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Abstract. Carbon dioxide (CO2) and methane (CH4) are
the two most important anthropogenic greenhouse gases
contributing to global climate change. SCIAMACHY on-
board ENVISAT (launch 2002) was the first and is now
with TANSO onboard GOSAT (launch 2009) one of only
two satellite instruments currently in space whose measure-
ments are sensitive to CO2 and CH4 concentration changes
in the lowest atmospheric layers where the variability due to
sources and sinks is largest.

We present long-term SCIAMACHY retrievals (2003–
2009) of column-averaged dry air mole fractions of both
gases (denoted XCO2 and XCH4) derived from absorption
bands in the near-infrared/shortwave-infrared (NIR/SWIR)
spectral region focusing on large-scale features. The re-
sults are obtained using an upgraded version (v2) of the re-
trieval algorithm WFM-DOAS including several improve-
ments, while simultaneously maintaining its high processing
speed. The retrieved mole fractions are compared to global
model simulations (CarbonTracker XCO2 and TM5 XCH4)
being optimised by assimilating highly accurate surface mea-
surements from the NOAA/ESRL network and taking the
SCIAMACHY averaging kernels into account. The compar-
isons address seasonal variations and long-term characteris-
tics.

The steady increase of atmospheric carbon dioxide pri-
marily caused by the burning of fossil fuels can be clearly
observed with SCIAMACHY globally. The retrieved global
annual mean XCO2 increase agrees with CarbonTracker
within the error bars (1.80±0.13 ppm yr−1 compared to
1.81±0.09 ppm yr−1). The amplitude of the XCO2 seasonal
cycle as retrieved by SCIAMACHY, which is 4.3±0.2 ppm
for the Northern Hemisphere and 1.4±0.2 ppm for the South-
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ern Hemisphere, is on average about 1 ppm larger than for
CarbonTracker.

An investigation of the boreal forest carbon uptake during
the growing season via the analysis of longitudinal gradients
shows good agreement between SCIAMACHY and Carbon-
Tracker concerning the overall magnitude of the gradients
and their annual variations. The analysis includes a discus-
sion of the relative uptake strengths of the Russian and North
American boreal forest regions.

The retrieved XCH4 results show that after years of stabil-
ity, atmospheric methane has started to rise again in recent
years which is consistent with surface measurements. The
largest increase is observed for the tropics and northern mid-
and high-latitudes amounting to about 7.5±1.5 ppb yr−1

since 2007. Due care has been exercised to minimise the in-
fluence of detector degradation on the quantitative estimate
of this anomaly.

