outside the tropics, especially in terms of
spatial distribution of IWP. The climate models, on the other
hand, appear to have the opposite relation.

3.5 IWP seasonal cycle

In this section, we provide a qualitative evaluation of the
large-scale seasonal cycle of IWP in the tropics (30◦S−

30◦N), to check the model IWP variability compared to ob-
servations. As the standard deviation of IWP varies greatly
in magnitude between datasets, we have normalised the sea-
sonal cycle using the coefficient of variation (CV) (e.g.,Mo-
hapatra et al., 2007). CV is the variation of the average IWP
for every month of the year (i.e. 12 values) normalised by the
total mean of the period.

CVxy =
σxy

Ixy

whereIxy is the mean IWP of all months per grid box andσxy
is the standard deviation of the month averages per grid box.

Figure 8 shows the CV of observed and modelled IWP.
PATMOS-x and ISCCP were chosen as observational data
due to their long temporal ranges (25 and 24 years), long
enough to resolve the inter-annual variability, which is
present in the models. In the observed data, the spatial distri-
bution of CV indicates broad areas around the TWP, which
on a relative scale have little variability. This indicates semi-
persistent high IWP conditions in this region. As expected,
the yearly monsoonal activity, associated with the wander-
ing ITCZ, gives rise to a large variability of monthly IWP
near the Indian subcontinent, Northern Australia and Eastern
Africa. Both PATMOS-x and ISCCP also indicate a region
with a strong seasonal cycle in the Eastern Pacific. This fea-
ture is associated with an apparent “double ITCZ” that forms
during March and April, which ice signature was shown in
Mohr and Zipser(1996). Strong CV signals can also be seen
in areas with low absolute IWP averages, which may have a
short period of relatively large IWP values. This is because
CV emphasises regions with low IWP.

The models diverge in regions near, or periodically near
the ITCZ. The seasonal cycle of ECHAM closest resembles
observations, followed by CSIRO. GISS completely lacks
the area of low seasonal cycle associated with the TWP and
its adjacent areas, indicating too large seasonal variability
here. Most models have too small regions of low CV east and
west of the TWP, where observations indicate semi-persistent
high IWP. In general, the seasonal cycle of the models in the
important high IWP regions are not well represented in the
models. They also diverge in regions with low IWP, but these
are finer details, and this test is too stringent to assess the
models in these regions.

3.6 Statistics by region

Waliser et al.(2009) compared the average global, tropical
(30◦S–30◦N) and extra-tropical (> 30◦N,S) IWP for both ob-
servational datasets and GCMs. They found these averages
were approximately the same for each satellite dataset, and
for the models, they have a factor 2 more IWP in the extra-
tropics. We have chosen to go a step further and analyse the
regional averages of satellite and model data in regions that,
over all seasons, contain quasi- homogeneous atmospheric
conditions. We have defined 4 large regions, each with a
climate dominated by a large scale vertical motion of the at-
mosphere, either subsiding or rising.

We have selected two large subsidence zones west of
South America and west of South Africa, and these ar-
eas combined constitute the oceanic subsidence region
(oceansub). Tropical continental South America and Africa
together constitute the tropical continental convection region
(trop cont). The TWP and areas adjacent constitute the Trop-
ical Oceanic Convection region (warmpool). The areas of
mid-latitude storms in the North Atlantic, North-West Pa-
cific, and the mid-latitude storm tracks in the southern hemi-
sphere, together constitute a region called westerlies. The
boundaries of these regions are based on the spatial distribu-
tion of IWP of all satellite datasets, and the largest possible
regions with similar IWP distributions were selected. The
extent of these regions are shown in Fig.9.

The area-weighted mean and the regional fraction of IWP
was calculated for satellite datasets and models for the cho-
sen regions and are shown in Table5. The regional fraction
in percent (IWPrel) is defined:

IWPrel =
IWPreg

IWPtot
·100% (1)

where IWPreg is the mean IWP for a given region and IWPtot
is mean IWP from the total region (60◦S–60◦N) for each
dataset. This quantity was included in Table5 for clarity,
as the difference in the mean IWP between datasets is large.

