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Abstract. Data from the Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE) network are used
to estimate organic mass to organic carbon (OM/OC) ra-
tios across the United States by extending previously pub-
lished multiple regression techniques. Our new methodology
addresses common pitfalls of multiple regression including
measurement uncertainty, colinearity of covariates, dataset
selection, and model selection. As expected, summertime
OM/OC ratios are larger than wintertime values across the
US with all regional median OM/OC values tightly confined
between 1.80 and 1.95. Further, we find that OM/OC ratios
during the winter are distinctly larger in the eastern US than
in the West (regional medians are 1.58, 1.64, and 1.85 in the
great lakes, southeast, and northeast regions, versus 1.29 and
1.32 in the western and central states). We find less spatial
variability in long-term averaged OM/OC ratios across the
US (90% of our multiyear regressions estimate OM/OC ra-
tios between 1.37 and 1.94) than previous studies (90% fell
between 1.30 and 2.10). We attribute this difference largely
to the inclusion of EC as a covariate in previous regression
studies. Due to the colinearity of EC and OC, we find that up
to one-quarter of the OM/OC estimates in a previous study
are biased low. Assumptions about OC measurement arti-
facts add uncertainty to our estimates of OM/OC. In addition
to estimating OM/OC ratios, our technique reveals trends that
may be contrasted with conventional assumptions regarding
nitrate, sulfate, and soil across the IMPROVE network. For
example, our regressions show pronounced seasonal and spa-
tial variability in both nitrate volatilization and sulfate neu-
tralization and hydration.
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1 Introduction

Atmospheric measurements have shown that organic mass
(OM) is a major component of fine particulate matter
(PM2.5), comprising over 50% of ambient PM2.5 in some lo-
cations (Jimenez et al., 2009; Murphy et al., 2006; Zhang et
al., 2007). OM can be divided broadly into two components:
organic carbon (OC), and all other mass which we will here-
after refer to as non-carbon organic mass (NCOM). NCOM is
the largest component of ambient PM2.5 that is not routinely
measured. To achieve mass closure in source testing and am-
bient particle measurements, an OM/OC ratio (denoted ask

andROC in some earlier literature, Frank, 2006; Malm and
Hand, 2007) is often multiplied by measured OC to estimate
total OM. This ratio is primarily affected by the oxygen con-
tent in the organic aerosol (Pang et al., 2006), although hy-
drogen, nitrogen, and sulfur also make small contributions to
the NCOM.

The first estimate of OM/OC was made by White and
Roberts (1977), who calculated an average ratio of 1.4 for
specific organic compounds measured in Los Angeles. This
value was used widely until Turpin and Lim (2001) analyzed
a larger dataset to show that OM/OC is generally higher than
1.4. In recent years a range of techniques have been applied
to quantify OM/OC, including gas chromatography/mass
spectrometry (GC/MS) (Turpin and Lim, 2001; Yu et al.,
2005), high resolution time of flight aerosol mass spectrom-
etry (HR-ToF-AMS) (Aiken et al., 2008; Chan et al., 2010;
Sun et al., 2009), Fourier Transform Infrared (FTIR) spec-
troscopy (Gilardoni et al., 2007; Kiss et al., 2002; Liu et
al., 2009; Polidori et al., 2008; Reff et al., 2007; Russell,
2003; Russell et al., 2009), sequential extraction followed
by gravimetric weighing and thermal optical measurement of
carbon (El-Zanan et al., 2005, 2009; Lowenthal et al., 2009;
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Polidori et al., 2008), and coupled thermal gravimetric and
chemical analyses (Chen and Yu, 2007). Those studies have
contributed substantially to our understanding of NCOM in
many laboratory and field settings, but none of the techniques
have been applied over a broad temporal and spatial range.

Numerous PM2.5 constituents, including OC but not OM,
are measured routinely across two large US networks: the
Chemical Speciation Network (CSN) and the Interagency
Monitoring of Protected Visual Environments (IMPROVE)
network. A technique for computing OM from these net-
works could yield a comprehensive dataset of OM/OC ratios
covering a large spatial and temporal extent. Frank (2006)
developed the SANDWICH method to estimate OM from
measurements across the urban-centric CSN. He calculated
total OM as PM2.5 minus the sum of other components (sul-
fate, nitrate, ammonium, crustal material, and elemental car-
bon (EC)), while making adjustments for particle-bound wa-
ter (not measured directly) and nitrate volatilization. Unfor-
tunately, the uncertainty in OC data collected at CSN sites
prior to some major network changes in 2008 is comparable
to the uncertainty in OM/OC ratios (Watson, 2008). There-
fore, although the SANDWICH technique is useful for esti-
mating total OM, CSN data are not yet adequate for estimat-
ing OM/OC over large multiyear periods.

The IMPROVE network tracks visibility degradation in
national parks and wilderness areas via routine measure-
ments of PM2.5 mass and composition (Malm et al., 1994).
The network began with 36 monitoring sites in 1988,
and currently reports data from 178 remote and 13 urban
sites across the continental US, Hawaii, Alaska and the
Virgin Islands (http://vista.cira.colostate.edu/improve/Data/
IMPROVE/AsciiData.aspx). PM2.5 is collected on filters
for a 24-hour period (midnight to midnight) every third day.
The filters are subjected to a gravimetric analysis that mea-
sures total mass and various chemical analyses that measure
bulk composition. Specifically, OC and EC are measured by
the Thermal Optical Reflectance (TOR) combustion method;
SO2−

4 , NO−

3 , and Cl− by ion chromotograpahy; and elements
with atomic weights between sodium and lead by X-Ray Flu-
orescence (XRF). Table 1 summarizes the IMPROVE mea-
surements used for this paper and the filter medium on which
each particle component is collected. In addition to these di-
rect measurements, the network reports a reconstructed fine
mass (RCFM) concentration which is a weighted sum of se-
lected chemical constituents. RCFM was first calculated us-
ing Eqs. (1) and (2) (Malm et al., 1994), though our notation
differs slightly from the original publication.

RCFM= (NH4)2SO4+SOIL+EC+OM (1)

SOIL = 2.20Al+2.49Si+1.63Ca+2.42Fe+1.94Ti (2)

Ammonium sulfate ((NH4)2SO4) was calculated as
4.125× S (sulfur was measured by Particle Induced X-ray
Emission (PIXE) until 2002 and by XRF since then), SOIL
was approximated using Eq. (2) (assuming the soil in PM2.5

Table 1. Summary of measurement techniques and filter types
for each PM component included in the regression analyses. For
details, see Malm et al. (2004) and the IMPROVE data guide
(http://vista.cira.colostate.edu/improve/Publications/OtherDocs/
IMPROVEDataGuide/IMPROVEdataguide.htm).

Analyte Measurement Technique Filter Type

PM2.5 Gravimetric Teflon
Nitrate and Chloride Ion Chromatography Nylon
Si, S, K, Ca, Ti, and Fe X-Ray Fluorescence Teflon
OC and EC Thermal Optical Reflectance Quartz

samples mimics the average composition of sedimentary
rock), and OM was estimated as 1.4× OC. Changes to
the RCFM equation since 1994 include the addition of
more components (ammonium nitrate (NH4NO3), non-soil
potassium, and sea salt), modification of Eq. (2) to eliminate
Al, and an increase of OM/OC from 1.4 to 1.8 (McDade,
2008).

Although a network-wide OM/OC ratio is commonly used
to compute RCFM, a few studies have estimated site-specific
OM/OC ratios from IMPROVE data. El-Zanan et al. (2005)
describe a mass closure technique for calculating OM/OC,

OM

OC
=

PM2.5−((NH4)2SO4+NH4NO3+EC+SOIL+Other)

OC
(3)

in which “Other” is the sum of sodium, chlorine, and trace

elements measured by XRF that are not associated with soil
(Lowenthal and Kumar, 2003). Unfortunately, there are
many uncertainties associated with a mass closure analysis of
IMPROVE data. First, assumptions must be made about two
unmeasured PM2.5 components: ammonium and particle-
bound water. Since ammonium is not routinely measured at
IMPROVE sites, sulfate and nitrate are commonly assumed
to be fully neutralized by ammonium. Estimation of water
mass is complicated by the fact that filter samples are shipped
at ambient conditions and weighed in a laboratory where rel-
ative humidity (RH) is not controlled. Second, nitrate mea-
surements are made from particles collected on nylon filters
downstream of a HNO3 denuder, to which nitrate adheres
well, whereas PM2.5 weights are determined from Teflon fil-
ters, from which nitrate is known to volatilize (Hering and
Cass, 1999). The amount of volatilization from the Teflon fil-
ter depends on which cation the nitrate is bound to as well as
the temperature and RH during sampling, shipping, and anal-
ysis. Third, the IMPROVE soil equation relies on assump-
tions about the abundance and oxidation states of various
trace elements. Since soil composition is spatially heteroge-
neous, this equation may not accurately estimate the soil con-
tribution at all sites. Finally, OC measurement artifacts con-
tribute additional uncertainty because OC is measured from
quartz filters while OM is derived from gravimetric measure-
ments on Teflon filters. Differing tendencies among these
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two filter materials at retaining OM and/or adsorbing semi-
volatile organic gases may affect OM/OC estimates.

To overcome some shortcomings of the mass-closure ap-
proach, Malm and collaborators developed a multiple re-
gression technique to estimate OM/OC from 1988–2003 IM-
PROVE data (Hand and Malm, 2006; Malm et al., 2005;
Malm and Hand, 2007). They fit seven coefficients in Eq. (4)
using ordinary least squares (OLS) regression at each mon-
itoring site. Some notation in Eq. (4) has been changed
from that of Malm and Hand (2007) for consistency with the
present study.

