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Abstract. We describe aerosol optical depth (AOD) mea-
sured during the Arctic Research of the Composition of the
Troposphere from Aircraft and Satellites (ARCTAS) exper-
iment, focusing on vertical profiles, inter-comparison with
correlative observations and fine-mode fraction. Arctic haze
observed in<2 km and 2–4 km over Alaska in April 2008
originated mainly from anthropogenic emission and biomass
burning, respectively, according to aerosol mass spectrom-
etry and black carbon incandescence measurements. The
Ångstr̈om exponent for these air masses is 1.4± 0.3 and
1.7± 0.1, respectively, when derived at 499 nm from a
second-order polynomial fit to the AOD spectra measured
with the 14-channel Ames Airborne Tracking Sunphotome-
ter (AATS-14) over 354–2139 nm. We examine 55 vertical
profiles selected from all phases of the experiment. For two
thirds of them, the AOD spectra are within 3% + 0.02 of the
vertical integral of local visible-light scattering and absorp-
tion. The horizontal structure of smoke plumes from lo-
cal biomass burning observed in central Canada in June and
July 2008 explains most outliers. The differences in mid-
visible Ångstr̈om exponent are<0.10 for 63% of the profiles
with 499-nm AOD> 0.1. The retrieved fine-mode fraction
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of AOD is mostly between 0.7 and 1.0, and its root mean
square difference (in both directions) from column-integral
submicron fraction (measured with nephelometers, absorp-
tion photometers and an impactor) is 0.12. These AOD mea-
surements from the NASA P-3 aircraft, after compensation
for below-aircraft light attenuation by vertical extrapolation,
mostly fall within ±0.02 of AERONET ground-based mea-
surements between 340–1640 nm for five overpass events.

1 Introduction

The 14-channel Ames Airborne Tracking Sunphotometer
(AATS-14) measures aerosol optical depth (AOD)

– from airborne platforms

– with a small and well-documented error (∼0.01; see
Sect. 2.1)

– over a wide spectral range.

These three features have facilitated the interpretation and
validation of satellite-based observations (Levy et al., 2003;
Livingston et al., 2003, 2009; Gassó and Hegg, 2003; Chu et
al., 2005; Russell et al., 2005, 2007; Redemann et al., 2005,
2006, 2009a, b) and the estimation of local aerosol radiative
effects (Russell et al., 1999, 2010; Bergstrom et al., 2005,
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2006, 2007, 2009; Redemann et al., 2006). They stimulate
another three applications.

First, the aircraft deployment of AATS-14 can yield AOD
profiles over areas with scarce alternative measurements.
Northern North America is among such areas, with the spo-
radic presence of ground sites and, due to the large areas of
bright surface and frequent clouds, a limited number of satel-
lite retrievals. Airborne remote-sensing with AATS-14 over
the region, particularly when accompanied by in situ mea-
surements, provides an effective rapid assessment of local
airmass characteristics.

Second, its well-documented low uncertainties and wide
spectral coverage make AATS-14 AOD a useful parameter
for comparison with other suborbital measurements. AATS-
14 is one of the very few airborne sensors that can measure
AOD at 2.1 µm (e.g., Levy et al., 2005; Redemann et al.,
2005). AATS-14’s spectral range covers all but the 340 nm
channel of the Cimel sunphotometers used by the AERONET
ground-based sunphotometer network. Altitude resolved
AOD isolates light extinction for a certain layer and can
be compared with coincident in situ airborne measurements.
Through these comparisons, one can not only assess the per-
formance of optical instruments, but also link measurements
of aerosol physical and chemical properties between plat-
forms (e.g., aircraft and ground) and between domains (col-
umn integral and local, ephemeral and continuous).

Third, the wide spectral coverage of AATS-14 can be ex-
ploited to derive fine-mode fraction (FMF), the fraction of
AOD contributed by the algorithmically-defined fine mode
(O’Neill et al., 2001, 2003). Kaufman et al. (2002) argue
that the ability of satellites to observe the spatial distribu-
tion of aerosols, and to distinguish fine from coarse parti-
cles, can be exploited to separate natural from anthropogenic
aerosols. This argument does not completely hold when fine
particles from naturally occurring forest fires dominate ex-
tinction. Still, comparing the AATS-14 FMF with in situ
aerosol properties will enable rough evaluation of the re-
mote sensing product. To our knowledge, only Anderson
et al. (2005) and Gassó and O’Neill (2006) have made such
comparisons. They used the submicron fraction (SMF) of
in situ extinction, measured using a 1-µm impactor. FMF
comparison among remote sensing instruments has been only
slightly more common (Kleidman et al., 2005; Jethva et al.,
2005, 2007; Ramachandran, 2007; Redemann et al., 2009a).

This paper addresses these three subjects (Sect. 3.1–3.3,
respectively) using the AOD observed during the Arctic Re-
search of the Composition of the Troposphere from Aircraft
and Satellites (ARCTAS) experiment. This multi-platform
campaign took place primarily in Alaska, USA in March and
April 2008, California, USA in June 2008, and Saskatchewan
and Alberta, Canada in June and July 2008 (Fig. 1). The
NASA P-3 aircraft, on which AATS-14 and in situ instru-
ments were deployed, sampled boreal forest fire smoke,
Asian outflow, and emissions from mining sites among other
air masses. An overview of the ARCTAS experiment and the

Fig. 1. The flight track of NASA P-3 aircraft during ARCTAS sep-
arated into three geographical groups, and AERONET ground sites
mentioned in this paper.

multiple platforms involved is given by Jacob et al. (2010),
and its meteorology is reviewed by Fuelberg et al. (2010).

2 Instrumentation and methods

2.1 Airborne remote sensing with AATS-14

AATS-14 data acquisition, screening, calibration, reduction
and uncertainty analysis are described below. They are simi-
lar to previous deployments of this instrument and its prede-
cessor (Matsumoto et al., 1987; Russell et al., 1993a, b, 1999,
2007; Schmid and Wehrli, 1995; Schmid et al., 1996, 1998,
2001, 2003a; Livingston et al., 2003, 2005, 2007, 2009; Re-
demann et al., 2003, 2005, 2009a, b).Ångstr̈om exponent
and layer AOD are derived in Sects. 3.1.1 and 3.2.1, respec-
tively.

AATS-14 measures direct solar beam transmission in nar-
row wavelength channels by using detectors in a tracking
head mounted externally to the aircraft. The sampling is at
3 Hz, and every 4 s AATS-14 records detector voltages con-
sisting of an average and standard deviation of 9 samples
taken during the first 3 of the 4 s. These data are stored to-
gether with those on instrument tracking, temperature control
and aircraft location as well as ambient temperature, relative
humidity (RH) and static pressure.

