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Abstract. We develop the thermodynamic underpinnings
of a two-dimensional volatility basis set (2D-VBS) employ-
ing saturation mass concentration (Co) and the oxygen con-
tent (O:C) to describe volatility, mixing thermodynamics,
and chemical evolution of organic aerosol. The work ad-
dresses a simple question: “Can we reasonably constrain
organic-aerosol composition in the atmosphere based on only
two measurable organic properties, volatility and the extent
of oxygenation?” This is an extension of our earlier one-
dimensional approach employing volatility only (C∗

= γ Co,
where γ is an activity coefficient). Using available con-
straints on bulk organic-aerosol composition, we argue that
one can reasonably predict the composition of organics (car-
bon, oxygen and hydrogen numbers) given a location in the
Co – O:C space. Further, we argue that we can constrain the
activity coefficients at various locations in this space based
on the O:C of the organic aerosol.

1 Introduction

It is well established that atmospheric organic aerosol (OA)
exists as a complex mixture of thousands of individual or-
ganic compounds (Hildemann et al., 1991; Fraser et al., 1997,
1998; Goldstein et al., 2008). Furthermore, it is clear that a
large fraction of OA consists of organic compounds that are
difficult to separate in a gas chromatograph (Schauer et al.,
1996), and that very often a majority of OA consists of quite
highly oxidized organic molecules (Zhang et al., 2007; Aiken
et al., 2008; Ng et al., 2009).

As an example, the most abundant identified organic
molecule during the Pittsburgh Air Quality Study, generally a
carboxylic acid, typically comprised about 1% of the total or-
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ganic carbon mass (Robinson et al., 2006; Shrivastava et al.,
2007). A typical 200 nm diameter particle contains 5–10 mil-
lion individual organic molecules with molar weights around
200 g mole−1. The most abundant molecule appears approx-
imately 50 000 times in that single particle, while hundreds
to thousands of molecules appear of order 100–1000 times
each in that same particle.

A critical determinant of whether an organic compound is
found in OA (as opposed to the gas phase) must be satura-
tion vapor pressure. Here we shall use saturation mass con-
centration (Co andC∗, in µg m−3) because mass measure-
ments pervade aerosol science, and we shall use the terms
“volatility” and “saturation concentration” interchangeably.
The difference betweenCo andC∗ is thatCo is the satura-
tion concentration of a vapor over a pure (sub-cooled) liquid,
while C∗ includes the activity coefficient,γ , in a mixture;
thusC∗

= γ Co.
We have previously presented a framework describing OA

mass – whether or not the constituents are identified – with a
series of volatility “bins” that are separated by one decade in
C∗, which we shall refer to as the “one-dimensional volatil-
ity basis set” (1D-VBS) (Donahue et al., 2006). Here we
shall extend the 1D-VBS to a second dimension in order to
improve our ability to predict the thermodynamics, includ-
ing organic mixing and polarity, and ultimately to coherently
describe oxidation chemistry. For this 2D-VBS we shall add
the extent of oxygenation – specifically O:C – as the second
dimension.

Because OA is a complex mixture, the thermodynamics of
mixtures are important (Pankow, 1994). From both a model-
ing and a theoretical perspective, it is desirable to be able to
predict volatility under ambient conditions. It is also impor-
tant to know whether different organics will tend to form a
single, homogeneous phase or whether they will phase sep-
arate. One reason is that phase separation can sharply re-
duce the predicted mass of the less abundant phase (Bowman
and Melton, 2004), while another is that separate phases will
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allow distinct OA types to remain externally mixed (for ex-
ample with different sized modes) while a single OA phase
will tend to drive OA composition toward a uniform, internal
mixture (Marcolli et al., 2004; Asa-Awuku et al., 2009).

A common simplification applied to complex organic-
aerosol mixtures in the atmosphere is to represent the mix-
ture with a number of surrogate molecules. With this ap-
proach, one strives to carefully select a small set of surrogate
molecules and then to calculate the thermodynamics as accu-
rately as possible. There are a number of challenges to this
approach.

Surrogate-based calculations require knowledge of the
aerosol mixture composition and the abundance of each of
the molecular subgroups (Bowman and Melton, 2004), cou-
pled to an accurate calculation of the vapor pressures of the
surrogates and their activity coefficients in solution. This is
difficult. The multifunctional and long-chain molecules typ-
ically found in organic aerosols may not be accurately de-
scribed by the estimation methods (Koo et al., 2003; Bow-
man and Melton, 2004). Finally, even if the thermodynamics
of the surrogate mixture can be calculated exactly, it is not at
all clear that this surrogate mixture will accurately represent
the behavior of real OA mixtures. For instance,Clegg et al.
(2008b) have shown that even a small set of molecules rep-
resented by a single surrogate in typical schemes can have a
very wide range of individual vapor pressures.

An advantage of the surrogate-based methods is that in-
homogeneous effects from extremely important constituents
such as water and inorganic ions can be treated explicitly
(Clegg et al., 2003). In this work we will focus on the
thermodynamics of complex organic mixtures, neglecting for
now these important effects. However, to the extent that hy-
groscopicity correlates with our second dimension (Jimenez
et al., 2009), it may be possible in the future to parameterize
the combined influence of water and inorganic ions on the
thermodynamics.

Rather than predicting the phase partitioning of specific
molecules (e.g. levoglucosan, etc.) or surrogates, we seek to
infer the OA composition (the carbon, hydrogen, and oxy-
gen numbers,nC, nO, nH) of fractions of the OA constituents
identified by their location in our 2-D volatility – O:C space.
We also want to be able to understand the physical properties
of the OA, including hygroscopicity as well as the potential
for different classes of OA to phase separate, and we want to
inform chemical mechanisms describing how these proper-
ties (including volatility and O:C) evolve during photochem-
ical oxidation.

We thus develop an approach relying principally on data
from in situ mass spectrometers, which measure a large frac-
tion of the OA mass and are able to constrain the bulk atomic
composition with good precision (Aiken et al., 2008). The
most precisely constrained measure is the oxygen to car-
bon ratio (O:C). Volatility is more difficult to constrain, but
several studies have shown recently that a combination of
dilution and thermodenuder measurements can be inverted

to constrain the volatility distribution of OA mixtures using
our 1D-VBS for both chamber data (Grieshop et al., 2009;
Shilling et al., 2009; Kostenidou et al., 2009) and ambient
data (Cappa and Jimenez, 2010).

Here we shall show that we can develop a self-consistent
thermodynamic framework for OA mixtures based on loca-
tion in our 2-D space. Our central assumption is that we
can calculate the solvation energy of an organic constituent
as a linear combination of interaction energies between dif-
ferent functional groups in the molecule and different func-
tional groups in a solvent, and that in a rich, amorphous sys-
tem, these interactions will be homogeneous and isotropic. In
other words we will model OA as an amorphous collection of
functional groups, defined by the mean properties of the OA
and without any other regard to the molecular composition
of the OA. This is motivated by the example of composition
presented above – individual molecules in an OA particle are
rarely if ever solvated by themselves but rather by a com-
plex mixture of many molecules containing several different
functional groups in many combinations. While the individ-
ual solvent molecules can not be completely enumerated, the
necessary average properties can now be measured routinely.

