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Abstract. A Bayesian inversion approach was used to
retrieve temporally and spatially resolved N2O fluxes for
western and central Europe using in-situ atmospheric ob-
servations from the tall tower site at Ochsenkopf, Germany
(50◦01′ N, 11◦48′ E). For atmospheric transport, the STILT
(Stochastic Time-Inverted Lagrangian Transport) model was
employed, which was driven with ECMWF analysis and
short term forecast fields. The influence of temporal aggre-
gation error, as well as the choice of spatial and temporal cor-
relation scale length, on the retrieval was investigated using
a synthetic dataset consisting of mixing ratios generated for
the Ochsenkopf site. We found that if the aggregation error
is ignored, then a significant bias error in the retrieved fluxes
ensues. However, by estimating this error and projecting it
into the observation space, it was possible to avoid bias errors
in the retrieved fluxes. Using the real observations from the
Ochsenkopf site, N2O fluxes were retrieved every 7 days for
2007 at 2 by 2 degrees spatial resolution. Emissions of N2O
were strongest during the summer and autumn months, with
peak emissions in August and September, while the regions
of Benelux and northern United Kingdom had strongest an-
nual mean emissions.

1 Introduction

The nitrous oxide (N2O) mixing ratio has been increasing in
the atmosphere since the industrial revolution, from 270 ppb
in 1750 (Ramaswamy, 2001) to 319 ppb in 2005 (Forster et
al., 2007) with a steady growth rate of around 0.26% since
the early 1980’s. The increase in N2O is worrisome for two
main reasons. First, it is a greenhouse gas; this means that its
atmospheric increase translates to an enhancement in radia-
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tive forcing of 0.16±0.02 Wm−2 (Ramaswamy, 2001) mak-
ing it currently the fourth most important long-lived green-
house gas and is predicted to soon overtake CFC’s to be-
come the third most important (Forster et al., 2007). Second,
it plays an important role in stratospheric ozone destruction
(Crutzen, 1974; Nevison and Holland, 1997) and in the 21st

century is the main ozone-depleting substance and is slowing
the recovery of the ozone hole (Ravishankara et al., 2009).

Human activities are the primary cause of the atmospheric
N2O increase. The largest anthropogenic source of N2O is
from the use of N-fertilizers in agriculture (Olivier et al.,
1998), which greatly enhances soil N2O emissions via mi-
crobial nitrification and denitrification pathways (e.g. Brem-
ner, 1997). Other important anthropogenic sources of N2O
are fossil fuel combustion and industrial processes, such as
adipic and nitric acid production (Olivier et al., 1998). There
are also important natural sources of N2O, the largest of
which is from soils under natural vegetation, but the open
ocean, coastal upwelling regions, continental shelves, and es-
tuaries are significant sources too (Kroeze et al., 2005; Nevi-
son et al., 2004). Moreover, it is important to note, that as
anthropogenic N permeates the nitrogen cycle, the natural
emissions of N2O are also being enhanced (Galloway et al.,
2008; Gruber and Galloway, 2008).

There have been few previous top-down estimates of N2O
fluxes using atmospheric observations. On a regional scale,
there have been a small number of N2O emission estimates
based on concurrent measurements of N2O and radon, where
radon is used to determine the dilution of N2O emissions in
the atmosphere, such as Messager et al. (2008), Biraud et
al. (2002) and Schmidt et al. (2001), and two estimates based
on an inversion of atmospheric N2O observations (Corazza et
al., 2011; Manning et al., 2003). Another modelling study by
Kort et al. (2008) evaluated emission inventories by compar-
ison of simulated tracer distributions using an atmospheric
transport model with aircraft based measurements of N2O
in North America and inferred a scaling of fluxes that was
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not spatially or temporally resolved. On the global scale, the
only inversion estimates are those of Huang et al. (2008),
Hirsch et al. (2006) and Prinn et al. (1990) and these have
been at low resolution. The shortage of top-down estimates
is partly due to the relative scarcity of data but also to prob-
lems in the calibration scales used for N2O measurements by
different laboratories, which has made comparisons between
stations difficult.

There have been several recent initiatives that will im-
prove the availability of data as well as make measurements
between stations more comparable. In Europe, for exam-
ple, the establishment of a new network of tall towers under
the framework of the CHIOTTO project (Continuous HIgh-
precisiOn Tall Tower Observations of greenhouse gases) pro-
vides in-situ measurements of N2O from 7 stations across
Europe. Furthermore, these stations participate in regular
inter-comparisons, ensuring a uniform scale. These in-situ
measurements provide N2O observations at approximately
hourly frequencies making it possible to resolve short-term
variability in the atmosphere. The question, however, is how
to best incorporate high-resolution measurements into an in-
version scheme.

In an ideal inversion, there would be multiple observations
of each state variable, in our case the fluxes, at each resolved
time-step. In reality, though, a significant portion of the state
variables may be undetected by the observations, owing to
the fact that there are only a discrete number of measure-
ment sites and the signal observed at these is dependent on
the atmospheric circulation. Furthermore, one must make
assumptions about the variability of the true fluxes on time-
scales shorter than that of the resolved fluxes. To minimise
the interval over which these assumptions are made, one can
define a higher temporal resolution for the fluxes but there
is a trade-off between increasing the temporal resolution and
the number of observations available to constrain the fluxes at
each time-step. A similar problem occurs when defining the
spatial resolution as one assumes that the fluxes within the
resolved area are not significantly different from the mean
of the area. Errors resulting when such assumptions are in-
valid are defined as aggregation errors (Kaminski et al., 2001;
Peylin et al., 1999).

In some cases the temporal variability of fluxes over cer-
tain time intervals can be described and used in the inversion.
For example, for CO2 fluxes, the behaviour on diurnal time-
scales can be described and thus the variability on time inter-
vals of less than 1 day does not need to be explicitly solved
in the inversion as long as it is taken into account (Peylin et
al., 2005). However, in the case of N2O there is no regular
pattern to the short-term flux variability, hence the approach
used to account for short-term variability in CO2 fluxes is not
applicable. Thus the problem remains; on one hand, if high
temporal resolution is used, then there are fewer observations
available to constrain the fluxes and there are computational
limits on how much the resolution may be increased. On the
other hand, if lower temporal resolution is used, and if the

real short-term variability of the fluxes and their influence on
the observations is not accounted for, then a significant risk
of temporal aggregation error ensues.

In this paper, we first investigate how high-frequency ob-
servations may best be utilized for retrieving N2O fluxes and
how sensitive the inversion is to temporal aggregation er-
rors. This is investigated using synthetic fluxes and mixing
ratios but with atmospheric transport determined from me-
teorological reanalysis data. Secondly, we investigate the
potential to use in-situ measurements from the observation
site, Ochsenkopf in Germany (50◦01′ N, 11◦48′ E), to con-
strain N2O emissions and present new estimates. The tall
tower observatory is located on the summit of the mountain,
Ochsenkopf, in the Fichtelgebirge range, at an elevation of
1022 m. The Fichtelgebirge region is extensively forested
and has a low population density (for further details about the
site refer to Thompson et al. (2009). It has been shown that
air sampled from the highest level on the tower (163 m a.g.l.),
represents the well mixed boundary layer and has a footprint
extending over a large part of western and central Europe
(Thompson et al., 2009).

The paper is structured as follows. In Sect. 2, we describe
the measurements, the atmospheric transport model, STILT,
used to describe the relationship between the observations
and the fluxes, and provide details on the Bayesian inversion
scheme used. The synthetic data, which are used to test the
temporal aggregation error, are also described in this section.
Section 3.1 covers the results of various tests for the influence
of temporal resolution, observational data frequency, and the
impact that changes to the prior flux error covariance matrix
have on the retrieved fluxes. Finally, in Sect. 3.2, the results
of the inversion using the real Ochsenkopf observations are
presented and discussed.

2 Methodology

2.1 Measurements

Ochsenkopf has a continuous record of N2O since mid-2006.
N2O is measured using a Gas Chromatograph (GC), Agi-
lent 6890, equipped with an electron capture detector. The
method was largely developed by Worthy et al. (2003) with
further improvements by Popa (2008) (details specific to
the Ochsenkopf GC set-up can be found in Thompson et
al., 2009). Air measurements are made every 16 minutes
and are interspersed with reference measurements. The long-
term precision is 0.18 ppb (this is the mean over 2.5 years
of the standard deviation of 3 consecutive measurements of
a gas standard that is measured daily) and the accuracy is
0.5 ppb. Air is sampled from 3 heights on the tall tower, 23,
90 and 163 m, which are measured on a 3-hourly cycle (note
that for the inversion in this paper, we use only the data from
the 163 m level).
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2.2 Atmospheric transport model

The STILT (Stochastic Time-Inverted Lagrangian Transport)
model is used to simulate the transport of air parcels back-
wards in time from a receptor point, in this case the tall tower,
Ochsenkopf (50◦01′ N, 11◦48′ E). STILT calculates back tra-
jectories from the receptor using wind fields while releasing
ensembles of particles, which represent the air parcel. Anal-
ysed wind fields are interpolated to the location of each parti-
cle and the particles themselves are subject to stochastic per-
turbations that are parameterised to represent the effects of
turbulent transport. The density of particles is used to calcu-
late the surface influence and the footprint (Lin et al., 2003;
Lin et al., 2004). Here we define the footprint as the mean
surface influence function over a given time interval defined
with reference to a specific receptor, e.g. a tall tower. This
means that in the backward-time run, emissions upstream of
the receptor at a location with higher particle density have
a greater contribution to changes in the mixing ratio at the
receptor. STILT has already been implemented in a num-
ber of regional-scale trace gas experiments (Gerbig et al.,
2003a; Gerbig et al., 2003b; Lin et al., 2004; Lin et al., 2007;
Macatangay et al., 2008; Matross et al., 2006; Miller et al.,
2008).