1 Introduction

The atmospheric concentrations of the two most important
anthropogenic greenhouse gases carbon dioxide (CO2) and
methane (CH4) have increased significantly since the start
of the Industrial Revolution and are now about 40% and
150%, respectively, higher compared to the pre-industrial
levels (Solomon et al., 2007). While carbon dioxide con-
centrations have risen steadily during the last decades, at-
mospheric methane levels were rather stable from 1999 to
2006 (Bousquet et al., 2006) before a renewed growth was
observed from surface measurements since 2007 (Rigby
et al., 2008; Dlugokencky et al., 2009). Further increase
of both gases is expected to result in a warmer climate
with adverse consequences, such as rising sea levels and
an increase of extreme weather conditions. A reliable pre-
diction requires an accurate understanding of the sources
and sinks of the greenhouse gases. Unfortunately, this
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is limited by the sparse ground-based measurements with a
lack of high-frequency surface observations in continental
regions particularly outside North America and Europe re-
sulting in large uncertainties (see, e.g.,Stephens et al., 2007).
However, satellite data, if accurate and precise enough, have
the potential to significantly reduce surface flux uncertain-
ties (Rayner and O’Brien, 2001; Houweling et al., 2004)
by deducing strength and spatiotemporal distribution of the
sources and sinks via inverse modelling which is based
on fitting the model emissions to the satellite observations.
High reduction of regional flux uncertainties additionally re-
quires high sensitivity to near-surface greenhouse gas con-
centration changes because the variability due to regional
sources and sinks is largest in the lowest atmospheric lay-
ers. Sensitivity to all altitude levels, including the bound-
ary layer, can be achieved using reflected solar radiation
in the near-infrared/shortwave-infrared (NIR/SWIR) spec-
tral region, whereas measurements of emissions in the ther-
mal infrared (TIR) available from, e.g., HIRS/TOVS (Chédin
et al., 2002, 2003), AIRS (Engelen et al., 2004; Engelen and
McNally, 2005; Aumann et al., 2005; Strow et al., 2006;
Maddy et al., 2008), IASI (Crevoisier et al., 2009a,b), and
TES (Kulawik et al., 2010) are primarily sensitive to middle
to upper tropospheric greenhouse gas concentrations. SCIA-
MACHY onboard ENVISAT (launch 2002) was the first and
is now with TANSO onboard GOSAT (launch 2009) (Yokota
et al., 2009) one of only two satellite instruments currently
in space which can benefit in this way from NIR/SWIR nadir
measurements. Both instruments cover important absorption
bands of both gases in this spectral range. Therefore, SCIA-
MACHY plays a pioneering role in the relatively new area
of greenhouse gas observations from space (Buchwitz et al.,
2005a,b, 2006, 2007; Schneising et al., 2008, 2009; Houwel-
ing et al., 2005; Bösch et al., 2006; Barkley et al., 2006a,c,b,
2007; Frankenberg et al., 2005, 2006, 2008a,b). In the case
of methane, SCIAMACHY data have already been incor-
porated in the modelling of emissions (Bergamaschi et al.,
2007, 2009; Bloom et al., 2010).

In this manuscript, long-term global carbon dioxide and
methane dry air column-averaged mole fraction data sets
from SCIAMACHY derived using Weighting Function Mod-
ified DOAS (WFM-DOAS) developed at the University of
Bremen are presented and discussed focusing on a com-
parison of their long-term behaviour and seasonal variation
with model simulations. The analysis constitutes seven years
(2003–2009) of greenhouse gas information derived from
European Earth observation data improving and extending
pre-existing WFM-DOAS retrievals (Schneising et al., 2008,
2009). Recently, another SCIAMACHY multi-year methane
data set has been generated independently (Frankenberg
et al., 2011).

This manuscript is organised as follows: in Sect.2 the
SCIAMACHY instrument and its measurement principle are
introduced and explained. This is followed by a short de-
scription of the improved WFM-DOAS retrieval algorithm

in Sect.3 focusing on the changes compared to the previous
version. The new SCIAMACHY long-term carbon dioxide
and methane data sets are discussed in Sect.4 and conclu-
sions are given in Sect.5.

2 The SCIAMACHY instrument

SCIAMACHY, which is a multi-national (Germany, The
Netherlands, Belgium) contribution to the European envi-
ronmental satellite ENVISAT, is a grating spectrometer that
measures reflected, backscattered and transmitted solar radi-
ation at moderate spectral resolution (0.2–1.4 nm) (Burrows
et al., 1990, 1995; Burrows and Chance, 1991; Bovensmann
et al., 1999). The spectral region from 214 nm to 1750 nm
is measured in six adjacent channels, and there are two ad-
ditional channels covering the regions 1940–2040 and 2265–
2380 nm. Each spectral channel comprises a grating focus-
ing optics and a 1024 element monolithic diode array. In
addition, SCIAMACHY has 7 broad band channels, the Po-
larisation Measurement Devices (PMD), which monitor the
upwelling radiation polarised with respect to the instrument
plane at high spatial resolution providing sub-pixel informa-
tion.

ENVISAT was launched into a sun-synchronous orbit
in descending node having an equator crossing time of
10:00 a.m. local time. During every orbit calibration mea-
surements are made during the eclipse, followed by a so-
lar occultation and limb atmospheric measurement. On
the Earth’s day side SCIAMACHY performs alternate nadir
and limb observations. These measurements can be in-
verted to obtain a large number of atmospheric data products
(Bovensmann et al., 1999) including the column amounts
of CH4, CO2 and O2 which are relevant for this study. As
a result of SCIAMACHY’s observation of greenhouse gas
overtone absorptions in the near-infrared/shortwave infrared
(NIR/SWIR) solar backscattered spectrum, SCIAMACHY
yields the vertical columns of CO2 and CH4 with high sen-
sitivity down to the Earth’s surface (Buchwitz et al., 2005a).
As the integration time for the detectors is optimised around
an orbit, the horizontal resolution of the nadir measurements
depends on orbital position and spectral interval, but is typi-
cally 60 km across track by 30 km along track for the spectral
fitting windows used in this study.