Our hypothesis is that the great complexity of OA mixtures
actually simplifies the problem by reducing the importance
of any individual, unique molecular behaviors or properties
in favor of the bulk average properties. We argue that we
can reasonably describe the behavior of OA mixtures using
only four parameters: a compound with a reference volatility
(we use pentacosane), and three interaction terms expressing
in turn carbon-carbon interactions (non-polar interactions),
oxygen-oxygen interactions (polar interactions), and the non-
ideality of the carbon-oxygen interaction. We shall explore
the implications of this, both in the laboratory, where differ-
ent organics may or may not serve as good “seeds” for other
organics (Song et al., 2007; Asa-Awuku et al., 2009; Vaden
et al., 2010), and in the atmosphere.

2 Group contribution methods

2.1 Data and mean trends

We would like to be able to describe log10C
∗ in terms of

observable average molecular properties of OA – specifi-
cally the average carbon, hydrogen, and oxygen numbers
(nC,nH,nO). Initially we will focus on the pure-compound
saturation concentrations (log10C

o). Accurate prediction of
pure-compound vapor pressures requires structural informa-
tion about the compounds, and accurate prediction of activ-
ity coefficients in mixtures requires an accurate description
of the solvent. For atmospheric organic aerosols we simply
do not yet have that luxury, so we must turn to simpler ap-
proaches.

There are a number of vapor-pressure estimation methods
in the literature, with varying degrees of complexity. Rarey
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and co-workers (Nannoolal et al., 2004) argue convincingly
that accurate empirical estimation should combine predic-
tions of the normal boiling point of a compound with the
enthalpy of vaporization. Because we have quite limited
knowledge of the structure of organic-aerosol constituents,
a convenient method is SIMPOL (Pankow and Asher, 2008),
in which the sub-cooled liquid vapor pressure of a pure sub-
stance can be described as a linear combination of contribu-
tions from various functional groups:

log10

(
p0

L,i

)
= b0+

∑
k

νk,i bk (1)

wherebk is the effect of thekth “structural element” andνk,i

is the number of those elements in the moleculei. We shall
build a group-contribution method very much like SIMPOL,
replacing log10p

0
L,i with log10C

o and focusing on the car-
bon and oxygen numbers (nC andnO) of the organics. This
extremely simple group-contribution method is justified in
part by our limited knowledge of actual organic-aerosol com-
position, and in part because the information we do have
suggests roughly constant relative fraction of various oxy-
genated functional groups, as we shall discuss below. Our
objective in this paper is to describe log10C

o
= f (nC,nO),

neglecting for the time being other contributions (for exam-
ple, N, S) in favor of the oxygenated organic compounds that
appear to comprise the bulk of OA.

Activity coefficients are a greater challenge. The univer-
sal functional activity coefficient (UNIFAC) method (Fre-
denslund et al., 1975) has been widely used to describe the
activity of organic aerosol mixtures (Koo et al., 2003; Bow-
man and Melton, 2004; Pun et al., 2006). UNIFAC is a
group-contribution method that gives the excess Gibbs free
energy of each component in a specified mixture based on
the non-ideality arising from the size and shapes of the con-
stituent molecules and the non-ideality arising from their en-
ergetic interactions (Asher et al., 2002; Chandramouli et al.,
2003). In keeping with the simplified approach we adopt
for pure-component vapor pressures, we shall adopt a highly
simplified description of activity coefficients as well.

Our first interest is the pure-component saturation con-
centrations. We plot data for a very wide range of com-
pounds in Fig.1, showing log10C

o vs. nC. The data are
from NIST as well as the literature (Koponen et al., 2007;
Cappa et al., 2007). The oxygenated compounds all have
functionality identified in ambient OA (-OH, =O, -C(O)OH,
etc). We group molecules in classes defined by functional-
ity (i.e. mono-alcohols, with a single -OH), and plot each
class with a different symbol. The broad, colored bands in
the background are volatility classes we use elsewhere (Don-
ahue et al., 2009); here they serve to guide the eye through
the various figures. The important attribute for atmospheric
partitioning is that compounds in the light-green range (0≤

log10C
o
≤ 2) will be semi-volatile in the atmosphere, exist-

ing in significant fractions in both the condensed and vapor
phases. Compounds in the light red (−3≤ log10C

o
≤ −1)
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Fig. 1. Volatility (log10(C
o/µg m−3)) vs. carbon number (nC)

for different classes of organic compounds (indicated with colored
symbols). Each class contains the same oxygen functionality but a
range ofnC. The slopes of the class lines show the effect of increas-
ing nC (−0.475 decades per C), while offsets from the hydrocarbon
line show the effects of functionalization. Carbonyls decreaseCo

by about 1 decade per (=O) while alcohols decreaseCo by about
2.3 decades per (-OH). The average is−1.7 decades per O, indi-
cated with dashed lines for 0, 1, 2, and 4 oxygens.

and gray (log10C
o
≤ −4) ranges will be almost completely

condensed under typical ambient conditions. Note that there
are relatively few data in the semi-volatile range and al-
most none below that. This is because a saturation concen-
tration of 1 µg m−3 corresponds to approximately 10−7 torr
(1.3×10−5 Pa); this is an exceedingly low value that is diffi-
cult to measure.

There are several shortcomings with the available data.
The data in Fig.1 become noisy approaching the semi-
volatile range and they do not include richly multifunctional
compounds such as those that must comprise a large portion
of the OOA pool. Some of the noise at a lowCo may be
related to uncertainty in converting to sub-cooled liquid val-
ues, and the rest may be due to measurement uncertainties
associated with very low vapor pressures.

The diacid series does reach these low values. We show
data fromKoponen et al.(2007) and Cappa et al.(2007),
adjusted to sub-cooled liquid vapor pressures. The atmo-
spheric community has devoted considerable effort to mea-
suring their vapor pressures (Tao and McMurry, 1989; Bilde
and Pandis, 2001; Bilde et al., 2003; Koponen et al., 2007;
Cappa et al., 2007, 2008; Booth et al., 2010; Soonsin et al.,
2010). In spite of this effort the data differ by an order of
magnitude in many cases – the diacid values are uncertain by
a least half a decade, consistent with the scatter shown by the
magenta squares in Fig.1. The gross carbon-number trend
is, however, still evident.
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The carbon-number trend is the most obvious feature of
Fig. 1, with different classes forming parallel lines. This
means that there is a well-defined effect of increasingnC,
independent of molecule class. We can thus define a robust
relationship betweennC andCo: each class of molecule has
a log10C

o vs. nC slope of−0.475 decades per carbon, and
we shall assume that this holds in general.

We also need a reference point, which we will define as
the carbon numbernC at Co

= 1 µg m−3 for pure hydrocar-
bons. From Fig.1 this is pentacosane (C25), indicated with
the black square containing a “C” marking a heavy, dashed
black line. This referencenC may be uncertain by 2 carbons
(corresponding to a 10% uncertainty in the group contribu-
tion for carbon toCo). Some data for high-nC alkanes lie
above the trend line, while others fall on it. Given the preci-
sion of the relationship for lower-nC alkanes, we believe this
indicates the difficulty in measuring such low vapor pres-
sures, and that the lower envelope represented by the trend
line represents the true values for the n-alkanes.