STILT was driven with meteorological data from ECMWF
(0:00 and 12:00 analysis fields combined with short-term
forecast fields), which have a temporal resolution of 3-hours
and a spatial resolution of1/4 by 1/4 degrees. The STILT
model provides surface influence functions with a dynamic
resolution, with the finest grid being1/12 degrees latitude by
1/8 degrees longitude, which increases with distance from the
receptor to reduce computational time as well as to prevent
under sampling of surface fluxes at times when particles are
distributed over large areas (Gerbig et al., 2003a). The model
domain was chosen to cover Europe, extending from 35◦ N
to 62◦ N and 168◦ W to 35◦ E with the Ochsenkopf site ap-
proximately in the centre.

2.3 Simulation of N2O

The mixing ratio at the receptor located atxr , yr , zr at time
tr is dependent on the surface influence function, calculated
by STILT, and the spatial and temporal distribution of the
tracer emissions. The surface influenceF links the surface
emissions to concentration changes at the receptor and is de-
termined by the total time the particle ensemble spends in
a column of air with heighth at (xi , yj , tm), normalized
by the total number of particles, and has the dimension of
concentration divided by flux (i.e. ppb/µmol m−2.s−1) (Lin
et al., 2003). The column heighth represents the height up
to which surface fluxes are mixed at each time-step of the
STILT model. Gerbig et al. (2003) found that varyingh be-
tween 10% and 100% of the mixing height, calculated us-
ing the modified Richardson number method, did not signif-
icantly affect model results, so in this studyh was chosen as

one half of the mixing height. The mixing ratio at the re-
ceptorC(xr , yr ,zr , tr) is the product of the surface influence
and the tracer flux at each time step, summed up over the
course of the back-trajectory. This is shown in the equation
from Gerbig et al. (2006), which is based on the equation of
Uliasz et Pielke (1990):

c(xr ,yr ,zr ,tr) =

∑
i,j,m

F(xr ,yr ,zr ,tr |xi,yj ,tm) ·f (xi,yj ,tm)

+

∑
i,j,k

c(xi,yj ,zk,t0) (1)

whereF(xr , yr , zr , tr |xi , yj , tm) is the surface influence and
relates the flux,f (xi , yi , tm) to the mixing ratio,c(xr , yr ,
zr , tr). The last term on the right hand side represents the
influence from the boundaries,c(xi , yj , zk, t0), that is, the
contribution to N2O transported from the domain boundaries
to the measurement site (wheret0 is defined as the time when
the back-trajectory exits the domain). The mixing ratios out-
side the domain are equal to the background amount in the
atmosphere, which is assumed not to be directly affected by
local and regional sources (the estimate of these mixing ra-
tios is described in more detail below).

The back-trajectories were calculated for 10 days going
backwards in time. However, only the influence from parti-
cles that remained inside the domain was used and for tra-
jectories that left the domain and re-entered it again, only the
influence from particles before they left the domain in the
first instance was used.

The contribution to the mixing ratios from the lateral
boundary can be estimated by coupling the regional model
to a global one, or alternatively, by filtering the observa-
tions themselves so that what is left are only the instances
when they are largely representative of the free-troposphere
or “background” mixing ratio (Wang and Barrett, 2003). For
N2O, however, the global models available at the time of
this study were either too coarse and/or too uncertain to be
used for this purpose and from the observed time-series at
Ochsenkopf it is difficult to distinguish periods when the
mixing ratio represents the “background”, as there is vari-
ability occurring on both short and long timescales.

We have, therefore, chosen to use a mixing ratio field de-
rived from the interpolation of the NOAA/ESRL flask data
(E. Dlugokencky, personal communication, 2008). For this
field, we have only used stations at coastal or high moun-
tain locations to avoid including mixing ratios that have a
strong influence from the near-field. In total, 23 stations
from the northern hemisphere and tropics were used (see
Table 1). Because of missing data and sometimes irregu-
lar sampling, all the available data within a 2-week period
were averaged for each site. In some cases, only 1 data
point was available over the 2-week period and in some in-
stances no data were available. To overcome the problem of
missing data, we used a Singular Systems Analysis (SSA)
method for gap-filling (Mahecha et al., 2007). In SSA, the
frequency components (also known as principle components)
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Table 1. Northern hemisphere stations used in the interpolation for the background mixing ratio.

Station Coordinates Station Coordinates

Alert, Canada, ALT 82.5◦ N, 62.5◦ W, 200 m Mace Head, Ireland, MHD 53.3◦ N, 9.9◦ W, 25 m
Ascension Isl., ASC 7.5◦ S, 14.4◦ W, 54 m Sand Isl., USA, MID 28.2◦ N, 177.4◦ W, 3.7 m
Terceira, Azores, AZR 38.8◦ N, 27.4◦ W, 40 m Mauna Loa, Hawaii, MLO 19.5◦ N, 155.6◦ W, 3397 m
Baltic Sea, Poland, BAL 55.4◦ N, 17.2◦ E, 3 m Niwot Ridge, USA, NWR 40.0◦ N, 105.6◦ W, 3050 m
Barrow, Alaska, BRW 71.3◦ N, 156.6◦ W, 11 m Pallas, Finland, PAL 68.0◦ N, 24.1◦ E, 560 m
Bermuda, BME 32.4◦ N, 64.4◦ W, 30 m Ragged Pt, Barbados, RPB 13.2◦ N, 59.4◦ W, 45 m
Cold Bay, Alaska, CBA 55.2◦ N, 162.7◦ W, 25 m Shemya Isl., Alaska, SHM 52.7◦ N, 174.1◦ E, 40 m
Christmas Isl., CHR 1.7◦ N, 157.2◦ W, 3 m Ocean Stn, Norway, STM 66.0◦ N, 2.0◦ E, 0 m
Mariana Isl., GMI 13.4◦ N, 144.8◦ E, 1 m Summit, Greenland, SUM 72.6◦, 38.5◦ W, 3238 m
Iceland, ICE 63.3◦ N, 20.3◦ W, 118 m Mt. Waliguan, China, WLG 36.3◦ N, 100.9◦ E, 3810 m
Tenerife, IZO 28.3◦ N, 16.5◦ W, 2360 m Ny-Alesund, Sweden, ZEP 78.9◦ N, 11.9◦ E, 475 m
Kumukahi, Hawaii, KUM 19.5◦ N, 154.8◦ W, 3 m

of a time-series can be found for datasets that contain gaps
(Ghil et al., 2001). A new time-series, without gaps, can be
reconstructed from these principle components. To generate
the ‘gap-filled’ time-series, we fill the missing values in the
original time-series with the estimates of these values from
the reconstructed time-series. This process can be run itera-
tively, that is, the principle components of the ‘filled’ time-
series are found and the points in the time-series that were
missing in the original data are again filled with the new es-
timates. The ‘gap-filled’ time-series’ at each station were
then interpolated over latitude with a resolution of 5 degrees.
This interpolated dataset has no longitudinal variation but is
an observation based ‘background’ mixing ratio at 2-weekly
resolution.

2.4 Bayesian inversion set-up

The N2O mixing ratio at Ochsenkopf tall tower can be ex-
pressed simply in terms of the forward function of the state
variables, that is, the atmospheric transport and mixing of the
emissions. This function is provided by the surface influence
term,F(xr , yr , zr , tr | xi , yj , tm) from STILT. Thus the for-
ward model can be expressed in matrix form as:

c = F · f +cbnd+ε (2)

wherec is the measurement vector containingm observa-
tions at the receptor point andF is a matrix (m×n) in which
each row is a vector containing the surface influence for each
point xk (wherek = 1, . . . , n andn is the total number of
state variables) over the time covered by the back-trajectory
corresponding to the measurement with the same row index.
In other words, each row ofF relates the emissions,f, to the
mixing ratio in the corresponding row of the measurement
vector,c. The second term on the right-hand-side,cbnd, is a
vector containing mixing ratios at the lateral boundary cor-
responding to the time of each observation andε is a vector

containing the model-measurement mismatch. By rearrange-
ment, Eq. (2) can be rewritten as:

y = F · f +ε (3)

wherey is a vector with each element being the difference
between the observed and the boundary mixing ratio, that
is y = c(xr ) – cbnd andF·f is the forward model. The ma-
trix F is defined according to the resolution of the retrieved
fluxes, so that the impact of the flux in each pixel at each re-
solved time-step is related to the observation via each row of
F. The assumption is then made that the true fluxes, on which
the observations depend, do not change significantly during
the resolved time interval. This assumption leads to possible
temporal aggregation errors, as the correction to the tempo-
ral variation in the emissions is aggregated into one emission
field for each time-step and thus errors may result in their
assignment (Law et al., 2004).