The standard deviations of all channels were used sub-
sequently in a cloud-screening algorithm, as described by
Schmid et al. (2003a) and Redemann et al. (2009a). As Re-
demann et al. (2009a) pointed out, the AATS cloud screen-
ing method does not rely solely on the spatial varibility of
its transmission measurements. Instead, as long as the AATS
instrument maintains tracking of the solar disk through or
near a cloud, the̊Angstr̈om exponent of the optical depth
retrievals is a second test of the effectiveness of the cloud
screening method. In this test, the variability of theÅngstr̈om
exponent is used to decide whether a feature that shows large
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spatial variability is likely a cloud or an aerosol plume. If, for
example, a feature shows large transmission variability and
shows a decrease in̊Angstr̈om exponent, we conclude that
the feature is likely a cloud and the feature is flagged accord-
ingly. If, on the other hand, a feature shows large transmis-
sion variability but no change in̊Angstr̈om exponent when
compared to adjacent measurements, we conclude that the
feature is an aerosol plume. We concede that our method may
unintentionally filter out some cases of heavy smoke during
the Canada phase of ARCTAS. We concede further that our
method may contain remnants of cirrus cloud contamination
if the optical depth of such cirrus clouds is small enough
so as to not affect the̊Angstr̈om exponent calculations of
the combined aerosol-cirrus optical depth significantly. In
one case during ARCTAS-spring, namely on 9 April 2008
at 21:15 UT, near 74◦ N and 139◦ E, we encountered a fea-
ture that showed relatively large variability in transmission,
but relatively slow changes in̊Angstr̈om exponent. Given
the conditions of the spring phase, it is likely that this feature
is a spatially highly homogeneous cirrus cloud, with spatial
homogeneity unmatched at lower latitudes. The total optical
depth of this feature is of the order of 0.2–0.3 and given its
isolated nature it has no bearing on the further analysis in this
paper. During no other ARCTAS-spring flight did we find
features of similar high variability in transmission, but low
variability in calculatedÅngstr̈om exponent. Therefore, we
estimate such cirrus contaminations to be possible at levels of
10% of AOD, generally equivalent to optical depths of 0.01–
0.02 or less. A potentially large source of calibration error is
dirt deposited on the Sunphotometer entrance window (e.g.,
Livingston et al., 2003). To minimize this error we cleaned
the window carefully before each flight. Data obviously af-
fected by frost, dirt and adhesive particles, as indicated by
abrupt changes in transmission measured in individual chan-
nels and resulting small transmissions (large derived AOD)
during high altitude legs, were removed.

This paper examines the AATS-14 data collected on 20 of
the 25 ARCTAS flights. Excluded are three transit flights,
one science flight when dirt accumulated on the AATS-
14 quartz window during low level legs, and one science
flight when cloud conditions were unfavorable for AATS
data collection.

The 14 channels are centered at wavelengths 353.5, 380.0,
452.6, 499.4, 519.4, 605.8, 675.1, 779.1, 864.5, 940.6,
1019.1, 1241.3, 1558.5, and 2139.3 nm, with full-width half-
maximum bandwidths of 2.0, 4.6, 5.6, 5.4, 5.4, 4.1, 5.2, 4.7,
5.0, 5.0, 5.1, 5.1 4.7, and 17.3 nm, respectively, for the spring
phase. For the summer phase, three of the filters were re-
placed with new ones with similar center wavelengths (451.2,
520.4, and 2139.1 nm) and half-maximum bandwidths (5.7,
5.2, and 15.2 nm). These channels permit separation of
aerosol, water vapor, and, for measurements acquired at low
solar elevation angles with small AOD (Livingston et al.,
2005), ozone attenuation along the slant path from the Sun to
the instrument. Because most AATS measurements during

ARCTAS did not satisfy the solar elevation angle and AOD
criteria required for retrieval of ozone slant or column atten-
uation, the ozone column contents were extracted from the
Ozone Monitoring Instrument (OMI) archived retrieval files
and adjusted for the P-3B altitude using the 1976 standard
ozone model vertical distribution. This procedure is the same
as that reported in previous AATS studies (e.g., Livingston et
al., 2007, 2009). We retrieved AOD at all the wavelengths
except 940.6 nm from the slant-path transmissions using the
methodology described in detail previously (e.g., Russell et
al., 1993a). Exoatmospheric detector voltages required for
these AOD retrievals were calculated by first applying the
Langley plot technique (Schmid and Wehrli, 1995) to sunrise
measurements acquired at Mauna Loa Observatory, Hawaii,
in February, May, and August 2008 (thus bracketing the
ARCTAS campaign) and then, following the procedure de-
scribed in Schmid et al. (2003a, b), by analysis of high al-
titude clear air AOD spectra obtained during the spring and
summer deployments.

Through its non-zero (±1.85◦ of the axis) field of view,
the AATS-14 receives some diffuse light in addition to the
direct solar beam. As a result, uncorrected sunphotome-
ter measurements can overestimate direct-beam transmission
and hence underestimate the AOD. This effect increases with
decreasing wavelength and increasing particle size. We esti-
mated these diffuse light effects using formulations derived
by Russell et al. (2004), which are applicable over a wide
range of column particle size distributions. These effects
were negligible in ARCTAS because of the relatively large
Ångstr̈om exponents (see Sects. 3.1.1 and 3.3.1), indicating
relatively small particles with relatively small forward scat-
tering fractions.

AATS-14 data were corrected for Rayleigh scattering and
absorption by O3, NO2, H2O and O2-O2 after Schmid et
al. (2006).

Uncertainties in AATS-derived AOD were calculated
using an expression based on Eq. (A22) of Russell et
al. (1993a), with additional terms added to account for
(1) tracking errors combined with a sloping angular response
within each channel’s field of view (FOV) and (2) uncertain-
ties in O2-O2 absorption. An additional potential source of
AOD error, mentioned above, is contamination (e.g., con-
densation, frost, or dirt) deposited on the AATS front win-
dow. We do not expand error bars to account for this po-
tential error. Instead, as noted above, we inspect individual
AOD spectra, together with environmental conditions (e.g.,
temperature and airmass),in an effort to identify and remove
cases likely to have such contamination. As a test of the
adequacy of our AOD error bars, we have calculated the
root-mean-square (rms) difference between data points and
a second-order polynomial fit to the points for high altitude
spectra measured during 8 flights in Spring and 9 in Summer.
In general, we found that these rms differences were<0.008
in nearly all cases.
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2.2 Airborne in-situ measurements of aerosol
optical and chemical properties

Total and submicrometer aerosol scattering coefficients were
measured at 450, 550 and 700 nm with two TSI model 3563
integrating nephelometers (Anderson et al., 1996, 2003;
Heintzenberg and Charlson, 1996). The measurements were
made every second but represent an average over about 5 s,
the residence time of aerosols in the chamber. The instru-
ment RH was not actively controlled but kept to<30%, of-
ten near 20%, by ram heating and cabin temperatures higher
than the ambient. Measurement accuracy and 300-second-
average precision are estimated to be 2% and 0.2 Mm−1, re-
spectively (McNaughton et al., 2009). The light scattering
values measured over the detection angles of 7–170◦ were
corrected to 0–180◦ after Anderson and Ogren (1998). The
angular truncation correction was 5–11% and only mildly un-
certain (1%) for most time periods during ARCTAS, because
coarse particles contributed a minor fraction of scattering.