The next step in developing our simple group-contribution
method is to define the influence of oxygenation. A chal-
lenge is that we need to account for the influence of different
oxygenated functional groups. Increasing functionalization
decreases volatility systematically, with logarithmic factors
given by the vertical offsets of the various trend lines in Fig.1
from the pure hydrocarbon trend line. For example, each car-
bonyl group (=O, blue stars and yellow diamonds) decreases
Co by 1 decade, and each alcohol group (-OH, green aster-
isks) decreasesCo by 2.3 decades. One organic-acid group
decreasesCo by about 3.5 decades, or 1.75 decades per oxy-
gen (the carbon is not counted because it is included innC),
which is very close to the sum of (-OH) and (=O).

These effects are shown in a different way in Fig.2, which
casts the effects of functionalization in a 2-D space with
log10C

o on the x axis and O:C on the y axis. The differ-
ent functional groups generate different slopes (shown with
dashed red lines). The wedges in Fig.2 describe the range
of values one might expect as a carbon backbone is progres-
sively functionalized. These wedges thus represent the effect
of oxidation chemistry on the volatility and O:C of a reduced
precursor, under the limiting condition that oxidation only
functionalizes the backbone (i.e.nC remains unchanged).

Despite the uncertainties in the underlying data, there are
enough data to suggest that these single-substituent effects
on Co, described by the trend lines in Figs.1 and2, are not
grossly erroneous. In the VBS we group compounds in bins
separated by an order of magnitude inCo, and overall we es-
timate the uncertainty in extrapolation in these simple group-
contribution calculations to be somewhere between a factor
of 10 and 100, meaning±1 bin to either side of the estimated
volatility bin for a known functionality.

However, if we are to construct a two-dimensional thermo-
dynamic framework for bulk OA, we need to describe anav-
erageeffect of added oxygen. Multiple lines of evidence sug-
gest that (-OH), (=O) and (-C(O)OH) functionalities are ma-
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Fig. 2. The effect of different functional groups on volatility (Co

at 300 K) and O:C for a C6 and C20 backbone. HO- is highly polar,
decreasingCo by 2.3 decades per oxygen, leading to the shallow
lines. O= is less polar, decreasingCo by 1 decade per oxygen, lead-
ing to steeper lines. Acids (HO(O)-) decreaseCo by 1.75 decades
per oxygen. The average effect of oxygenated functionality deduced
in this work (in black) leads to slopes similar to the organic acids.

jor contributors to ambient oxygenated OA, known as OOA
(Zhang et al., 2007). First, OOA is associated with large sig-
nals in the AMS atm/z=18 (H2O+) and 44 (CO+2 ), consis-
tent with dehydration and decarboxylation of organic acids
(Aiken et al., 2008). Second, NMR analyses of solvent-
extracted filter samples suggest high abundances of these
functionalities (McFiggans et al., 2005; Moretti et al., 2008).
Third, FTIR analyses of ambient filter samples show signifi-
cant contributions of (-OH), (=O) and (-C(O)OH) functional
groups (Hawkins et al., 2010). Finally, a van Krevlen analy-
sis of ambient OA byHeald et al.(2010) is consistent with ei-
ther hydroxycarbonyl or organic-acid functionalization dom-
inating organic-aerosol oxidation on average (i.e. an average
of one hydrogen is lost for every oxygen added to ambient
OA).

Based on this evidence, we shall assume that,on average,
OA consists of multifunctional organics containing organic-
acid terminal groups and an equal mixture of alcohols and
ketones along the backbone. We can thus define the average
effect of each added oxygen as decreasingCo by 1.7 decades,
shown in Fig.1 by thick, dashed lines (labeled by numbered
squares atnC = 25) and in Fig.2 with black lines. This is
consistent with either acid or hydroxycarbonyl functionality,
provided that these simple group-contribution values can be
extrapolated to multifunctional compounds that presumably
constitute OOA. What results is a simple, three-parameter
group-contribution expression:

Atmos. Chem. Phys., 11, 3303–3318, 2011 www.atmos-chem-phys.net/11/3303/2011/
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log10C
o
300=

(
n0

C−nC

)
bC−nObO (2)

with n0
C = 25,bC = 0.475 andbO = 1.7.

We have neglected other functionalities, but they fall
within the range already defined. Hydroperoxides (-OOH)
are assumed to be important under low-NOx conditions (Lo-
gan et al., 1981; Donahue and Prinn, 1993), and we see ev-
idence for their formation in 2D-NMR samples of terpene
ozonolysis (Maksymiuk et al., 2009). The effect of -OOH
on Co is similar to -OH (Pankow and Asher, 2008). Ethers
(-O-) may also be significant in ambient OA. They have a
modest effect on volatility, slightly less than =O, of about
0.7 orders of magnitude per substituent (Pankow and Asher,
2008). Ethers may form through ring-closure reactions dur-
ing the oxidation of larger organic compounds (Lim and Zie-
mann, 2005) or as part of accretion reactions involving small
monomers such as glyoxal (Kroll et al., 2005; Carlton et al.,
2006; Volkamer et al., 2007; Galloway et al., 2009). Again,
their effect is not far outside of the =O line (even counterbal-
ancing the -OOH effect).

We have also omitted organic nitrates. They are certainly
important in high-NOx environments (Lim and Ziemann,
2005; Presto and Donahue, 2006; Zhang et al., 2006; Farmer
et al., 2010). A nitrate group (-ONO2) typically reduces va-
por pressure by about 2.5 orders of magnitude (Pankow and
Asher, 2008), so we could addbN = 2.5 to Eq. (2). We ne-
glect them here only for clarity – nitrates and any other spe-
cial functionality (organo sulfates, amines, alkenes, etc.) will
need to be treated separately if they are to be modeled.

The diacids reveal the major shortcoming of this simple,
linear expression. While there is significant uncertainty in
their volatility, the diacids (solid magenta squares) consis-
tently fall about 1 order of magnitude below the 4-oxygen
(dashed green, labeled “O4”) trend line in Fig. 1, which
should be very close to the value for two acid groups. This
discrepancy will provide an important constraint as we relax
the ideal, linear assumptions we have used so far.

2.1.1 Non-linear effects

The lower than predicted diacid volatilities suggest a need
for some modification of Eq. (2). In addition, as we shall
show in our discussion of non-ideal solution behavior below,
a non-linear term is required to describe non-ideal solution
behavior. For reasons that will become evident, we shall in-
troduce non-linearity with the following expression:

log10C
o
i =

(
n0

C−ni
C

)
bC−ni

ObO−2
ni

Cni
O

ni
C+ni

O

bCO (3)

As we shall see the cross term is sufficient to provide inter-
esting and realistic behavior – and we can constrain it. This
non-linear group-contribution expression contains four free
parameters:
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Fig. 3. Volatility (Co) predictions with modest nonlinearity (bCO=

−0.3) in a group-contribution expression. As in Fig.1, the average
effect of oxygenated functionality is shown by thick dashed curves,
which here show better agreement, especially with the diacids.