To test the impact of this assumption, we vary the tempo-
ral resolution for which the fluxes are retrieved. This corre-
sponds to increasing the number of state variables inf by 1/l,
wherel is the temporal resolution of the resolved fluxes as
a fraction of one year, and modifyingF respectively so that
it has the new dimensions ofm×p (wherep = n/l). How-
ever, there is a trade-off between spatial and temporal reso-
lution; increasing the temporal resolution without decreasing
the spatial resolution means an overall increase in the number
of state variables, and hence a decrease in the possible con-
straint on each variable. Therefore, we chose to use a spatial
resolution of 2×2 degrees, givingn = 299 for our domain.

Depending on the resolution, there may be more state vari-
ables than there are observations, that is,p>m, and the prob-
lem is under-determined. It can also be that in some time-
steps a number of state variables (fluxes) will not have con-
tributed at all to the mixing ratio at Ochsenkopf as a result
of the atmospheric transport. In the Bayesian approach, an
under-determined problem is still solvable because of the use
of an a priori estimate, which is updated by the information
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Table 2. Summary of the inversion tests and the parameters used.

symbol unit A B C D

true flux temporal variability days 7 1 1 1
observation averaging interval hours 3 3 3 3–240
time-step length days 7 7 7–30 7
measurement error σmeas ppb 0.001 0.1 0.1 0.1
transport error σ tran ppb 0 0.1 0.1 0.1
boundary error σbnd ppb 0 0.1 0.1 0.1
measurement error scale lengthM days 0 0.5 0.5 0.5
transport error scale length A days 0 0.5 0.5 0.5
boundary error scale length B days 0 30 30 30
prior flux error for land fluxes σ land % 100 100 100 100
prior flux error for sea fluxes σ sea µ mol m−2 s−1 1e-06 1e-06 1e-06 1e-06
prior flux spatial scale length D km 300 50–2000 300 300
prior flux temporal scale length T days 30 7–30 30 30
number of observations 2880 2880 2880 2880–36
number of state variables 15 548 15 548 15 548–3588 15 548

contained in the observations (Enting, 2002; Rodgers, 2000;
Tarantola, 2005). Obviously, where no information on a par-
ticular state variable is available, no constraint on the a priori
estimate is possible. The uncertainty in the a priori estimate,
however, must be quantified; this is achieved by specifying
a probability density function over the state space. In this
study, we assume that it is Gaussian. Similarly, the uncer-
tainty in the observations, that is, the measurement error can
be quantified as a probability density function over the mea-
surement space. The best estimate of the state vector (i.e. that
for which the cost function is minimized) can then be found
from the Bayesian expression:

f = fprior+Sprior ·FT(F ·Sprior ·FT
+Sε)

−1
·(y −F · fprior) (4)

whereSε is the error covariance matrix of the measurements
and Sprior is the error covariance matrix of the a priori es-
timate. This formulation of the inversion problem does not
require finding the inverse ofSε andSprior, thus making it nu-
merically more efficient (the derivation and full description
of Eq. (4) is provided by Tarantola et al., 2005). The pseudo-
inverse of the matrix (F·Sprior·FT +Sε)

−1 was found using
Singular Value Decomposition (SVD) (Press et al., 1992).

An accurate representation of the uncertainty in the a priori
emissions is important as erroneous estimates, which have
too narrow uncertainty bounds, can lead to estimated emis-
sions that are inconsistent with the atmospheric observations
and/or do not correspond to the true emissions patterns (Ger-
big et al., 2006; Michalak et al., 2004). The uncertainty
in the a priori emission estimates is represented inSprior,
which has dimensionsp×p. The diagonal elements ofSprior
are the squared errors for each of thep state variables and
the off-diagonal elements are the correlated errors between
them. For thep state variables, we used different errors
for the variables corresponding to land and sea fluxes (see
Table 2). The correlation was described by an exponential,

exp(−1d/D – 1t /T ) where1d is the distance between state
variables and1t is the time interval between variables rep-
resenting fluxes at the same location but at different points
in time. The denominatorD is the spatial correlation scale
length, andT is the temporal correlation scale length. The
choice ofD influences how strongly the different state vari-
ables are correlated to one another in space. For instance, a
long correlation length,D of the order of the domain dimen-
sions, would mean a very strong correlation between state
variables and would entail a strong dependence of the inver-
sion on the spatial structure of the a priori emission estimate.
On the other hand, a shortD of the order of one grid-cell’s di-
mension would mean that the state variables are independent
from one another, making the inversion less sensitive to the
a priori spatial structure (Kaminski et al., 2001). The draw-
back of this, however, is that the error reduction on each state
variable will be small and in the case where the observational
constraint is weak there may be errors in the retrieval. As a
starting point, we defineD to be 300 km, based on the scale
of weather systems and land-cover, andT to be 30 days so
that errors in seasonal fluxes are uncorrelated. The influence
of the choice of spatial correlation scale length has been pre-
viously investigated with regards to CO2 (e.g. Gerbig et al.,
2006). However, because the pattern of N2O fluxes does not
follow that of CO2, we performed an analogous test to that
of Gerbig et al. (2006) for N2O and, additionally, tested the
sensitivity of the inversion scheme to the choice of temporal
correlation scale length (see Sect. 3.1.2).

The uncertainty in the observations is expressed in the
measurement error covariance matrix,Sε, which is a square
matrix of dimensionsm×m with diagonal elements repre-
senting the error in each observation and off-diagonal el-
ements representing the correlated errors between obser-
vations. The observations used in the inversion,y, are
the differences between the observed mixing ratios and the
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contribution from advection of the lateral boundary mixing
ratios. For this reason, the error in each observation,yi ,
has contributions from the measurement,σmeas, the estimate
of the mixing ratio at the boundary,σ bnd, and the transport
model,σ trans. The last error component,σ trans, is included to
account for imperfections in the transport model. The total
error is thus:

σ 2
ε = σ 2

meas+σ 2
trans +σ 2

bnd (5)

and σ 2
ε is the value of the diagonal elements ofSε . The

measurement, transport and boundary errors are assumed to
be correlated over time. The transport error depends sig-
nificantly on the accuracy of the Planetary Boundary Layer
(PBL) height estimate, which varies throughout the day. The
degree of correlation between transport errors is represented
by an exponential function, exp(-1t /A) where1t is the dif-
ference in time between measurements andA is the temporal
correlation scale length. We assumed thatA has a value of
0.5 day based on the temporal development of the PBL. The
correlation of the boundary errors was treated in the same
way using a temporal correlation scale length,B of 30 days,
which is approximately two times the temporal resolution of
the boundary mixing ratio field. The temporal correlation of
the measurement errors was treated likewise, using a correla-
tion scale length of 0.5 day. Note that for the inversion tests,
the value of each of the error components was the same as
that assigned to the synthetic data (see Sect. 2.5)

2.5 Synthetic data generation

To test the inversion scheme, we generated a synthetic flux
dataset of daily varying fluxes with a temporal correlation
scale length of 30 days and a spatial correlation scale length
of 300 km (see Fig. 1a and b). The synthetic fluxes were gen-
erated by adding a spatially and temporally varying offset to
each grid-cell of a prior atemporal flux field (we used the
GEIA N2O flux estimates, Olivier et al., 1998). The offsets
were calculated as the product of the square root of the er-
ror covariance matrix,S1/2

prior (with 365×n rows and columns)
and a random number vector,r (of length 365×n, with a
zero mean and a SD of 1) after the method of Chevallier et
al. (2007):

fsyn= fprior+S1/2
prior ·r (6)

BecauseSprior is too big to be stored at this temporal resolu-
tion, we avoided forming it directly and instead substituted
S1/2

prior in Eq. (6) using the following relationship:

S1/2
prior = S1/2

t ⊗(S1/2
s ·(σ 1/2(σ 1/2)T)) (7)

S1/2
prior can be calculated as the Kronecker product (repre-

sented by⊗) of S1/2
t andS1/2

s ·(σ 1/2(σ 1/2)T), whereSt is the
temporal correlation pattern and has dimensions 365×365
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Fig. 1. The synthetic N2O flux dataset that is used to generate
the pseudo-observations. The synthetic fluxes contain spatially and
temporally correlated errors according to the specifications of the
prior error covariance matrixSprior: (a) the annual mean flux and

(b) the zonal mean flux, both in units of µmol m−2 s−1

andSs is the spatial correlation pattern and has dimensions
n×n (both correlations patterns are described by an exponen-
tial decay function, see Sect. 2.3), andσ is a vector contain-
ing the variances of the fluxes.