Two 3-wavelength Radiance Research particle soot ab-
sorption photometers (PSAP) continuously measured aerosol
light absorption by monitoring the change in transmittance
across a filter using 3 LEDs (470, 530 and 660 nm). We
correct our data for the scattering artifact as well as cali-
bration error after Virkkula (2010), an erratum for Virkkula
et al. (2005). This correction, a function of the ratio of the
scattering coefficient to the extinction coefficient (i.e., single
scattering albedo, SSA) and the wavelength, reduces 530-
nm absorption nearly as much as does the classic correc-
tion scheme widely used for a single-wavelength prototype
of the PSAP (Bond et al., 1999). We assume the uncertainty
for absorption coefficient is 20%. The average instrument
noise, computed as the average standard deviation for six
300-second (5-minute) averages of the 1-Hz data taken in our
laboratory for filtered air, is 0.56 Mm−1 for all wavelengths
(McNaughton et al., 2009).

Two single-wavelength Radiance Research model M903
nephelometers were operated in parallel to measure the ef-
fect of humidity on aerosol scattering. They were modified
with Corion CA-550 80 nm bandpass filters for an approxi-
mate operating wavelength of 540± 3 nm (Anderson et al.,
2003). One was controlled to about 80% RH (RH1) and
the other at<40% (RH2) (Howell et al., 2006). Anderson
et al. (2003) estimate that the noise averaged over 4 min is
0.46–0.58 Mm−1. The wet to dry scattering ratio,f (RH),
was used to calculateγ based on the following equation.

f (RH) = ((1−RH1/100)/(1−RH2/100))−γ . (1)

γ characterizes the response in aerosol scattering to changes
in RH, which is determined by the aerosol chemistry, mix-
ing state, sizes and refractive index. Using the calculatedγ ,
we can derivef (RH) for the ambient RH, orf (ambRH), by
replacing RH1 and RH2 with the measured ambient RH and
the TSI nephelometer RH (<30%), respectively. The result-
ing f (ambRH), when multiplied by the total dry scattering

coefficient, gives the scattering coefficient at ambient RH.
The errors inγ andf (ambRH) were estimated by assuming
a 3.5% error in RH measurement (Anderson et al., 2003) and
a 5% random error in each Radiance Research nephelometer
scattering measurement. These errors confinedγ within 18%
of the true value for a true value of 0.4, and within 14% for
a true value of 0.6. The resulting relative error inf (ambRH)
is below 10% for drier air typical for the ARCTAS study re-
gions (<70% RH), while it exceeds 20% at 90% ambient RH
for moderately hygroscopic particles (γ > 0.3).

The in situ measurements described so far can be inte-
grated vertically to yield layer AOD (Sect. 3.2.1). A sec-
ond combination of a TSI nephelometer and a PSAP was
operated similarly but behind a 1-µm (aerodynamic diame-
ter) impactor to measure submicron fraction of scattering and
absorption, which is mentioned in Sect. 3.3.2.

An Aerodyne High-Resolution Time of Flight Aerosol
Mass Spectrometer (AMS) characterized volatile ionic and
organic components of aerosols between 50–700 nm (De-
Carlo et al., 2006; Canagaratna et al., 2007). During ARC-
TAS it was generally operated in V-mode (high sensitivity)
rather than W-mode (high mass resolution), with the heater
set to about 600◦C. This paper uses bulk composition only,
not resolved for aerosol size. To keep steadier sampling rates
the AMS inlet was preceded by an orifice and a chamber reg-
ulated to 600 hPa at low altitudes and 300 hPa at high alti-
tude. Ionization and sampling efficiency were calibrated with
ammonium nitrate particles sized with a differential mobil-
ity analyzer. Data analyses were performed with techniques
documented in Allan et al. (2004).

A Single Particle Soot Photometer (SP2) measured laser-
induced incandescence to detect black carbon (soot) mass
(Stephens et al., 2003; Schwartz et al., 2006) between about
100–600 nm.

In situ data affected by clouds were identified based on the
ambient humidity record and flight notes, and omitted from
further analysis here. Loss of particles in inlet and tubing is
expected to be negligible for all in situ instruments, because
extinction observed during ARCTAS was mostly contributed
by fine particles. Possible exceptions are a few high altitude
legs with the presence of dust particles and low level legs
over the oceans with the presence of sea salt particles.

2.3 Ground-based remote sensing with AERONET
Sun-sky photometer and micropulse lidar

The Aerosol Robotic Network (AERONET) consists of auto-
matic tracking Sun-sky photometers located at∼400 ground
sites around the world. These instruments measure AOD,
which is routinely archived together with spectrum-based
fine-mode fraction and inversion products (Holben et al.,
1998, 2001; Eck et al., 2001; O’Neill et al., 2001; Dubovik et
al., 2002) after application of the cloud screening and quality
control procedures described by Smirnov et al. (2000). Mea-
surements of spectral AOD used in this study were acquired
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through their standard data acquisition method with a time
interval of 2–15 min at eight wavelengths: 340, 380, 440,
500, 675, 870, 1020 and 1640 nm. Only level 2.0 products
are used in this study. The locations of AERONET sites men-
tioned in this paper (Barrow, Pearl, Monterey, Fort McMur-
ray and Saturna Island) are marked in Fig. 1.

The MicroPulse Lidar Network (MPLNET) consists of
ground-based 523, 527, or 532 nm backscatter micropulse li-
dar systems (MPL’s) providing vertical atmospheric profiles
of aerosols and clouds up to 30 km with a temporal and ver-
tical resolution of 1 min and 75 m respectively (Welton et al.,
2001). When collocated with AERONET Sun-sky photome-
ters, the MPL’s corrected backscatter data can be iterated to
derive extinction by normalizing the MPL extinction profiles
to AERONET derived AOD at the MPL wavelength (527 nm
for Monterey, California) (Campbell et al., 2002; Welton and
Campbell, 2002; Eck et al., 1999).

3 Results and discussion

3.1 Vertical profile

Here is an overview of our AOD observations during ARC-
TAS. We mainly sampled Asian outflow over Alaska, combi-
nation of biomass burning and marine aerosols over Califor-
nia, and smoke from local forest fires over central Canada.

3.1.1 Alaska, April

During the spring phase, P-3 science flights during the period
1 –15 April 2008 over Alaska, the Arctic Ocean, and Green-
land yielded AODs that were confined to a fairly narrow
range (Fig. 2a). The baseline AOD (open circles in Fig. 2a),
defined as the 5th percentile among the valid data averaged
in each 100 m altitude bin, decreased constantly from 0.07
near the surface to 0.01 at 7500 m (GPS altitude) at 499 nm.
The AOD499 seldom exceeded 0.15 even as we pursued en-
hanced aerosol concentrations. These values are within the
range of ground-based AOD observed during the same time
period (Saha et al., 2010) and airborne sunphotometry con-
ducted a year later (Stone et al., 2010), both over the same
area.

The wavelength dependence of AOD gives insight into
the observed aerosol types. We derive it in two steps.
First, the function ln AOD =a2(lnλ)2 +a1lnλ +a0 is fit-
ted to each AOD spectrum. Second, the resulting
curve is differentiated into modified̊Angstr̈om exponent:
Aλ =−d ln(AOD)/d lnλ =−2a2lnλ− a1. Advantages of the
second-order polynomial fit will be illuminated in Sect. 3.3.
Note that the AATS-14 measurements represent the air above
the aircraft, not just that surrounding the aircraft.