1. the carbon-carbon interaction term(bC ' 0.475),

2. the oxygen-oxygen interaction term(bO ' 2.3),

3. the carbon-oxygen nonideality(bCO' −0.3), and

4. the carbon number of a 1 µg m−3 alkane(n0
C ' 25).

These four parameters underpin a reasonably accurate (and
testable) thermodynamic framework.

Consistent with our earlier discussion,n0
C = 25 andbC =

0.475. However, we shall usebO = 2.3 andbCO = −0.3.
This is because the limit of Eq. (3) at low O:C contains
nO(bO+2bCO) = 1.7nO and the data we are using to con-
strain these terms are heavily biased towards low O:C. We
increased the overall effect of oxygenation to match the
low volatility of diacids, even though the linear rules do a
good job predicting mono-substituted organic acids. In ad-
dition, many of the sequences of oxygenated organics show
a “hook” at low nC, with lower volatility in the data than
predicted by the simple linear trend lines in Fig.1 (for ex-
ample, the alcohols and mono-acids fornC < 4). In Fig. 3
we show these data again, but now employing the non-linear
group-contribution method described by Eq. (3). The new
expression, again summarized with dashed lines, gives better
agreement with the data. Specifically, the group-contribution
curves (the thick dashed curves) show a low-nC hook, and
the volatility of the diacids is now reproduced with good fi-
delity. The literature is in reasonable agreement for diacid
vapor pressures at low carbon number, where our new ex-
pression agrees with the data well, while there is significant
disagreement at largernC. Here the data we have plotted are
at the low end of the literature values, but our function lies
closer to the middle of those values (Koponen et al., 2007).
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As we shall discuss below, the non-linear term is vital to
producing a self-consistent (simple) theory that reproduces
volatility trends but also allows mixing thermodynamics to
exhibit nonideality (specifically phase separation of polar
and non-polar organics). However, the qualitative behavior
of those mixtures is not very sensitive to the exact value of
the non-linear term. For now, however, Eq. (3) simply im-
proves our empirical fit without too much complexity.

2.2 Defining the 2-D volatility space

The group-contribution method described by Eq. (2) allows
us to determine the mean properties (specificallynC) in the 2-
D space presented in Fig.2. The mean-property lines of 1.7
decades per oxygen are shown in black. The C20 lines are
much shallower, as O:C increases much more slowly with
each added O for larger molecules. It is very important to
realize that we are not using this relation topredict log10C

o

for a givennC and O:C but rather the reverse: in both labora-
tory experiments and field measurements we typically have a
much better constraint on O:C and log10C

o thannC, and so
we are using a simple group-contribution method to infernC
(and the average molecular formula) from those observables.
Likewise, in the VBS modeling framework (Donahue et al.,
2006), we use log10C

∗ explicitly and are thusnot directly
sensitive to uncertainties in volatility.

However, we can construct a family of contours (isopleths)
for constant values ofnC, andnO, with some uncertainty and
spread in the log10C

o, O:C space. This is shown in Fig.4.
We can also plotnH but have omitted it for clarity – the as-
sumption here is that H:C = 2:1 at O:C = 0 (along the bottom
axis) while H:C = 1:1 at O:C = 1:1 (along the top axis). This
is consistent with the van Krevelen relation discussed above
(Heald et al., 2010), and it also means that we have assumed a
linear relationship between O:C and the mean oxidation state

of carbon,OSC, presented recently byKroll et al. (2011) as a
more fundamental indicator of oxidation in organic aerosol.

The contours in Fig.4 interconnect descriptive, diagnos-
tic, and prognostic aspects of the 2-D space. This paper ad-
dresses the descriptive aspect, focusing on the relationships
between log10C

o and O:C on the one hand andnC, andnO
on the other. In subsequent publications we will explore the
diagnostic and prognostic aspects. The diagnostic aspect al-
lows us to evaluate the evolution ofnC, nH, andnO in obser-
vational (laboratory and field) datasets where log10C

∗, O:C,
and total organic mass are constrained, using the relation-
ships established here. The prognostic aspect allows us to
predict the evolution of log10C

∗, O:C, and total organic mass
in box and transport models, with individual reaction steps in
part constrained by the relations developed here.

The isopleths in Fig.4 define theaveragecomposition in
this 2-D space. The nonlinearity of Eq. (3) causes slightly
more than a 1-decade leftward shift in the isopleths at O:C
= 1:1. For example, in Fig.2 the C6 isopleth intersects O:C
= 1:1 just below log10C

o
= −1 while in Fig. 4 it is nearly

log10C
o
= −3.

The broad region of our 2-D space with 10−5 < Co <

100 µg m−3 and 1:3< O:C< 1:1 comprises compounds with
5–12 carbons and 4–8 oxygens. Even though this is also
the most uncertain region, based largely on extrapolation,
the range in carbon and oxygen numbers in this region is
modest. There are also some data points in this region. For
example levoglucosan is an anhydrous sugar (C6H10O5) fre-
quently used as a tracer for wood burning (Simoneit et al.,
2004). Knudsen-cell data from a higher temperature liquid
melt (Oja and Suuberg, 1999) extrapolate to 0< log10C

o < 1
, which is close to the C6O5 intersection in Fig.4.

This same broad area is roughly the region thought to be
occupied by oxygenated organic aerosol (OOA), as indicated
by the dashed oval. The O:C for OOA is well constrained by
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Fig. 5. Solvation interactions in a simple group-contribution
method for organics dissolved in an organic-aerosol solvent.

high-resolution AMS measurements (Jimenez et al., 2009),
while the volatility range can be estimated with some un-
certainty based on thermodenuder measurements (Cappa and
Jimenez, 2010). However, it is clear that a great deal of com-
pounds comprising OOA havenC = 6–10 andnO = 4–8.

ThenC andnO isopleths in the OOA region in Fig.4 are
extrapolations. However, we consider this to be a reason-
able projection of typical values for ambient organic-aerosol
compounds, for all of the reasons discussed so far. Again,
we emphasize that the primary quantities – log10C

∗ and O:C,
can be constrained by ambient observations, and our primary
application of the non-linear group-contribution expression
given by Eq. (3) is as a diagnostic to ascertain the typical
values fornC, nO (andnH).

3 Solution thermodynamics

So far our discussion has focused only on pure compounds,
but organic aerosol is a very complex mixture. Consequently,
it is important to connect the single-component volatility
(Co

i ) to the volatility in solution (C∗

i,s) we use empirically in
our 1D-VBS (Donahue et al., 2006) by estimating the activ-
ity coefficients in that solution,γi,s . The activity coefficient
is related to the excess free energy of a solute in a solvent,
and so we need to consider the interaction energies of differ-
ent constituents in a complex OA mixture. It is important to
estimateγi,s because it will influence the fraction of semi-
volatile material in the condensed phase and thus organic-
aerosol levels (Bowman and Melton, 2004; Bian and Bow-
man, 2005; Song et al., 2007; Vaden et al., 2010), but per-
haps more importantly because it will control when separate
condensed phases can form and thus govern the stability of
different organic-aerosol “modes” such as traffic emissions
(McFiggans et al., 2005; Asa-Awuku et al., 2009).