Overall, the in-flight optical performance of SCIA-
MACHY is very similar to that predicted from the pre-flight
on ground characterisation and calibration activities. There
is, however, a time dependent optical throughput variation in
the SCIAMACHY NIR/SWIR channel 7, which has many
resolved CO2 absorption features, and channel 8, which was
designated to be the main CH4 channel. This results from
the in-flight deposition of ice on the detectors. As ice ab-
sorbs and scatters at these wavelengths, this adversely af-
fects the trace gas retrievals by reducing the signal to noise
and changing the instrument slit function (Gloudemans et al.,
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2005; Buchwitz et al., 2005b). The WFM-DOAS results pre-
sented in this manuscript have been derived using CO2 and
CH4 absorption features in channel 6 (1000–1750 nm) and
the O2 A-band absorption in channel 4 (605–805 nm) which
are not affected by an ice-layer as their detectors operate at
higher temperatures. However, channel 6+ which is used for
the methane retrievals suffers from an increasing number of
dead and bad detector pixels including so-called random tele-
graph detector pixels which unpredictably jump between at
least two quasi-stable dark signal levels (Lichtenberg et al.,
2006; Frankenberg et al., 2011).

3 WFM-DOAS retrieval algorithm

The retrieval of a long-lived and therefore relatively well-
mixed gas such as carbon dioxide or methane is challeng-
ing as only the small variations on top of a large background
yield information on its surface sources and sinks. There-
fore, the retrieval algorithm has to meet the conflicting re-
quirements of accuracy and speed in order to process the
large amounts of data produced by SCIAMACHY. This is
achieved by the WFM-DOAS retrieval technique (Buchwitz
et al., 2000, 2005a,b; Buchwitz and Burrows, 2004) devel-
oped at the University of Bremen for the retrieval of trace
gases and optimised for CO2, CH4 and O2 retrievals using
a fast look-up table (LUT) scheme to avoid computation-
ally expensive online radiative transfer calculations. The al-
gorithm has been described in detail elsewhere (Buchwitz
et al., 2000, 2005a,b; Buchwitz and Burrows, 2004; Schneis-
ing et al., 2008, 2009). We therefore focus on a discussion
of the main differences between the current versions 2.0 and
2.1, which have been used to generate the data sets discussed
in this manuscript, and the previous version 1.0 (Schneising
et al., 2008, 2009). The version 2.1 differs from 2.0 in the ad-
ditional usage of the SCIAMACHY M-factors in the Level 0-
1b processing to compensate for the radiometric degradation
of the instrument (Bramstedt, 2008). An M-factor is defined
as the ratio between a measured solar spectrum at timet to
a reference spectrum obtained for the same optical path at
time t0. The M-factors are multiplicative factors to the abso-
lute radiometric calibration of SCIAMACHY.

3.1 Retrieval of carbon dioxide mole fractions

In order to convert the retrieved CO2 columns into column-
averaged mole fractions the CO2 columns are divided by the
dry-air columns obtained from the simultaneously measured
O2 columns obtained from the O2 A-band. The specific
changes compared to WFMDv1.0 (Schneising et al., 2008)
are:

– Use of spectra with improved calibration: Level 1 ver-
sion 6 instead of version 5 including application of M-
factors in the Level 0-1b processing.

– Use of improved spectroscopy: HITRAN 2008 (Roth-
man et al., 2009) instead of HITRAN 2004 (Rothman
et al., 2005).

– Modified static detector pixel mask.