3.6.1 Regional observations

Table5 shows the regional statistics of the observed datasets
and climate models. Results show that all satellite datasets
are in general agreement in the oceanic subsidence regions
in terms of relative IWP, with PATMOS-x and ISCCP hav-
ing a higher fraction of IWP in this region. PATMOS-x
has comparatively high absolute IWP averages in this region
(3× larger than CloudSat). It can detect thinner ice clouds
than CloudSat, such as clouds induced from gravity waves
or remnant outflow from distant convection. However, this
is may not be the cause of PATMOS-x’s high relative values
in these regions because MODIS, based on similar spectral
channels, does not show the same result. In the westerlies
region, ISCCP has the highest relative fraction of the total
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Fig. 8. Coefficient of variation, depicting the seasonal cycle of IWP in the tropics (30◦S–30◦N). The top two panels are the datasets,
PATMOS-x and ISCCP, both of which have sufficiently long temporal ranges to capture the inter-annual variability of IWP. The bottom six
panels are the subset of models used in this survey.
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Fig. 9. Schematic of regions chosen for statistical comparison. Tropical Continental zones (red), Tropical maritime convective zone (blue),
subsidence zones (black) and Westerlies (green).
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average (1.9), PATMOS-x and MODIS have the same frac-
tion (1.6), CloudSat (1.4). MSPPS has much too low IWP
averages in this region both in an absolute and relative sense
(0.4). As expected, the reverse is true for the warmpool re-
gion. MSPPS and CloudSat have the highest fractions of 2.6
and 2.3 respectively, followed by PATMOS-x and MODIS
with 1.9 and 1.8 respectively, and ISCCP with 1.5, has the
lowest fraction. The average IWP in the tropcont region is
approximately the same fraction as for the warmpool region,
albeit a little less for all datasets, with the strong exception
of MSPPS. MSPPS average IWP for the tropical continen-
tal region is nearly a factor five higher than its total aver-
age. This is likely an indication of the deep convection which
is generally more intense and more frequent over land than
over ocean (Hong et al., 2005). The ocean-only IWPnoPrecip
dataset has in general a smaller fraction of IWP in the tropics
and a larger fraction in the westerlies, than the other datasets.
As mentioned earlier, ISCCP and IWPnoPrecipmainly repre-
sent suspended cloud-ice and CloudSat and MSPPS mainly
represent larger particles. In light of this, it appears that
clouds may have a higher proportion of precipitating cloud
particles to small cloud-ice particles in the tropical convec-
tion regions compared to that of the westerlies regions.

Problems associated with comparing datasets in regions
where there are large diurnal variations of IWP, such as trop-
ical convective regions, are assumed to be small for Cloud-
Sat, MODIS, and MSPPS. The CloudSat and Aqua (MODIS)
platforms are in the A-train and the NOAA18 (MSPPS) plat-
form is close to the A-train, and therefore fairly collocated.
The local equatorial passing times for the A-train are around
13:45 and 01:45. ISCCP, based on geostationary satellites
and PATMOS-x, based on composite data from several sun-
synchronous satellites, may deviate from the other datasets
due to a different diurnal sampling. The regional comparison
of the observations further confirm the general statements
made on the differences between satellite datasets presented
in Waliser et al.(2009).