There is considerable evidence that the organics compris-
ing OA arenotalways a homogeneous mixture (Maria et al.,
2004; McFiggans et al., 2005). This may be in part because
they simply have not had time to equilibrate via gas-phase
exchange (Marcolli et al., 2004), perhaps because of slow
condensed-phase diffusion and mass transfer (Zobrist et al.,
2008; Virtanen et al., 2010). However, it could quite plau-
sibly be because certain OA systems phase separate into a

hydrophobic “organic” phase and a hydrophilic “aqueous”
phase, as has been assumed in thermodynamic models based
on surrogates (Griffin et al., 2003; Chang and Pankow, 2006;
Lu and Bowman, 2010; Zuend et al., 2010).

In this work we shall useθi ≡ Ei/R to express energy as
an equivalent temperature. Furthermore, we shall exploit the
tight relationship between the enthalpy of vaporization of or-
ganics typical of ambient OA and their saturation concen-
tration (Epstein et al., 2010). In the Appendix we present a
highly simplified treatment connecting these empirical rela-
tions to the interaction energies of an organic solution. In
general, what we seek is the interaction energy of a molecule
i with a solvents, θi,s . For pure components, as discussed
so far, the term is simply the interaction ofi with itself, θi,i ,
and at this level of approximation an ideal solution is one in
whichθ ideal

i,s = θi,i . Finally, the interaction energies (tempera-
tures)θ and the group-contribution termsb developed above
are related via Eq. (4):

θk = bk1θ10 (4)

where1θ10 is the energy change for a 1-decade change in
vapor pressure.

By reducing the empirical vapor pressures of organics to
a two-dimensional expression in Eq. (3) and Fig.4, we have
effectively reduced the atmospheric OA to a two-component
system where the “components” are carbon and oxygen
“functional groups” rather than individual molecules. The
average composition of the OA solvent is given by the carbon
and oxygen fractions,f s

C andf s
O =

(
1−f s

C

)
. The situation is

depicted in Fig.5.
An ansatzhere is that complex mixtures in atmospheric

OA are sensitive to mean solvent properties, and that we can
indeed describe this average behavior usefully. We assume
that it is the functionalities of the solvent and not the specific
molecules of the solvent that dominate the solute-solvent in-
teractions (as in UNIFAC). For anyindividual molecule the
values we predict will not be accurate (unlike UNIFAC), but
we hypothesize that onaveragethey will be (with some semi-
empirical calibration). However, we are also claiming that
predictions based on a few surrogate molecules are almost
certain to beinaccuratefor complex mixtures, because the
unique (and therefore unrepresentative) properties of those
individual surrogate molecules will likely not represent the
average (bulk) properties of the mixture very well.

For a given OA componenti in the bulk OA solvents we
can now find the interaction energy:

θi,s = ni
C

(
f s

CθCC+f s
OθCO

)
+ni

O

(
f s

CθCO+f s
OθOO

)
= ni

M

[
f i

C

(
f s

CθCC+(1−f s
C)θCO

)
+

(1−f i
C)

(
f s

CθCO+(1−f s
C)θOO

)]
(5)

The termnM = nC +nO is the number of moieties or heavy
atoms in the moleculei, and thusnC = nM · fC and nO =

nM ·fO. The fractionsfC andfO are thus the mole fractions

www.atmos-chem-phys.net/11/3303/2011/ Atmos. Chem. Phys., 11, 3303–3318, 2011



3310 N. M. Donahue et al.: A two-dimensional volatility basis set

of carbon and oxygen “functional groups” in the molecule of
interest and in the solvent.

For a single-component system we have:

θi,i = ni
C

(
f i

CθCC+f i
OθCO

)
+ni

O

(
f i

CθCO+f i
OθOO

)
= ni

Cf i
CθCC+2

ni
Cni

O

ni
C+ni

O

θCO+ni
O(1−f i

C)θOO (6)

In both of these expressions the cross termθCO is prominent.
However, through the relation in Eq. (4) it is evident that
the linear group-contribution expression given by Eq. (2) is
equivalent to:

θi,i = ni
CθCC+ni

OθOO (7)

In order to make the cross term vanish in the pure component
expression Eq. (6), we find:

θ linear
CO =

1

2
(θCC+θOO) = θ (8)

This exactly mirrors Eq. (A5) in the Appendix, to the point
that we use the same symbolθ because these terms will turn
out to be identical. For both a linear group-contribution ex-
pression and an ideal solution, the cross interaction term is
simply the average of the diagonal terms. This is fundamen-
tal. There is a one-to-one correspondence between a linear
group contribution to volatility and ideal solution behavior.
This requires that the ideal solution is defined consistently –
not in terms of the molarity of the solute but in terms of the
molarity of the functionalities comprising the solute and the
mean-field properties of the solvent.

The most appropriate fractionf i
M is the volume fraction

of the moleculei in the OA solvents. However, we are
emphasizing relationships that can be measured, especially
in ambient samples, and for OA that is the molar ratio O:C
(Aiken et al., 2008). Furthermore, as shown above in Eq. (5),
the group-contribution expressions in Eq. (2) and (3) can be
written in terms of the molar ratio O:C. Because the carbon
and oxygen moieties have similar masses, this means that a
linear group-contribution expression such as Eq. (2) corre-
sponds to ideal solution behavior on a mass basis. Formulat-
ing the thermodynamic interactions with different fractions
(i.e., mole, volume, mass, etc.) is in essence a transforma-
tion of the x-axis in Fig.A2 in the Appendix. We are mak-
ing no effort to exactly describe activity curves in that figure
for individual molecules but rather seeking to develop rea-
sonably accurate values for bulk OA and various measurable
fractions, all with unknown molecular composition. Given
roughly constant density, switching between volume, mass,
and group molar fractions amounts to a slight skewing of the
x-axis in Fig.A2 that will fall out with empirical calibra-
tion along with the other simplifying assumptions made so
far. This is consistent with the mass-fraction based solution
formulation in the 1D-VBS (Donahue et al., 2006).

If a linear group-contribution expression is equivalent to
Eq. (7), a non-linear expression must be given byθCO 6= θ .

We can write the solvation energy in concise form as a matrix
equation, adding a non-linear cross termδθCO to the linear
term introduced in Eq. (8):

θi,s= ni
M

(
f i

Cf i
O

)[(
θCC θ +δθCO

θ +δθCO θOO

)(
f s

C
f s

O

)]
(9)

or, for a single-component system, the pure, sub-cooled liq-
uid solvation energy is given by:

θi,i = ni
CθCC+ni

OθOO+2
ni

Cni
O

ni
C+ni

O

δθCO (10)

This is functionally identical to the non-linear group-
contribution expression presented in Eq. (3), which is why
we chose that form.