PM2.5,i = β0+βOCOCi +βsulf(NH4)2SO4,i +βnitNH4NO3,i

+βsoilSOILi +βECECi +βseasalt×1.8Cl−i +εi (4)

The subscript,i, represents a day-specific sample andβ0 rep-
resents a site-specific intercept. The remainingβ coefficients
represent ratios of the mass associated with a given PM2.5
component on the Teflon filter when it was weighed to the
mass of that same component determined (or estimated) via
chemical analysis of a (possibly) separate filter. The residual
error (εi) denotes the difference between the measured PM2.5
mass and the estimated mass (based on fitted coefficients and
measured chemical components) for a particular sample. The
coefficient of most interest to us isβOC because it represents
OM/OC. This technique circumvents many of the assump-
tions needed for mass closure. For example,βOC is insensi-
tive to the degree of sulfate neutralization since the relative
abundance of ammonium would mainly affectβsulf. How-
ever, OC measurement artifacts can bias theβOC coeffiecient.

In this paper we develop a nationwide dataset of
seasonally- and spatially-varying OM/OC ratios across the
IMPROVE network by extending the methodology of Malm
and Hand (2007) while addressing some common pitfalls in
multiple regression. We discuss new quantitative insights
regarding the measurement artifacts associated with PM2.5
components other than OC (e.g. nitrate volatilization and wa-
ter associated with particulate sulfate), which are ancillary
benefits of our methodology. Finally, spatial and temporal
trends in OM/OC are reported and examined.

2 Methodology

Figure 1 shows a schematic of our methodology, with com-
plete details provided in this section.

2.1 General equation and dataset selection

We begin by making three minor modifications to Eq. (4).
First, we eliminate the intercept term (β0) and reduce the
number of explanatory variables (i.e., covariates) to four that
constitute the majority of PM2.5 and have large uncertainty
in their coefficient: OC, (NH4)2SO4, NH4NO3, and SOIL
(Eq. 5).

PM2.5,i = βOCOCi +βsulf(NH4)2SO4,i +βnitNH4NO3,i

+βsoilSOILi +ECi +1.8Cl−i +1.2KNONi +εi (5)

KNON = K −0.6Fe (6)

SOIL= 3.48Si+1.63Ca+2.42Fe+1.94Ti (7)

In contrast to Eq. (4), we assume that EC has no artifact and
set its coefficient to 1 because treating EC as a separate ex-
planatory variable can biasβOC (see Sect. 3.3 and Supple-
ment Sect. S3). Similar to Eq. (4), we estimate sea salt as 1.8
Cl− (Pitchford et al., 2007; White, 2008) but do not treat it as
an explanatory variable. Although 1.8 Cl− has been deemed
a good estimate of sea salt mass at coastal IMPROVE sites,
it may underestimate sea salt concentrations at inland loca-
tions where Cl− has been displaced from the aged sea salt.
However, this underestimation should not substantially af-
fect the regression results because sea salt contributes little
to PM2.5 mass at most inland locations. Second, we add
KNON to Eq. (5) for consistency with the newest IMPROVE
RCFM formula (McDade, 2008). KNON represents non-soil
potassium (e.g., from wood burning) and is calculated using
Eq. (6). The KNON coefficient is fixed at 1.2, the mass ratio
of potassium oxide to potassium. Although KNON is influ-
enced by soil composition (i.e., soil K/Fe ratio may deviate
from 0.6), it contributes a small enough mass to total PM2.5
that fixing its coefficient should not adversely affect the re-
gression as a whole. Third, we use an updated IMPROVE
soil equation (compare Eqs. 2 and 7) which eliminates alu-
minum from the calculation because Al is not reliably mea-
sured by the IMPROVE XRF analysis (McDade, 2008).

We downloaded the IMPROVE data fromhttp://views.
cira.colostate.edu/web/DataWizard/on 6 January 2010, and
analyzed the measurements collected at 186 continental US
sites between 1 January 2002 and 31 December 2008. All
analyses are performed using the R statistical software pack-
age (R Development Core Team, 2010). Like Malm and
Hand (2007), we segregate the data by monitoring site. In
addition, we segregate data by season: quarter 1 (January,
February, March), quarter 2 (April, May, June), quarter 3
(July, August, September), and quarter 4 (Octocber, Novem-
ber, December), because we expect the coefficients (i.e.,
OM/OC and nitrate volatilization) to vary seasonally. How-
ever, we could not justify the seasonal variability in soil coef-
ficients estimated from our initial analyses. For instance, the
variability in βsoil was not correlated to Asian dust plumes or
other seasonally varying dust sources. We therefore hold the
soil coefficient constant throughout the year by first perform-
ing a multiyear regression at each site using all data from
2002–2008 and then fixingβsoil in each quarter-specific re-
gression to theβsoil value obtained from the multiyear regres-
sion at that given site.

Within site- and quarter-specific datasets, the only data fil-
ter that we apply is completeness. If a major component in
Eq. (5) (i.e., PM2.5, OC, S, NO−

3 , Si, Ca, Fe, Ti, or EC)
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IMPROVE data (2002-2008):  
186 monitoring sites in the continental US 

Data from 153 monitoring sites 
 

153 multiyear regressions (Table S2) 

612 quarter-specific regressions  

605 quarter-specific regressions 

593 quarter-specific regressions 
 

Table S5: 511 high-confidence quarter-
specific regressions  
Table S6: 35 quarter-specific regressions 
flagged for a single outlier year or a 
temporal trend in εi

♦  
Table S7: 61 quarter-specific regressions 
with physically unrealistic coefficients+  
 

Eliminate sites with less than 105 days of complete 
data per quarter for PM2.5, S, NO3

-, Si, Ca, Fe, Ti, 
OC, or EC.  Set missing K and Cl- values to zero, but 

leave negative values unchanged. 
 

Perform one multiyear EiV regression for each site to 
obtain βsoil. 

 

Perform four quarter-specific EiV regressions for 
each site using βsoil from the multiyear regression for 

that site. 

Eliminate seven quarter-specific regressions 
exhibiting strong colinearity (|rP| > 0.85) between 

any two explanatory variables (Table S3) 

Eliminate twelve quarter-specific regressions with 
max |rS| >0.4 between εi and one or more PM 

components (Table S4) 

Flag suspect quarter-specific regressions which have:  
1) A temporal trend in residual error values,  
2) One outlier year in the data,  
3) One or more physically unreasonable coefficients 
in the quarter-specific regression, or  
4) A physically unreasonable soil coefficient from 
the multi-year regression 
 

♦ Table S6 includes 10 regressions flagged for an outlier year, yet deemed as high confidence and included in Table S5.  
+ Table S7 includes 4 regressions yielding physically unrealistic coefficients and low-confidence temporal trends, thus 

also appearing in Table S6.  
 

Fig. 1. Flow diagram outlining regression methodology used in this
work. Some results appear in multiple tables as indicated by the
footnotes.

is missing from a single site and sample, we eliminate the
whole date from that site. Missing data values for Cl− and
K are set to 0. All concentrations reported as negative values
are left as is. Finally, sites that do not have an average of at
least 15 days of complete data per quarter (i.e., 105 samples
for each quarter over the 7 year measurement period) for all
four quarters are eliminated from the analysis. This criterion
eliminates thirty-three sites. As shown in Fig. 1, we perform
one multiyear and four quarter-specific regressions for each
of the remaining 153 monitoring sites (i.e., 765 separate re-
gressions).

2.2 Physical interpretation of coefficients

When interpreting the coefficients in Eq.(5), it is important to
note that all results may be affected by changes in measure-
ment techniques and variability in the ambient conditions.
Therefore, readers are cautioned against over-interpreting re-
sults from a single regression and instead are encouraged to
use these results to understand spatial and temporal trends in
the coefficients. For each PM2.5 component, the regression
coefficient represents the ratio of retained mass associated
with that component on the Teflon filter (used for gravimet-
ric PM2.5 analysis) to the mass of that component derived

from chemical analysis. Here we describe how values differ-
ent than 1 may be interpreted and set bounds on physically
reasonable values for each coefficient.

The OC coefficient,βOC, should represent the OM/OC
ratio. We expect its lower bound to equal 1, representing
pure graphitic carbon with no associated hydrogen, oxygen,
or nitrogen mass. We expect the upper bound to equal 3.8,
which is at the upper end of OM/OC ratios for aliphatic di-
carbonyls (Turpin and Lim, 2001). It is possible to have a
higher OM/OC for some organic sulfates, but it is unlikely
that these compounds would contribute enough mass to raise
the overall OM/OC above 3.8. Typical OM/OC ratios for pri-
mary organic emissions are around 1.25 in vehicle exhaust
and 1.7 in wood smoke emissions (Reff et al., 2009). Mea-
surements of OM/OC from laboratory-generated secondary
organic aerosol (SOA) range from 1.4–2.7 (Chhabra et al.,
2010; Kleindienst et al., 2007). Ambient measurements of
OM/OC have shown a wide range of values in different loca-
tions. Aiken et al. (2008) report values between 1.4 and 2.5
in Mexico City and the surrounding areas during the spring
of 2006. Sun et al. (2009) report values ranging from 1.75 to
2.83 at Whistler Mountain in British Columbia, Canada also
in the spring of 2006. Finally, Huang et al. (2010) measured
OM/OC between 1.3 and 1.78 in Beijing in 2008. Although
we interpretβOC as equivalent to OM/OC, this former may
be skewed by two types of OC measurement artifact: nega-
tive artifacts occur when organic PM collected on the filter
volatilizes before chemical analysis and positive artifacts oc-
cur when organic vapors adsorb to the filter surface (McDow
and Huntzicker, 1990; Turpin et al., 1994).βOC will be influ-
enced further by differences in the sampling artifact on quartz
filters (used to measure OC) versus Teflon filters. These arti-
facts are discussed further in Supplement Sect. S3. It should
also be noted that OC is operationally defined. Here, OC is
measured with the IMPROVE TOR protocol, which is now
used at both CSN and IMPROVE network sites. Coefficients
reported in this paper should only be applied to OC measure-
ments derived using the same or equivalent methods.

A soil coefficient not equal to 1 could represent soil com-
positions differing from the average sediment used to de-
velop Eqs. (2) and (7).βsoil represents the actual soil mass
in the PM2.5 sample divided by the soil mass calculated from
Eq. (7). Simon et al. (2010) report that this ratio can range
from 0.41 to 1.63 based on soil compositions in the literature,
so these bounds are used to assess the physical reasonable-
ness ofβsoil.