We coupled the synthetic fluxes with STILT-calculated
surface influence functions to simulate atmospheric mixing
ratios for the Ochsenkopf tall tower, which were used as the
observations in the inversion tests. In tests B, C and D, we
tested the influence that noise and data gaps in the observa-
tions have by adding Gaussian distributed noise of 0.1 ppb
for each of the measurement, transport and boundary errors
(quadratic sum = 0.2 ppb) with a temporal correlation scale
length of 0.5 days for the measurement and transport errors,
and 30 days for the boundary errors. Data gaps were intro-
duced following the pattern of gaps in the real observations
from the Ochsenkopf tall tower in which about 25% of the
data are missing. Figure 2 shows the different time-series’
where the ‘true’ mixing ratios (black line) are those gener-
ated from the synthetic fluxes (described above). The red
line represents the mixing ratios that result from averaging
the synthetic fluxes over 7-days, thus the difference between
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Fig. 2. Daily averaged mixing ratios generated using the STILT
model coupled to the following flux maps: GEIA (green), true with
daily variation (black), true averaged over 7-days (red), and true
with added Gaussian distributed noise and data gaps (blue). A
“zoom” of the section of the time-series’ inside the frame is also
shown at 3-hourly resolution.

the black and red lines is due to the influence of temporal
aggregation in the fluxes, and the blue line shows the influ-
ence of adding Gaussian noise to the “true” mixing ratios. In
all the inversion tests, we used the GEIA N2O flux estimates
(Olivier et al., 1998) as the a priori fluxes.

3 Results and discussion

3.1 Synthetic data tests

3.1.1 Reference inversion

The validity of the inversion scheme was tested using the
synthetic dataset described in Sect. 2.5. For this test, a tem-
poral resolution of 7 days was used in the state space. The
daily varying synthetic fluxes were averaged to this tempo-
ral resolution, to avoid aggregation errors, and mixing ratios
were generated from the averaged fluxes using the STILT
model. Since the same prior was used in the inversion, as
was used to create the synthetic fluxes, the only source of
error is the difference between the synthetic and the prior
fluxes, which is known and is described by the prior error
covariance matrix,Sprior (see Eq. 6). This test was used as a
check for internal consistency and as a reference for follow-
ing tests.

The performance of this inversion test, and all following
tests, was assessed on the basis of the following criteria: (1)

the Root Mean Square Error (RMSE) of the retrieved and
the synthetic (true) fluxes normalized by the RMSE of the
prior and the true fluxes, (2) the reduced chi-squared value,
which is equal to two times the cost-function at its mini-
mum divided by the number of observations, and (3) the er-
ror reduction over the domain, calculated as (1 –σpost/σprior)
where σpost/σprior are the posterior/prior flux uncertainties
taken as the square-root of the sum of covariances in the pos-
terior/prior error covariance matrices according to Eq. (8), in
which caseσij is an element ofSpost:

σ 2
post=

N∑
i=1,j=1

σ 2
ij (8)

The posterior error covariance matrix,Spost was calculated
according to Eq. (9) (Tarantola, 2005):

Spost= Sprior−Sprior ·FT
·(F ·Sprior ·FT

+Sε)
−1

·F ·Sprior (9)

In this reference test (A in Table 2), the RMSE of the fluxes
was reduced by 48% and the reduced chi-square had a value
of 0.81. The reduced chi-square can be thought of as the ratio
of the actual error to the estimated error, therefore, when all
errors are correctly accounted for in the inversion, it has an
expected value of 1. In this reference test, the chi-square
value is satisfactorily close to 1; this result, and the observed
reduction in the RMSE of the fluxes, gives us confidence in
the internal consistency of the inversion scheme.

3.1.2 Sensitivity to temporal and spatial error
correlations

All following tests in Sect. 3.1 were made using a similar set-
up to the one used for the reference test but with a few im-
portant differences. The synthetic mixing ratios were gener-
ated by coupling STILT to the daily varying synthetic fluxes,
while in the inversion the flux retrieval is at a temporal res-
olution of 7 days (unless otherwise stated), therefore they
contain a component of temporal aggregation error. Further-
more, the mixing ratios were perturbed with Gaussian dis-
tributed noise (as described in Sect. 2.5) and data gaps were
introduced at the same frequency as in the real observations.
Details of each of the parameters used are given in Table 2.

The temporal and spatial correlation scale lengths used
in the definition of the prior flux error covariance matrix
have important implications for the retrieval (see Sect. 2.5).
We tested the influence of changing the temporal correla-
tion of errors in the state space by varying the correlation
scale length,T , from 7 to 100 days (B in Table 2). The true
value of T , which was used in the generation of the syn-
thetic fluxes, is 30 days, therefore, for any given grid cell,
the fluxes in consecutive time-steps will be correlated by
exp(−7/30) = 0.79. The minimum in the RMSE of the pos-
terior and true fluxes was found for correlation lengths close
to the true value ofT (see Fig. 3a). Increasing the correlation
length, to example 100 days, means that fluxes in consecutive
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Fig. 3. The influence of changing the correlation scale lengths, used
in the definition of the prior flux error covariance matrix, on the
Root Mean Square Error (RMSE) of the posterior and true fluxes
(black circles), the error reduction (blue diamonds) and the reduced
chi-square value (red triangles), for(a) changing the temporal cor-
relation scale length and(b) changing the spatial correlation scale
length. All these figures show the results of inversions using syn-
thetic mixing ratios with data gaps and added Gaussian noise. The
lines are cubic spline fits to the data.

time-steps would be correlated by 0.93, which is a signifi-
cant over-estimate of the actual correlation, and hence there
is reduction in the freedom to correct the prior temporal vari-
ability towards that of the true temporal variability. On the
other hand, if the correlation length is under-estimated, then
there is too little constraint on the fluxes in different time-
steps. Similarly, the error reduction increases with increasing
T , since the information used to constrain one time-step has
an influence on other time-steps over longer intervals. This
means that in the case whereT is over-estimated, there is also
a corresponding under-estimation of the posteriori error and
hence an over-estimation of the error reduction. The reduced
chi-square value also increases with increasing correlation
length, since the actual error (that is between the observed

and modeled mixing ratios and between the prior and pos-
terior fluxes) increases relative to the prescribed error in the
inversion set-up.

In an analogous test, the influence of changing the spa-
tial correlation length,D, from 50 to 2000 km was examined
(see Fig. 3b). Again, the RMSE is at a minimum for values of
D close to the true value (300 km). The reduced chi-square
increases for spatial correlation lengths longer than the true
length, similar to the result for the test on temporal correla-
tion, as the error between the observed and modeled mixing
ratios increases. However, using correlation lengths shorter
than the true value ofD also leads to an increase in the re-
duced chi-square, as this results in a smaller prior error (in
Sprior) and thus a larger ratio of the actual to prescribed er-
rors.

The tests presented indicate the sensitivity of the inversion
to the choice of correlation scale length; however, they are
limited in the sense that they do not help to determine the true
correlation scale length. This is an area of ongoing research
and goes beyond the scope of this paper.

The value of the reduced chi-square for the case whenT

= 30 days andD = 300 km is noteworthy as it has increased
from 0.81 in the reference inversion case (Sect. 3.1.1) to 1.56,
even though the Gaussian errors in the mixing ratios have
been accounted for. This increase is due to the component of
temporal aggregation error, which arises from inverting mix-
ing ratios that contain a signal from the daily flux variations,
at a 7-day temporal resolution.

3.1.3 Temporal resolution of the resolved fluxes and
aggregation errors

The impact of temporal aggregation error was tested by per-
forming inversions with varying flux resolution (C in Ta-
ble 2). Temporal aggregation errors are incurred when the
fluxes are changing significantly from the mean flux over
the resolved time interval. Since the observations used in
our inversion tests were generated from daily varying fluxes,
whereas the retrieved fluxes were resolved only at 7-day and
longer intervals (the resolutions tested were 7, 10, 14 and 30
days), there is a component of aggregation error in all these
inversions. The influence of the aggregation error can be
seen in the normalized RMSE and reduced chi-square value,
which increase with the length of the resolved time interval
(see Fig. 4a). This behaviour is similar to that when chang-
ing the temporal correlation scale length; one assumes that
the fluxes within the resolved time interval have a correla-
tion of 1, compared with the true correlation e.g. at 30 days
which is 0.37. However, the correlation between the time
intervals decays according to the prescribed function, in our
case: exp(−1t /T ). The aggregation error can be projected
into the observation space, where it can be thought of as the
difference between the true mixing ratios, which would be
obtained from the daily varying fluxes, and the mixing ratios
that can be obtained from the lower resolution fluxes (e.g.
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Fig. 4. Analysis of the impact that temporal resolution in the state
space has on the retrieval. Shown is the influence on RMSE of the
posterior and true fluxes (black circles), error reduction (blue di-
amonds) and the reduced chi-square value (red triangles) for two
cases(a) using errors in the observation space with contributions
from only transport, measurement and boundary errors and(b) in-
cluding in addition the estimated aggregation error for each tempo-
ral resolution. The lines are cubic spline fits to the data.

see Fig. 2). Moreover, since increasing the averaging in-
terval results in an additional error, which is not accounted
for in the observation error covariance matrix, there is an
under-estimation of the prior error and thus a corresponding
increase in the reduced chi-square value.