Using 1θ10 = 690 K/decade from the Appendix, we can
write the two-dimensional interaction matrix as:

θ =

(
328 750
750 1172−2δθCO

)
K (11)

As we discussed above, the constraints on volatility are
stronger for low O:C, so for empirical constraints it is use-
ful to write the non-linearity as a deviation on theθO,O term.
Our best estimate for this non-linearity isδθCO ' −207 K
(bCO= −0.3).

3.1 OA activity coefficients

We are now in a position to estimate the activity coefficient
γi,s for mixtures; asC∗

i,s = γi,s Co
i , this is a mass-based ac-

tivity coefficient. In the Appendix, we show that for sim-
ple two-component systems the excess free energy can be
approximately related to the difference between the interac-
tion energy between two constituents and the average of their
individual interaction energies,δθi,s , as given by Eq. (A12)
(with “ i” replacing “A”).

Our objective is to estimate the activity coefficient of semi-
volatile organics at some location in the 2-D space shown in
Fig. 4, given some bulk composition of the organic aerosol
acting as a solvent. As we showed in Eq. (A9) of the ap-
pendix, this depends on the non-ideal off-diagonal interac-
tion term. This is readily determined in our homogeneous
solvent. It depends onδθCO:

δθi,s = nM

[
(f i

c )2
+(f s

c )2
−2f i

cf s
c

]
δθCO (12)

which, by substitution in Eq. (A8) and (4) gives

log10γi,s,300= −2bCOnM

[
(f i

c )2
+(f s

c )2
−2f i

cf s
c

]
(13)

At this level of approximation, the non-ideality is driven by
differences between the carbon fraction (fC, or O:C) in the
solvent and solute, but the activity coefficient depends expo-
nentially on the size of the solute (nM = nC +nO). This is
a substantial simplification; however, it amounts to asserting
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Fig. 6. Activity coefficients of organics in the 2-D space for two different mean OA compositions. In panel(a) the mean O:C of the bulk
OA is 0.75:1 (OOA-like), indicated by the thick green arrow, while in panel(b) the mean O:C in the bulk OA is 0.25:1 (biomass burning,
or BBOA-like), indicated by the thick gray arrow. The isopleths are forγi,s , the activity coefficient of organics with the log10Co and O:C
indicated in each solution. Contours are steps of 0.5 inγ , starting at 1 and ending at 10. Integer values are labeled up toγ = 5. Somewhere
between 5< γ < 10 phase separation becomes very likely. For example, the POA constituent indicated by the dark gray circle in panel(a) at
log10Co

= −2, O:C= 0:0 has an activity coefficient in the bulk OOA� 10; conversely, the OOA constituent indicated by the green circle
in in bottom panel at log10Co

= −2, O:C= 0.75:1 has an activity coefficient in the bulk BBOA= 2.5.

that polarity is the most important determinant of activity co-
efficients in organic solutions, which is justified (Prausnitz
et al., 1998; Pankow and Barsanti, 2009). At 300 K, it does
not depend on the uncertain value1θ10, but rather the em-
pirically derivedbCO. With the non-ideality known, we can
then calculate the activity coefficient of the particular solute
in the 2-D space using Eq. (A8).

The activity coefficients that fall out of this simplified
analysis are all destabilizing (larger than 1), in part because
the single parameter we have (bCO) can only work in one di-
rection. While this is consistent with the general tendency
of non-polar and polar organic solutions to phase separate,
it does not account for stabilizing interactions observed in
some cases. Again, we must emphasize that this is not meant
to be predictive for individual molecules, but rather to repre-
sent the bulk average behavior of complex organic mixtures
with compositions (specifically= O and -OH ratios) found
in the atmosphere.

3.1.1 Activity coefficients in the 2D-VBS

The activity coefficients in Eq. (13) are designed for use in
our 2D-VBS. To illustrate the consequences of non-ideality,
we shall consider two fairly typical situations typified by OA

with two different bulk (single-phase) compositions. First
we shall consider a highly aged background aerosol with
O:C = 0.75:1 (f s

C = 0.57). This is consistent with highly
oxidized OA characteristic of the remote atmosphere and
generally called OOA (oxidized organic aerosol) (Jimenez
et al., 2009; Ng et al., 2009) and roughly the center of the
OOA region identified in Fig.4. Second, we shall consider a
much less oxidized aerosol with O:C= 0.25:1 (f s

C = 0.80).
This is more consistent with very fresh emissions, possibly
combining traffic emissions (known as HOA, or hydrocar-
bon like organic aerosol to the AMS community) and either
some biomass burning OA (BBOA) or slightly oxidized first-
generation SOA (Lanz et al., 2007; Jimenez et al., 2009).

In Fig. 6 we show organic activity coefficientsγi,s for the
full range of organic solutes dissolved in these two differ-
ent bulk aerosol solvents withbCO = −0.3. The O:C of the
bulk solvent is indicated on each panel. The activity coef-
ficients of organics are contoured in these panels for allCo,
O:C combinations, with contour intervals of 0.5 ranging from
1 to 10, labeled at integer values from 1 to 5.

As an example, consider a point at log10C
o
= −5, O:C

= 0.2 (f i
C = 0.833) in Fig.6a. Referring to Fig.4, at this

point nC = 20 andnO = 4 sonM = 24. The quadratic term
in Eq. (13) is (0.6944+ 0.3249− 0.95) = 0.0693, so the
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exponent in Eq. (13) is 0.6·24·0.0693' 1, and thusγ = 10.
Note that for any given solvent – solute pair, identified byf s

C
andf i

C, the activity coefficient will depend exponentially on
nM and thus increase dramatically going from right to left in
the 2-D space. Because of the importance ofnM the activ-
ity coefficient will also increase from top to bottom (though
thefC of course varies as well). Consequently, the region to
the lower left, with non-polar, large, solute molecules, is the
“phase separation region”.

In general, whenγi,s > 5 or 10 it is likely that a constituent
will phase separate, as the activityai will be greater than
1.0 whenfi > 0.2 or 0.1. If there is any significant amount
of a group of similar constituents, they will form their own
phase. Once a class is less than 10 or 20% of the OA, it is of
secondary concern in any event. In AMS jargon, this implies
that fresh HOA will not mix with aged OOA when OOA is in
the majority (this is the “phase separation region” indicated
along the lower edge of Fig.6a). Note again that this fraction
is the volume fraction, approximately the mass fraction, and
we are judging ideality and modeling mixing on that basis.

What Fig.6a shows is that when the background aerosol
is highly oxygenated, non-polar reduced primary emissions
will have a hard time mixing into that background aerosol
and will instead tend to phase separate. More accurately,
the POA will tend to remain in their original phase, often in
their own size mode – for example a traffic mode. The phase
boundary will be somewhere near theγ = 5 or 10 contours,
depending on the exact composition distribution; compounds
in the uncontoured region to the lower left of that boundary
(low log10C

o, low O:C) will form a separate, “POA” phase.
The transition is quite sharp and its location is not very sen-
sitive to the exact value of the off diagonal termδθCO. This
is very consistent with much more sophisticated calculations
for far simpler mixtures designed to simulate OA. For ex-
ample, Jang et al.(1997) showed that larger alkanes (ex-
clusively) showed substantial activity coefficients in model
mixtures designed to simulate both woodsmoke and SOA. A
typical POA constituent is indicated in Fig.6a with a gray
dot.