A sulfate coefficient,βsulf, below 1 would indicate that
the assumption of dry ammonium sulfate over-estimates to-
tal sulfate mass in the samples. Incomplete neutralization
could cause such an over-estimate. The molar mass of am-
monium bisulfate (NH4HSO4) and sulfuric acid (H2SO4)

are 87% and 74% of the (NH4)2SO4 molar mass. There-
fore, 0.74 would seem like a reasonable lower bound for
βsulf. However, the sulfate mass in our regression is cal-
culated from an XRF sulfur measurement which can detect
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organo-sulfur atoms. A conservative lower bound could be
calculated assuming that all sulfur mass associated with or-
ganic molecules would be included in theβOC. Surratt et
al. (2008) report that up to 20% of sulfur may be contained
in these organic compounds, so we expect the lowest rea-
sonable value ofβsulf to equal 0.59 (0.74× 0.8) to capture
an admittedly extreme scenario in which all inorganic sul-
fate is in the form of sulfuric acid and 20% of the total sul-
fur is contained in organic compounds. A sulfate coefficient
above 1 would indicate that there is extra mass associated
with the particulate sulfate. This extra mass could come
from water if the aerosol remains hydrated during gravi-
metric analysis. During the history of the IMPROVE net-
work, RH in the gravimetric measurement laboratory was
only recorded intermittently. We obtained laboratory mea-
surements of RH during the gravimetric analysis of filters
collected from September 2003 to May 2005 and from May
to December of 2008 (personal communication, Charles Mc-
Dade, 2009). The maximum reasonableβsulf is estimated
using the 99th percentile of those measurements (i.e., 52%
RH). At this humidity, the AIM model (Wexler and Clegg,
2002) (available at:http://www.aim.env.uea.ac.uk/aim/aim.
php) computes hydrated (NH4)2SO4 to have 53% more mass
than dry (NH4)2SO4 and hydrated NH4HSO4 to have 32%
more mass than dry NH4HSO4. Therefore, 1.53 is a reason-
able upper bound forβsulf.

Nitrate coefficients less than 1 likely represent volatiliza-
tion of NH4NO3 from the Teflon filter prior to gravimet-
ric analysis. Hering and Cass (1999) report that the abso-
lute amount of nitrate volatilization is a function of RH and
temperature, but not ambient nitrate concentration (unless
the calculated nitrate loss exceeds the ambient nitrate avail-
able). Thus, a proportional coefficient captures the average
volatilization behavior reasonably well. Because a value of
0 (complete nitrate volatilization) would imply no statistical
relationship between nitrate mass and PM2.5 mass, a slightly
negativeβnit value caused by measurement error is just as
likely as a slightly positiveβnit value. Consequently, for each
regression performed, we set the lowest reasonable value for
βnit as 1.5 standard errors below 0 (calculation of standard
errors is described in the Supplement, Sect. S1.1). There
are 129 site/quarter groupings exhibiting negativeβnit val-
ues within 1.5 standard errors of 0. To show that these neg-
ative values really represent slight variations around 0, we
repeat each of these regressions without the nitrate term and
find thatβOC bandβsulf coefficients change by less than 3%
on average (noβOC and only sixβsulf coefficients change by
more than 5%). Aβnit greater than 1 indicates that the as-
sumption of dry NH4NO3 underestimates the actual nitrate
mass on the Teflon filter at the time of weighing. This would
occur either if the cation has a larger molar mass than ammo-
nium (e.g. Na) or if there is water associated with the nitrate
during weighing. Again a maximum reasonable value forβnit
is determined by computing increases in water mass at 52%
RH with the AIM model for both NH4NO3 and NaNO3. This

analysis shows that hydration can add 35% extra mass to the
nitrate, so 1.35 is a reasonable upper bound forβnit.

2.3 Effects of measurement uncertainty

Despite the aforementioned advantages of the regression
method, it is subject to several pitfalls. One is that mea-
surement uncertainty in the explanatory variables can bias
the regression coefficients. An OLS regression assumes that
explanatory variables are measured without error, but this
assumption conflicts with the reality of our application in
which measurement uncertainty is associated with all ex-
planatory variables: OC, (NH4)2SO4, NH4NO3, and SOIL.
For regressions with a single explanatory variable that is un-
certain, the coefficient is biased towards zero (Fuller, 1987;
Saylor et al., 2006; White, 1998). With multiple explanatory
variables, bias in the coefficients exhibits a complex depen-
dency on the relative uncertainties in various components,
the correlation between explanatory variables, the correla-
tion between measurement errors, and other factors. White
(1998) examined this problem in a simplified case with two
correlated explanatory variables of which one was measured
without error. For that case, he showed that the coefficient for
the perfectly measured explanatory variable was artificially
inflated while the other coefficient was diminished.

To evaluate this bias within the more complex conditions
of the present study, we analyze synthetic datasets that mimic
the IMPROVE data. Assuming that the actual values for
each measurement were exactly equal to the reported value,
we create 200 synthetic datasets for each site- and quarter-
specific dataset that represent “observed” data with error in
the explanatory variables. Errors are added by perturbing
the reported values of OC, sulfate, nitrate, and PM2.5 using
the reported uncertainty and assuming that “observed” val-
ues would be normally distributed around the actual value.
For each site- and quarter-specific dataset, we then perform
an OLS regression on the reported dataset and the 200 syn-
thetic datasets. The reported dataset is considered the “truth”
in this exercise, so OLS regression yields “true” coefficients
for comparison with the results from our synthetic datasets.
Results from one such analysis for a regression with typical
OLS biases (Gila Wilderness in New Mexico during quar-
ter 1) are shown in the left half of each plot in Fig. 2. The
dotted lines represent the “true” coefficients and the box plot
shows the distribution of coefficients obtained from the 200
synthetic datasets. Although the true value could be accu-
rately estimated from some synthetic datasets in this exam-
ple,βOC is typically under-estimated whileβsulf andβnit are
over-estimated.

To overcome the biases associated with the OLS assump-
tion of error-free explanatory variables, a class of methods
has been developed to explicitly account for the existence
of such errors; these are often collectively called measure-
ment error models or errors-in-variables (EiV) models. Such
methods typically assume that for all observations of each
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Fig. 2. Bias in regression coefficients caused by measurement er-
ror in synthetic datasets representative of Gila Wilderness, NM in
quarter 1. Horizontal dotted lines represent the “true” value of each
coefficient. The left box in each panel illustrates bias for OLS re-
gressions and the right box shows a greatly reduced bias after im-
plementing the errors-in-variables (EiV) regression method.

covariate, the errors are independent, identically distributed
and follow a normal distribution with mean zero and a fixed
(possibly unknown) standard deviation. In the IMPROVE
data, the standard deviation is not fixed because we have a
different estimated error associated with each observation of
a given covariate, which we take as the standard deviation
of the error distribution. To accommodate this added com-
plexity, we turn to an advanced measurement error model
described by Fuller (1987) (Sect. 3.1.2). The following dis-
cussion is based entirely on Fuller’s work, conforming to his
original notation as much as is feasible.

To begin, we defineYt as the value of the response vari-
able for observationt , such thatt = 1,2, . . . ,n, with n rep-
resenting the number of observations. For the multiyear re-
gression, this response is given by PM2.5 – (1.2 KNON + 1.8
Cl− + EC), and for the quarter-specific regression it is PM2.5
– (1.2 KNON + 1.8 Cl− + EC +βsoil SOIL). The row vector
Xt contains the observed values of the explanatory vari-
ables associated with observationt . The first element is
the observed value of OC, the next element corresponds to
(NH4)2SO4, the third is NH4NO3, and the fourth is SOIL.
(In the quarter-specific regression case, the SOIL component
is omitted.) Note that the order of these explanatory variables
mimics their order in Eq. (5) and is preserved in the various
mathematical representations of their coefficients, errors, etc.
which follow.

Additionally, we let
∑

uutt represent the covariance ma-
trix associated withXt . Assuming that errors in each co-
variate are independent, this is a diagonal matrix. The el-
ements along the diagonal contain the variance (square of

the error standard deviation) associated with the explanatory
variables, in the specified order. As an initial estimate for
the regression coefficients, we use the method-of-moments
estimator, the column vector̃β, given by Eq. (8)

β̃ =

[
n−1

n∑
t=1

(
X′

tXt −

∑
uutt

)]−1[
n−1

n∑
t=1

X′
tYt

]
(8)

Having obtained this initial estimate, we work to refine it,
as outlined by Fuller (1987). We define for each observa-
tion t the matrix

∑
aatt. This is also a diagonal matrix, with

the elements along the diagonal consisting of the variance
for the response followed by the variances for the explana-
tory variables in the specified order. We take the square of
the reported measurement uncertainty for each chemical con-
stituent in a particular sample as its variance. (Note that the∑

uutt featured in Eq. (8) is simply a submatrix of
∑

aatt.) We
also letZt represent the row vector containing the observed
response and the observed explanatory variables for eacht ;
i.e.,Zt = (Yt , Xt ). We then define the matricesM andA as

M =

n∑
t=1

6aattandA =

n∑
t=1

Z′
tZt

With these defined, we can now obtain an estimate of the
variance associated with the regression error, denotedσqq.
We first solve for the eigenvalues of the matrix product
M−1A. If the minimum of these eigenvalues is less than one,
thenσ̃qq is 0. Otherwise,̃σqq is given by Eq. (9):

σ̃qq=

n∑
t=1

[
(n−k)−1

(
Yt −Xt β̃

)2
−n−1

(
1,−β̃ ′

)
∑

aatt

(
1,−β̃ ′

)′]
(9)

Bothβ̃ andσ̃qq are then used to obtain an estimate of the error
associated with the linear relationship between the observed
(with error) response and covariates,σ̃vvtt (Eq. 10):

σ̃vvtt = σ̃qq+σwwtt + β̃ ′
∑

uuttβ̃ (10)

whereσwwtt is the measurement variance associated with the
response at timet . To obtain our final estimate,̂β, of the
regression coefficients, we combine the previous elements to
obtain Eq. (11):

β̂ =

[
n∑

t=1

σ̃−1
vvtt

(
X′

tXt −

∑
uutt

)]−1 n∑
t=1

σ̃−1
vvttX

′
tYt (11)

Hereβ̂ is a column vector containing our estimates ofβOC,
βsulf, βnit, and βsoil (for the multiyear regression). Fuller
(1987) also provides an estimator for the covariance matrix
of β̂. We use the diagonal elements of this matrix to ob-
tain the standard errors for our estimated regression coeffi-
cients. In the interest of brevity, we leave further discussion
of this variance estimate to the Supplement (Sect. S1). In
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addition, sample R code used to perform these regressions is
also supplied in Sect. S1.