Kaminski et al. (2001) address the problem of spatial ag-
gregation error and proposed an algorithm (based on that of
Trampert et Snieder, 1996) for estimating this error. Their
algorithm is based on propagating the information lost by re-
ducing the spatial resolution of the retrieved fluxes (that is
with respect to that of the transport model used in the in-
version) and projecting this into the measurement space. Al-
though Kaminski et al. (2001) do not discuss temporal aggre-

gation errors, their algorithm can also be applied in the same
way to propagate the error induced by reducing the tempo-
ral resolution of the inversion. The algorithm involves two
steps: (1) calculation of the prior flux uncertainty that is not
resolved in the lower resolution model and (2) projection of
this uncertainty into the observation space (see the appendix
for a detailed description).

We calculated the additional error in the observation space
incurred by reducing the temporal resolution of the resolved
fluxes from 1 day, coinciding with the variability in the true
fluxes, to that used in the inversion. Inversions were per-
formed using the same range of temporal resolutions as in
the above test (see Fig. 4b). In contrast to the test that did
not account for the aggregation error, the normalized RMSE
only increased by approximately 0.1 over the range of tem-
poral resolutions. Furthermore, the reduced chi-square value
remained nearly constant over the whole range of resolutions,
with all values between 1.08 and 1.10, reflecting the fact that
the estimated errors, which included the aggregation error,
were close to the actual errors. The magnitude of the aggre-
gation error calculated for the observation space (mean over
all observations) was 0.22 ppb and 0.49 ppb for resolutions of
7 and 30 days, respectively, compared with a total observa-
tional error (i.e. the quadratic sum excluding the aggregation
error) of 0.2 ppb, and thus represents a significant contribu-
tion to the overall observational error.

3.1.4 Averaging interval of the observations

Another proposed method for dealing with temporal aggre-
gation error, is to average the observations over the same time
interval as the retrieved fluxes, and thereby smooth out sig-
nals which cannot be represented at the temporal resolution
of the model and thus reduce the bias errors (Peylin, 2002).
We tested the influence of increasing the averaging interval
of the observations up to 240 h (D in Table 2).

From Fig. 5 it can be seen that averaging in the observation
space has a rather complex affect on the retrieval. The best
performing inversion, in terms of the RMSE, is the one that
uses observations at the highest resolution. However, there is
also a small secondary RMSE minimum at 168 hours, which
coincides with the averaging interval of the fluxes (7 days).
This result can be understood in that by averaging the obser-
vations, the surface influence is also averaged and is hence
spread-out over a larger region, therefore, averaging the ob-
servations means that the ability of the inversion to resolve
the fluxes in different grid-cells is reduced. This result holds
in the case where there are no transport errors. The secondary
RMSE minimum at 168 hours, corresponding to the flux res-
olution in the inversion, results from the fact that averaging
the observations reduces the influence of aggregation error
in the fluxes. The chi-square value is determined by 3 fac-
tors: the posterior-prior flux difference (fpost-fprior), the error
in the observation space (Ffpost−y), and the magnitude of
the prescribed errors for both of these. The posterior-prior
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Fig. 5. The influence that changing temporal resolution in the ob-
servation space has on the retrieval (using a fixed resolution in the
state space of 7-days). Shown is the impact on the RMSE of the
posterior and true fluxes (black circles), error reduction (blue dia-
monds) and the reduced chi-square value (red triangles). The lines
are cubic-spline fits to the data.

flux difference is largest for the 3-hourly observations and
decreases with averaging interval length, whereas the oppo-
site is true for the observation errors. However, the shape of
the chi-square curve is not quite the balance of these two, as
it also depends on the error estimates. The minimum at 24 h
is likely due to the prior assumption of the temporal correla-
tion scale length in the observation error covariance matrix,
while the minima at 168 hours (close to 1) is likely because
the prior error estimate is close to the actual error, since there
is no aggregation error at this time. This shows that the chi-
square, although a useful parameter for assessing the inver-
sion, is by itself not always a sufficient one. The error re-
duction also decreases with increasing averaging interval, as
there are fewer independent observations in the inversion to
constrain the fluxes.

3.2 Real observation inversion

3.2.1 N2O flux estimates

N2O fluxes were retrieved for 2007 using the atmospheric
mixing ratios observed at the Ochsenkopf tall tower. The in-
version set-up was the same as that used in the reference in-
version with synthetic data with a few exceptions. For the a
priori fluxes we used the IER dataset (http://carboeurope.ier.
uni-stuttgart.de) for the anthropogenic fluxes and GEIA for
fluxes from the ocean and from soils under natural vegeta-
tion, the combination of which we believe is a closer estimate
to the true fluxes. However, we kept the same temporal and
spatial correlation scale lengths, that is, 30 days and 300 km,
respectively, and the same temporal resolution of 7 days, as
were used in the reference inversion case. The mixing ratios

at the boundaries were taken from the fields of interpolated
NOAA flask data as described in Sect. 2.3. In the observa-
tion space, we used measurements at 3-hourly intervals, each
with an uncertainty of 0.5 ppb, which is the quadratic sum
of squares of the measurement (0.3 ppb), transport (0.3 ppb),
boundary (0.2 ppb), and aggregation errors (0.2 ppb). The
measurement error was estimated on the basis of the long-
term precision (see Sect. 2.1) and comparisons of the in-
situ with independent flask measurements (Thompson et al.
2009). For the transport error, we used a simple approxima-
tion based on the mean of the 3-day SD’s of the simulated
N2O mixing ratio at Ochsenkopf. The reason for this is that
transport models are generally not able to represent synop-
tic scale variability well, which typically has time spans of
circa 3-days. The boundary error was estimated from the
SD the boundary contribution to the mixing ratio observed
at Ochsenkopf. Although the boundary mixing ratios likely
under-estimate the real variability (because they are based
on the interpolation of bi-weekly observations at 5 degrees
meridional resolution and no longitudinal resolution) the im-
pact on the simulated mixing ratios at Ochsenkopf is likely to
be small, since the total variability at this site is dominated by
processes occurring within the domain. Using this set-up, we
achieved a posterior reduced chi-square value of 1.17, which
to some degree indicates an appropriate choice of a priori and
measurement uncertainties and covariances.

To verify the posterior fluxes, we coupled them to the
STILT model to simulate mixing ratios at the Ochsenkopf
site as well as for an independent flask sampling site, Bi-
aystok (53◦13′ N, 23◦1′ E), which is in the MPI-BGC net-
work (see Fig. 6). These simulated mixing ratios were then
compared with observations at each site. A significant re-
duction in the RMSE of the posterior and observed mix-
ing ratios was seen at Ochsenkopf, as well as improvements
in the correlation coefficient, normalized standard deviation
and regression coefficient (see Table 3). Similarly, at Bia-
lystok, a small improvement in the fit to observations was
seen using the posterior fluxes, although there was still an
under-estimate of the observed mixing ratios in August and
September, owing to the weaker constraint on fluxes in the
vicinity of Bialystok from the Ochsenkopf site. In Fig. 6
the contribution to N2O variability from transport at the do-
main boundaries is also shown (green line). At each of these
sites, the contribution from the boundary defines the trend
and seasonal cycle of N2O, whereas the synoptic variabil-
ity is predominantly due to effects inside the domain. Since
the boundary mixing ratios are based on observations, errors
in boundary mixing ratios are mostly due to transport errors
in the STILT model and from the interpolation of the sparse
data.

3.2.2 Posterior error and error reductions

The posterior variances for each pixel are the diagonal
elements of the error covariance matrixSpost calculated
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Fig. 6. Comparison of the observed (black), posterior (red), prior
(blue) and boundary mixing ratios (green). The boundary mixing
ratio is the mixing ratio at the receptor that would be seen in the ab-
sence of any fluxes inside the domain, in other words, it is the N2O
that is transported from the domain boundaries to the measurement
site. Mixing ratios are shown for(a) the Ochsenkopf tall tower, and
(b) for the MPI flask site Bialystok (53◦13′ N, 23◦1′ E).

Table 3. Comparison of prior and posterior mixing ratios at
Ochsenkopf and Bialystok.

RMSE R2 normalized regression
(ppb) SD coefficient

Ochsenkopf prior 0.53 0.44 0.83 0.75
posterior 0.28 0.85 0.91 0.91

Bialystok prior 1.13 0.16 0.79 0.57
posterior 0.88 0.37 0.66 0.52

according to Eq. (9) and are dependent on the assumptions
made for the prior error covariance matrixSprior (i.e. the
correlation scale length and variances), the observation er-
ror covariance matrix Sε, as well as on the surface influence
function. Therefore, the posterior error (and error reduction)
reflects not only the constraint provided by the atmospheric
observations but also the parameterization of the inversion
framework, thus these results should not be over interpreted.
The spatial extent of the error reduction depends strongly on
the spatial correlation length used in the inversion. We chose
to use a correlation length of 300 km; although higher values
would have resulted in a greater spread of error reduction, an
overestimate of this parameter could lead to wrong assump-
tions about the correlation of flux errors, and thus, errors in
the retrieval.

