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Abstract. Marine aerosol samples were collected over the
western North Pacific along the latitudinal transect from
44◦ N to 10◦ N in late summer 2008 for measurements of
organic nitrogen (ON) and organic carbon (OC) as well
as isotopic ratios of total nitrogen (TN) and total car-
bon (TC). Increased concentrations of methanesulfonic acid
(MSA) and diethylammonium (DEA+) at 40–44◦ N and sub-
tropical regions (10–20◦ N) together with averaged satellite
chlorophyll-a data and 5-day back trajectories suggest a sig-
nificant influence of marine biological activities on aerosols
in these regions. ON exhibited increased concentrations
up to 260 ngN m−3 in these marine biologically influenced
aerosols. Water-insoluble organic nitrogen (WION) was
found to be the most abundant nitrogen in the aerosols, ac-
counting for 55± 16% of total aerosol nitrogen. In particu-
lar, the average WION/ON ratio was as high as 0.93± 0.07
at 40–44◦ N. These results suggest that marine biological
sources significantly contributed to ON, a majority of which
is composed of water-insoluble fractions in the study re-
gion. Analysis of the stable carbon isotopic ratios (δ13C)
indicated that, on average, marine-derived carbon accounted
for ∼88± 12% of total carbon in the aerosols. In addition,
the δ13C showed higher values (from−22 to−20‰) when
ON/OC ratios increased from 0.15 to 0.35 in marine biolog-
ically influenced aerosols. These results clearly show that
organic nitrogen is enriched in organic aerosols originated
from an oceanic region with high biological productivity, in-
dicating a preferential transfer of nitrogen-containing organic
compounds from the sea surface to the marine atmosphere.
Both WION concentrations and WION/water-insoluble or-
ganic carbon (WIOC) ratios tended to increase with increas-
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ing local wind speeds, indicating that sea-to-air emissions of
ON via sea spray contribute significantly to the marine or-
ganic aerosols over the study region.

1 Introduction

Marine aerosol, composed of primary and secondary inor-
ganic and organic components, contributes to the Earth’s
radiative forcing and indirectly to biogeochemical cycling
of carbon and nitrogen and thus influences marine ecosys-
tems. The ocean is the largest source of natural reduced
sulfur gas to the atmosphere, most of which is in the form
of dimethylsulfide (DMS). DMS derived from phytoplank-
ton is a biogenic precursor gas for sulfate (SO2−

4 ) aerosols
that alter the Earth’s radiative forcing directly by scattering
solar energy and indirectly by acting as cloud condensation
nuclei (CCN) (Ayers and Gras, 1991). A potential oceanic
organic carbon (OC) in marine aerosol has also long been
recognized based on significant OC concentrations observed
at oceanic sites (e.g., O’Dowd et al., 2004). Recent stud-
ies have demonstrated that the chemical composition of ma-
rine organic aerosol is the complex result of different primary
and secondary sources (Facchini et al., 2008a; Hawkins and
Russell, 2010; Rinaldi et al., 2010). Primary emissions of
biogenic organic matter via sea spray have been suggested
as potential mechanisms by which phytoplankton can mod-
ulate chemical and physical properties of marine aerosols
and clouds. In previous observations of marine primary or-
ganic aerosol (POA), its chemical characterizations showed
hydrophobic, polysaccharide-like material (e.g., Hawkins et
al., 2010) or micro-organisms such as bacteria and diatoms
(Leck and Bigg, 1999; Aller et al., 2005). Moreover, the for-
mation mechanisms of secondary organic aerosol (SOA) in
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the marine atmosphere have not been fully clarified. Hence,
global emission of oceanic OC aerosols is still highly uncer-
tain (Spracklen et al., 2008; Myriokefalitakis et al., 2010;
Vignati et al., 2010).

Organic nitrogen (ON) compounds are subjected to chemi-
cal transformations in the troposphere, forming products that
may potentially influence the chemical and physical proper-
ties of atmospheric aerosols (e.g., Zhang et al., 2002). De-
spite the importance of ON in marine biogeochemical cy-
cles and its critical role in the atmosphere, the origins and
chemical composition of ON in marine aerosols are largely
unknown because of very limited field research (Duce et
al., 2008). In addition, the relative importance of direct
emissions and secondary formation of ON is unclear. The
most identified category of ON in aerosols is reduced ni-
trogen (N) compounds, which include amino acids (Milne
and Zika, 1993), alkyl amines (e.g., Ge et al., 2011a), urea,
and N-heterocyclic compounds that originate from biomass
burning (Mace et al., 2003), animal husbandry (Schade and
Crutzen, 1995), and the ocean surface (Matsumoto and Ue-
matsu, 2005). Shi et al. (2010) reported that urea accounted
for ∼8% of water-soluble ON on average over the eastern
edge of China, where air masses were frequently affected by
anthropogenic sources.

Regarding aerosol water-soluble organic nitrogen
(WSON) in marine atmosphere, Facchini et al. (2008b)
found high concentrations of dimethylamine and diethy-
lamine in sub-micrometer marine aerosols in the North
Atlantic, pointing to the importance of alkylamines as a
biological SOA tracer. They showed that alkyl-ammonium
salts represented on average 11% of the marine SOA and
a dominant fraction (35% on average) of aerosol WSON
in the North Atlantic. Moreover, the amine concentrations
measured over the North Atlantic Ocean have shown distinct
seasonal variation, indicating that the production of amine
is most likely influenced by the primary productivity of
phytoplankton (Facchini et al., 2008a; Müller et al., 2009).
Previous studies have mostly focused on the water-soluble
fractions of ON, whereas the abundances, sources, and
relative importance of water-insoluble organic nitrogen
(WION) compared to WSON have not been previously
investigated in marine aerosols. Miyazaki et al. (2010a)
found that average bulk ON concentrations were two times
greater in aerosols collected in an oceanic region with
higher biological productivity than in regions with lower
productivity, suggesting the importance of the total aerosol
ON that is linked to oceanic biological activity.