The models have the same IWP values as the observations
in the oceanic subsidence regions. As seen in Fig4 (right) the
cloud-ice column ratio is likely to be high in the subsidence
regions indicating that the models are may be close to agree-
ment here. However in terms of IWPrel, the models have
too much IWP here in comparison to their mean global IWP.
All models except UKMO, have a relative IWP of between
27%–42%, whereas UKMO has a relative IWP value of 7%.
The models have similar to observed absolute IWP values in
the Westerlies regions, indicating that, in relation to the total
mean IWP, all models tend to overestimate IWP in these re-
gions. The exceptions are GISS and UKMO. GISS has very
large absolute IWP values and UKMO has a relative IWP
a factor three larger than its total average in the westerlies
region. In the convective regions all of the models have par-
ticularly low absolute, but also relative IWP compared to the
satellite datasets. This is especially pronounced in the trop-
ical continental regions. UKMO stands out with very low

IWP in these regions, merely around 30% of its total mean
IWP. The low modelled IWP averages in this region are at
least in part due to the low cloud-fraction, but in addition it
may also indicate insufficient moist convection.

It has previously been shown that climate models have
problems modelling the diurnal cycle, of which indicates
problems with convection (e.g.,Dai and Trenberth, 2004;
Eriksson et al., 2010). The study inEriksson et al.(2010)
showed that the models they studied captured the diurnal cy-
cle to a varying degree. Their results in conjunction with the
results presented in this study indicate that a model which is
good at one aspect of the cloud ice (such as IWP) appears to
also be good at other aspects (such as diurnal phase). Ad-
ditionally, the model regional results may reflect the better
availability of surface and atmospheric data at mid-latitudes,
which enables better parametrisations and tuning for the mid-
latitudes. The tropics are largely made up of oceans and mon-
itored by a very sparse network of measurement sites, leading
to more uncertain results.

As mentioned earlier,Waliser et al.(2009) showed trop-
ical, extra-tropical and global averages for all models and
datasets. For example, by attaining a tropical average (30◦S–
30◦N) by latitude only, large areas with high IWP, such as
trop cont and warmpool are averaged with large dry re-
gions, such as oceansub along with large deserts (e.g Sa-
hara). Whereas, the average IWP of the extra-tropics is at-
tained from regions with, in general, less extreme IWP dif-
ferences. This regional comparison indicates that additional
important information can be attained by comparing datasets
and models on a regional basis, such as done here. Our
results show for CloudSat, the IWP magnitude of the trop-
ical “wet” regions is approximately a factor 2 higher than
the extra-tropical “wet” regions. The GCMs show IWP as-
sociated with the westerlies which are generally twice as
high as the total average, in accordance withWaliser et al.
(2009). This survey showed additionally that modelled IWP
in tropical continental regions is markedly lower than over
tropical maritime convective regions, in accordance with ice
clouds associated with convection over land probably having
smaller cloud-ice column ratios by comparison. Despite the
large uncertainties for determining which models are clos-
est to observations, judging in terms of absolute and relative
IWP values and spatial distribution of large dynamical fea-
tures, explained in Sect.3.2, we believe ECHAM followed
by CSIRO are closest to observations.

In this sense UKMO and GISS are in largest disagreement
with observations, in that it UKMO has much too low tropi-
cal IWP values and has quite high values, and in relation to
its total mean, very high values in the westerlies. GISS has
a very high absolute IWP bias compared to all datasets at all
latitudes, and in the placement of key dynamical features of
IWP. Most likely the IWP data provided to the AR4 archive
from these two models have serious problems, the causes of
which are outside the scope of this article.
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Table 5. Area-weighted mean IWP [g/m2] for selected regions. The regional fraction IWPrel (in %), follows the regional mean in brackets.
The mean IWP for the total region has been included in the table as a reference (far right). All available data have been used to retrieve the
mean values.