Although only one in-situ measurement site was used in
the inversion, substantial error reductions were seen in west-
ern and central Europe, between 30 and 60%, with the high-
est reductions in Germany close to the Ochsenkopf site (see
Fig. 7d). The pattern of error reduction closely follows
that of the annual mean surface influence function (or foot-
print) as calculated for Ochsenkopf using STILT (footprint
not shown). This result is as expected, since the regions that
have the strongest influence on the observed mixing ratios,
owing to atmospheric transport, will be the best constrained
in the inversion, whereas regions that have only a weak influ-
ence on the observations are poorly constrained.

3.2.3 Temporal variability of the fluxes

The observational constraint at Ochsenkopf resulted in a no-
table reduction in N2O fluxes, relative to the prior, in Febru-
ary and March for Germany and Poland, which for Germany
extended into April. In May, however, this trend reversed and
there was a significant increase in fluxes over most of Eu-
rope, which was sustained until October. The increase was
particularly large in August and September (see Fig. 8).

To better understand what was driving the change in N2O
flux, we looked at the temporal variability of the mean fluxes
over 6 regions in Europe (northern France, southern France,
northern Germany, southern Germany, United Kingdom, and
Poland) and compared these with regional meteorological
parameters (see Fig. 8). We performed a linear multiple anal-
ysis of variance of the 7-day posterior fluxes with the 7-day
normalized anomalies in temperature, soil moisture and rain-
fall, where these were calculated using the mean values for
each region based on ECMWF analysis fields. Although this
approach looks at the integrated influence of these param-
eters over large regions, some significant correlations were
seen; the variance with temperature anomaly was significant
for all regions at the 95% confidence level, whereas rain-
fall was only significant for southern Germany and northern
France, and soil moisture was only found to be significant in
the UK. We found a positive correlation with temperature
anomaly at all sites varying between 0.4 and 0.8 (see Ta-
ble 4). In southern Germany and northern France, N2O fluxes
were also positively correlated with rainfall. In the UK, N2O
fluxes were negatively correlated with soil moisture, a re-
sult that can be understood when the soil water filled pore
space (WFPS) is considered. N2O fluxes have been shown to
increase with increasing soil moisture up to approximately
80% WFPS, however, above this value N2O emissions de-
crease sharply, thus in already very moist soils, increasing
soil moisture leads to a decrease in N2O flux (Freibauer and
Kaltschmitt, 2003). The differences between regions for
the result of correlation with rainfall and soil moisture de-
pend strongly on other factors not considered in this anal-
ysis, such as soil type, oxygen and nitrate substrate avail-
ability, as well as on land management (e.g. Freibauer and
Kaltschmitt, 2003). Although it is outside the scope of this
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Fig. 7. Inversion results using the observed N2O mixing ratio at
Ochsenkopf:(a) annual mean posterior N2O flux, (b) annual mean
difference between the posterior and prior N2O flux, c) posterior
error for the annual mean flux, and d) error reduction calculated as
1−σpost/σprior. All fluxes are in units of µmol m−2 s−1.

Fig. 8. Temporal variability of the total posterior (black solid)
and prior (black dashed) N2O flux for 6 regions in Europe com-
pared with the normalized anomalies in mean temperature (red),
soil moisture (blue) and rainfall (cyan) for each region in 2007.

Table 4. Correlations of N2O fluxes with temperature, soil moisture
and rainfall calculated by multiple analysis of variance,

temperature soil moisture rainfall

southern France 0.54 N.S. N.S.
northern France 0.63 N.S. 0.42
UK 0.43 −0.51 N.S.
southern Germany 0.80 N.S. 0.70
northern Germany 0.57 N.S. N.S.
Poland 0.71 N.S. N.S.

N.S. = Not Significant (at the 95% confidence level).

study to examine these, we recognise that activities such as
the application of N-fertilizer and soil tillage also have a sig-
nificant impact on N2O fluxes (Li et al., 1996). N-fertilized
applications may contribute to the high emissions seen be-
tween April and June, while tillage and harvest may con-
tribute to the high emissions between August and September.
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Table 5. Comparison of annual mean N2O emissions for five Euro-
pean countries in units of Gg-N2O/y.

posterior1 prior2 EDGAR3 Manning et al.4

France 260±144 214 139 271, (252–287)
Germany 225±135 242 238 247, (220–274)
UK 150±87 111 79 121, (107–134)
Benelux 72±44 78 98 101, (81–146)
Poland 151±116 144 77 not given

1. the total uncertainties were calculated by integrating the posterior uncertainty in
each grid-cell over the land surface area (where the grid-cell uncertainty was calculated
according to Eq. 8).
2. the prior used in this study included the anthropogenic emissions of IER (http://
carboeurope.ier.uni-stuttgart.de) and the natural soil and ocean emissions of GEIA,
Olivier et al. (1998) with uncertainties of 100%.
3. EDGAR-32FT2000 (anthropogenic emissions only) with a nominal uncertainty of
100%, Olivier et al. (2005).
4. uncertainty range given inside parentheses, Manning et al. (2003).

3.2.4 Annual total fluxes and their comparison with
other estimates

The main information about the fluxes, provided by the at-
mospheric observations in the inversion, is on their temporal
variability as discussed in Sect. 3.2.3. Conversely, the annual
mean posterior flux estimate is close to that of the prior (see
Fig. 7b). The largest increments made to the fluxes (i.e. the
largest annual mean posterior-prior differences) were in fact
in pixels that were not well constrained by the observations
and, thus, where the error reductions were low, only between
10 and 20% (see Fig. 7d). These results, therefore, should not
be over-interpreted, specifically, the results for the northern
UK where very large fluxes have been retrieved in the inver-
sion. Reasons for this could be due to the limited resolving
power of the model; in order to reduce the model – observa-
tion mismatch, increased fluxes are required from the region
to the northwest of Ochsenkopf, however, the distribution of
this additional flux is not well constrained and depends not
only on the surface influence function but also on the prior
flux uncertainties.

The annual mean N2O emission, and its uncertainty, of 5
countries/regions within our domain (Benelux, France, Ger-
many, Poland, and UK) were calculated and compared to
the estimates of IER and GEIA (i.e. our prior estimate),
EDGAR-v3.2, and Manning et al. (2003). The annual totals
a posteriori, a priori, and as estimated in EDGAR-v3.3 and
by Manning et al., all agreed within the given uncertainties.
However, the flux estimates of EDGAR-v3.2 for France and
Poland had the largest differences from other mean estimates
but were still within the uncertainty range (see Table 5).

4 Summary and conclusions

In this study, we have firstly examined how high temporal
resolution atmospheric measurements of N2O may be best
incorporated into an inversion scheme, while regarding the
potential errors that may arise, and secondly retrieved N2O
emissions estimates for 2007 for central and western Europe.
By using synthetic datasets with known errors both in the
observations and in the fluxes, we explored the influence of
temporal and spatial correlation length as well as the tem-
poral resolution of the fluxes. From these tests we find that
temporal aggregation of the fluxes can lead to significant er-
rors in the retrieval if not accounted for. We found for the
pseudo-data case, where the true fluxes are varying daily (to
which the observations are sensitive), using temporal reso-
lutions of 7-days and longer in the retrieval leads to signif-
icant aggregation errors. These errors can be accounted for
by increasing the observational error, so that in addition to
errors in the transport model, measurements and boundary
conditions, the errors resulting from the loss of information
by going to a lower resolution model (the aggregation errors)
are included. The algorithm of Kaminski et al. (2001) can
be used to estimate the aggregation error in the observation
space and only requires an estimate on what timescale the
true fluxes are varying. Although this study only included
one observation site, the algorithm can be employed to calcu-
late aggregation errors at multiple sites and the investigation
into the importance of aggregation errors for such an obser-
vation network constitutes an important next step. Another
result of this work that needs to be investigated for a net-
work is the influence of averaging the observations in time
and whether using higher frequency data would improve the
retrieval of the fluxes, as was found for the synthetic test D
in this study.

Using the observations from the tall tower site,
Ochsenkopf (50◦01′ N, 11◦48′ E) we retrieved N2O fluxes at
a 7-day resolution for 2007. The posterior fluxes showed
much greater temporal variability than the prior fluxes. Rel-
ative to the prior, notable reductions in N2O fluxes were seen
in February and March for Germany and Poland, while in
May, a significant increase was seen over most of Europe,
which was sustained until October. In particular, large emis-
sions were seen in August and September, which may be
due to human activities such as harvest and tillage at this
time. Over the whole year and in all regions, we found
N2O fluxes to be significantly correlated (at the 95% con-
fidence level) with temperature anomaly, while correlations
with rainfall were only significant for southern Germany and
northern France, and correlations with soil moisture were
only significant for the UK. The observational constraint had
the most impact on the temporal variability of the fluxes,
while the annual mean fluxes remained close to those of the
prior (see Table 5). Moreover, the mean fluxes found for
France, Germany, the UK and Benelux, agreed very well
with those found in the inversion of Manning et al. (2003)
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and the estimates from EDGAR-32FT2000 also fell within
the posterior uncertainty range. Despite using only one ob-
servation site, substantial error reductions of 30–60% were
achieved for fluxes in central and Europe.