The modifiedÅngstr̈om exponent of AOD at 499 nm,
A499, observed during the spring phase is represented by the
color in Fig. 2a. This can be classified into three groups
loosely separated by altitude and geographical location.A499
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Fig. 2. Vertical profiles of AOD at 499 nm(a) and ambient extinc-
tion coefficient (Mm−1) at 550 nm(b, c) color-coded with(a) the
AOD Ångstr̈om exponent at 499 nm,(b) organic fraction of non-
refractory mass of submicron particles and(c) the black carbon
mass at standard temperature and pressure, for the Alaska phase.
These data from 1–15 April 2008 are averaged over 3 s for(a), 10 s
for (b) and(c). In (a) the 5th percentile in each 100-m altitude bin
is marked with circle, and its linear regression with black line.

values as low as∼0.7 were recorded occasionally during
two legs, 70 and 1400 m above the Arctic Sea to the north
of Canada. They were low presumably because of either
dust or ice particles. These two are difficult to separate, but
we estimate the contribution of ice particles to be 0.01–0.02
at most (see Sect. 2.1 and references for our cloud screen-
ing method). The ocean surface was nearly entirely covered
by ice such that few sea salt particles could be generated.
High A499 values (1.7± 0.1) were observed mostly between
2–4 km GPS altitude on 13 and 15 April. They were asso-
ciated with relatively large AOD values – twice the base-
line values or greater. For other samplesA499 was 1.4± 0.3
(mean± standard deviation).

The high (1.7± 0.1)Ångstr̈om exponent group appears to
arise from forest fires. According to the AMS measurements
(Fig. 2b), organic mass concentration was high relative to
other non-refractory aerosol components (mainly sulfate) in
the air masses between 2–4 km with high AOD that com-
prises the high̊Angstr̈om exponent group. The black carbon
mass measured with SP2 also tended to be high (Fig. 2c, see
also McNaughton et al., 2011). Cloud contamination (in-
cluding cirrus) is unlikely as we screened data based on both
spatial variability and̊Angstr̈om exponent (Sect. 2.1). These
pieces of evidence support the inference that the air masses
in the lower free troposphere with high AOD originated from
biomass burning.

Our 15-day observation in this area does not provide any
proof that the vertical structure persisted throughout the
spring. However, our observation is generally consistent with
previous studies in the same area in spring. Observations
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from other research aircraft and the Lagrangian particle dis-
persion model FLEXPART consistently indicated transport
of the Siberian fire emissions to our study area during the
same time period (Warneke et al., 2010). While our data
indicate these features to be most pronounced on 15 April
and confined to 2–4 km, the results published by Warneke
et al. (2010), based on the transport of pollution simulated
since 20 days prior, show the Siberian influence was present
at higher altitudes too, depending on latitude. Meanwhile,
the background, i.e., almost the entire flight paths in the layer
up to 2 km and the segments in the free troposphere with rel-
atively low AOD, had higher fraction of sulfate. Airmasses
with a high sulfate concentration were observed in the same
area, altitude and season in the past; they are considered to
have been influenced by anthropogenic pollution from Eura-
sia (Radke et al., 1984; Scheuer et al., 2003).

The middle (1.4± 0.3) Ångstr̈om exponent group appears
to be anthropogenic pollution. The inorganic content is rela-
tively high near the surface; so it is in the lower troposphere
when AOD is near the background values (Fig. 2b). Other
potential sources of aerosols include nucleation at cloud tops
followed by subsidence (Clarke et al., 1998; Garrett et al.
2002) and open leads (Ferek et al., 1995). However, un-
like anthropogenic pollution, these sources account for only
a minor contribution to the total aerosol in winter and spring
(Garrett et al., 2004 and references therein).

Arctic haze, a term frequently used for relatively high light
extinction over this region, may thus refer to either of the two
different aerosol types residing individually in the boundary
layer and lower free troposphere. Continuous monitoring of
spectral AOD over the Arctic region, especially if resolved
for altitude, would allow for a more statistically robust as-
sessment as to how ubiquitously this separation occurs.

3.1.2 California, June

In the summer phase the P-3 aircraft flew over California on
22 and 24 June 2008, before transiting to central Canada on
26 June.

The first California flight included a vertical profile
through multiple aerosol layers over Monterey during the
period 19:04–19:36 UTC on 22 June (Fig. 3). A biomass
burning smoke layer was observed between 250–580 m
GPS altitude. It was marked by high ambient extinction
(>500 Mm−1 at 550 nm), low (∼20%) relative humidity, and
high (>2.0) in situ extinctionÅngstr̈om exponent. The pro-
file also sampled the marine boundary layer (MBL,<250 m)
marked by high RH (∼90%) and low extinctionÅngstr̈om
exponent (∼1.2). It also penetrated a less polluted layer
(1200–3210 m). The MBL contributed 1–3 times as much
AOD as the smoke at 1019.1–2139.1 nm, much more than its
negligible share at shorter wavelengths.
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Fig. 3. (a) Vertical profile of above-aircraft AOD observed dur-
ing the spiral over Monterey on 19:03:41–19:36:24, 22 June 2008.
(b) In situ extinction coefficient and its̊Angstr̈om exponent during
the same ascending profile. The micropulse lidar (MPL) extinc-
tion coefficient and ambient RH are also shown.(c) AOD spec-
tra observed at the bottom and top of profile. Their difference
(layer AOD), a second-order polynomial fit and the values inter-
polated to the nephelometer wavelengths are also shown. The fit is
ln AOD = 0.51(lnλ)2−0.97lnλ−3.19 whereλ is the wavelength in
µm.

The second California flight resulted in a very limited set
of valid AOD data because of dirt on the AATS-14 win-
dow. The 26 June transit flight included extensive measure-
ments of wildfire smoke over the California Central Valley
and Lake Tahoe.

3.1.3 Canada, June and July

The rest of the summer phase, from the end of 26 June to
12 July, encompassed central Canada. The P-3 repeatedly
sampled intense smoke from local forest fires. They were
often observed right below NASA P-3 during the flights,
in contrast to the smoke from distant Siberian forest fires
sampled during the spring phase. The AOD was generally
much higher and, as we demonstrate in Sect. 3.2.1, more
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Fig. 4. (a)The spiral flown on 10 July, 21:27–21:37, north of Lake
Athabasca. Marker size is proportional to the AOD at 499.4 nm,
which went up to 2.7. The same flight track is projected on two
planes in grey. The smoke plume was located on the western edge
of the ∼6-km-wide spiral up to∼3500 m. (b) AATS-14 AOD at
499.4 nm (green) and in situ (neph+PSAP) extinction coefficient at
550 nm in km−1 between 2000–4000 m (GPS altitude) of the verti-
cal profile. The grey horizontal bar indicates the variability measure
used in Fig. 5.

variable than the values observed over Alaska and the Arc-
tic Ocean in the spring. AOD499 frequently exceeded 1 and
at times reached 4, accompanied by extremely high concen-
tration of carbon monoxide (well above 5 ppm).A499 was
2.2–2.3 for the smoke observed on 30 June and 6 July, and
smaller in the equally intense smoke observed on 2 July (1.8–
2.2) and 10 July (1.8–1.9). These values did not noticeably
change between white smoke from smoldering fires (in situ
SSA at 550 nm 0.90-0.95) and black smoke from flaring ones
(SSA550 0.80–0.90).