Here we present, for the first time, latitudinal distributions
of both water-soluble and water-insoluble fractions of ON in
marine aerosols collected over the western North Pacific in
summer when marine biological activity is high. The ob-
jective of the present study is to understand the abundance
and sources of the aerosol ON (for water-soluble and water-
insoluble fractions) as well as the aerosol OC associated with
marine biological activity. We present the latitudinal distri-

butions of ON and OC and their isotopic ratios to better dis-
cuss the relative importance of marine biological sources of
organic aerosols.

2 Experimental

2.1 Aerosol sampling

Aerosols were sampled during the R/VHakuho-marucruise
(KH08-2) from Kushiro (42.98◦ N, 144.37◦ E) to Tokyo
(35.65◦ N, 139.77◦ E), Japan, in the western North Pacific
from 44◦ N to 10◦ N along 155◦ E, which covers the subarc-
tic to subtropical region (Fig. 1). Aerosol samplings were
conducted between 24 August and 13 September 2008. Dur-
ing most of the sampling period, the weather was fine with
very few rainfall events (<6% of the total sampling time).
Together with the cruise track, Fig. 1 also presents typical 5-
day back trajectories and average concentrations of satellite-
derived chlorophyll-a during August and September 2008
obtained from SeaWiFS satellite data. The trajectories were
calculated for air masses starting from the mid-points of each
sampling at altitudes of 50, 100, and 200 m. For the calcula-
tion, we used the NOAA Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model (http://www.arl.
noaa.gov/ready/hysplit4.html, NOAA Air Resources Labo-
ratory, Silver Spring, MD, USA). The air masses were trans-
ported mainly from the eastern-to-central Pacific due to the
Pacific high-pressure system, as shown by most of the back
trajectories. Moreover, the trajectories suggest that most of
the air masses were transported within the marine boundary
layer. The oceanic regions are suitable to study the influences
of oceanic emissions on marine aerosols.

A high-volume air sampler was located at the upper deck
of the ship and used to collect ambient aerosol samples. The
samplings were made using quartz fiber filters (25× 20 cm)
at a sampling flow rate of 1000 L min−1. The average to-
tal volume of the samples was 900 m3. The samples were
collected on precombusted (450◦C, 3 h) quartz filters and
were stored individually in glass jars with a Teflon-lined
screwed cap at−20◦C prior to analysis. The sampling time
for each sample was approximately 12 h, starting at 08:00 LT
and 20:00 LT, which are referred to as daytime and nighttime
samples, respectively. Possible contamination from ship ex-
haust was prevented by shutting off the sampling pump dur-
ing beam-side airflow and/or low wind speeds (<5 m s−1),
resulting in an effective pumping time of about 87% of the
sampling period. Additionally, the aerosol data with a to-
tal air volume<800 m3 were omitted in the current analysis,
because these aerosol samples might have been affected by
local contamination in stagnant air. Indeed, these data cor-
respond well with time-series of substantially high aerosol
number concentrations measured by a water-based conden-
sation particle counter (CPC) (Mochida et al., 2011), pre-
sumably caused by the ship’s exhaust. As a result of the data
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screening, we present 32 samples for the data analysis out of
the total 42 samples obtained in the present study.

2.2 Chemical analysis

A total organic carbon (TOC)/total nitrogen (TN) analyzer
(Model TOC-Vcsh, Shimadzu) was used to determine the to-
tal aerosol carbon and nitrogen that are dissolved in water. A
filter cut of 19.63 cm2 was extracted with ultra-pure Milli-Q
water using an ultrasonic bath (10 min× 3 times). The to-
tal extracts were then filtrated with a disc filter (Millex-GV,
0.22 µm, Millipore, Billerica, MA, USA) followed by injec-
tion of dissolved OC and TN in the extracts into the analyzer.
The sample was first injected into a combustion tube in the
analyzer, which is filled with an oxidation catalyst (fiber plat-
inum on quartz) and heated to 720◦C to derive CO2 and ni-
trogen monoxide under a constant flow of ultra-pure air. The
combustion gases that passed through an electrical dehumid-
ifier for cooling and dehydration and then through a halogen
scrubber were measured by a nondispersive infrared (NDIR)
detector to determine the derived CO2. The measured car-
bon is defined here as water-soluble organic carbon (WSOC).
After passing through the NDIR detector the gas stream was
directed to the TN unit, which provided the TN content of
the liquid sample. The nitrogen content was determined
by measuring nitrogen monoxide with an ozone chemilu-
minescence detector. Because the instrument measures TN
in liquid sample, we use the term water-soluble total nitro-
gen (WSTN) when referring to the concentrations measured
with this instrument. Field blanks for WSOC and WSTN
dissolved in water were 70± 8 µgC L−1 and 40± 5 µgN L−1,
respectively. These values represent 24% and 28% of the av-
erage WSOC and WSTN concentrations in ambient aerosols,
respectively. The data presented here were corrected for
blanks. The total uncertainties of the WSOC and WSTN con-
centrations were estimated to be 15% and 12%, respectively.