We recognize that our method includes several assump-
tions. Perhaps most notable is the assumption that the mea-
surement errors are independent among all the covariates
and the response measured at a given date and location.
The method could be extended to include information about
the correlation between measurement errors, if such were
known. This would result in non-diagonal matrices

∑
uutt

and
∑

aatt. Another key assumption is that the measurement
error distributions are normal. If this is an unreasonable as-
sumption, we could explore more complex statistical models
that allow for nonnormal measurement errors, which are cur-
rently a subject of statistical research.

To demonstrate that this new technique reduces the bias in
coefficients, we reanalyze all of our synthetic datasets using
the EiV regression methodology. The results for quarter 1
data from Gila Wilderness are shown in the right-hand box
plots of Fig. 2. Clearly, the EiV method yields coefficients
that are much closer to the “truth” than the OLS methodol-
ogy. To confirm the generality of this result, Fig. 3 shows
the distribution of bias across all site- and quarter-specific
datasets. Substantial bias inβOC (under-prediction),βsulf
(over-prediction), andβnit (over-prediction) arise from the
OLS regression, but these biases are greatly mitigated with
the EiV technique. White (1986) provides a similar analy-
sis of regression performance using measurements from the
1981–1982 Western Regional Air Quality Study. His analy-
sis, which includes three explanatory variables (sum of ionic
sulfate, nitrate, and ammonium; organic carbon; sum of sil-
icon dioxide and calcium oxide), also found that correcting
for measurement uncertainty reduces bias in the coefficients.

Although the EiV methodology shows improved results,
it should be noted that additional error arises if the mea-
surement uncertainties are biased themselves. Hyslop and
White (2008) report some systematic biases in the measure-
ment uncertainty from XRF, ion chromatography, and TOR
carbon measurements at IMPROVE sites. If future updates
to the IMPROVE data include substantial changes to uncer-
tainty estimates for these components, it may warrant some
repetition of the present work. For all subsequent analyses
discussed in this paper, we apply the EiV method (instead of
OLS).

2.4 Statistical identification of high-confidence
regressions

After applying the EiV method to each multiyear and quarter-
specific dataset, it is tempting to begin examining spatial and
temporal patterns in the regression coefficients. However,
as emphasized by Malm and Hand (2007), “Regression co-
efficients are vulnerable to a variety of systematic and ran-
dom errors.” In this subsection, we establish some empir-
ical guidelines for flagging or eliminating datasets that do
not conform to Eq. (5). As summarized in the lower half of

Fig. 3. Distribution of bias in regression coefficients for quarter-
specific regressions at all IMPROVE sites. For each technique,
we compute the median bias from 200 synthetic datasets at
each site/quarter using ordinary least squares (blue) and errors-in-
variables regression (black) and plot the distribution of those me-
dian values across all 612 site- and quarter-specific regressions. The
red vertical line shows zero bias.

Fig. 1, these guidelines are subsequently applied to identify
regression results that can be used with “high confidence” for
applications such as air quality model evaluations, source-
apportionment analyses, epidemiology studies, and radiative
calculations.

2.4.1 Multicolinearity among explanatory variables

One requirement of our regression method (irrespective of
choosing EiV or OLS) is that all explanatory variables be
independent of each other. If any two PM2.5 components
are linearly related, the dataset is not suitable for regression
analysis because the technique may over-estimate one coef-
ficient and under-estimate another due to excess degrees of
freedom. To identify such datasets, Pearson correlation co-
efficients (rP) are calculated for all six couplings among the
four explanatory variables (OC, (NH4)2SO4, NH4NO3, and
SOIL) in each site- and quarter-specific dataset. We exam-
ine all datasets having any|rP| values greater than 0.65 and
look for cases in which the coefficient on one of the highly
correlated explanatory variables appears to be over-estimated
while the other appears under-estimated relative to the ranges
established in Sect. 2.2. For example, sulfate and nitrate from
4th quarter measurements at the Puget Sound monitoring site
are correlated withrP= 0.86. In that regression,βsulf = 0.83
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Fig. 4. Empirical selection of the 0.85 threshold|rP| value for iden-
tifying site- and quarter-specific regressions which may be biased
due to multicolinearity. See Sect. 2.4.1 for an explanation of what
constitutes a regression that is “suspect.” The 452 EiV regressions
with max|rP| < 0.65 were not examined when determining this em-
pirical threshold.

(lower end of its physically reasonable range) andβnit = 1.28
(higher end of its range). We regard such regression results
as “suspect.”

A summary of our analysis across all sites and quarters is
shown in Fig. 4, from which we determine that|rP| values
greater than 0.85 often indicate suspect results. We acknowl-
edge that our empirical approach for setting this thresh-
old value is not foolproof since (1) coefficients that appear
skewed may actually be accurate, and (2) some regressions
which are affected by co-linearity may not be identifiable
if the estimated coefficients fall well within their physically
reasonable ranges. However, our approach yields an easy-
to-use procedure for screening out regression results that
may be biased due to co-linearity in speciated PM2.5 data.
Seven quarter-specific datasets are eliminated from our anal-
ysis based on the max|rP| > 0.85 criterion (see list in Sup-
plement Table S3).

2.4.2 Assessing the fit of the regression model

A second requirement for accurate regressions is that the
equation used to fit coefficients is physically realistic. Based
on our knowledge of ambient aerosol across the US, Eq. (5)
includes all the essential PM2.5 components. However, if a
true coefficient for EC, Cl−, or KNON is substantially differ-
ent from our fixed coefficients for those species, the regres-
sion could be adversely affected. In addition, if the actual
SOIL coefficient varies greatly throughout the year at any
site, then our assumption of temporally-invariantβsoil could

Fig. 5. Example datasets in which residual error (εi) exhibits a
strong correlation with a PM2.5 component, indicating that Eq. (5)
is an unreliable representation of PM2.5 composition at these sites
during these quarters. Twelve regressions are eliminated because
max |rS| > 0.4, including examples shown here. See Sect. 2.4.2 for
a discussion of the negative Cl− values in(a).

also degrade the regression results at that site. Finally, if the
relationship between PM2.5 mass and any major chemical
component is nonlinear, our regression analysis will be in-
accurate. For instance, if OC artifact corrections were biased
high in clean conditions and vice versa, OC concentrations
would be negatively (positively) biased in clean (polluted)
conditions and the relationship between reported OC and to-
tal PM2.5 would be nonlinear.

To identify cases influenced by one or more of these phe-
nomena, we examine the residual errors (εi in Eq. 5) result-
ing from each site- and quarter-specific regression. Spear-
man rank order correlation coefficients (rS) are calculated
between theεi values and each species used in Eq. (5): OC,
S, NO−

3 , SOIL, EC, Cl−, and KNON. Any strong correla-
tion indicates that Eq. (5) is an inadequate representation of
PM2.5 at the given site/quarter. Examples are shown in Fig. 5.
Following this analysis, a criterion of|rS| > 0.4 is imposed to
eliminate 12 quarter-specific datasets that are likely affected
by the problems discussed above (see list in Supplement Ta-
ble S4). Nine of these datasets exhibit a strong correlation
betweenεi and Cl−, largely due to an abundance of nega-
tive Cl− concentrations in the underlying IMPROVE data.
The negative Cl− values in 2002 and 2003 were caused by
variability in filter blanks and a change of filter suppliers in
2004 corrected this problem (White, 2008). This exemplifies
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a need to understand the underlying data before interpreting
any results from a regression analysis.

2.4.3 Dataset selection and segregation

A third key element to obtaining meaningful regression co-
efficients from IMPROVE measurements is appropriate seg-
regation of data. For this analysis, data are grouped by sea-
son and monitoring site with the intention that samples taken
within each subset should yield fairly constant regression
coefficients. However, sites that are strongly influenced by
time-varying sources may not match our intent and therefore
may not be ideal input for the regression analyses. For in-
stance, a monitoring site that is impacted heavily on certain
days by wildfires and on other days by diesel traffic will ex-
hibit varying OM/OC ratios that violate our assumption of
constantβ coefficients by quarter.

To check for temporal trends or irregularities during our
7 year study period, residual error values were binned by year
and examined for each site- and quarter-specific dataset. This
analysis was designed to identify three possible problems:
(1) a one-time abrupt change inεi which could indicate a
change in measurement methods, (2) a monotonic temporal
trend inεi which could indicate changing aerosol characteris-
tics at the site possibly due to emission regulations, and (3) a
single year which shows vastly differentεi from other years
indicating that a distinct and infrequent event (e.g., forest fire
or abnormal meteorology) affected the monitoring site.

Visual inspection of all datasets shows no evidence
of problem 1. There was a change in EC and OC
measurement equipment between 2004 and 2005 (White,
2007) as well as a coincident change in the calibration
of the XRF sulfur measurements (White, 2009a). (De-
tails about these and other such changes to IMPROVE data
can be found athttp://vista.cira.colostate.edu/improve/Data/
QA QC/Advisory.htm). Despite these changes in OC, EC,
and sulfur, no shift in residual values is apparent between
2004 and 2005 for the network as a whole (see Fig. 6). That
year-to-year change is no greater than other inter-annual vari-
ations. Though we find no observable effect, we acknowl-
edge that any change in measurement techniques adds uncer-
tainty to our final results.