One example case with high horizontal variability is the
smoke from the Camsell and Viking fires north of Lake
Athabasca sampled during the period 21:27–21:37 on 10 July
(Fig. 4) during a spiral ascent. A smoke plume touched the
western edge of the spiral up to∼3500 m. The AOD mea-
sured near the bottom of the profile varied even more sig-
nificantly than that observed during the Monterey profile:

AOD499 (for the air column above the aircraft) changed by
2.6, and the local ambient extinction coefficient at 550 nm
between 20 and 5000 Mm−1 (0.02–5 km−1) within the∼6-
km-diameter spiral. The low AOD to the east of 108.48◦ W
throughout the column (see the projection to the bottom
plane of the figure) testifies to the variability in the horizontal
direction, not just in the vertical. The NASA P-3 aircraft re-
peatedly encountered smoke with similarly high and variable
AOD over Saskatchewan and Alberta. A companion paper
(Redemann et al., 2009, a journal article in preparation) pro-
vides a detailed analysis on the forest fire plumes observed
on 30 June 2008 from multiple ARCTAS platforms.

In an outflow of smoke with no distinguishable plume, the
AOD did not vary as dramatically, in either horizontal or
vertical direction. In an example of such events, AOD499
varied by only 0.03 (14% of the average near 500 m alti-
tude) at each altitude over more than 200 km of horizontal
extent around Fort McMurray during the period 17:20–20:50
on 3 July (Fig. S1 in Supplement).

At long distances away from smoke, SSA550 was usually
between 0.95–1, AOD499 0.01–0.1, andA499 1.3–1.7. One
air mass encountered on 9 July, which may or may not have
been influenced by smoke, exhibited an odd combination of
low SSA550 (0.92–0.95) and lowA499 (centered at 1.4). The
in situ scatteringÅngstr̈om exponent was near 0 briefly on
29 June, 9–10 July, likely because of dust.

3.2 AOD comparisons among airborne and ground-
based observations

3.2.1 Airborne remote sensing (AATS-14) and in-situ
observations (neph and PSAP) of layer AOD
spectra

Here we derive layer AOD from two types of airborne mea-
surements individually: remote sensing from the AATS-14
and the in situ measurements with the nephelometers and
PSAPs. We illustrate the methodologies with an exam-
ple vertical profile, show the results from the entire cam-
paign, and explain the layer AOD differences between the
two methods.

The remote-sensing based layer AOD, shown with blue
circles in Fig. 3c for the Monterey profile, is the difference
in AATS-14 AOD between the bottom (green circle) and top
(red) of the vertical profile. The blue crosses represent the
layer AOD linearly interpolated in log-log space to the neph-
elometer wavelengths. The root-sum-square of half of the to-
tal AOD uncertainties (instrumental plus tracking, Sect. 2.1)
at the top and the bottom of a given profile is assumed to be
the uncertainty intrinsic to the instrument (excluding the im-
pact of horizontal variability in aerosol loading), after Eq. (6)
of Redemann et al. (2003):

δrτ =

√
(δτ (z1)/2)2+(δτ (z2)/2)2. (2)
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Deriving layer AOD from the dry in situ measurements in-
volves an estimation of the extinction coefficients at ambi-
ent conditions and integrating the result over altitude. The
scattering coefficient of dry aerosols measured with the TSI
nephelometer operated without an impactor was corrected
for the angular truncation (Sect. 2.2). It was then adjusted to
the ambient relative humidity recorded by the P-3 Data Sys-
tem, using the simultaneously measured humidity response
(Sect. 2.2). The resulting ambient scattering coefficient was
added to the PSAP absorption coefficient to yield the ambi-
ent extinction coefficient (dark green curve in Fig. 3b). Its
integral over altitude is the in-situ derived layer AOD.

Uncertainty in the integral layer AOD arises from the
f (RH) estimate (<10%, Sect. 2.2), truncation correction
(1%, Sect. 2.2), nephelometer calibration (2%, McNaughton
et al., 2009) and PSAP correction (probably∼2% or less; mi-
nor because absorption is minor relative to extinction). For
low AOD, instrument noise becomes prominent too. It is
estimated to be near 0.0005. We treat these factors as if
they were completely independent of each other, a reason-
able approximation though inexact if truncation correction
andf (RH) estimate are both dependent on particle size.

The relative uncertainty estimated for the extinction coef-
ficient (before vertical integration) is sometimes enormous
(>1000%) when the absolute value of extinction is small
(∼0.1 Mm−1). The data below the lower detection limit were
included in the AOD calculation because eliminating them
would bias the results low and shorten many vertical pro-
files. Small extinction coefficients were recorded typically
in the free troposphere, above a more scattering/absorbing
layer. In such cases the uncertainty from the weak extinction
layer is often negligible relative to that from the more turbid
lower layer in absolute terms.

Vertical profiles were adjusted and screened according to
the following criteria for the layer AOD comparison. Each
end of the profile was shortened until the point where a valid
in situ measurement and a valid AATS measurement were
made within±25 m altitude and±5 s. This time period
corresponds to 0.6 km or less in horizontal distance. In or-
der to reduce the effect of horizontal inhomogeneity, we re-
quired the entire profile to remain within 50 km horizontally
of both top and bottom ends. This eliminated a few spiral
and hairpin-shaped ascents/descents, and most ramped ones.
Those with elevation gain/loss of<1 km were excluded as
well.

Figure 5 shows the comparison of resulting layer AODs
thus derived independently from airborne remote-sensing
and in-situ measurements. They agree within 3% + 0.02 of
each other for two thirds of the 55 P-3 vertical profiles.

The uncertainty in in-situ derived layer AOD is larger
than, or comparable with, the uncertainty of the AATS-14-
derived layer AOD for most cases with the AATS-14 layer
AOD > 0.03. This is not discernible in the log-scale figure,
because the uncertainty is small relative to the center value.
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Fig. 5. Comparison of layer AODs derived by two methods. Plotted
on the horizontal axis is the difference in AATS-14 AOD measured
at two altitudes and interpolated to the nephelometer wavelengths
of 450 (blue marker), 550 (green) and 700 (red) nm. On the ver-
tical axis, the vertical integral of in situ scattering and absorption
coefficients measured with nephelometer and PSAP is plotted. The
solid and dashed black curves indicate the 1:1 correspondence and
±(3% + 0.02) deviation, respectively. The colored horizontal and
vertical lines associated with data points indicate estimated mea-
surement uncertainties. The effect of spatial variability is indicated
separately with grey horizontal lines. This represents the center
68% values of AOD at the bottom layer minus the snapshot top
value, and does not necessarily include the snapshot layer AOD
value (circle).