Appendix A

Description of the algorithm for estimating
aggregation errors

We present a description of the algorithm derived by Kamin-
ski et al. (2001) and our method for its calculation. The first
step involves defining a projection operator,P+ that oper-
ates in the space of the high-resolution model and projects
only the components that are resolved by the low-resolution
model:

P+ = 6(pip
T
i ) (A1)

wherepi are vectors expressing the mapping of the high to
the low resolution model and have unit length and are orthog-
onal. The remaining unresolved components are thus defined
by:

P− = I −P+ (A2)

whereI is the identity matrix. In the second step, the aggre-
gation error covariance matrix,Sagg is calculated by project-
ing the error in the flux space into the observation space:

Sagg= F ·P− ·Sprior ·PT
− ·FT (A3)

where the footprint,F and prior flux error covariance matrix,
Sprior are defined for the high resolution model. SinceP− is
too large to be calculated directly (in our caseP− would be a
100 000×100 000 matrix) we calculate directly the product,
F·P−(which is approximately 2500×100 000):

F ·P− = F−F ·6(pip
T
i ) (A4)

Here, our method departs from that of Kaminski et al. (2001);
we calculate the productF·P−·Sprior and thus avoid forming
Sprior directly (using the same method described in Sect. 2.4):

F ·P− ·Sprior = F ·P− ·St ⊗(Ss ·(σ (σ )T)) (A5)

and lastlySagg is calculated according to Eq. (A5), which is
equivalent to Eq. (A3):

Sagg= F ·P− ·Sprior ·(F ·P−)T (A6)
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Chevallier, F., Bŕeon, F.-M. and Rayner, P. J.: Contribution
of the Orbiting Carbon Observatory to the estimation of
CO2 sources and sinks: Theoretical study in a variational
data assimilation framework, J. Geophys. Res., 112, D09307,
doi:10.1029/2006JD007375, 2007

Corazza, M., Bergamaschi, P., Vermeulen, A. T., Aalto, T., Haszpra,
L., Meinhardt, F., O’Doherty, S., Thompson, R., Moncrieff, J.,
Popa, E., Steinbacher, M., Jordan, A., Dlugokencky, E., Brhl,
C., Krol, M., and Dentener, F.: Inverse modelling of European
N2O emissions: assimilating observations from different net-
works, Atmos. Chem. Phys., 11, 2381–2398,doi:10.5194/acp-
11-2381-2011, 2011.

Crutzen, P. J.: Estimates of Possible Variations in Total Ozone Due
to Natural Causes and Human Activities, Ambio, 3(6), 201–210,
1974.

Enting, I. G.: Inverse Problems in Atmopsheric Constituent Trans-
port, Cambridge University Press, Cambridge, New York, USA,
408 pp., 2002.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fa-
hey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G.,
Nganga, J., Prinn, R., Raga, G., Schultz, M. and Van Dorland, R.:
Changes in Atmospheric Constituents and in Radiative Forcing,
Climate Change 2007: The Physical Science Basis. Contribution
of Working Group I to the Fourth Assessment Report of the In-
tergovernmental Panel on Climate Change, edited by: Solomon,
S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M. and Miller, H. L., Cambridge University Press, Cam-
bridge, UK, 129–234, 2007.

Freibauer, A. and Kaltschmitt, M.: Controls and models for esti-
mating direct nitrous oxide emissions from temperate and sub-
boreal agricultural mineral soils in Europe, Biogeochemistry, 63,
93–115, 2003.

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M.,
Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. and Sut-

Atmos. Chem. Phys., 11, 3443–3458, 2011 www.atmos-chem-phys.net/11/3443/2011/

http://dx.doi.org/10.1029/2006JD007375
http://dx.doi.org/10.5194/acp-11-2381-2011
http://dx.doi.org/10.5194/acp-11-2381-2011


R. L. Thompson et al.: A Bayesian inversion estimate of N2O emissions 3457

ton, M. A.: Transformation of the Nitrogen Cycle: recent trends,
questions, and potential solutions, Science, 320, 889–892, 2008.

Gerbig, C., Lin, J. C., Munger, J. W. and Wofsy, S. C.: What can
tracer observations in the continental boundary layer tell us about
surface-atmosphere fluxes?, Atmos. Chem. Phys., 6, 539–554,
doi:10.5194/acp-6-539-2006, 2006.

Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A.
E., Stephens, B. B., Bawkin, P., and Grainger, C. A.: Toward
constraining regional-scale fluxes of CO2 with atmospheric ob-
servations over a continent: 2. Analysis of COBRA data using
a receptor-orientated framework, J. Geophys. Res., 108(D24),
4757,doi:10.1029/2003JD003770, 2003a.

Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A.
E., Stephens, B. B., Bawkin, P. S., and Grainger, C. A.: To-
ward constraining regional-scale fluxes of CO2 with atmospheric
observations over a continent: 1. Observed spatial variability
from airborne platforms, J. Geophys. Res., 108(D24), 4756,
doi:10.1029/2002JD003018, 2003b.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov,
D., Mann, M. E., Robertson, A. W., Saunders, A., Tian,
Y., Varadi, F. and Yiou, P.: Advanced Spectral Methods
for Climatic Time Series, Rev. Geophys., 40(1), 1-1–1-41,
doi:10.1029/2001RG000092, 2001.

Gruber, N. and Galloway, J. N.: An Earth-system perspec-
tive of the global nitrogen cycle. Nature, 451, 293–296,
doi:10.1038/nature06592, 2008

Hirsch, A. I., Michalak, A. M., Bruhwiler, L. M., Peters, W., Dlu-
gokencky, E. J. and Tans, P. P.: Inverse modeling estimates of the
global nitrous oxide surface flux from 1998–2001, Global Bio-
geochem. Cy., 20, GB1008,doi:10.1029/2004GB002443, 2006.

Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Sim-
monds, P., Dlugokencky, E. J., Hall, B., Elkins, J., Steele, P.,
Langenfelds, R., Krummel, P., Dutton, P., and Porter, L.: Es-
timation of regional emissions of nitrous oxide from 1997 to
2005 using multinetwork measurements, a chemical transport
model, and an inverse method, J. Geophys. Res., 113, D17313,
doi:10.1029/2007JD009381, 2008

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On ag-
gregation errors in atmospheric transport inversions, J. Geophys.
Res., 106(D5), 4703–4715, 2001.

Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Ger-
big, C., Nehrkorn, B. C., Daube, B. C., Kaplan, J. O., Houwel-
ing, S., and Wofsy, S. C.: Emissions of CH4 and N2O over the
United States and Canada based on a receptor orientated model-
ing framework and COBRA-NA atmospheric observations, Geo-
phys. Res. Lett., 35, L18808,doi:10.1029/2008GL034031, 2008

Kroeze, C., Dumont, E., and Seitzinger, S. P.: New estimates of
global emissions of N2O from rivers and estuaries, Environ. Sci.,
2, 159–165, 2005.

Law, R. M., Rayner, P. J., and Wang, Y. P.: Inversion of di-
urnally varying synthetic CO2: Network optimization for an
Australian test case. Global Biogeochem. Cy., 18, GB1044,
doi:10.1029/2003GB002136, 2004.

Li, C., Narayanan, V., and Harriss, R. C.: Model estimates of nitrous
oxide emissions from agricultural lands in the United States,
Global Biogeochem. Cy., 10(2), 297–306, 1996.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B.
C., Davis, K. J. and Grainger, C. A.: A near-field tool for simu-
lating the upstream influence of atmospheric observations: The

Stochastic Time-Inverted Lagrangian Transport (STILT) model.
J. Geophys. Res., 108, (D16), 4493,doi:10.1029/2002JD003161,
2003

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C.,
Grainger, C. A., Stephens, B. B., Bawkin, P. S., and Hollinger,
D. Y.: Measuring fluxes of trace gases at regional scales by
Lagrangian observations: Application to the CO2 Budget and
Rectification Airborne (COBRA) study, J. Geophys. Res., 109,
D15304,doi:10.1029/2004JD004754, 2004.

Lin, J. C., Gerbig, C., Wofsy, S. C., Chow, V. Y., Gottlieb, E. W.,
Daube, B. C. and Matross, D. M.: Designing Lagrangian exper-
iments to measure regional-scale trace gas fluxes, J. Geophys.
Res., 112, D13312,doi:10.1029/2006JD008077, 2007.

Macatangay, R., Warneke, T., Gerbig, C., Krner, S., Ahmadov, R.,
Heimann, M., and Notholt, J.: A framework for comparing re-
motely sensed and in-situ CO2 concentrations, Atmos. Chem.
Phys., 8, 2555–2568,doi:10.5194/acp-8-2555-2008, 2008.