An aliquot of filter sample was analyzed for total nitro-
gen (TN) and total carbon (TC) using an elemental analyzer
(EA) (NA 1500, Carlo Erba) (Kawamura et al., 2004). Ni-
trogen and stable carbon isotopic analyses were also con-
ducted using the same EA interfaced to an isotope ratio mass
spectrometer (Finnigan MAT Delta Plus) forδ15N andδ13C
measurements (Kawamura et al., 2004). The concentrations
and isotopic ratios reported here were corrected against the
field blanks using isotope mass balance equations (Turekian
et al., 2003). The blank levels of TN and TC were 22% and
10% of the measured concentrations, respectively. The nitro-
gen and carbon isotope corrections were 0.9‰ and 0.5‰, re-
spectively. Some of the samples were analyzed in duplicate.
The uncertainties of TN and TC measurements were within
9% whereas those of theδ15N andδ13C measurements were
about 0.5‰.

Mass concentrations of OC and elemental carbon (EC)
were measured using a Sunset lab OC/EC analyzer. A
filter punch of 1.54 cm2 was used for the analysis of

 

 

 

 

 

Fig. 1. R/V Hakuhocruise track in the western North Pacific be-
tween 24 August and 13 September 2008, together with typical 5-
day back trajectories. Also shown are monthly averaged concen-
trations of chlorophyll-a for August–September 2008 derived from
SeaWiFS data, available from the NASA Goddard Space Flight
Center/Distributed Active Archive Centers. A white dot indicates
that the satellite data is missing at a corresponding grid.

OC and EC. The equivalent OC concentration from field
blanks accounted for∼18% of the average OC concen-
trations of the actual samples. OC data were all cor-
rected against field blanks. Based on filter blank un-
certainties, detection limits for OC and EC were about
100 ngC m−3 and 20 ngC m−3, respectively, for the sam-
pling and analytical conditions here. TC values measured
by the OC/EC analyzer (TC= OC+ EC) agreed with those
obtained by the EA within 5% (r2

= 0.95; slope= 0.96; in-
tercept= 4.2 ngC m−3), which was equivalent to or less than
the uncertainties of each instrument.

Another filter cut of 1.54 cm2 was extracted with Milli-
Q water. The total extracts (10 ml) were then filtrated
using a membrane disc filter to determine major anions
and cations as well as methanesulfonic acid (MSA) by a
Metrohm ion chromatograph (Model 761 compact IC). The
blank levels of the major ions were below 5% of the mea-
sured concentrations. For the separation and quantification
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of diethylammonium ions (DEA+), a filter cut of 21.2 cm2

was subject to extraction in 5 mL of Milli-Q water. The anal-
ysis was also performed by IC (Miyazaki et al., 2010a).

The concentration of ON was determined by subtract-
ing the inorganic nitrogen (IN) concentration from the TN
concentration measured with the EA. Here IN is defined
as the sum of nitrate (NO−3 )-, nitrite (NO−

2 )-, and am-
monium (NH+

4 )-nitrogen measured with the IC. Concen-
trations of WSON are defined as the difference between
WSTN measured with the Shimadzu TOC/TN analyzer and
IN (WSON= WSTN − IN). Similarly, WION was defined
as WION= TN − WSTN. Using the propagating errors of
each parameter, the uncertainties of WSON and WION were
estimated to be 18% and 16%, respectively.

2.3 Conversion efficiency of water-soluble organic
nitrogen compounds

When interpreting the WSON and WION data, it is impor-
tant to clarify the definitions of WSON and WION under our
operating conditions of the analyzer. To characterize these
fractions of ON, we investigated the conversion efficiency of
organic nitrogen compounds dissolved in water to nitrogen
monoxide in the Shimadzu TOC/TN analyzer by using sev-
eral authentic organic compounds. Briefly, authentic water-
soluble nitrogen-containing organic species were dissolved
in purified water and injected into the TOC/TN analyzer.
Here we used several nitrogen-containing organic species ac-
cording to differences in their functional groups or nitrogen
positions in their chemical structure. Note that concentration
levels of N in the experiments are set to be similar to those
of WSON in the water extracts of ambient samples.

Table 1 summarizes the results of the experiment. The
conversion efficiencies of nitrogen in L-alanine, diethy-
lamine, anthranilamide, Suwannee River fulvic acid to ni-
trogen monoxide were∼100%. Similarly, nitrogen in 4-
imidazole carboxylic acid and imidazole-2-carboxaldehyde
was almost completely converted to nitrogen monoxide in
the analyzer. The result demonstrates that nitrogen in these
species is almost completely converted to nitrogen monox-
ide within the measurement uncertainty under our operating
conditions. By contrast, the conversion efficiencies of nitro-
gen in 4-pyrazole carboxylic acid and acetohydrazide were
as low as 43± 14% and 11± 2%, respectively. Although
the exact reason for the low conversion efficiencies for these
compounds is unclear, both of these compounds have nitro-
gen atoms in adjacent positions in their molecular structure,
which may have related to the lower conversion efficiency
to nitrogen monoxide. Note that conversion efficiencies of
carbon in all of these compounds to CO2 were∼100% in
the TOC analyzer. In addition, it was also confirmed that
nitrogen and carbon in these authentic organic species were
converted to N2 and CO2 by ∼100% by the EA, respectively.
In summary, the laboratory experiments indicate that some
classes of dissolved organic nitrogen compounds may not

be quantitatively converted to nitrogen monoxide under our
operating conditions of this instrument. This may lead to
an underestimation of WSON and overestimation of WION
if WSTN is associated with compounds that have nitrogen
atoms adjacent to carbon atom.