The humidification effect often contributes a large error in
this type of closure experiment. But the generally low am-
bient RH and moderate particle hygroscopicity during ARC-
TAS resulted in the good agreement found here. There is an
exception indicated with long vertical error bars in Fig. 5.
This profile was flown near clouds and associated with am-
bient RH> 97% and a calculatedf (ambRH) of∼50.

Generally speaking, the horizontal variability in aerosols
and clouds can cause disagreement between remote-sensing
and in-situ derived layer AODs. The AATS-14 and in situ
instruments measure along different paths, i.e., the slant path
towards the Sun and the flight path, respectively. The pres-
ence of a highly scattering/absorbing object (e.g., smoke
plume and clouds) in either path, but not both, may increase
the layer AOD derived by one method but not the other.

For example, the profile near the Camsell and Viking fires
mentioned in Sect. 3.1.3 (Fig. 4b) showed AOD499 (green
circles) near 0, rapidly increasing up to>1 near the bottom
end of the profile with valid in situ data (2200 m). The AATS
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layer AOD calculated for 550 nm is 0.054, and this value is
used for Fig. 5. Depending on exactly which point we use as
the very bottom of the AATS profile, this value varies by>1.
The high sensitivity in this case makes the AATS-14 layer
AOD prone to disagree with the in situ layer AOD.

The horizontal variability calls for caution in interpreting
the in situ observation as well. The in situ layer AOD, iden-
tified to be 0.79 at 550 nm, is less sensitive to the choice of
the bottom point of the flight path than the AATS layer AOD.
Most in-situ measurements are integrated into the layer AOD
regardless. Nonetheless, the derived layer AOD could have
been widely different for a marginally different flight path in
and out of the smoke.

To indicate the AOD variability near the bottom end, we
placed in Fig. 4b a grey bar that encompasses the center 68%
percentile of AATS AOD recorded within one minute of the
bottom point, minus the AOD measured at the top of profile.
Note that the 68% range does not capture the entire possi-
ble range of layer AOD. Rather, this range, equivalent to one
standard deviation if the distribution were normal, represents
the same confidence level as our instrument uncertainty esti-
mates. This variable spans 0.0084–1.3 at 550 nm.

This measure of horizontal variability is shown in Fig. 5
for all vertical profiles. The two-minute time interval usually
includes a horizontal leg near the bottom altitude and an as-
cent by up to 300 m. We chose this length of time to capture
an entire smoke plume, when present, while minimizing the
portion of vertical gradient.

There are, however, caveats associated with this variability
parameter. It does not capture the variability in aerosol load-
ing under clouds, for which AATS data are either masked or,
much less likely (Sect. 2.1), contaminated. An example is
the 9 April 21:34–21:39 profile. At 2 km above the bottom
of profile, the RH with regard to water reached 100%, while
that to ice exceeded 120%. This humid layer brought the
in-situ derived layer AOD550 to as high as 1.2. The AATS-
14 data were masked for this part of profile due to possible
ice clouds. The AATS layer AOD550 derived from the top
and bottom of profile is unaffected by the high humidity and
is merely 0.034. Variability above the bottom layer is not
readily captured either. The data point for 6 July, 23:01–
23:11 is one example, with AATS-14 and in-situ derived
layer AOD550of 0.0075 and 0.20, respectively. The large dif-
ference was caused by a highly scattering layer 500 m above
the bottom of profile and below pyrocumulus clouds. Note
also that the measure of variability itself becomes uncertain
when the number of measurements within the±1 min period
is small.

The horizontal variability does explain most of the out-
liers. The profiles that do not fall within the±(3% + 0.02)
bounds tend to have long variability bars, many stretching
to the 1:1 line. All of those outliers with a>0.1 differ-
ence are associated with forest fire smoke plumes where
aerosols were concentrated in a streak, commonly<1–10 km
wide. Thus, the layer AOD discrepancies evident in Fig. 5 do

not mean poor instrument performance but aerosol horizon-
tal or temporal variability–a limitation intrinsic to our AOD
comparison methodology.

3.2.2 Airborne and ground-based (AERONET)
observations of full-column AOD spectra

Generally, airborne and ground-based observations are con-
ducted at different spatial (both vertical and horizontal) res-
olutions and different temporal resolutions, and can comple-
ment each other. In an effort to gain this benefit from the
ARCTAS multi-platform arrangement, we examine the con-
sistency between the AOD measurements made during five
fly-over events.

Five profiles including the one near Monterey were flown
over AERONET sites under clear skies. There was one more
fly-over event but the AERONET level 1.5 and 2.0 AOD
products for it are masked by the algorithm that looks at the
temporal signal variability for cloud screening. For each of
the five events we averaged the AERONET AOD observed
during the profile, except for the flight over Pearl where the
AERONET measurements made within 10 min before and
after the aircraft profile were included in order to increase
the number of data points from 0 to 6.

To estimate total columnar AODs which would be com-
parable to the AERONET AODs, additions to the in-situ de-
rived layer AOD were made to account for the light attenu-
ation due to the additional atmosphere below and above the
layer in which the aircraft flew. For the Monterey profile,
the extinction at the bottom end of the profile is 34 Mm−1 at
550 nm. Under the assumption that the extinction between
the aircraft and the Monterey AERONET site (50–70 m) was
similar, the AOD contributed beneath the profile was 0.0007,
or 0.7% of the layer AOD. The AATS-14 average AOD at the
top end of profile (7400 m), 0.026 at 550 nm, was added as
the AOD above the aircraft (with interpolations being carried
out to the nephelometer wavelengths).

For both airborne estimates of full column AOD, these ad-
ditional AODs were assumed to have a relative uncertainty of
100% independent of the layer AOD uncertainty. This treat-
ment inflated the uncertainties by a factor of∼1–3. Figure 6
shows the AATS AOD both before (green markers) and af-
ter (blue) the adjustment for below-aircraft light attenuation.
Because this adjustment is small, these markers often overlap
with each other.

As shown in the middle of Fig. 6, the resulting full col-
umn AODs calculated for the Monterey profile agree within
0.02, except at 440 nm (the difference is 0.04). This level of
agreement seems excellent, especially since the AERONET
measurement at 19:25:12 was 21 min after the AATS-14 bot-
tom measurements (19:03:35–19:03:51) and the beginning
of the in situ vertical profile (19:03:42–19:36:25). The P-3
aircraft penetrated the smoke layer about 2 km horizontally
from the Monterey AERONET site, at 19:04:24. The smoke
layer must have extended over this ground site; otherwise,
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Fig. 6. Full-column AODs observed with airborne (AATS-14,
Neph + PSAP) and ground-based (AERONET) instruments over
Barrow, Pearl, Monterey, Fort McMurray and Saturna Island.

the AERONET and AATS would have recorded AOD499
closer to 0.05, the value above the smoke. In fact, the 527-
nm micropulse lidar at the AERONET site also identified a
sharp peak in extinction at 19:24:58, albeit with differences
in its altitude (about 80 m higher) and magnitude (350 Mm−1

compared to the in situ value of∼500 Mm−1) .
The AERONET and AATS AODs generally agreed within

∼0.02 during the five fly-over events. Exceptions include the
1640 nm channel at Fort McMurray (the difference is 0.03).
The column integral of the in-situ measurements agreed
within ∼0.02 with the AERONET 440, 500 and 675 nm mea-
surements except for the Pearl profile. The AOD differences
from the AATS measurements are given in Table 1.