– Use of an improved look-up table scheme, i.e., use of
an extended set of surface elevations (0 km, 1 km, 2 km,
3 km, 4 km, 5 km) and albedos (0.01, 0.03, 0.1, 0.3, 0.6,
1.0) covering all naturally occurring surface types by
means of interpolation.

– Use of a more realistic standard aerosol scenario in the
forward model (OPAC background scenario described
in Schneising et al., 2008, 2009).

– Processing of a longer time series: 2003–2009 instead
of 2003–2005.

– Use of SCIAMACHY Absorbing Aerosol Index v4.1
(Tilstra et al., 2007) instead of EarthProbe/TOMS AAI
(Herman et al., 1997) to filter strongly aerosol contami-
nated scenes, in particular desert dust storms.

– Change of full width at half maximum (FWHM) used
for the O2 reference spectra calculation from 0.45 nm
to 0.44 nm because of the associated improvement of fit
quality. The effect of changing the O2 FWHM is a re-
duction in the retrieved column amount by about 0.5%.

Due to small throughput losses of the detectors which are
slowly increasing with time exhibiting different character-
istics in the two spectral channels used for the CO2 (chan-
nel 6) and O2 (channel 4) column retrievals, the application
of the SCIAMACHY M-factors to compensate for detector
degradation ensures better XCO2 results concerning long-
term behaviour, e.g., for the retrieved mean annual carbon
dioxide growth rate. Without the consideration of the M-
factors the XCO2 growth rate would be biased low by a few
tenths of 1 ppm. According to this conclusion, all carbon
dioxide results presented in this manuscript are retrieved with
WFMDv2.1. The seasonal cycle amplitude of the northern
hemisphere is not affected by the M-factors, whereas the am-
plitude in the southern hemisphere is about 0.3 ppm smaller
when compensating for the radiometric degradation of the
instrument.

The single ground pixel retrieval precision derived from
averaging daily standard deviations of the retrieved XCO2
(Schneising et al., 2008) for 8 locations distributed around
the globe provides a consistent estimate of the single mea-
surement precision of about 6 ppm, respectively, which cor-
responds approximately to 1.5%.

3.2 Retrieval of methane mole fractions

In order to convert the retrieved CH4 columns into column-
averaged mole fractions the CH4 columns are divided by the
dry-air columns obtained from the simultaneously measured
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Fig. 1. Pixel masks used for the WFMDv2.0 methane retrieval. The
red line shows the CH4 absorption and the shaded regions indicate
bad pixels. Due to proceeding detector degradation in the spectral
range used for the methane column retrieval three different time pe-
riods are used. Since November 2005 only one remaining detector
pixel (#896) in the Q-branch (the spectral region where the strongest
absorption occurs) of the 2ν3 methane band is useable.

CO2 columns correcting for CO2 variability using Carbon-
Tracker. CO2 is used as a proxy for the air column instead
of O2 because of better cancellation of path length related re-
trieval errors. The specific changes compared to WFMDv1.0
(Schneising et al., 2009) are:

– Use of spectra with improved calibration: Level 1 ver-
sion 6 instead of version 5.

– Use of improved spectroscopy: HITRAN 2008 (Roth-
man et al., 2009) plus Jenouvrier et al., 2007H2O up-
date in the methane fitting window instead of HITRAN
2004 (Rothman et al., 2005).

– Modified static detector pixel masks for three different
time periods to get best possible results for the early
years and stability until end of 2009 at the same time
(see Fig.1).

– Use of an improved look-up table scheme, i.e., use of
an extended set of surface elevations (0 km, 1 km, 2 km,
3 km, 4 km, 5 km) and albedos (0.01, 0.03, 0.1, 0.3, 0.6,
1.0) covering all naturally occurring surface types by
means of interpolation.

– Use of a more realistic standard aerosol scenario in the
forward model (OPAC background scenario described
in Schneising et al., 2008, 2009).

– Processing of a longer time series: 2003–2009 instead
of 2003–2005.

– Optimisation of filter criteria.

– Use of CarbonTracker version 2010 instead of 2007 (Pe-
ters et al., 2007, 2010) to correct the retrieved methane
mole fractions for CO2 variability.