2.4 Air mass exposure to chlorophyll-a along with back
trajectory

The trajectory positions were calculated every 1 h along the
5-day back trajectory. At each position along the trajec-
tory, concentrations of chlorophyll-a in the ocean were taken
from monthly mean global distributions (August–September
2008) obtained from SeaWiFS observations. The SeaWiFS
data used for the present analysis had horizontal resolution
of 0.2 degrees (∼25 km). The average concentrations of
chlorophyll-a exposure were then calculated along each tra-
jectory to produce a time series of average air mass exposure
to chlorophyll-a along the cruise track. The trajectories were
ended at two altitude levels (50 and 100 m), and chlorophyll-
a values were averaged for each sampling point. It is noted
that the chlorophyll-a concentrations at each grid may vary
on shorter time scales. Moreover, the trajectories do not
account for subgrid-scale wind and transport processes that
may be active within the marine boundary layer.

3 Results and discussion

3.1 Air-mass characteristics

Figure 2 shows latitudinal distributions of the concentrations
of MSA, nss-SO2−

4 , and NO−

3 . Five-day back-trajectory-
weighted SeaWiFS chlorophyll-a is also shown in the fig-
ure. MSA is produced by the atmospheric oxidation of
DMS, which is released as a gas from marine microbial pro-
cesses and thus can be used as an indicator of secondary
aerosols of marine biogenic origin. MSA showed a distinct
latitudinal gradient, with concentrations increasing at 40–
44◦ N. In this oceanic region, the back-trajectory-weighted
chlorophyll-a showed a similar spatial trend to that of MSA.
Back trajectories suggest that air masses sampled at 40–
44◦ N were transported within the marine boundary layer
and frequently encountered oceanic regions with high pro-
ductivity in a northeast upwind sector of the sampling loca-
tions (Fig. 1). Detailed analysis of the trajectory-weighted
chlorophyll-a showed that aerosol samples collected at 40–
44◦ N must have passed over a higher chlorophyll-a region
approximately 12–36 h before reaching the ship. In addition,
in-situ measured chlorophyll-a in sea water showed substan-
tially larger concentrations at 40–44◦ N (av. 0.56 mg m−3)

compared to those at 10–40◦ N (0.05–0.15 mg m−3) (Ooki et
al., 2010). These results suggest that the aerosols sampled at
40–44◦ N were largely influenced by oceanic emissions from
both upwind regions with high productivity and local emis-
sions from marine biological sources.
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Table 1. Conversion efficiencies of selected water-soluble nitrogen-containing organic compounds to nitrogen monoxide during the mea-
surements by the Shimadzu TOC/TN analyzer. Note that conversion efficiencies of carbon in all of these compounds to CO2 were∼100%.

Compounds Molecular N concentrationsa Conversion
structure (µgN L−1) efficiency of N (%)

L-Alanine

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Table 1. Conversion efficiencies of selected water-soluble nitrogen-containing organic 

compounds to nitrogen monoxide during the measurements by the Shimadzu TOC/TN 

analyzer. Note that conversion efficiencies of carbon in all of these compounds to CO2 were 

~100%. 

Compounds 
Molecular 

structure 

N concentrationsa    

(μgN L-1) 

Conversion efficiency of N 

(%) 

L-Alanine 
 

1120 101±2 

Diethylamine  1345 100±2 

Anthranilamide 
 

1480 100±3 

Suwannee River fulvic acidb --- 730c 95±6 

4-Imidazole carboxylic acid 
 

1000 99±5 

Imidazole-2-carboxaldehyde 
 

1160 101±2 

4-Pyrazole carboxylic acid 
 

1000, 1500 43±14 

Acetohydrazide  
 

1295, 1660 11±2 

aConcentration levels of N are set to be similar to those of WSON in the water extracts of 

ambient samples. 

bSuwannee River fulvic acid are produced by the International Humic Substance Society 

(IHSS). 

cConcentrations of N is based on sample information for elemental analysis provided by the 

IHSS. 
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a Concentration levels of N are set to be similar to those of WSON in the water extracts of ambient samples.
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The nss-SO2−

4 concentrations also showed distinct peaks
at 40–44◦ N and 10–15◦ N. At 40–44◦ N, the nss-SO2−

4 con-
centrations reached as high as∼10 000 ng m−3. Indeed,
Nagao et al. (1999) suggested that most nss-SO2−

4 trans-
ported from northeastern and southeastern sectors to Haha-
jima (142.10◦ E, 26.38◦ N) in the summer originated from
DMS oxidation, based on their long-term measurements of
nss-SO2−

4 and MSA. An average MSA/nss-SO2−

4 ratio at
40–44◦ N in the present study is 0.021± 0.018, which is
within the range (0.02–0.04) of those reported for clean ma-
rine air over the western North Pacific (Nagao et al., 1999).
These results support significant influences of marine bio-
logical sources on aerosols in this oceanic region. At 10–
15◦ N, nss-SO2−

4 exhibited increased concentrations up to
∼8000 ng m−3. The average MSA/nss-SO2−

4 ratio at this
region is 0.008± 0.007, indicating an additional source for
nss-SO2−

4 . Mochida et al. (2011) reported that the plume
from the eruption of Kasatochi Volcano, Aleutian Islands

(52.17◦ N, 175.51◦ W), on 7 August 2008 (Martinsson et al.,
2009; Rix et al., 2009) may have been associated with the en-
hanced nss-SO2−

4 concentration (Uematsu et al., unpublished
data). The trajectories suggest that the air masses are repre-
sentative of remote marine aerosols (Fig. 1).