Mahecha, M. D., Reichstein, M., Lange, H., Carvalhais, N., Bern-
hofer, C., Gr̈unwald, T., Papale, D. and Seufert, G.: Characteriz-
ing ecosystem-atmosphere interactions from short to interannual
time scales, Biogeosciences, 4, 743-758, 2007,
http://www.biogeosciences.net/4/743/2007/.

Manning, A. J., Ryall, D. B., and Derwent, R. G.: Estimating Euro-
pean emissions of ozone-depleting and greenhouse gases using
observations and a modeling back-attribution technique. J. Geo-
phys. Res., 108(D14), 4405,doi:10.1029/2002JD002312, 2003

Matross, D. M., Andrews, A. E., Pathmathevan, M., Gerbig, C., Lin,
J. C., Wofsy, S. C., Daube, B. C., Gottlieb, E. W., Chow, V. Y.,
Lee, J. T., Zhao, C., Bawkin, P., Munger, J. W., and Hollinger,
D. Y.: Estimating regional carbon exchange in New England and
Quebec by combining atmospheric, ground-based and satellite
data, Tellus, 58B, 344–358, 2006.

Messager, C., Schmidt, M., Ramonet, M., Bousquet, P., Simmonds,
P., Manning, A., Kazan, V., Spain, G., Jennings, S. G. and Ciais,
P.: Ten years of CO2, CH4, CO and N2O fluxes over West-
ern Europe inferred from atmospheric measurements at Mace
Head, Ireland, Atmos. Chem. Phys. Discuss., 8, 1191–1237,
doi:10.5194/acpd-8-1191-2008, 2008.

Michalak, A. M., Bruhwiler, L. M., and Tans, P. P.: A geostatistical
approach to surface flux estimation of atmospheric trace gases. J.
Geophys. Res., 109, D14109,doi:10.1029/2003JD004433, 2004.

Miller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B.,
Longo, M., Gottlieb, E. W., Hirsch, A., Gerbig, C., Lin, J. C.,
Daube, B. C., Hudman, R. C., Dias, P. L. S., Chow, V. Y., and
Wofsy, S. C.: Sources of carbon monoxide and formaldehyde
in North America determined from high-resolution atmospheric
data, Atmos. Chem. Phys., 8, 7673–11451,doi:10.5194/acp-8-
7673-2008, 2008.

Nevison, C. and Holland, E.: A reexamination of the impact of
anthropogenically fixed nitrogen on atmospheric N2O and the
stratospheric O-3 layer, J. Geophys. Res., 102(D21), 25519–
25536, 1997.

Nevison, C. D., Lueker, T. J., and Weiss, R. F.: Quantifying the ni-
trous oxide source from coastal upwelling, Global Biogeochem.
Cy., 18, GB1018,doi:10.1029/2003GB002110, 2004.

Olivier, J. G. J., Bouwman, A. F., Van der Hoek, K. W., and
Berdowski, J. J. M.: Global air emission inventories for anthro-
pogenic sources of NOx, NH3 and N2O in 1990, Environ. Pollut.,
102, 135–148, 1998.

www.atmos-chem-phys.net/11/3443/2011/ Atmos. Chem. Phys., 11, 3443–3458, 2011

http://dx.doi.org/10.5194/acp-6-539-2006
http://dx.doi.org/10.1029/2003JD003770
http://dx.doi.org/10.1029/2002JD003018
http://dx.doi.org/10.1029/2001RG000092
http://dx.doi.org/10.1038/nature06592
http://dx.doi.org/10.1029/2004GB002443
http://dx.doi.org/10.1029/2007JD009381
http://dx.doi.org/10.1029/2008GL034031
http://dx.doi.org/10.1029/2003GB002136
http://dx.doi.org/10.1029/2002JD003161
http://dx.doi.org/10.1029/2004JD004754
http://dx.doi.org/10.1029/2006JD008077
http://dx.doi.org/10.5194/acp-8-2555-2008
http://www.biogeosciences.net/4/743/2007/
http://dx.doi.org/10.1029/2002JD002312
http://dx.doi.org/10.5194/acpd-8-1191-2008
http://dx.doi.org/10.1029/2003JD004433
http://dx.doi.org/10.5194/acp-8-7673-2008
http://dx.doi.org/10.5194/acp-8-7673-2008
http://dx.doi.org/10.1029/2003GB002110


3458 R. L. Thompson et al.: A Bayesian inversion estimate of N2O emissions

Olivier, J. G. J., Van Aardenne, J. A., Dentener, F., Pagliari, V.,
Ganzeveld, L. N. and Peters, J. A. H. W.: Recent trends in global
greenhouse gas emissions: regional trends 1970-2000 and spa-
tial distribution of key sources in 2000, Environ. Sci., 81–99,
doi:10.1080/15693430500400345, 2005.

Peylin, P.: Influence of transport uncertainty on annual mean and
seasonal inversions of atmospheric CO2 data, J. Geophys. Res.,
107(D19), 4385,doi:10.1029/2001JD000857, 2002.

Peylin, P., Bousquet, P., Ciais, P., and Monfray, P.: Time-Dependant
vs Time-Independant inversion of the atmospheric CO2 obser-
vations: consequences for the regional fluxes, Inverse Methods
in Global Biogeochemical Cycles, edited by: Kasibhatla, P.,
Heimann, M., Rayner, R., Mahowald, N., Prinn, R. G., and Hart-
ley, D. E., American Geophysical Union, 114, 324 pp., 1999.

Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F.,
Heinrich, P., Ciais, P. and contributors, A.: Daily CO2 flux esti-
mates over Europe from continuous atmospheric measurements:
1, inverse methodology, Atmos. Chem. Phys., 5, 3173–3186,
doi:10.5194/acp-5-3173-2005, 2005.

Popa, E.: Continuous tall tower multi-species measurements in Eu-
rope for quantifying and understanding land-atmosphere carbon
exchange, Friedrich Schiller University, PhD, Jena, Germany,
2008.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numeri-
cal Recipes, Cambridge University Press, Cambridge, 1992.

Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F.,
Crawford, A., Fraser, P., and Rosen, R.: Atmospheric emis-
sions and trends of nitrous oxide deduced from 10 years of ALE-
GAGE data, J. Geophys. Res., 95(D11), 18369–18385, 1990.

Ramaswamy, V.: Radiative forcing of climate change, Climate
Change 2001: The Scientific Basis. Contribution of Working
Group I to the Third Assessment Report of the Intergovernmen-
tal Panel on Climate Change, Cambridge University Press, Cam-
bridge, UK, 349–416. 2001.

Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous
Oxide (N2O): The Dominant Ozone-Depleting Substance Emit-
ted in the 21st Century, Science, 326(5949), 123–125, 2009.

Rodgers, C. D.: Inverse methods for atmospheric sounding: theory
and practice, World Scientific, Singapore, 2000.

Schmidt, M., Glatzel-Mattheier, H., Sartorius, H., Worthy, D. E.
and Levin, I.: Western European N2O emissions: A top-down
approach based on atmospheric observations, J. Geophys. Res.,
106(D6), 5507–5516, 2001.

Tarantola, A.: Inverse problem theory and methods for model pa-
rameter estimation, Society for Industrial and Applied Math-
ematics, University City Science Center, Philadelphia, USA,
2005.

Thompson, R. L., Manning, A. C., Gloor, E., Schultz, U., Seifert,
T., Hänsel, F., Jordan, A. and Heimann, M.: In-situ measure-
ments of oxygen, carbon monoxide and greenhouse gases from
Ochsenkopf tall tower in Germany, Atmos. Meas. Tech., 2, 573–
591,doi:10.5194/amt-2-573-2009, 2009.

Trampert, J. and Snieder, R.: Model Estimations Biased by Trun-
cated Expansions: Possible Artifacts in Seismic Tomography,
Science, 271, 1257–1260, 1996.

Uliasz, M. and Pielke, R. A.: Receptor-oriented Lagrangian-
Eulerian model of mesoscale air pollution dispersion, Computer
Techniques in Environmental Studies, edited by: Zannetti, P.,
Billerica, MA, USA, 57–68. 1990.

Wang, Y. P. and Barrett, D. J.: Estimating regional terrestrial carbon
fluxes for the Australian continent using a multiple-constraint ap-
proach I. Using remotely sensed data and ecological observations
of net primary production, Tellus, 55B, 270–289, 2003.

Worthy, D. E. J., Platt, A., Kessler, R., Ernst, M., and Racki, S.: The
Greenhouse Gases Measurement Program: Measurement Proce-
dures and Data Quality, GGML, 2003.

Atmos. Chem. Phys., 11, 3443–3458, 2011 www.atmos-chem-phys.net/11/3443/2011/

http://dx.doi.org/10.1080/15693430500400345
http://dx.doi.org/10.1029/2001JD000857
http://dx.doi.org/10.5194/acp-5-3173-2005
http://dx.doi.org/10.5194/amt-2-573-2009