Due to proceeding detector degradation in the spectral
range used for the methane column retrieval, static detec-
tor pixel masks for three different time periods (see Fig.1)
are used to get best possible results for the early years and
stability until end of 2009 at the same time. Since Novem-
ber 2005 only one remaining detector pixel in the Q-branch
of the 2ν3 methane band, which is the spectral region in the
fitting window where the strongest absorption occurs, is use-
able. Therefore, the retrieval results since November 2005
are expected to be of reduced quality with regard to noise
compared to the prior time period where more Q-branch de-
tector pixels are available. Because of the increase of dead or
bad pixels, the filter criteria have to be changed for data after
October 2005 (third period) because the availability of con-
siderably fewer detector pixels automatically increases the fit
error. Therefore the filter criterion on the CH4 column fit er-
ror is relaxed for the third period to get a comparable amount
of retrievals classified as good. The quality filtering for this
period is additionally extended to restrict to land only scenes
and to filter out cloud contaminated scenes with a threshold
algorithm like in the case of XCO2 based on sub-pixel in-
formation provided by the SCIAMACHY Polarisation Mea-
surement Device (PMD) channel A covering the spectral re-
gion 310–365 nm in the UV.

As the CH4 and CO2 columns used for the computation of
the column-averaged mole fractions XCH4 are both retrieved
from neighbouring fitting windows in the same channel,
long-term throughput loss issues adversely affecting XCH4
(as in the case of XCO2) are only expected to a minor extent
because potential effects on the column growth rates cancel
out to first order when computing the CH4/CO2-ratio due to
similar radiometric degradation in both windows. Therefore,
and because of possible complications due to the relatively
large number of dead or bad detector pixels in the methane
fitting window, which could introduce additional uncertain-
ties in the M-factor calculation, e.g., due to random telegraph
pixels (see Sect.2 and discussion below), the M-factor ap-
proach is omitted for XCH4.

It has been identified that at times the WFMDv2.0 XCH4
results for specific orbits since 2005 suffer from outliers
(too high or too low values beyond natural variability), most
likely due to non-optimal dark signal correction caused by
random telegraph detector pixels in channel 6+. These pixels
jump spontaneously and unpredictably on varying timescales
between two or more quasi-stable levels of the dark current
leading to different detected signals for the same intensity.
Thus, the dark current during the SCIAMACHY measure-
ment on the day side may differ significantly from the ref-
erence dark current measured at the night side for affected
pixels. In these cases a wrong dark signal is subtracted from
the measurement. This results in retrieved total columns and
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Fig. 2. Annual composite averages of quality filtered WFMDv2.1 XCO2 for the years 2003–2009. Also shown are the corresponding global
means demonstrating the steady increase of the retrieved carbon dioxide with time. The standard error on the global means is about 0.01 ppm.
This estimate is confirmed by a bootstrapping technique.

mole fractions that are too high or too low, although the
fits are still good. Therefore, a filtering solely based on fit
residuals cannot exclude affected measurements. To exclude
corresponding orbits in the post-processing a threshold fil-
ter based on the absolute retrieved mole fractions has been
implemented. If the mean of all retrieval results of one or
more states in an orbit is less than 1600 ppb or greater than
1900 ppb, all measurements of this orbit are flagged bad. As
desired, this approach only filters orbits exhibiting systemat-
ically too high or too low values because the threshold test is
performed on the entire state and not on the single measure-
ment. This filter is complemented by excluding remaining
outlier orbits by visual inspection. However, over 90% of all
eventually filtered outlier orbits are already detected by the
automated state-based threshold algorithm. The correspond-
ing data product after filtering is denoted by WFMDv2.0.2
with which all methane results presented here are derived.

The single ground pixel retrieval precision derived from
averaging daily standard deviations of the retrieved XCH4
(Schneising et al., 2009) for 8 locations distributed around
the globe provides a consistent estimate of the single mea-
surement precision of about 30 ppb before November 2005
(70 ppb afterwards), respectively, which corresponds approx-
imately to 1.7% (4%).