We note that the measured concentrations of cyanobacte-
ria in surface seawater at 10–20◦ N were larger than those at
20–45◦ N from the same cruise observations (Suzuki et al.,
unpublished data). Moreover, Ooki et al. (2010) reported en-
hanced concentrations of methyl halide in surface seawater
between 15◦ N and 20◦ N where the sea surface temperature
was high, which was also revealed from the same cruise. Al-
though the satellite-derived chlorophyll-a value was low at
10–20◦ N, these results indicate that the increased MSA con-
centrations appear to be due partly to marine biological activ-
ity by bacteria rather than phytoplankton in this subtropical
region.

It should be also noted that the background marine aerosol
composition can be influenced by aged ship emissions (e.g.,

www.atmos-chem-phys.net/11/3037/2011/ Atmos. Chem. Phys., 11, 3037–3049, 2011
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4 , and

NO−

3 . Also shown are 5-day back trajectory-weighted SeaWiFS
chlorophyll-a concentrations as square symbol.

Capaldo et al., 1999) as well as other anthropogenic emis-
sions. However, an insignificant contribution of anthro-
pogenic sources to the observed air masses is suggested by
the low average concentrations of NO−

3 (116± 84 ng m−3),
which are similar to those reported for clean marine aerosols
over the open ocean (<180 ng m−3) (Rinaldi et al., 2009).
Moreover, EC concentrations were mostly below the detec-
tion limit (∼20 ngC m−3), which is also similar to the con-
centrations reported for clean marine aerosols at Mace Head
in the North Atlantic (Cooke et al., 1997). The low con-
centrations of these anthropogenic tracers together with the
back trajectories suggest that the aerosols sampled during
this study were little affected by anthropogenic sources in-
cluding ship emissions.

3.2 Temporal and spatial variations of organic nitrogen
aerosols

Figure 3 presents time series of mass concentrations of
aerosol nitrogen species/components together with MSA.
Latitudinal distributions of the ON, WSON, WION, and
DEA+ concentrations are shown in Fig. 4. During the
study period, the ON concentrations ranged between 10 and
260 ngN m−3, with an average of 130± 61 ngN m−3. The
average fraction of ON to TN was as large as 67± 15%. In-
terestingly, WION (112± 61 ngN m−3) was the most abun-
dant N in the aerosols, accounting for 55± 16% of TN on
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Fig. 3. Time series of(a) the average latitudinal location of the
ship, (b) concentrations of trajectory-weighted chlorophyll-a and
(c) fractions of organic (WSON and WION) and inorganic nitrogen
together with concentrations of MSA. “D” means data obtained in
daytime, whereas “N” means data obtained in nighttime.

average. In particular, WION exhibited a maximum concen-
tration of 260 ngN m−3 at 40–44◦ N (Fig. 4b), where marine
biological influences on the observed aerosols were large.
In this oceanic region, the average WION/ON ratio was
0.93± 0.07, which is higher than that (0.74± 0.12) at 10–
40◦ N. In comparison to WION, WSON showed a smaller
fraction, representing on average 12± 10% of TN. The frac-
tion of WSON to TN is similar to previous findings, gener-
ally ranging from∼10–30% (Zhang et al., 2002; Mace et
al., 2003; Nakamura et al., 2006). Overall NH+

4 and NO−

3
accounted for 14± 13% and 17± 11% of TN, respectively.

In general, the temporal trend of nitrogen concentrations
tracked those of MSA. TN and MSA showed a linear re-
lation with r2

= 0.74, indicating a large influence of ma-
rine biological emission on aerosol N in the study region.
In fact, Miyazaki et al. (2010a) found a bimodal size dis-
tribution of ON with two peaks at sub-micrometer and
super-micrometer modes in marine aerosols over the west-
ern North Pacific in summer, where the average ON con-
centrations were twice more abundant in marine biologically
more-influenced aerosols than in less-influenced aerosols.
It should be noted that the daytime and nighttime concen-
trations of nitrogen species showed no distinct difference
(Fig. 3). Specifically, the average ON concentration in day-
time was 130± 59 ngN m−3, which is similar to that in night-
time (128± 66 ngN m−3). This result implies that the local
time dependence on the temporal variations of ON was likely
insignificant in the present study.
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As a marine biogenic organic compound of WSON,
DEA+ has been detected in marine aerosols (Facchini et al.,
2008b; M̈uller et al., 2009; Sorooshian et al., 2009; Miyazaki
et al., 2010a). The concentrations of aliphatic amines in-
cluding DEA+ measured over the northern Atlantic showed
a seasonal variation, indicating that the production of amine
is most likely influenced by the primary biological produc-
tivity of phytoplankton and therefore available nutrient in
the ocean (Facchini et al., 2008b). Here we detected DEA+

in aerosols, with concentrations ranging from a value below
the detection limit (<0.1 ng m−3) to 0.8 ng m−3. The DEA+

concentrations at 40–44◦ N (0.52± 0.19 ng m−3) were gen-
erally higher than those at 10–40◦ N (0.23± 0.11 ng m−3).
The contribution of DEA+ to WSON ranged between 0.1 and
9.8% with an average of 0.8%. At 40–44◦ N, both the DEA+

concentrations and DEA+/WSON ratios showed higher val-
ues compared with those at the lower latitude (10–40◦ N),
being consistent with the large influence of marine biologi-
cal activity on the observed organic aerosols.