Most likely a thin spider web or something in the chan-
nel’s aperture that was later removed caused the Fort Mc-
Murray 1640-nm AOD to be too high at mid-day from mid
May–mid August 2008. Airmass dependence suggestive of

an artifactual (instrumental) transmission obstacle is appar-
ent on some days. The 1640-nm channel has a different col-
limator from that used in the other channels. The calibration
is not the cause of the anomalies. The AERONET 1640-nm
filters are typically stable over an extended period of time.
This was also the case for the instrument at Fort McMurray.
The 1640 nm channel Vo coefficient (exoatmospheric detec-
tor voltage) only decreased by∼1.5% over a 20 month time
interval between calibrations. The AERONET Vo is linearly
interpolated between pre- and post- deployment calibrations.

The profile over Pearl resulted in significant differences
between the remote sensing and in situ measurements. The
in situ data indicate that most of the layer AOD was con-
tributed by an air mass as high as 4–7 km, unlike other pro-
files. The aircraft was 15–34 km away horizontally from the
AERONET site during the profile through the 4–7 km alti-
tude range. As it descended towards the lowest aircraft alti-
tude where the AATS-14 AOD was recorded, it came slightly
closer but still 14 km away from the site. It is possible that
the aerosols at 4–7 km had a higher concentration along the
AATS-14 and AERONET instrument’s paths toward the Sun.

3.3 Wavelength dependence and fine-mode fraction

The general agreement between the airborne instruments and
the AERONET (Sect. 3.2) makes it easier to relate our air-
craft experiment to the continuous observations from the
extensive ground network. As an example of such a link,
the wavelength dependence and fine-mode fraction are each
compared between the multiple observations in this section.
As in the previous section, the comparison is made for the 55
vertical profiles selected from all phases of the campaign.

3.3.1 Wavelength dependence

We derive the wavelength dependence of AATS-14 AOD
from a second-order polynomial fit (Sect. 3.1.1). Not surpris-
ingly, given the typical small amount of curvature in a given
AOD spectrum, this technique and the linear regression fit
in (lnλ, lnAOD) coordinates results in similar̊Angstr̈om ex-
ponents over mid-visible wavelengths. TheÅngstr̈om expo-
nent from the linear fit over the five wavelengths between
453 and 675 nm is correlated with the second-order esti-
mate at 519 nm as 1.03× A519+ 0.01, R2

= 0.84, with a
root mean square (RMS) difference of 0.20 for the ARC-
TAS AATS-14 data set. The linear fit over 453, 519 and
675 nm (approximating the TSI nephelometer wavelengths),
1.07×A519−0.01, results in a slightly lowerR2 (0.72) and
higher RMS difference (0.30). To give an idea of error in-
troduced by extrapolation of AOD from the TSI nephelome-
ter measurements, the layer AOD derived from the in situ
measurements and extrapolated from the mid-visible wave-
lengths to 354 nm is within±(25% + 0.02) of the AATS-14
354-nm layer AOD for two thirds of the profiles with valid
data.
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Table 1. Difference in optical properties during the AERONET fly-over events.

Place and date Difference, in situ-AATS Difference, AERONET-AATS

AODa Ångstr̈om SMF–FMF AODb Ångstr̈om FMF

Barrow, 6 Apr 23:49:55–01:39:16 −0.01,−0.01,−0.01 0.16 0.04 0.02, 0.02, 0.02, 0.01, 0.01, 0.02, 0.02, 0.00 0.16−0,34
Pearl, 8 Apr 16:17:38–16:42:04 −0.06,−0.04,−0.04 0.72 0.24 0.02,−0.00,−0.01, 0.00, 0.00, 0.01, 0.02, 0.01 0,01−0.15
Monterey, 22 Jun 19:03:41–19:36:24 0.02, 0.00, 0.00 0.39 0.14−0.04,−0.00, 0.02, 0.01, 0.01, 0.01, 0.01, NA 0.22−0.07
Fort McMurray, 3 Jul 17:49:47–18:06:08 0.04, 0.02, 0.01 0.07 0.12NA, 0.02, 0.02, 0.03, 0.02, 0.01, 0.00, 0.03 −0.06 −0.01
Saturna Island, 7 Jul 23:49:03–23:59:56 −0.02,−0.02,−0.01 0.09 0.15 0.00, 0.00, 0.00, 0.01, 0.00, 0.00,−0.01,−0.01 0.11 0.00

a At 450, 550, 700 nm.
b At 340, 380, 440, 500, 675, 870, 1020, 1640 nm.

Figure 7a and b compare the̊Angstr̈om exponents over
mid-visible wavelengths between the integral (in situ) and
differential (AATS-14) layer AODs. The̊Angstr̈om exponent
differences are<0.31 for two thirds of all cases. The agree-
ment improves with increasing AOD. When AOD499> 0.1,
89% of the cases fall within this category, and two thirds
of the cases have an̊Angstr̈om exponent difference<0.13.
These statistics hold virtually the same for the profiles with
the layer AOD discrepancies greater than±(3% + 0.02), in-
dicated by the empty circles. This is consistent with the
fact that the relative difference between the AATS and in
situ layer AODs are more or less equal across all wave-
lengths (i.e., data points for the three wavelengths lie on a
line nearly parallel to the 1:1 line for many outlier cases in
Fig. 5). TheÅngstr̈om exponents derived from AERONET
full-column AOD spectra show deviations of similar magni-
tude (red squares).

A comparison ofÅngstr̈om exponent was previously con-
ducted between AATS-14 and satellite products off the US
Northeast coast in 2004 (Russell et al., 2007). The ARCTAS
data show about the same level of agreement. This is some-
what contrary to our expectation that the ARCTAS com-
parison between AATS-14 and in-situ estimates from layer
measurements would be better than AATS-14 comparisons
with retrievals from spaceborne measurements, since satel-
lite measurements represent a spatial domain wider than the
aircraft’s and requires separation of surface reflectance.

3.3.2 Fine-mode fraction

In this section we compare the AOD FMF derived from the
remote sensing measurements with the submicron fraction
(SMF) measured in situ. These two parameters refer to dif-
ferent, albeit largely overlapping, size ranges. Therefore, we
do not expect them to agree perfectly even under ideal con-
ditions. However, comparing these two parameters is worth-
while, because it is one of the few conceivable ways to evalu-
ate the remote sensing product against an in situ observation.

Submicron fraction was determined by the nephelometer
and PSAP measurements behind a 1-µm impactor, and ad-
justed to 500 nm. The humidity response was assumed iden-
tical between submicron and total aerosols and at all mid-
visible wavelengths.
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Fig. 7. (a)Ångstr̈om exponent of the layer AODs derived from the
in situ instruments (determined via least square fit on log scales at
450, 550 and 700 nm, y-axis) and AATS-14 (the value at 550 nm
of the second polynomial fit, x-axis). The filled markers indicate
the vertical profiles that see agreement within 3% + 0.02 between
the layer AODs. Other profiles are marked with empty circles. The
red squares compare the 440/675 nmÅngstr̈om exponent of full-
column AERONET AOD with the in sitůAngstr̈om exponent for
the AERONET fly-over cases.(b) The difference in the in-situ
and AATS-14Ångstr̈om exponents, compared against the AATS-
14 layer AOD550.