4 Discussion of results

All SCIAMACHY spectra (Level 1b version 6 converted to
Level 1c by the ESA SciaL1C tool using the standard cal-
ibration) for the years 2003–2009 which have been made
available by ESA/DLR, have been processed using the im-
proved retrieval algorithm WFM-DOAS version 2.0/2.1. The
respective carbon dioxide and methane results are discussed
separately in the following subsections.

4.1 Carbon dioxide

The resulting annual composite averages of atmospheric
XCO2 after quality filtering for the years 2003–2009 are
shown in Fig.2 exhibiting similar patterns for all years
superposed by a steady quite homogeneous increase with
time. A significant part of the CO2 spatial variations shown
in Fig. 2 results from the irregular sampling of the SCIA-
MACHY XCO2. For example, the mid- and high-latitudes of
the Northern Hemisphere are strongly weighted towards late
spring, summer, and early autumn, where CO2 is known to be
much lower than for the (true) yearly average. This uneven
weighting is due to the significantly higher cloud cover in
winter but also because of larger solar zenith angles and snow
coverage. As a result, most of the mid- and high-latitude
measurements in winter are automatically filtered out by the
implemented quality filtering scheme.
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Fig. 3. Comparison of the SCIAMACHY (black) and Carbon-
Tracker (red) XCO2 for the Northern Hemisphere (top) and the
Southern Hemisphere (bottom) based on monthly means (coloured
circles). The standard error on the SCIAMACHY monthly means
is less than 0.1 ppm. The saturated solid lines have been smoothed
using a four-month Hann window (which has a similar frequency
response to a two-month boxcar filter but better attenuation of
high frequencies). The pale solid lines represent the correspond-
ing deseasonalised trends derived using a 12-month running mean.
Shown below are the derivatives of these deseasonalised curves
corresponding to the current increase at the considered point in
time. Also noted are yearly mean values of the derivatives (in pale
colours) as well as the mean value of the whole time period on the
right hand side.

4.1.1 Growth rate and seasonal cycle

To examine the increase with time and the seasonal cycle
more quantitatively the SCIAMACHY results are compared
to the CarbonTracker release 2010 assimilation system (Pe-
ters et al., 2007, 2010) based on monthly data. The Car-
bonTracker XCO2 fields as used for this study have been
sampled in space and time as the SCIAMACHY satellite in-
strument measures. The SCIAMACHY altitude sensitivity
has been taken into account by applying the SCIAMACHY
CO2 column averaging kernels (Buchwitz et al., 2005a) to
the CarbonTracker CO2 vertical profiles. For comparisons

Table 1. Mean amplitude of seasonal cycle and annual increase for
SCIAMACHY and CarbonTracker XCO2 for the two hemispheres
and other latitude bands (see main text for details).

Mean amplitude Annual increase
Latitude band seasonal cycle [ppm yr−1]

[ppm]
SCIA CT SCIA CT

Global 2.8±0.2 1.7±0.1 1.80±0.13 1.81±0.09
NH 4.3±0.2 3.0±0.1 1.82±0.16 1.79±0.12
SH 1.4±0.2 0.9±0.1 1.74±0.19 1.83±0.07

30◦ N–90◦ N 4.9±0.1 3.5±0.1 1.90±0.20 1.74±0.13
30◦ S–30◦ N 1.3±0.2 0.7±0.1 1.74±0.14 1.84±0.08
30◦ S–90◦ S 1.5±0.3 0.7±0.1 1.88±0.27 1.84±0.06

with CarbonTracker the SCIAMACHY CO2 data have been
scaled by a constant factor of 0.997 to compensate for a
small systematic bias between the two data sets. As can
be seen in Fig.3, the continuous increase with time on
both hemispheres is consistent with CarbonTracker. The an-
nual mean increase agrees with the model simulations within
the error bars, namely about 1.8±0.2 ppm yr−1 compared
to 1.8±0.1 ppm yr−1, respectively (see also Table1 and the
corresponding discussion below). Results of the first half
of 2003 are not shown in this figure due to changes of the
instrument settings, e.g., detector temperatures and field of
view (shift of nadir centre position and change of total scan
width), during the first third of 2003. These changes poten-
tially introduce small offsets in the data adversely affecting
this particular quantitative analysis with impact until midyear
because of the smoothing window used.