Facchini et al. (2008b) suggested that DEA+ is derived
from an oceanic biological source and is produced by the
reaction of gaseous amines with sulfuric acid or acidic sul-
fates. They showed that the size distributions of DEA+ in
marine aerosols exhibited maxima in the accumulation mode,
as is also the case for nss-SO2−

4 , MSA, and NH+

4 , indicat-
ing that a gas-to-particle conversion process is responsible
for accumulation of ammonium salts in the fine aerosol frac-
tions (Ge et al., 2011b). Indeed, DEA+ was detected in the
sub-micrometer size range of biologically more-influenced
aerosols obtained in a similar oceanic region in our previous
study (Miyazaki et al., 2010a). Although the size distribu-
tions of DEA+ and nss-SO2−

4 are not available in the present
study, a positive correlation between DEA+ and nss-SO2−

4
(r2

= 0.52) was found in our samples, supporting the sec-
ondary formation processes of DEA+ as discussed above.

Besides amine, WSON may also consist of other biologi-
cally labile components, such as amino acids (e.g., Simoneit
et al., 2004) and more refractory components (e.g., humic
compounds) (Cornell et al., 2003). Matsumoto and Ue-
matsu (2005) reported that dissolved free amino acids in ma-
rine aerosols, which mostly reside in the fine mode (aerody-
namic diameter less than 2.5 µm), accounted for only<0.1%
of inorganic nitrogen over the western North Pacific. Shi et
al. (2010) also reported a minor contribution of free amino
acids to WSON (∼1%) in aerosols over the China Sea. Al-
though detailed chemical analyses of WSON were not per-
formed in the present study, previous studies have indicated
that combined amino acids may account for a major portion
of the amino compounds in aerosols (e.g., Zhang and Anas-
tasio, 2003).

3.3 Latitudinal distributions of organic carbon aerosols

Figure 5 shows the latitudinal distributions of OC, WSOC,
and WIOC. Similar to the latitudinal profiles of MSA and
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Fig. 4. Latitudinal distributions of(a) organic nitrogen (ON),(b)
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nitrogen (WSON), and(d) diethylammonium (DEA+).

ON, OC and WSOC exhibited increased concentrations at
40–44◦ N. In the region of 40–44◦ N, an enhanced fraction
of WSOC to OC was observed, ranging between 0.42 and
0.66 with an average of 0.53± 0.10. The range is similar
to that (0.46–0.55) found for remote marine aerosols col-
lected over the western North Pacific in a region farther north
than the present study region (Miyazaki et al., 2010b). The
WSOC and MSA concentrations showed a positive correla-
tion in the present study (r2

= 0.57), indicating an impor-
tance of secondary production of WSOC originated from ma-
rine biological sources, similar to the case of MSA. In our
previous study, WSOC and oxalic acid also showed signifi-
cant correlation with MSA in the sub-micrometer size range
of marine biologically influenced aerosols (Miyazaki et al.,
2010b), which is in agreement with the results presented
here. On the other hand, Russell et al. (2010) recently ob-
served that the ocean-derived composition in sub-micrometer
marine aerosol was dominated by carbohydrate-like material
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containing organic hydroxyl groups (i.e., water-soluble or-
ganics) over the North Atlantic and Arctic oceans. In our
samples, however, WSOC showed no significant correlation
with Na+ (r2

= 0.02) or local wind speeds, supporting that
the majority of WSOC appears to be derived from secondary
production. This point will be discussed later.

The latitudinal distribution pattern of the WIOC
concentration is not apparent compared to that of
WSOC. The average concentration of WIOC at 40–
44◦ N (560± 193 ngC m−3) is similar to that of WSOC
(645± 273 ngC m−3) in the same region (Table 2). On
the other hand, the WIOC concentration at 10–40◦ N
(660± 274 ngC m−3) is similar to that at 40–44◦ N, and
is substantially larger than the WSOC concetrations
(100± 69 ngC m−3). Overall, the concentrations of WIOC
are larger by a factor of three than those observed in the
Austral Ocean in summer when marine biological activity
is high (Sciare et al., 2009). WIOC is mechanically pro-
duced through bubble-bursting processes from hydrophobic
organic matter that accumulates in the micro layer of the
ocean surface (Blanchard, 1964; Oppo et al., 1999). Indeed,
WIOC in our samples showed a linear relation with Na+

(r2
= 0.37), as we observed the relation (r2

= 0.52) in the
submicrometer range of particles collected in a similar
oceanic region (Miyazaki et al., 2010b). The result indicates

Table 2. Average concentrations and ratios in marine aerosols sam-
pled in the different latitudinal regions.