Seven site- and quarter-specific datasets exhibit temporal
trends in which median residual values or the inter-quartile
range of residual values either increase or decrease mono-
tonically from 2002–2008 (i.e., problem 2 outlined above).
One example is shown in Fig. 7a and all seven are listed in
Supplement Table S6. Further investigation of these datasets
by people with site-specific expertise would be worthwhile.
Though we report these 7 sets of regression coefficients, we
do not regard them as high-confidence results.

Finally, sites affected by an infrequent event are identi-
fied using two criteria: the inter-quartile range ofεi in a sin-
gle year does not overlap the inter-quartile ranges from any
other year; or the year with the broadest inter-quartile range

Fig. 6. Lack of systematic change in residual error values (εi) be-
tween 2004 and 2005 at the Sipsy Wilderness in Alabama, a site
with one of the highest OC concentrations. Inspection of the analo-
gous plots from other sites reveals no abrupt change inεi .

is greater than two times the second broadest inter-quartile
range. An example of each phenomenon is shown in Fig. 7b
and c. We re-run these regressions without the errant year
and report results from both the full and abridged datasets
in Table S6 of the Supplement. Of the 28 cases flagged, we
regard 10 as high-confidence results because none of their
coefficients are perturbed by more than 0.1 when the outlier
year is removed. These cases are shaded in gray in Supple-
ment Table S6 and also appear in Table S5. In the remain-
ing 18 cases, further examination of the underlying measure-
ments by site-specific experts is warranted.

3 Results

Table S2 in the Supplement shows our multiyear regression
results. Tables S5, S6, and S7 show coefficients for all
quarter-specific regressions along with standard error values,
normalized mean errors (NME), and normalized mean biases
(NMB). NME and NMB are calculated using Eqs. (12) and
(13). NMB and NME values are generally small (mean NMB
for all regressions in Tables S5, S6, and S7 =−0.2%, maxi-
mum absolute NMB = 2.6%, mean NME = 8.5%, maximum
NME = 22.6%) indicating that the IMPROVE data fit Eq. (5)
quite well.

NME =


n∑

i=1
|εi |

n∑
i=1

PM2.5,i

×100% (12)
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Fig. 7. (a) Residual error values (εi) from quarter 4 at Yosemite National Park show a monotonically increasing trend between 2002 and
2008. (b) In the quarter 2 regression of Northern Cheyenne data, the inter-quartile range ofεi in 2002 does not overlap with other years.
(c) There is a substantially larger spread inεi during quarter 3 at Bridgton, Maine in 2002 than in all other years.

NMB =


n∑

i=1
εi

n∑
i=1

PM2.5,i

×100% (13)

3.1 Physically unreasonable results

Only 7 of the multiyear regressions (i.e.,<5% of all IM-
PROVE sites) have a coefficient that is physically unrea-
sonable (see Table S2). Of these, 2 haveβsoil values (0.21
and 0.27) falling below those of known soil profiles (see
Sect. 2.2). Both lowβsoil values come from urban IMPROVE
sites (New York City and Washington DC). In these loca-
tions, there are likely non-soil sources of Si, Ca, Fe, or
Ti. For instance, residential wood combustion is a major
source of all four elements, on-road vehicle exhaust is a ma-
jor source of Si, Ca, and Fe, and surface coating operations
are a major source of Ti (Reff et al., 2009). In urban areas
where such sources may dominate, Eq. (7) would overesti-
mate total soil mass and might yield an erroneously low value
of βsoil. The other 5 problematic multiyear regressions have
low βnit values, for which the cause is unclear. We are never-
theless able to extract high-confidence values ofβOC at these
sites by using the multiyearβsoil value in our quarter-specific
regressions.

In total, 61 quarter-specific regressions (10%) have at least
one physically unreasonable coefficient (see Supplement Ta-
ble S7). The number of regressions with problematic coeffi-
cients is greatest in quarter 1 (n = 21) and quarter 3 (n = 22)
and least in quarters 2 and 4 (n = 13 andn = 5 respectively).
Problematicβsoil values from the multiyear regressions ac-
count for 8 of these (2 in each quarter).

Twenty of the 61 regressions with physically unrealistic
coefficients are due toβOC values less than one, 17 of which
occur in quarter 1. These lowβOC values may be caused by
errors in OC artifact correction, as discussed in Sect. 3.3 and
Supplement Sect. 3. Although the lowβOC values predomi-
nantly occur in quarter 1, this may be exacerbated by the fact
thatβOC values are lower in quarter 1 than in other quarters

(medianβOC in quarters 1, 2, 3, and 4 are 1.39, 1.83, 1.81,
and 1.59 respectively). Therefore, a slight low bias would
push more OM/OC ratios below 1 in the winter than in other
seasons.

Eighteen of the 61 problematic regressions are due to neg-
ativeβnit values that are more than 1.5 standard errors below
zero. Fourteen of these occur in quarter 3. There are two pos-
sible explanations for the high occurrence in quarter 3. First,
nitrate concentrations are generally low in the summer. In
quarter 3, network-wide median nitrate concentrations were
only 3% of median PM2.5 (versus 11% and 6% for quarter
1 and the annual average, respectively). When the mass of
an explanatory variable is low compared to the mass of other
PM2.5 components, the model fit is not very sensitive to large
changes in that coefficient. Second, these problematicβnit
estimations may be due to a large number of cases in quar-
ter 3 when all the nitrate volatilized from the Teflon filter
(see Sect. 2.2). The lower-bound for negativeβnit values (1.5
standard errors below 0) may be too conservative, leading
us to flag regressions in which nitrate volatilization is 100%
(i.e.βnit is essentially 0) as problematic.

The third most frequent error comes from highβnit values:
13 regressions estimateβnit > 1.35. In general these data
points have higher than average standard errors (the mean
nitrate standard error for these regressions is 0.50 while the
mean nitrate standard error for all site-specific regressions is
0.21). These large standard errors indicate highly uncertain
estimates ofβnit, possibly due to low nitrate concentrations.

Overall, 90% of our quarter-specific regressions yield
physically reasonable coefficients for all explanatory vari-
ables. This leaves 511 high-confidence regressions (see
Fig. 1) from which we can assess spatial and seasonal trends.

3.2 Spatial and temporal trends inβsoil, βsulf and βnit

Figure 8 shows the spatial pattern ofβsoil. Much of the coun-
try hasβsoil values near 1, confirming that Eq. (7) does a rea-
sonable job of estimating soil concentrations. Some notable
departures from this are high values displayed in orange and
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Fig. 8. βsoil at 153 IMPROVE sites.

red in the southwestern US and lower values (green and blue)
in much of the Midwest. Both of these are consistent with the
calculatedβsoil values for different soil types (Simon et al.,
2010). They reportβsoil values for desert soil between 1.25
and 1.4 andβsoil values for agricultural soil between 0.78 and
1.10.

In order to evaluate spatial and temporal trends forβsulf
andβnit, regression results are grouped by region, matching
the organizations designated by the EPA to address regional
haze (EPA, 2010). Hereafter, states included in WRAP,
CENRAP, LADCO, MANE-VU, and VISTAS will be re-
ferred to as the western, central, great lakes, northeast, and
southeast regions, respectively.

Maps of βsulf during each quarter are given in the Sup-
plement (Figs. S6–S9). Figure 9 shows a summary ofβsulf
values from 593 quarter-specific regressions. Apart from the
western region,βsulf follows a seasonal trend in which val-
ues are lowest in the winter (median values in the central,
southeast, great lakes, and northeast regions are 0.90, 0.92,
0.91, and 0.88, respectively) and highest in the summer (cor-
responding medians are 1.05, 1.04, 1.09, and 1.09). The me-
dian wintertime values less than 1 suggest that sulfate is not
fully neutralized by ammonium in quarter 1. The summer-
time values greater than 1 suggest wet sulfate. Further anal-
ysis presented in the Supplement Sect. S2 suggests that the
trends in Fig. 9 (excluding the western region) are reason-
ably explained by the seasonal variation in laboratory RH
where samples were weighed and by the degree of sulfate
neutralization.

Quarter-specific maps ofβnit are given in the Supplement
(Figs. S10–S13). Figure 10 summarizes the temporal and
spatial trends. In general,βnit values are lower (i.e. higher
percentages of nitrate is volatilized from the Teflon filter) in
locations and seasons where temperature is higher. For ex-
ample, the southeast is warmer, on average, than the rest of
the country throughout the year. Medianβnit in this region
are lower than all other regions in every quarter. Similarly,
summerβnit values are lower than winter values in all re-
gions. In addition, regions which experience the most dra-
matic seasonal temperature variations (central, great lakes,
and northeast) have the most dramatic variation in median

Fig. 9. Spatial and temporal trends inβsulf.

Fig. 10. Spatial and temporal trends inβnit.

βnit values. Finally we posit that any site whoseβnit value
is within 1.5 standard deviations of 0 is prone to total nitrate
volatilization. The number of sites falling into this category
increase from 6 in the winter to 71 in the summer, again
showing that more nitrate volatilizes in warmer months.
Since nitrate volatilization is governed by the temperature-
dependent nitrate equilibrium (Hering and Cass, 1999), this
behavior is expected. Figure 10 also exhibits a broad vari-
ability amongβnit values in quarter 3 which may be due, in
part, to low nitrate concentrations. This large variation cou-
pled with the large standard error forβnit in quarter 3 (me-
dian = 0.34, versus 0.06, 0.16, and 0.08 in other quarters) in-
dicate that the regression model is not precisely estimating
βnit in the summer months, though the seasonal variations in
βnit are believable.