For the Northern Hemisphere we also find good agreement
of the phase of the CO2 seasonal cycle with the model result-
ing in a pronounced correlation of the two data sets (r=0.98).
In contrast to the Northern Hemisphere, the seasonal cycle is
less pronounced in the Southern Hemisphere and systematic
phase differences are observed leading to a somewhat smaller
correlation (r=0.91) which is, nevertheless, quite high due
to the observed consistent increase with time in both data
sets. The discrepancy of the phases in the Southern Hemi-
sphere can probably be ascribed to a large extent to the higher
weight on ground scenes with occurrences of subvisual thin
cirrus (induced by the restriction to land and the smaller
land fraction compared to the Northern Hemisphere). Cirrus
clouds are not explicitly considered in WFM-DOAS yet and
are hence a potential error source leading to a possible over-
estimation of the carbon dioxide mole fractions for scenes
with high subvisual cirrus fraction (Schneising et al., 2008).
This could also be an explanation for the presumably unreal-
istically large cycle of the carbon dioxide growth rate in the
Southern Hemisphere. The first promising results for syn-
thetic data obtained with a different approach which is based
on very time-consuming online radiative transfer calcula-
tions demonstrate that accurate retrievals are also possible in
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the presence of thin cirrus clouds (Reuter et al., 2010). This is
achieved by including selected cloud parameters in the state
vector. These findings indicate that cirrus can in principle
also be considered explicitly in the future in a look-up ta-
ble approach, even though it is not trivial to achieve suffi-
cient processing speed for a global long-term analysis like
the one presented in this manuscript. Although cloud pa-
rameters are not included in the state vector of the current
WFM-DOAS version, the influence of subvisual cirrus on
the retrievals is minimised resulting in much better agree-
ment with CarbonTracker compared to the previous WFM-
DOAS version especially in the Southern Hemisphere. The
achieved reduction of the amplitude of the seasonal cycle is
presumably a consequence of the interaction of the more re-
alistic default aerosol scenario, the application of M-factors
in the calibration, improved spectroscopy, and the change-
over to the SCIAMACHY Absorbing Aerosol Index. We
find that for both hemispheres the mean amplitude of the re-
trieved seasonal cycle is on average about 1 ppm larger than
for CarbonTracker deriving 4.3±0.2 ppm for the Northern
Hemisphere and 1.4±0.2 ppm for the Southern Hemisphere
from the SCIAMACHY data (see Table1). In contrast to
the growth rates, the seasonal cycle amplitude differences
between SCIAMACHY and CarbonTracker are significant.
The less pronounced seasonal cycle of CarbonTracker com-
pared to the satellite data might be explainable to some ex-
tent by a too low net ecosystem exchange (NEE) between the
atmosphere and the terrestrial biosphere; for exampleYang
et al., 2007estimate that NEE in the Northern Hemisphere
is about 25% larger than predicted by the CASA (Carnegie-
Ames Stanford Approach) biogeochemical model which is
also used in CarbonTracker. This underestimation is of the
same order of magnitude as the scaling needed to fit the am-
plitude of the northern hemispheric seasonal cycle of Car-
bonTracker to SCIAMACHY (≈38%, see Fig.4). On the
other hand, it cannot be completely excluded that undetected
seasonally varying thin cirrus clouds might also contribute to
some extent to the observed differences in the seasonal cycle
amplitudes because the seasonal cycle of the differences is
somewhat similar in the Northern and Southern Hemisphere
(see Fig.5).