10–40◦ N 40–44◦ N

MSA (ng m−3) 24± 16 129± 37
nssSO2−

4 (ng m−3) 3060± 2730 6040± 3400
DEA+ (ng m−3) 0.23± 0.11 0.52± 0.19
WION (ngN m−3) 91± 44 200± 38
WSON (ngN m−3) 16± 13 19± 16
WIOC (ngC m−3) 660± 274 560± 193
WSOC (ngC m−3) 100± 69 645± 273
ON/OC 0.15± 0.10 0.20± 0.09
NO−

3 (ng m−3) 110± 90 63± 62
NH+

4 (ng m−3) 22± 19 128± 40
δ15N (‰) 3.2± 5.5 5.1± 1.6
δ13C (‰) −20.8± 4.5 −22.1± 1.3

that a bubble-bursting production mechanism could explain
the major fraction of WIOC in the aerosols collected. It
is possible that chemical aging of water-insoluble organics
(e.g., oxidation of unsaturated fatty acids, and olefins to
result in water-soluble organic species) primarily emitted
from the ocean surface and the subsequent production of
more water-soluble organics may occur in aerosols largely
influenced by marine biological productivity. This could
partly explain the larger fractions of WSOC in aerosols col-
lected at 40–44◦ N, which may have been transported over a
higher chlorophyll-a region within 12–36 h as discussed in
Sect. 3.1.

3.4 Nitrogen-to-carbon ratios in marine aerosols

The relative contribution of organic nitrogen species to OC
in aerosol mass provides insight into the origin and chemi-
cal properties of aerosol ON. The average ON/OC ratio was
0.19± 0.11 during the study period, which is higher than the
typical ON/OC ratios (0.06–0.11) reported for oceanic dis-
solved materials (Hansell and Carlson, 2002). Miyazaki et
al. (2010a) also reported higher ON/OC ratios for the oceanic
materials in both the submicrometer (0.43± 0.23) and super-
micrometer (0.53± 0.31) size ranges of marine aerosols ob-
tained farther north of the present study areas in the western
Pacific with high marine biological productivity. Based on
the comparison with typical ON/OC ratios in oceanic dis-
solved materials, the present results indicate an enrichment
of organic nitrogen in the marine aerosol collected in the area
studied.

Furthermore, we analyzed nitrogen isotopic ratios of TN to
investigate the contributions of marine sources to the aerosol
N sampled here. Theδ15N values of TN ranged from−2.2‰
to 8.9‰, with an average of 4.9± 2.8‰. Although nitrogen
isotopic analysis alone cannot provide conclusive evidence
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about atmospheric ON sources (Kelly et al., 2005), these
δ15N values overlap with a wide range of marine phytoplank-
ton (+3 to +12‰) (Owens, 1987). The values are also sim-
ilar to those (1.2–4.6‰) in aerosols collected in the above-
mentioned oceanic region with higher biological productivity
in the western North Pacific (Miyazaki et al., 2010a).

To better understand the relative contributions of marine
sources to the sampled aerosols, we also analyzed stable car-
bon isotopic ratios. In low and mid-latitudes,δ13C of OC
in seawater typically ranges from−20 to −22‰ (Turekian
et al., 2003), whereas the averageδ13C of terrestrial OC
sources, such as fossil fuel combustion and biomass burn-
ing, is−26.5± 1‰ (e.g., Cachier et al., 1986). Based on the
δ13C of particulate carbon over various remote oceanic areas,
Cachier et al. (1986) found that most of the submicrometer
particulate carbon were of continental origin, whereas coarse
particles with diameter>3 µm were primarily of seawater
origin. In contrast, Miyazaki et al. (2010a) found that the
averageδ13C values for the submicrometer (−23.7± 0.8‰)
and supermicrometer (−23.4± 0.7‰) size ranges of partic-
ulate carbon were similar in a remote oceanic region with
high biological productivity. Both of these values are close
to the typicalδ13C of OC in seawater. Likewise, theδ13C val-
ues of−22.1 to−20.8‰ with an average of−21.0± 1.9‰
obtained in the present study (Table 2) are similar to those
of OC in seawater. To roughly calculate the relative contri-
bution from marine and terrestrial OC sources, we applied
δ13C values ranging from−22‰ to −21‰ for marine OC
and those ranging from−27‰ to −26‰ for terrestrial OC
typically found in the Northern Hemisphere following the
isotopic mass balance equations given in previous studies
(e.g., Turekian et al., 2003; Narukawa et al., 2008). Our
calculation indicates that on average, marine sources con-
tribute 88± 12% of the aerosol carbon. The result supports
that a majority of TC in the aerosols is derived from marine
sources. Figure 6 shows a correlation betweenδ13C values
and ON/OC ratios classified according to the MSA concen-
trations. Interestingly, theδ13C showed higher values (iso-
topically heavier) with increasing ON/OC ratios in air masses
with MSA >20 ng m−3. The result indicates an enrichment
of nitrogen in organic aerosols in the oceanic region with
high biological productivity and the preferential transfer of
nitrogen-containing compounds from the sea surface to the
marine atmosphere.

In general, no clear relation was found between WSOC
and WSON (r2

= 0.04), which suggests differences in ma-
rine biological sources and chemical properties for these
two organic fractions. As discussed in the previous section,
WSOC and MSA concentrations showed positive correla-
tion (r2

= 0.57), suggesting secondary production of organic
aerosols from marine biological origin. In contrast, WSON
exhibited poor correlation with MSA (r2

= 0.05). This re-
sult suggests that the sources and formation processes for the
majority of WSON are different from those for MSA (i.e.,
DMS) and WSOC.
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Fig. 6. Scatter plots betweenδ13C and ON/OC ratios. Solid circles
indicate the data with MSA> 20 ng m−3.