3.3 OM/OC results

Our analyses of spatial and temporal trends inβsulf, βnit,
andβsoil show that they mostly can be explained by known
aerosol properties and sampling artifacts. Those results build
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Fig. 11.βOC values for quarter 1 (top) and quarter 3 (bottom). High
confidence results are depicted by circles, regressions with ques-
tionable residual trends are depicted by downward facing triangles,
and regressions with any physically unreasonable coefficient are de-
picted by upward facing triangles.

confidence in our estimates of the OM/OC ratio,βOC. Ta-
ble 2 summarizes the distribution ofβOC values across all
regions for all quarters. Table 2 and Fig. 11a show that win-
tertime OM/OC ratios are generally higher in the eastern US
than the West. MedianβOC values during quarter 1 in the
great lakes, southeast, and northeast regions are 1.58, 1.64,
and 1.51 respectively while the west and central regions ex-
hibit 1.29 and 1.32 respectively. Higher OM/OC ratios in the
eastern US may be a result of high residential wood smoke
emissions (see Fig. S10f of Reff et al., 2009). In addition,
high values in the southeast may be due to SOA, which is
more abundant in this region than in other US regions dur-
ing winter months (Yu et al., 2007). Figure 11b suggests that
OM/OC ratios in the summer do not vary substantially by re-
gion; medianβOC values are 1.80, 1.81, 1.93, 1.87, and 1.81
in the west, central, great lakes, southeast, and northeast re-
gions, respectively. The range ofβOC values within regions
is also quite consistent across the US during quarter 3 (see
Table 2). Maps ofβOC during quarters 2 and 4 are given in
the Supplement Fig. S14.

Seasonal variations inβOC can also be seen in Fig. 12,
which showsβOC values are generally higher during summer
than in winter. This is consistent with higher SOA concen-
trations in the summer and more aging of primary OC due
to higher oxidant concentrations than in winter. Although
this seasonal trend is seen at the vast majority of IMPROVE
sites, it is important to note that local conditions have caused
higher wintertimeβOC values in a small number of locations.
Regressions at only 12 sites yield higherβOC values in quar-
ter 1 than 3 (out of 146 available pairs). While the winter

Fig. 12. Comparison ofβOC values for quarters 1 and 3.

medians are low,βOC is more variable than in other seasons:
in quarter 1, 90% ofβOC values fall between 0.79 and 1.84;
in quarter 3, 90% fall between 1.44 and 2.08.

As mentioned in Sect. 2.2,βOC is influenced by differ-
ences in the OC sampling artifacts on quartz versus Teflon
filters. Whereas the literature is inconclusive regarding nega-
tive artifacts, quartz filters are more prone to positive artifact
than Teflon filters. The IMPROVE data include a network-
wide and month-specific correction for positive OC artifact
on the quartz filter, but no correction for the Teflon filter.
We evaluate the effects of site-to-site variability in positive
OC artifact (quartz filter) on our regression results (see Sup-
plement Sect. S3) and conclude that the network-wide arti-
fact correction does not substantially affect our estimates of
βOC. However, theβOC value could be skewed if (1) IM-
PROVE’s back-up filter method does not completely capture
all positive artifact on quartz filters, (2) Teflon filters have
non-negligible positive artifact, or (3) the magnitude of neg-
ative artifact differs on the quartz and Teflon filters. An in-
depth exploration of OC artifact is beyond the scope of this
paper, but these uncertainties should be kept in mind when
interpreting our regression results.

Our low wintertimeβOC estimates in the west and central
regions (medians near 1.3) suggest an aerosol dominated by
fresh, mobile-source emissions. Although oxidative aging
and SOA formation are limited in these regions during win-
ter, the US National Emissions Inventory indicates that other
PM sources (e.g., wood smoke) increaseβOC to 1.5 or 1.6.
Our lowβOC results may be a consequence of systematic bi-
ases in the reported measurement uncertainty, which the EiV
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Table 2. Summary ofβOC distributions across sites within quarter and region.

Region Quarter BOC Number of

5th 25th 50th 75th 95th regressions
percentile percentile percentile percentile percentile

West 1 0.67 1.07 1.29 1.43 1.76 90
West 2 1.36 1.66 1.81 1.91 2.14 87
West 3 1.33 1.66 1.80 1.88 2.04 86
West 4 1.22 1.43 1.57 1.68 1.88 87
Central 1 1.18 1.27 1.32 1.52 1.64 21
Central 2 1.59 1.69 1.78 1.87 2.10 21
Central 3 1.51 1.72 1.81 1.92 2.07 19
Central 4 1.37 1.45 1.53 1.64 1.90 21
Great Lakes 1 1.43 1.44 1.58 1.81 1.98 5
Great Lakes 2 1.83 1.83 1.94 1.95 1.97 5
Great Lakes 3 1.67 1.90 1.93 1.95 2.01 5
Great Lakes 4 1.31 1.31 1.48 1.61 1.61 5
Southeast 1 1.44 1.58 1.64 1.80 1.87 17
Southeast 2 1.50 1.76 1.89 2.00 2.16 16
Southeast 3 1.47 1.75 1.87 2.08 2.25 16
Southeast 4 1.42 1.60 1.67 1.75 1.83 17
Northeast 1 1.29 1.43 1.51 1.60 1.78 20
Northeast 2 1.23 1.74 1.87 2.01 2.09 19
Northeast 3 1.69 1.76 1.81 1.90 2.03 20
Northeast 4 1.07 1.49 1.57 1.67 1.85 16
all 1 0.79 1.20 1.39 1.58 1.84 153
all 2 1.39 1.69 1.83 1.94 2.15 148
all 3 1.44 1.72 1.81 1.91 2.08 146
all 4 1.24 1.44 1.59 1.68 1.87 146
all all 1.10 1.44 1.66 1.83 2.06 593

regression is dependent upon (see Sect. 2.3). Another pos-
sibility is that our lowβOC results are somehow tied to the
high wintertimeβsulf values in the western region, which we
are unable to explain (see Sect. 3.2).

3.4 Differences with previous regression estimates of
OM/OC

Differences between our methodology and that used by
Malm and Hand (2007), referred to hereafter as MH07, are
summarized in Table 3. A major difference is that we empha-
size seasonalβOC values, whereas MH07 focused on multi-
year regression results. Beyond that, it is interesting to ex-
plore which of our subtle revisions to the MH07 methodol-
ogy cause substantial changes inβOC. Figure 13 compares
βOC results from our multiyear regressions (Supplement Ta-
ble S2) with the MH07 results. OurβOC estimates at 37% of
sites differ from MH07 by more than 0.2, and 61% differ by
more than 0.1. Within each region, ourβOC estimates exhibit
less site-to-site variability than MH07. For example, our low
βOC values in the great lakes and southeast regions (5th per-
centile = 1.7 and 1.5, respectively) are higher than MH07 (1.4
and 1.3) despite similar medians. In addition, 95th percentile

βOC values in the west and central regions are lower in our
multiyear regressions (1.9) than in MH07 (2.1).

To isolate the main cause of these differentβOC results, we
perform a series of regressions, beginning with the approach
of MH07, that incrementally incorporates each methodolog-
ical revision listed in Table 3. The three parameters which
have the largest effect onβOC are the dataset download date,
the years analyzed (i.e. 1988–2003 vs. 2002–2008), and the
choice of explanatory variables (i.e. differences between
Eqs. 4 and 5). The use of EiV rather than OLS affectsβOC
to a smaller degree. Using S instead of SO2−

4 to calculate
ammonium sulfate and Eq. (7) instead of Eq. (2) to compute
SOIL has almost no effect on theβOC estimates. The down-
load dates are important because the IMPROVE data archive
is updated whenever errors are found. For example, his-
toric chlorine data were adjusted in November 2009 because
the original blank correction was deemed too low (White,
2009b). The large effect of the years analyzed may indi-
cate a long-term trend inβOC (about 64% of the sites have
higher βOC values when using 2002–2008 data than when
using 1988–2003 data), or result from changes to measure-
ment protocols and hardware which occurred during these
time periods. Taken together, the effects of download date
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Table 3. Differences between our regression methodology and that of Malm and Hand (2007).

Methodological Aspect Malm and Hand (2007) This work

IMPROVE dataset Download date: 3 Dec 2004 Download date: 6 Jan 2010
Years analyzed: 1988–2003 Years analyzed: 2002–2008

Data segregated by Monitoring site Monitoring site forβsoil
Monitoring site and quarter
for all other coefficients

Regression type Ordinary least squares Errors-in-variables

Response variable PM2.5 PM2.5 – (1.2KNON + 1.8Cl− + EC)

Intercept (β0) Included Excluded

Explanatory variables (NH4)2SO4,NH4NO3, OC, (NH4)2SO4,NH4NO3,
EC, SOIL, sea salt∗ OC, SOIL

Calculation of explanatory variables
(NH4)2SO4 = 1.37× SO2−

4 (NH4)2SO4 = 4.125× S

(SO2−

4 measured by ion chromatography) (S measured by XRF)
SOIL from Eq. (2) SOIL from Eq. (7)

∗ Note: Malm and Hand (2007) did not use sea salt as an explanatory variable at sites with very few available Cl− measurements: ADPI1, AGTI1, AREN1, BALD1, BOAP1,
BRLA1, CACR1, CADI1, CAPI1, CEBL1, CHER1, CHOI1, COHU1, CRES1, CRMO1, DEVA1, DOME1, ELDO1, ELLI1, FOPE1, GAMO1, GRGU1, HALE1, HEGL1, HOOV1,
IKBA1, JARI1, JOSH1, LASU1, LIGO1, LIVO1, LOST1, MACA1, MELA1, MING1, MKGO1, MOM1, MONT1, NEBR1, NOCH1, PMRF1, QUCI1, QURE1, QUVA1, SAFO1,
SAGA1, SAGU1, SAMA1, SAPE1, SENE1, SHRO1, SIKE1, SIPS1, SPOK1, SWAN1, TALL1, THBA1, THRO1, ULBE1, WHRI1, WICA1, WIMO1, ZION1.

Fig. 13. Comparisons ofβOC values reported by Malm and Hand
(2007) to multiyearβOC values from this work.

and years analyzed indicate a sensitivity ofβOC to changes
in the measurements and data processing methodology.