The AATS-14 and AERONET results were derived from
O’Neill et al.’s (2001, 2003, 2008a) algorithm that translates
the spectral curvature between 380 and 870 nm into estimates
of FMF. AERONET Level 2.0 retrievals from the inversion
scheme developed by Dubovik and King (2000) and Dubovik
et al. (2000) are not available for the five AERONET fly-over
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Fig. 8. (a)Fine-mode fraction of AATS-14 (circle) layer AOD and
AERONET full-column AOD (black square) individually compared
with the submicron-mode fraction of in situ derived layer AOD ad-
justed to 500 nm (vertical axis). The filled markers indicate the ver-
tical profiles that see agreement within 3% + 0.02 between the layer
AODs. Other profiles are marked with empty circles. The color
indicates the 1019/499 AOD ratio, for data with 1019 nm AODs
greater than 0.04.(b) The difference between SMF and AATS-14
FMF, plotted against the AATS layer AOD interpolated to 550 nm.
The marker color indicates column-integrated SSA.

events. The AERONET data represent the whole column,
whereas the two airborne data sets represent the layer in
which the aircraft flew.

These variables are compared in Fig. 8a. Both FMF and
SMF values lie between 0.8 and 1.0 for most profiles. The
root square mean of their difference is 0.13 for the 36 pro-
files with good layer AOD550 agreement (within 3% + 0.02;
see Fig. 5) and 0.14 for all 55 profiles. The FMF derived from
AERONET full-column AOD spectra (squares in Fig. 8a)
show a similar point dispersion to the layer AOD results.

Figure 8b shows the SMF-FMF difference versus the
AATS layer AOD (interpolated to 550 nm) and color-coded
with the column-integrated SSA. A slight bias towards higher
SMF might exist for those among the 36 profiles (filled
marker) with high SSA. It is noted that the retrievals of FMF
decrease in accuracy with decreasing AOD.

The in situ SMF is within±5% of the AATS FMF for two
thirds of the 19 profiles with 1019 nm layer AOD>0.04, a
criterion employed by Gasso and O’Neill (2006). This mar-
gin is smaller than the 5–15% that Gasso and O’Neill (2006)
find for ACE-Asia data with high (>0.5) FMF. The authors
point out that in ACE-Asia the differences tend to decrease as
FMF approaches 1. This trend is not evident in our ARCTAS
data.

Previous studies in East Asia (Anderson et al., 2005) and
Mexico (Redemann et al., 2009b) fit a second-order function
of in situ extinction Angstroom exponent to in situ derived
SMF, in an attempt to translate column AOD into SMF. The
functions, if applied to the ARCTAS column-integral results
presented here, underestimate SMF by 0–0.2. This is shown
in the Supplement (Fig. S2).

Because of their sensitivity to coarse particles, AODs at
near-infrared wavelengths might better constrain FMF. As a
quick test for this hypothesis, we attempted to stratify the
FMF-SMF relationship with AATS AODs beyond 870 nm.
One example of such attempts is shown with the marker
color of Fig. 8a which indicates the ratio of AATS 1019-nm
AOD to the 499-nm. Data with 1019-nm AOD under 0.04
are masked with grey color. We find consistent trends be-
tween this ratio and the FMF, the latter derived from AODs
up to 865 nm: Finer particles exhibit higher wavelength de-
pendence (lower 1019/499 AOD ratio). However consistent
it may be, the use of 1019 nm, or longer wavelengths for that
matter, appears to provide little additional constraint, at least
when FMF is evaluated against SMF. We note that O’Neill et
al. (2008b) did demonstrate that the slope of the coarse mode
optical depth at 1640 nm was sensitive to the effective radius
of coarse mode particles.

4 Conclusions

AOD was measured with the AATS-14 from the NASA P-3
aircraft at the northern high latitudes of Alaska and Canada
as well as in California during the ARCTAS experiment. We
have discussed the vertical profiles, inter-comparison with
correlative observations, and fine-mode fraction.

The vertical profiles of AOD and in situ aerosol proper-
ties we observed over Alaska in April 2008 corroborates the
hypothesis that Arctic haze, a term frequently used for rel-
atively high extinction over this region, may refer to par-
ticles from either biomass burning or anthropogenic emis-
sions, partly depending on the altitude (Sect. 3.1). The AOD
Ångstr̈om exponent was 1.4± 0.3 up to 2 km, which is some-
what smaller than the values of 1.7± 0.1 between 2–4 km.
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Sulfate dominated the boundary layer, possibly owing to an-
thropogenic emissions at northern mid-latitudes. Carbona-
ceous material was pronounced in the lower free troposphere,
possibly owing to Siberian forest fires.

The inter-comparison of multiple AOD measurements
during vertical profiles reveals high consistency among
them, except in the presence of high horizontal variability
(Sect. 3.2). The layer AOD derived from AATS-14 airborne
remote sensing agrees with the vertical integral of in situ
nephelometer scattering and PSAP absorption coefficients
within 3% + 0.02 for two thirds of the 55 vertical profiles ex-
amined. Almost all outliers were associated with high hor-
izontal variability caused by forest fire smoke over central
Canada in June and July 2008. Anomalies of this nature
do not mean poor instrument performance but a limitation
intrinsic to our AOD comparison methodology. These two
types of airborne AOD measurements, after compensation
for below-aircraft light attenuation by vertical extrapolation,
typically fell within 0.02 of AERONET ground-based mea-
surements for five overpass events.

FMF was retrieved from the spectral curvature of AATS-
14 AOD and compared with the column-integrated, in situ
derived SMF (Sect. 3.3). The FMF was between 0.8 and
1.0 for most of the vertical profiles. The SMF, measured
with a 1-µm impactor, differed from the FMF by 0.13 RMS
for the profiles with the good (3% + 0.02) layer AOD agree-
ment. SMF and FMF are defined for slightly different size
ranges and are not expected to be identical. Nonetheless, this
comparison is meaningful as it is one of the few conceivable
ways to evaluate the remote sensing product. TheÅngstr̈om
exponent over mid-visible wavelengths was also compared.
The differences were<0.31 for two thirds of all profiles, and
<0.13 for two thirds of those with AOD499 greater than 0.1.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/3673/2011/
acp-11-3673-2011-supplement.pdf.
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T. F., Tanŕe, D., Dubovik, O., and Holben, B. N.: Comparison
of Moderate Resolution Imaging Spectroradiometer (MODIS)
and Aerosol Robotic Network (AERONET) remote-sensing re-
trievals of aerosol fine mode fraction over ocean, J. Geophys.
Res., 110, doi:10.1029/2005JD005760, 2005.

Levy, R. C., Remer, L. A., Tanré, D., Kaufman, Y. J., Ichoku,
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