Figure6b shows a very different picture when POA (HOA
or BBOA) is the solvent. When the bulk OA is not very ox-
idized almost all OA compounds can mix with the aerosol
with only modest activity penalties (γ < 3). Only for semi-
volatile compounds just at the volatility threshold (C∗

i '

COA) will the small difference in volatility due to the modest
non-ideality have any consequence. These select compounds
will shift toward the vapor phase becauseC∗ > Co for γ > 1.
For the most part, though, when the bulk OA is relatively un-
oxidized (low O:C), we expect it to be characterized by a sin-
gle condensed phase, which will likely become progressively
more oxidized as the mixture ages (Jimenez et al., 2009). In
AMS jargon, OOAwill mix with HOA (or especially BBOA)
when HOA is in the majority. The reason for the asymme-
try is thatnM is much smaller in the OOA region than in the

POA region, and so activity coefficients are much lower for
OOA in a POA solvent than for POA in an OOA solvent.

In general, the consequence of incorporating activity co-
efficients (larger than 1) into any representation of OA will
be to force some compounds into the vapor phase (Bowman
and Karamalegos, 2002). This may become even more pro-
nounced considering the dynamics of fresh mobile-source
emissions, which can be small enough for the Kelvin term to
increase the volatility even more (Zhang et al., 2004). This
will be most dramatic when the systems phase separate, and
the region where a separate phase may have a relatively small
mass fraction is the lower left-hand portion of the 2-D space,
which comprises fresh primary emissions (POA, or HOA in
AMS jargon).

However, it would be a gross oversimplification to con-
clude that incorporation of activity coefficients into a model
coupling aerosol dynamics and chemistry would result in
lowered OA levels due to the increased volatility. The con-
sequence of forcing more HOA into the gas phase (as in
Fig. 6a) will almost certainly be rapid gas-phase oxidation
(Shrivastava et al., 2008), generating products thatwill mix
with the OOA phase with mass yields that may even ex-
ceed unity (Presto et al., 2009, 2010). The issue is thus not
whether POA can act as a seed for SOA, but rather whether
SOA (really OOA) is a good seed for POA. The answer is no,
but the full answer is not that there will be less OA, but rather
that POA may for a time exist in a separate, fresh size mode
but that it will tend to evaporate, be more rapidly oxidized
in the gas phase, and generate oxidation products that will
mix into SOA. Thus the major observable consequence of
non-ideality may be kinetic – the transformation from POA
to SOA, or HOA to OOA, will be more rapid that it would
otherwise be were an ideal solution assumed.

4 Conclusions

We have presented a self-consistent thermodynamic foun-
dation for a two-dimensional volatility basis set relying on
a minimum number of free parameters to describe realis-
tic and measurable properties of real-world organic-aerosol
mixtures. This treatment suggests that we can reasonably
describe OA thermodynamics based on average OA prop-
erties including a non-ideality term (δθCO). This simul-
taneously and self-consistently describes non-linearity in a
group-contribution expression to predict saturation concen-
trations as well as non-ideality in the solution thermodynam-
ics. BecauseδθCO < 0, the consequences of all this will be
that more molecules will find themselves in the gas phase
than in an ideal world.

The formulation so far does not address the role of wa-
ter (Griffin et al., 2003; Pankow and Chang, 2008; Tong
et al., 2008; Barley et al., 2009; Prisle et al., 2010), or
other inorganics (Clegg et al., 2008a; Surratt et al., 2008;
Wang et al., 2010), but the strong correlation of O:C and
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OA hygroscopicity reported inJimenez et al.(2009) sug-
gests that we may be able to treat water in a similar fashion.
However, because water can be a dominant component, and
therefore its unique properties are more likely to challenge
the mean-field assumption, it is likely that explicit treatment
of humidity effects will be required (Prisle et al., 2010). Any
model treating organic composition in ambient aerosol is al-
most certain to treat inorganic constituents as well, so there is
some hope that the effect of these constituents on organic par-
titioning may be treatable within this 2-D framework. This
would require that those effects be correlated strongly with
location in this space, and a test of that conjecture is beyond
the scope of this treatment.

The 2D-VBS complements our well-established 1D-VBS
(Donahue et al., 2006) by adding oxygen content (O:C) as
a second dimension in addition to saturation concentration
(Co). Using pairwise interaction energies we can formu-
late a simple expression relating carbon and oxygen num-
bers to O:C andCo. The formulation includes a non-linear
coupling term that can be constrained by pure component
vapor-pressure data that also leads to qualitatively reasonable
activity coefficient predictions. This formulation relies on
measurable bulk properties of organic aerosol (most notably
O:C) and uses a mean-field approximation for the molecule-
solvent interactions – in essence we assume that a molecule
interacts more with other functional groups in the organic
aerosol solution than with other molecules in that mixture.
Importantly, the complex behaviors develop from a very sim-
ple formulation containing only four free parameters, all of
which are constrained by vapor-pressure data of pure sub-
stances.

This is a foundation for future work. In several succeed-
ing publications we shall explore the uses of this 2D-VBS
for both diagnostic analyses and prognostic calculations of
organic aerosol properties, ultimately extending the model to
a fully coupled treatment of size-dependent organic-aerosol
dynamics.

Appendix A

Simple theory

A1 Saturation concentrations and vaporization
enthalpies

Volatility is controlled principally by the vaporization en-
thalpy of a substance, especially over liquids and other dis-
ordered condensed phases where the vaporization entropy is
nearly constant (Prausnitz et al., 1998). We recently showed
that this holds for a wide range of organics. Specifically,
a pseudo-Arrhenius expression can describe the temperature
dependence ofCo, and there is a nearly linear relationship
between log10C

o
300 and the vaporization enthalpy (Epstein

et al., 2010). Because we use Boltzmann terms extensively,

solvent

i

solvent i solvent i

θi,s

θi,s

θi,s

θi,s-θs,s

Fig. A1. Solvation energy conceptualized. A molecule,i (teal cir-
cle), is disolved in a solvents. To evaporate it must be removed
from the solvent, leaving a void and costing energyθi,s to both the
molecule and the solvent; the solvent will relax to fill the void, re-
leasing energyθs,s .

we shall scale energies by the gas constant and report them in
Kelvins, θ = E/R. Thus the vaporization enthalpy becomes
1θvap. A key value is the change inθ driving a one decade
change inCo at 300 K:1θ10 = d1θvap/d log10C

o. We also
need to know the vaporization enthalpy forCo

= 1 µg m−3:
1θ

vap
1µg. So, for a compoundi:

1θ
vap
i = 1θ

vap
1µg −1θ10× log10C

o
i,300 (A1)

or

log10C
o
i,300=

(
1θ

vap
1µg −1θ

vap
i

) 1

1θ10
(A2)

This means that we need to determine or specify only one of
1θ

vap
i or log10C

o
i,300 and we know the other.