Next, we analyze which specific changes between Eqs. (4)
and (5) cause the largest difference inβOC values. We find
that accounting for KNON, removing the intercept (β0), and

fixing the Cl− coefficient to 1.8 have almost no impact on
βOC. However, fixing the EC coefficient to 1 changesβOC
by more than 0.2 at 15% of the sites. We attribute this sen-
sitivity to the fact that EC and OC are highly collinear in
the IMPROVE data (|rP| exceeds 0.85 and 0.65 at 20% and
88% of sites, respectively). These high correlations between
covariates imply that inclusion of EC as an explanatory vari-
able will likely attribute some EC mass toβOC or some OM
to βEC. In the Supplement (Sect. S3), we investigate our as-
sumption ofβEC = 1 and find that it has little impact on our
βOC estimates. However, we also find that MH07 grossly un-
derestimatedβOC at about1/4 of the IMPROVE sites due to
unrealistically large values ofβEC. This helps explain why
our 5th percentileβOC values are higher than MH07.

4 Summary and future work

This work has helped to develop a robust technique for es-
timating OM/OC ratios that can be applied to an expansive
dataset, such as the IMPROVE monitoring network data. Our
ability to estimate physically reasonable spatial and seasonal
trends inβsulf, βnit, andβsoil builds confidence in ourβOC
results. Furthermore, our major methodological improve-
ments include the use of an errors-in-variables regression
and the elimination of EC as an explanatory variable. These
two changes provide more realistic results and eliminate sub-
stantial biases from approximately1/4 of the regressions per-
formed by Malm and Hand (2007). The reader is cautioned
that all of our conclusions about OM/OC ratios rely on quartz
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and Teflon filter measurements and, hence, depend on ac-
curate and complete OC artifact corrections on both filter
types. Techniques for quantifying these artifacts are still an
active area of research. Comparison of ourβOC results with
other OM/OC estimation methods will be the subject of fu-
ture work.

In addition, this work has identified future areas of re-
search into the IMPROVE data. First, our analysis shows
that sulfate is often not fully neutralized so ammonium mea-
surements will greatly assist future mass closure efforts. Sec-
ond, nitrate volatilization appears to vary substantially by site
and season. A measurement study could be performed to
verify the nitrate volatilization estimates made here. In ad-
dition, samples could be shipped in refrigerated conditions
to prevent nitrate volatilization during transport. At a min-
imum, these results demonstrate the importance of record-
ing the temperature and RH to which filters are exposed
during sampling, transport, and measurement. Most impor-
tantly, this work has identified general temporal and spatial
trends in OM/OC ratios. We find that summertime OM/OC
ratios are larger than wintertime values across the US and
that winter values are larger in the eastern US than in the
West. Considering this work plus the results of Malm and
Hand (2007) and El-Zanan et al. (2005), users of the IM-
PROVE data should revise the common assumption of a fixed
network-wide OM/OC ratio when calculating reconstructed
fine mass.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/2933/2011/
acp-11-2933-2011-supplement.pdf.
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M. R., Pŕevôt, A. S.H., Dommen, J., Duplissy, J., Metzger, A.,
Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios

of primary, secondary, and ambient organic aerosols with high-
resolution time-of-flight aerosol mass spectrometry, Environ.
Sci. Technol., 42, 4478–4485,doi:10.1021/es703009q, 2008.

Chan, T. W., Huang, L., Leaitch, W. R., Sharma, S., Brook, J. R.,
Slowik, J. G., Abbatt, J. P. D., Brickell, P. C., Liggio, J., Li, S.-
M., and Moosm̈uller, H.: Observations of OM/OC and specific
attenuation coefficients (SAC) in ambient fine PM at a rural site
in central Ontario, Canada, Atmos. Chem. Phys., 10, 2393–2411,
doi:10.5194/acp-10-2393-2010, 2010.

Chen, X. and Yu, J. Z.: Measurement of organic mass to organic
carbon ratio in ambient aerosol samples using a gravimetric tech-
nique in combination with chemical analysis, Atmos. Environ.,
41, 8857–8864,doi:10.1016/j.atmosenv.2007.08.023, 2007.

Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Elemental analy-
sis of chamber organic aerosol using an aerodyne high-resolution
aerosol mass spectrometer, Atmos. Chem. Phys., 10, 4111–4131,
doi:10.5194/acp-10-4111-2010, 2010.

El-Zanan, H. S., Lowenthal, D. H., Zielinska, B., Chow, J. C., and
Kumar, N.: Determination of the organic aerosol mass to organic
carbon ratio in IMPROVE samples, Chemosphere, 60, 485–496,
doi:10.1016/j.chemosphere.2005.01.005, 2005.

El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., and Hansen,
D. A.: Analytical determination of the aerosol organic mass-
to-organic carbon ratio, J. Air Waste Manage., 59, 58–69,
doi:10.3155/1047-3289.59.1.58, 2009.

EPA regional planning orgnizations, available at:http://epa.gov/
visibility/regional.html#thefive, 2010.

Frank, N. H.: Retained nitrate, hydrated sulfates, and carbonaceous
mass in Federal Reference Method fine particulate matter for six
eastern US cities, J. Air Waste Manage., 56, 500–511, 2006.

Fuller, W. A.: Measurement error models, John Wiley & Sons, New
York, USA, 1987.

Gilardoni, S., Russell, L. M., Sotooshian, A., Flagan, R. C., Se-
infeld, J. H., Bates, T. S., Quinn, P. K., Allan, J. D., Williams,
B., Goldstein, A. H., Onasch, T. B., and Worsnop, D. R.: Re-
gional variation of organic functional groups in aerosol particles
on four US east coast platforms during the International Con-
sortium for Atmospheric Research on Transport and Transfor-
mation 2004 campaign, J. Geophys. Res.-Atmos., 112, D10S27,
doi:10.1029/2006jd007737, 2007.

Hand, J. L. and Malm, W. C.: Review of the IMPROVE equation
for estimating ambient light extinction coefficients – final report,
Colorado State University, CIRA, 146, 2006.

Hering, S. and Cass, G.: The magnitude of bias in the measurement
of PM2.5 arising from volatilization of particulate nitrate from
Teflon filters, J. Air Waste Manage., 49, 725–733, 1999.

Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y.,
Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang,
Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly
time-resolved chemical characterization of atmospheric submi-
cron particles during 2008 Beijing Olympic Games using an
Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos.
Chem. Phys., 10, 8933–8945,doi:10.5194/acp-10-8933-2010,
2010.

Hyslop, N. P. and White, W. H.: An evaluation of interagency mon-
itoring of protected visual environments (IMPROVE) collocated
precision and uncertainty estimates, Atmos. Environ., 42, 2691–
2705,doi:10.1016/j.atmosenv.2007.06.053, 2008.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prévôt, A. S.

www.atmos-chem-phys.net/11/2933/2011/ Atmos. Chem. Phys., 11, 2933–2949, 2011

http://www.atmos-chem-phys.net/11/2933/2011/acp-11-2933-2011-supplement.pdf
http://www.atmos-chem-phys.net/11/2933/2011/acp-11-2933-2011-supplement.pdf
http://dx.doi.org/10.1021/es703009q
http://dx.doi.org/10.5194/acp-10-2393-2010
http://dx.doi.org/10.1016/j.atmosenv.2007.08.023
http://dx.doi.org/10.5194/acp-10-4111-2010
http://dx.doi.org/10.1016/j.chemosphere.2005.01.005
http://dx.doi.org/10.3155/1047-3289.59.1.58
http://epa.gov/visibility/regional.html#thefive
http://epa.gov/visibility/regional.html#thefive
http://dx.doi.org/10.1029/2006jd007737
http://dx.doi.org/10.5194/acp-10-8933-2010
http://dx.doi.org/10.1016/j.atmosenv.2007.06.053


2948 H. Simon et al.: Determining the spatial and seasonal variability in OM/OC ratios across the US

H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe,
H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wil-
son, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laak-
sonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,
M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M.
J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,
Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick,
F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cot-
trell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S.,
Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel,
J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of
organic aerosols in the atmosphere, Science, 326, 1525–1529,
doi:10.1126/science.1180353, 2009.

Kiss, G., Varga, B., Galambos, I., and Ganszky, I.: Charac-
terization of water-soluble organic matter isolated from at-
mospheric fine aerosol, J. Geophys. Res.-Atmos., 107, 8339,
doi:10.1029/2001jd000603, 2002.

Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H.,
Lewis, C. W., Bhave, P. V., and Edney, E. O.: Estimates of
the contributions of biogenic and anthropogenic hydrocarbons to
secondary organic aerosol at a southeastern US location, Atmos.
Environ., 41, 8288–8300,doi:10.1016/j.atmosenv.2007.06.045,
2007.

Liu, S., Takahama, S., Russell, L. M., Gilardoni, S., and Baumgard-
ner, D.: Oxygenated organic functional groups and their sources
in single and submicron organic particles in MILAGRO 2006
campaign, Atmos. Chem. Phys., 9, 6849–6863,doi:10.5194/acp-
9-6849-2009, 2009.

Lowenthal, D. H. and Kumar, N.: PM2.5 mass and light extinction
reconstruction in IMPROVE, J. Air Waste Manage., 53, 1109–
1120, 2003.

Lowenthal, D., Zielinska, B., Mason, B., Samy, S., Sambourova,
V., Collins, D., Spencer, C., Taylor, N., Allen, J., Kumar,
N.: Aerosol characterization studies at Great Smoky Mountains
National Park, summer 2006, J. Geophys. Res.-Atmos., 114,
D08205,doi:10.1029/2008jd011274, 2009.

Malm, W. C. and Hand, J. L.: An examination of the
physical and optical properties of aerosols collected in
the IMPROVE program, Atmos. Environ., 41, 3407–3427,
doi:10.1016/j.atmosenv.2006.12.012, 2007.

Malm, W. C., Sisler, J. F., Huffman, D., Eldred, P. A., and Cahill,
T. A.: Spatial and seasonal trends in particle concentration and
optical extinction in the United States, J. Geophys. Res.-Atmos.,
99, 1347–1370, 1994.