Datasets oceansub tropcont warmpool westerlies total

CloudSat 5.8 (7) 156.1 (202) 176.9 (229) 106.8 (138) 77.2
IWPnoPrecip 2.4 ( 9) 50.7 (195)* 38.3 (148) 25.9
ISCCP 3.9 ( 12) 42.6 (135) 46.5 (147) 59.3 (187) 31.7
PATMOS-x 15.0 (14) 182.8 (176) 197.3 (190) 166.3 (160) 104.1
MODIS-aqua 4.3 (8) 95.6 (165) 104.7 (181) 91.9 (159) 57.9
MSPPS-noaa18 0.6 (5) 58.9 (481) 30.6 (249) 4.7 (39) 12.2

AR4-ECHAM 9.1 (27) 39.3 (117) 43.5 (130) 61.9 (184) 33.6
AR4-CCSM 4.8 (26) 14.9 ( 81) 22.9 (125) 36.5 (198) 18.4
AR4-CSIRO 7.2 (17) 26.0 (62) 52.1 (124) 98.1 (234) 41.9
AR4-GISS 57.0 (27) 183.7 (88) 93.1 (44) 433.4 (207) 209.3
AR4-INM 4.6 (43) 9.8 (91) 16.0 (148) 15.0 (138) 10.9
AR4-UKMO 2.7 (7) 10.2 (26) 12.8 (32) 118.2 (300) 39.4

* IWPnoPrecipis an ocean only dataset which effects its regional averages in the tropcont and warmpool regions.

4 Discussion and summary

From a subset of 6 models out of 20 in the AR4 archive,
large discrepancies between modelled IWP distributions are
apparent. The models, which were selected in a way that
their the inter-model variability is close to that of all mod-
els in the archive, reflect the difficulties faced in modelling
this quantity. A major contributing factor to this is the lack
of detailed cloud ice measurements to constrain the models
with. Although satellite datasets of IWP now span 25 years,
no satellite datasets provide consistent and accurate IWP re-
trievals for the entire cloud ice column. Rather, depending
on the remote sensing technique used, different portions of
the column are retrieved. The introduction of the CloudSat
Profiling Radar is a leap forward for the modelling commu-
nity in addressing the problems in cloud ice simulation. In
contrast to the IWP data from passive sensors, CloudSat pro-
vides information on the vertical structure of clouds, which
is essential information in modelling fields such as IWC.

Waliser et al.(2009) used CloudSat as the main reference
of IWP, and compared the distribution of modelled IWC in
two prognostic GCMs. They showed large differences in
vertical distribution of IWC between the models and Cloud-
Sat. CloudSat IWP represents the total mass of ice, including
graupel and snow, which are not included in model IWP. As
discussed in detail inWaliser et al.(2009), the distinction
between different ice categories is natural and simple from
a model point of view, but hard or even impossible from a
measurement point of view. The only reasonably well de-
fined quantity to measure is total IWP. Therefore, to aid in
the model comparison to observations we added a dataset,
called IWPnoPrecip, based on CloudSat measurements where
profiles containing surface precipitation were removed. This

dataset represents the lower end of the uncertainty as it natu-
rally has a dry bias because all clouds strong enough to sup-
port precipitation are removed from the total.

The satellite datasets have very different magnitudes and
distributions of IWP, due largely to the different retrieval
techniques used. MODIS is in best agreement with CloudSat
over all latitudes, with a negative bias. PATMOS-x is also
relatively close to CloudSat within 60◦S–60◦N, but with a
positive bias compared to CloudSat. ISCCP has a consider-
able low bias compared to CloudSat but is in good agreement
after removing the precipitation, i.e. with IWPnoPrecip.

Also in Sect.3.1and3.2, it is shown that the climate mod-
els disagree on the magnitude and spatial distribution of IWP,
which confirms the results ofWaliser et al.(2009). As the
modelled IWP and observed IWP are not defined equally,
not much can be said about the absolute IWP of the models.
However, it is shown that the models are in larger disagree-
ment to observations in regions with persistent convection.