Our study of relevant organics suggested1θ10 ' 1330 K
(11 kJ mole−1) for a one decade change in volatility (Epstein
et al., 2010). The simplest approximation is to assume that
the entropy of solvation is similar for all relevant organics
and that1θvap alone determines volatility in an Arrhenius
expression, with a prefactorCA :

Co
= CA exp

(
−1θvap/T

)
(A3)

In this case1θ10 ' 690 K (5.7 kJ mole−1) because ln10=
690/300 (Donahue et al., 2006). In addition to the simplicity
of Eq. (A3), the smaller value of1θ10 has significant em-
pirical support because an analysis of thermodenuder data
for ambient organic aerosol measurements using the higher
values1θ10 showed that the system simply did not behave
realistically, with different volatility bins effectively collaps-
ing to one when the effects of heating were modeled (Cappa
and Jimenez, 2010).

Whatever the correct value of1θ10, an important empiri-
cal finding is that it is strongly correlated with log10C

o and
it is independent of the degree of substitution (oxidation) of
an organic molecule (Epstein et al., 2010). Consequently, we
shall make the assumption that the vaporization enthalpy is
simply the energy change when a given organic molecule is
removed from an organic solvent.
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A2 Describing vaporization energies

It is useful to start with a very basic formulation: far more
detailed treatments can be found in any advanced thermody-
namics text (e.g.Prausnitz et al., 1998). The steps involved
in evaporating from a solvent are shown in Fig.A1. Specifi-
cally, the overall energy change includes the energy required
to remove a moleculei from a solvents (θi,s), but also the
change in energy in the solvent when the interaction energy
of the molecule with the solvent is replaced by the interaction
energy of the solvent with itself (θs,s). This gives:

1θ
vap
i,s = θi,s +

(
θi,s −θs,s

)
= 2θi,s −θs,s (A4)

Note that when the moleculeis the solvent (a single compo-
nent system), the term in parentheses vanishes and we are left
with the simple and intuitive result ofθvap

i = θi,i . This defines
Co via Eq. (A2). It is very useful to define the solvent-solute
interaction energyθi,s in terms of the average of the solute-
solute (i,i) and the solvent-solvent (s,s) terms:

θ =
1

2

(
θs,s +θi,i

)
; θi,s = θ +δθi,s (A5)

We can substitute this into Eq. (A4) to give:

1θ
vap
i,s = θi,i +2δθi,s (A6)

We can also use Eq. (A2) to defineC∗ wheni 6= s, meaning
the excess entropy ofi is approximately zero (Prausnitz et al.,
1998):

log10C
∗

i,s,300 =

(
1θ

vap
1µg−1θ

vap
i,s

) 1

1θ10

= log10C
o
i,300−

2δθi,s

1θ10
(A7)

Given thatC∗
= γ Co, we thus obtain:

log10γ300= −
2δθi,s

1θ10
(A8)

If we adopt the Arrhenius expression, Eq. (A3), then at an
equivalent level of approximation the excess enthalpy (Praus-
nitz et al., 1998) is just 2δθi,s , and the activity coefficient of
i in s is given by a Boltzmann expression:

γi,s = exp
(
−2δθi,s/T

)
(A9)

This is, quite simply, why activity coefficients are so diffi-
cult to predict or even parameterize – an energy difference of
only k T , (about 2.5 kJ mole−1 at 300 K), is enough to make
the activity coefficient equal toe, and becauseγ is exponen-
tial it will grow (or shrink) very rapidly with increasing|δθ |.
Treatments attempting to predict activity coefficients for in-
dividual molecules must carefully account for multiple ther-
modynamic terms (Jang et al., 1997; Nannoolal et al., 2004;
Pankow and Chang, 2008); that is appropriate for those spe-
cific situations, but the treatments require detailed knowledge
of the solvent composition as well as the exact molecule of
interest. We have neither.

A3 Simple two-component mixtures

So far the solvent has been of unspecified composition. Now
let us consider a moleculeA in a solutions that is a two-
component mixture of moleculesA andB, where the fraction
of A in the solution isf s

A and the fraction of B isf s
B = (1−

f s
A). Especially with the weakly characterized solvent we are

dealing with for atmospheric aerosols, the volume fraction is
most suitable here, as discussed earlier.

We shall therefore replacei with A ands with the mixture
to determine the energy of solvation ofA in theA-B mixture.
If the mixture is homogeneous and isotropic, meaning that
the local fractions (and orientations) of the molecules are the
same throughout the mixture, then the interaction energy of
an individual moleculeA with the solvent is

θA,s = f s
AθA,A +

(
1−f s

A

)
θA,B (A10)

From Eq. (A4), we also need to know the interaction energy
of the solvent with itself. This is a bit more complicated. We
shall assume that the solvent “molecule” replacingA when it
evaporates is a composite containingfA of moleculeA and
(1−fA) of moleculeB, each of which will interact with the
fractions ofA andB in the solvent.

θs,s = f s
A

2
θA,A +2f s

A

(
1−f s

A

)
θA,B +

(
1−f s

A

)2
θB,B (A11)

We can now calculateδθA,s , the excess energy ofA in
s. In a recurring theme, it can be shown that for an ideal
mixture, whenθA,B = 1/2

(
θA,A +θB,B

)
= θ , thenδθA,s = 0.

Consequently, for non-ideal mixtures withθA,B = θ +δθA,B :

δθA,s =
(
1−f s

A

)2
δθA,B (A12)

This then gives the activity coefficient via Eq. (A8) or (A9).
The activity coefficient ofA in anA-B mixture depends on
the extent to which the cross interaction differs from the av-
erage of the pure interaction terms. The total excess energy
is now a function of the solution composition, increasing
quadratically as the solvent becomes increasingly dissimilar
to A.

We are assuming that the mixture is homogeneous and
isotropic because we simply can not say more about atmo-
spheric aerosols. Real molecules (for instance water) do not
interact randomly with other molecules. However, the very
complexity of ambient OA may make it more homogeneous
and isotropic than simpler mixtures. The extreme example is
the tendency of mixtures to form liquid or amorphous liquid-
like mixtures where the individual constituents would crys-
talize (Cappa et al., 2008; Zobrist et al., 2008), but much
more generally the complex mixtures found in atmospheric
OA will smooth out the rough edges of highly specificA-B
interactions.
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Fig. A2. Activity of componentA at 300 K for two-component (A-
B) mixtures with non-ideal interaction energiesδθA,B of 200, 300,
400, and 500 K. Forδθ > 300 the system rapidly phase separates,
quickly achieving almost complete separation.

A3.1 Non-ideal activity

It is worth exploring the activity coefficient a bit further.
What we are really interested in is theactivityof a compound,
αi , defined relative to a pure reference state in vapor-liquid
phase equilibrium and related to the activity coefficient and
the fraction ofA in the solution,fA. This is simply:

αA = fAγA,s (A13)

The consequences of this are shown in Fig.A2, using
Eq. (A9) for the activity coefficient. The bottom line is that
non-ideal behavior emerges very quickly for quite modest
values ofδθ ' T , and that this will induce phase separation.
However, the real systems we are interested in consist of very
complex mixtures. Therefore, we must ask whether it is pos-
sible to predict these small deviations from ideality with any-
thing close to sufficient accuracy.
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