Malm, W. C., Day, D. E., Carrico, C., Kreidenweis, S. M., Collett,
J. L., McMeeking, G., Lee, T., Carrillo, J., and Schichtel, B.:
Intercomparison and closure calculations using measurements
of aerosol species and optical properties during the Yosemite
Aerosol Characterization Study, J. Geophys. Res.-Atmos., 110,
D14302,doi:10.1029/2004jd005494, 2005.

McDade, C. E.: IMPROVE standard operating procedure, Crocker
Nuclear Laboratory, University of California, Davis, CASOP
351-2, 258, 14–18, 2008.

McDow, S. R. and Huntzicker, J. J.: Vapor adsorption artifact in
the sampling of organic aerosol – face velocity effects, Atmos.
Environ., 24A, 2563–2571, 1990.

Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew,
B. M., Middlebrook, A. M., Pelier, R. E., Sullivan, A., Thomson,
D. S., and Weber, R. J.: Single-particle mass spectrometry of tro-
pospheric aerosol particles, J. Geophys. Res.-Atmos., 111(15),
D23S32,doi:10.1029/2006jd007340, 2006.

Pang, Y., Turpin, B. J., and Gundel, L. A.: On the im-
portance of organic oxygen for understanding organic
aerosol particles, Aerosol Sci. Tech., 40, 128–133,
doi:10.1080/02786820500423790, 2006.

Pitchford, M., Malm, W. C., Schichtel, B., Kumar, N., Lowenthal,
D., and Hand, J.: Revised algorithm for estimating light extinc-
tion from IMPROVE particle speciation data, J. Air Waste Man-
age., 57, 1326–1336,doi:10.3155/1047-3289.57.11.1326, 2007.

Polidori, A., Turpin, B. J., Davidson, C. I., Rodenburg,
L. A., and Maimone, F.: Organic PM2.5 Fractionation
by polarity, FTIR spectroscopy, and OM/OC ratio for
the Pittsburgh aerosol, Aerosol Sci. Tech., 42, 233–246,
doi:10.1080/02786820801958767, 2008.

R Development Core Team: R: A language and environment for
statistical computing, R Foundation for Statistical Computing,
available at: http://www.R-project.org(last access: October
2010), ISBN 3-900051-07-0, Vienna, Austria, 2010.

Reff, A., Turpin, B. J., Offenberg, J. H., C. P., Weisel, Zhang, J.,
Morandi, M., Stock, T., Colome, S., and Winer, A.: A func-
tional group characterization of organic PM2.5 exposure: Re-
sults from the RIOPA study, Atmos. Environ., 41, 4585–4598,
doi:10.1016/j.atmosenv.2007.03.054, 2007.

Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mob-
ley, J. D., and Houyoux, M.: Emissions inventory of PM2.5 trace
elements across the United States, Environ. Sci. Technol., 43,
5790–5796,doi:10.1021/es802930x, 2009.

Russell, L. M.: Aerosol organic-mass-to-organic-carbon ra-
tio measurements, Environ. Sci. Technol., 37, 2982–2987,
doi:10.1021/es026123w, 2003.

Russell, L. M., Takahama, S., Liu, S., Hawkins, L. N., Covert,
D. S., Quinn, P. K., and Bates, T. S.: Oxygenated fraction and
mass of organic aerosol from direct emission and atmospheric
processing measured on the R/V Ronald Brown during TEX-
AQS/GoMACCS 2006, J. Geophys. Res.-Atmos., 114, D00F05,
doi:10.1029/2008jd011275, 2009.

Saylor, R. D., Edgerton, E. S., and Hartsell, B. E.: Linear regres-
sion techniques for use in the EC tracer method of secondary
organic aerosol estimation, Atmos. Environ., 40, 7546–7556,
doi:10.1016/j.atmosenv.2006.07.018, 2006.

Simon, H., Beck, L., Bhave, P. V., Divita, F., Hsu, Y., Luecken, D.,
Mobley, J. D., Pouliot, G. A., Reff, A., Sarwar, G., and Strum,
M.: The development and use of EPA’s SPECIATE database, At-
mos. Pollut. Res., 1, 196–206, 2010.

Sun, Y., Zhang, Q., Macdonald, A. M., Hayden, K., Li, S. M., Lig-
gio, J., Liu, P. S. K., Anlauf, K. G., Leaitch, W. R., Steffen, A.,
Cubison, M., Worsnop, D. R., van Donkelaar, A., and Martin,
R. V.: Size-resolved aerosol chemistry on Whistler Mountain,
Canada with a high-resolution aerosol mass spectrometer during
INTEX-B, Atmos. Chem. Phys., 9, 3095–3111,doi:10.5194/acp-
9-3095-2009, 2009.

Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W. H., Verylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan,
R. C., and Seinfeld, J. H.: Organosulfate formation in biogenic

Atmos. Chem. Phys., 11, 2933–2949, 2011 www.atmos-chem-phys.net/11/2933/2011/

http://dx.doi.org/10.1126/science.1180353
http://dx.doi.org/10.1029/2001jd000603
http://dx.doi.org/10.1016/j.atmosenv.2007.06.045
http://dx.doi.org/10.5194/acp-9-6849-2009
http://dx.doi.org/10.5194/acp-9-6849-2009
http://dx.doi.org/10.1029/2008jd011274
http://dx.doi.org/10.1016/j.atmosenv.2006.12.012
http://dx.doi.org/10.1029/2004jd005494
http://dx.doi.org/10.1029/2006jd007340
http://dx.doi.org/10.1080/02786820500423790
http://dx.doi.org/10.3155/1047-3289.57.11.1326
http://dx.doi.org/10.1080/02786820801958767
http://www.R-project.org
http://dx.doi.org/10.1016/j.atmosenv.2007.03.054
http://dx.doi.org/10.1021/es802930x
http://dx.doi.org/10.1021/es026123w
http://dx.doi.org/10.1029/2008jd011275
http://dx.doi.org/10.1016/j.atmosenv.2006.07.018
http://dx.doi.org/10.5194/acp-9-3095-2009
http://dx.doi.org/10.5194/acp-9-3095-2009


H. Simon et al.: Determining the spatial and seasonal variability in OM/OC ratios across the US 2949

secondary organic aerosol, J. Phys. Chem.-A, 112, 8345–8378,
doi:10.1021/jp802310p, 2008.

Turpin, B. J. and Lim, H.-J.: Species contributions to PM2.5 mass
concentrations: Revisiting common assumptions for estimating
organic mass, Aerosol Sci. Tech., 35, 602–610, 2001.

Turpin, B. J., Huntzicker, J. J., and Hering, S. V.: Investigation of
organic aerosol sampling artifacts in the Los Angeles basin, At-
mos. Environ., 28, 3061–3071, 1994.

Watson, J. G., Chow, J. C., Chen, L.-W. A., Kohl, S. D., Tropp,
R. J., Trimble, D., Chancellor, S., Sodeman, D., and Ozgen,
S.: Assessment of carbon sampling artifacts in the IMPROVE,
STN/CSN, and SEARCH networks, Desert Research Institute,
Reno, NV, 2008.

Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for
systems including the ions H$+, NH+

4 , Na+, SO2−

4 , NO−

3 ,
Cl−, Br−, and H2O, J. Geophys. Res.-Atmos., 107, 4207,
doi:10.1029/2001jd000451, 2002.

White, W. H.: On the theoretical and empirical-basis for apportion-
ing extinction by aerosols – a critical-review, Atmos. Environ.,
20, 1659–1672, 1986.

White, W. H.: Statistical considerations in the interpretation of size-
resolved particulate mass data, J. Air Waste Manage., 48, 454–
458, 1998.

White, W. H.: IMPROVE data advisory: Shift in EC/OC split with
1∼ January∼ 2005 TOR hardware upgrade, 2007.

White, W. H.: Chemical markers for sea salt in IM-
PROVE aerosol data, Atmos. Environ., 42, 261–274,
doi:10.1016/j.atmosenv.2007.09.040, 2008.

White, W. H.: IMPROVE data advisory, Inconstant bias in XRF
sulfur, 2009a.

White, W. H.: IMPROVE data advisory: Under-correction of chlo-
ride concentrations for filter blank levels – historical advisory,
Applies to downloads before 23 November 2009, 2009b.

White, W. H. and Roberts, P. T.: On the nature and origins of
visibility-reducing aerosols in the Los Angeles air basin, Atmos.
Environ., 11, 803–812, 1977.

Yu, L. E., Shulman, M. L., Kopperud, R., and Hildemann, L.
M.: Fine organic aerosols collected in a humid, rural loca-
tion (Great Smoky Mountains, Tennessee, USA): Chemical
and temporal characteristics, Atmos. Environ., 39, 6037–6050,
doi:10.1016/j.atmosenv.2005.06.043, 2005.

Yu, S., Bhave, P. V., Dennis, R. L., and Mathur, R.: Seasonal and
regional variations of primary and secondary organic aerosols
over the continental United States: Semi-empirical estimates
and model evaluation, Environ. Sci. Technol., 41, 4690–4697,
doi:10.1021/es061535g, 2007.

Zhang, Q., Jimenez, J. L., Canagartna, M. R., Allan, D., Coe,
H., Ulbrich, I., Alfarra, M. R., Takami, A. Middlebrook, A.
M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., De-
Carlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi,
T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y.,
Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., De-
merjian, K., William, P., Bower, K., Bahreini, R., Cottrell, L.,
Griffin, J. R., Rautianen, J., Sun, J. Y.,Z hang, Y. M., and
Worsnop, D. R.: Ubiquity and dominance of oxygenated species
in organic aerosols in anthropogenically-influenced Northern
Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801,
doi:10.1029/2007gl029979, 2007.

www.atmos-chem-phys.net/11/2933/2011/ Atmos. Chem. Phys., 11, 2933–2949, 2011

http://dx.doi.org/10.1021/jp802310p
http://dx.doi.org/10.1029/2001jd000451
http://dx.doi.org/10.1016/j.atmosenv.2007.09.040
http://dx.doi.org/10.1016/j.atmosenv.2005.06.043
http://dx.doi.org/10.1021/es061535g
http://dx.doi.org/10.1029/2007gl029979