The regional comparison study in Sect.3.6 showed that
in relation to the observed mean IWP in 60◦S–60◦N, many
models have particularly low IWP ratios in the tropical re-
gions compared to the westerly storm-track regions. The
GISS model is the exception, it has much higher absolute
IWP values than seen in satellite observations across all lat-
itudes, depicting difficulties modelling this quantity. In this
comparison ECHAM and CSIRO were the two models which
were closest to the “observed” data in terms of absolute mag-
nitude and spatial correlation. There may be some merit for
the models having higher relative values outside the trop-
ics than inside as model IWP is suspended cloud ice only,
and the simulated suspended cloud ice to IWP fraction re-
lationship shown in Fig.4 suggest that cloud ice fractions
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are indeed higher outside the tropics. This relationship
was first indicated by zonal averages using two models in
Waliser et al.(2009).

As this study concerns the atmospheric state monthly
mean, we assessed the distribution of CloudSat level 2, gran-
ule IWP data for one month. Section3.3, showed that mean
for March 2007, is the mean of very different atmospheric
states, and its distribution is highly non-Gaussian. This is
also most apparent in convective regions.

For the climatology of IWP to be modelled correctly, they
must model the large scale processes that effect the seasonal
variability of IWP. It is expected that there is a high seasonal
variability of IWP in certain regions of the tropics such as
the Indian sub-continent and Northern Australia, and a low
variability in regions such as near the equator over the In-
donesian archipelago. Using long term datasets of IWP from
PATMOS-x and ISCCP, we assessed the coefficient of vari-
ation, a measure of the seasonal variability, of the gridded
monthly averages of IWP in the models. By using datasets
with long time series, the inter-annual variability is aver-
aged in the model and observations statistics. Figure8) in
Sect.3.5 shows that most models differ from the observed
data in terms of where and how strong their seasonal vari-
ability of IWP is, especially in and around the ITCZ region.
This may indicate that important seasonal features such as
the Indian monsoon may not be simulated satisfactorily.

5 Conclusions

Although several IWP observational datasets exist, they are
more or less inherently different from one another, as they re-
trieve information from different parts of the cloud column.
This is not purely a limitation. With the knowledge on the
observational datasets’ limitations and sensitivities, they may
be used in combination to enhance our knowledge on the to-
tal IWP column. We have evaluated five IWP datasets by
comparing them to CloudSat in their period of overlap, in
terms of distribution and magnitude of monthly mean IWP.
ISCCP, one of the longest datasets, has low IWP values by
comparison and has particularly low values in the tropics.
MSPPS has the lowest IWP values of the datasets. This
dataset, based on passive microwave measurements has very
low values in regions outside the tropics, but tends to de-
tect IWP in deep convective clouds. MODIS and PATMOS-x
are closest to CloudSat, with MODIS being in better agree-
ment. PATMOS-x has a temporal range of 25 years com-
pared to MODIS approximately 10 years. Especially for the
model to observations comparisons, we attempted to remove
the precipitation bias in CloudSat. Using a ground precipita-
tion flag, we created the IWPnoPrecipdataset. ISCCP IWP is
notably in good agreement with this dataset. It is well docu-
mented that it is difficult to compare retrieved IWP to mod-
elled IWP. By utilising long term datasets such as PATMOS-
x and ISCCP, the climate model community has 25 years of

data with which to constrain their IWP distributions. We
compared the magnitude and distribution of modelled IWP
of a subset of models from the IPCC AR4 to observed IWP
distributions. Our results are consistent withJohn and Soden
(2006) andWaliser et al.(2009) that there are large discrep-
ancies between the climate models used in AR4. We showed
that all models appear to have problems modelling the spatial
distribution of IWP. This is especially true in tropical convec-
tive regions.

In future studies, we would like to enhance our un-
derstanding of the differences between the observational
datasets. This should be done on a pixel level on coinciden-
tal data, rather than using monthly means, or preferably us-
ing satellite simulators to better understand the observations.
We believe that utilising the long satellite datasets of IWP
and understanding how the datasets complement each other
is the key to constraining model IWP distributions. Future
satellite sensors that measure IWP more directly than current
sensors, such as the one proposed inBuehler et al.(2007),
would also be desirable.
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