3.5 Possible formation processes of WION from marine
biological sources

In this section, we discuss possible processes of WION in
marine aerosols in terms of primary and secondary pro-
duction. Figure 7 illustrates the WION concentrations and
WION/WIOC ratios as a function of local wind speed. The
WION concentrations tended to increase with increasing lo-
cal wind speeds at 10–40◦ N. In contrast, no relation was
found between WSON and wind speed (r2

= 0.02, data not
shown as a figure). These results suggest that significant
fractions of WION were mechanically produced through
bubble-bursting processes as a potential mechanism. More-
over, WION/WIOC ratios also increased with increasing lo-
cal wind speeds (Fig. 7b), indicating that nitrogen contain-
ing organic species contributes significantly to marine or-
ganic aerosols that are likely derived from bubble-bursting
processes in the studied region.

WION appears to be associated with organic particles
of seawater origin, which include microorganisms, plank-
ton debris, and inorganic particles containing adsorbed or-
ganic matter. They may also be composed of a large num-
ber of semi-transparent gel-like particles and proteins, all of
which contain amino acids. Kuznetsova et al. (2005) used
Coomassie blue dye to confirm that some of the colloidal gel-
like material surrounding bacteria and viruses was proteina-
ceous in Mediterranean and Atlantic marine aerosol samples.
More recently, Hawkins and Russell (2010) reported chem-
ical signatures of proteins and calcareous phytoplankton as
well as polysaccharides in hydrophobic marine aerosols col-
lected in the Arctic and southeastern Pacific using Near-
Edge Absorption X-ray Fine Structure (NEXAFS) spectro-
microscopy. The present finding that the fraction of WION is
large in marine biologically influenced aerosols is supported
by these previous studies.
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At 40–44◦ N, the relation between WION and local wind
speeds, although the values of these parameters are larger,
is less evident compared to that at 10–40◦ N (Fig. 7). On
the basis of laboratory experiments on nascent sea spray
aerosols, Facchini et al. (2008a) reported that sea spray or-
ganics tend to aggregate and form colloids or suspended par-
ticles, which makes the definition of water solubility a com-
plex issue. Considering the significance of secondary pro-
duction at 40–44◦ N as discussed above, secondary formation
of ON associated with marine emissions of gaseous precur-
sors (e.g., biogenic volatile organic compounds and NH3) is
another possibility that could partly explain the increase of
WION. As one possible process for secondary formation of
nitrogen-containing organic aerosols, Galloway et al. (2009)
recently reported that glyoxal uptake onto ammonium sul-
fate seed aerosol can irreversibly form C-N compounds. In
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Fig. 8. A linear relation between WION and NH+4 , color-coded
according to the concentration of DEA+.

fact, glyoxal and methylglyoxal were detected in aerosols
from marine biological origin in the similar oceanic region
in our previous studies (Miyazaki et al., 2010b). Figure 8 il-
lustrates the linear relation between WION and NH+

4 , color-
coded according to the DEA+ concentration. The WION
concentration was positively correlated with NH+

4 , particu-
larly under the large influence of marine biological activity
(i.e., DEA+ > 0.3 ng m−3). The positive correlation indi-
cates that the possible formation of WION is related to am-
monium salts in marine biologically influenced aerosol.

The substantial amount of WION in marine biologically
influenced aerosols found in the present study may pro-
vide insights into chemical composition of WIOC, which is
still mostly uncharacterized with the exception of fatty acids
(Mochida et al., 2002), n-alkanes and fatty alcohols (Kawa-
mura et al., 2003). Chemical characterizations of WION as
well as WSON in aerosols from marine biological sources at
a molecular level and the mechanisms of primary and sec-
ondary formation of WION require further study.

4 Conclusions

Latitudinal distributions of organic nitrogen (ON) and or-
ganic carbon (OC) as well as isotopic ratios of total ni-
trogen (TN) and total carbon (TC) were measured in ma-
rine aerosols collected in the western North Pacific in sum-
mer 2008. Increased concentrations of methanesulfonic acid
(MSA) and diethylammonium (DEA+) at 40–44◦ N and sub-
tropical regions (10–20◦ N) together with averaged satellite
chlorophyll-a data and 5-day back trajectories suggest signif-
icant influences of marine biological activities on aerosols in
these regions. ON exhibited increased concentrations (up to
260 ngN m−3) in the marine biologically influenced aerosols.
Water-insoluble organic nitrogen (WION) was found to be
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the most abundant N in the marine aerosols, accounting for
55± 16% of total aerosol N on average. In particular, the
average WION/ON ratio was as high as 0.93± 0.07 at 40–
44◦ N. Overall WSON accounted for∼12% of total N. These
results suggest that marine biological sources significantly
contributed to ON, a majority of which is composed of water-
insoluble fractions in the study region. It should be noted that
if organic compounds having nitrogen atoms adjacent to car-
bon atom in their molecular structure are present in the sam-
pled aerosols, some components associated with WSON may
not be determined quantitatively under our operating condi-
tions. This may lead to an uncertainty of WSON being un-
derestimated and thus, WION may be overestimated.

The stable carbon isotopic analysis indicated that, on av-
erage, marine-derived carbon accounted for∼88± 12% of
total carbon in the aerosols. Moreover, the stable carbon
isotopic ratios showed higher values (from−22 to −20‰)
when ON/OC ratios increased from 0.15 to 0.35 in marine
biologically influenced aerosols. The results clearly indicate
an enrichment of nitrogen in organic aerosols originated from
an oceanic region with high biological productivity and pref-
erential transfer of nitrogen-containing organic compounds
from the sea surface to the marine atmosphere. Furthermore,
both WION concentrations and WION/WIOC ratios tended
to increase with increasing local wind speeds, indicating that
sea-to-air emissions of ON via sea spray contribute signifi-
cantly to the marine organic aerosols over the study region.
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