The exact values of mean annual increase and amplitudes
of the seasonal cycle for both data sets and for both hemi-
spheres as well as for several other latitude bands are sum-
marised in Table1. The stated increase is derived from the
derivative of the deseasonalised trend as shown in Fig.3aver-
aged over the whole time period and the associated uncertain-
ties are estimated by a bootstrapping technique calculating
twice the standard deviation of a set of growth rates obtained
by random sampling of the original growth rate time series
with replacement. Both data sets agree within their error
bars regarding annual atmospheric carbon dioxide increase.
According to NOAA/ESRL (http://www.esrl.noaa.gov/gmd/
ccgg/trends/) the average annual mean global carbon dioxide
growth rate of marine surface sites which are assimilated in

Fig. 4. Least-squares fit of CarbonTracker to SCIAMACHY XCO2
for the Northern Hemisphere after subtraction of the deseasonalised
trend with a scaling factor as fit parameter showing that an up-
scaling of 38% is needed to fit the amplitude of the seasonal cycle
of CarbonTracker to SCIAMACHY.

Fig. 5. Difference of the smoothed SCIAMACHY and Carbon-
Tracker XCO2 of Fig. 3 for both hemispheres.

CarbonTracker for the relevant time period of Fig.3 (2004–
2009) is 1.89 ppm yr−1 with an estimated uncertainty in the
annual mean growth rate of 0.07 ppm yr−1. However, due to
the application of the SCIAMACHY averaging kernels, the
age of air issue with growth rates of the past mixing in at high
altitudes, uncertainties in the transport, and the considera-
tion of the SCIAMACHY sampling in space and time, these
surface results cannot be compared directly to the column-
averaged results presented here leading to larger uncertain-
ties of CarbonTracker and to differing absolute values of the
mean global growth rate compared to the surface data. Nev-
ertheless, the value of the surface growth rate agrees within
errors with the global SCIAMACHY and CarbonTracker re-
sults underlining the consistency of both data sets.
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Fig. 6. Selection of the regions for the boreal forest carbon dioxide uptake analysis. The global conifer distribution can be extracted using
specific thresholds on the retrieved albedos in the three WFM-DOAS fitting windows (O2, CO2, and CH4). The fitting windows, used
thresholds, and spectral albedos of typical natural land surface types (reproduced from the ASTER Spectral Library through the courtesy of
the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (©1999, California Institute of Technology) and the
Digital Spectral Library 06 of the US Geological Survey) are shown in(a) demonstrating that only conifers pass the three window spectral
albedo threshold filter. The deduced boreal forest extent is illustrated in(b). The highlighted region is used for the following analysis because
it covers the bulk of the boreal forest area of the planet and the individual parts are equally sized and span the same latitude range ensuring
similar solar zenith angles for the corresponding SCIAMACHY measurements.

The mean amplitude of the seasonal cycle is obtained
by subtracting the deseasonalised trend from the smoothed
curve and averaging the resulting amplitudes for all available
years denoting the standard deviation as error. The amplitude
of the seasonal cycle of the SCIAMACHY data is increasing
in the Northern Hemisphere with higher latitudes in good
qualitative agreement with CarbonTracker. Quantitatively,
the differences of the amplitude values of the mid- and high-
latitudes (30◦–90◦) and the whole hemisphere are consistent
for the SCIAMACHY and CarbonTracker data amounting to
about 0.5 ppm for the Northern Hemisphere. The absolute
differences in the amplitudes of the retrieved and modelled
seasonal cycle are on the order of 0.5–1.5 ppm for all speci-
fied zonal averages.

4.1.2 Boreal carbon uptake

Another related aspect we analysed is the boreal forest car-
bon uptake during the growing season and its local partition-
ing between North America and Eurasia. To this end, we
studied longitudinal gradients of atmospheric carbon diox-
ide during May–August (the period between the maximum
and minimum of the seasonal cycle), which are the basic sig-
nals to infer regional fluxes, using the region motivated in
Fig. 6 consisting of equally sized regions in North America
and Russia covering the bulk of the boreal forest area of the
planet. When an air parcel flows over the boreal forest, more
and more carbon is steadily taken up by the growing vege-
tation leading to a gradient parallel to wind direction with
smaller values at the endpoint compared to the starting point.
Due to the fact that the prevailing wind direction in mid- to

high-latitudes is from west to east, one would expect a nega-
tive west-to-east longitudinal gradient for the considered re-
gion because the air masses are mainly moving according to
this wind direction over the uptake region. The absolute val-
ues of the derived gradients depend on the actual fine struc-
ture of the wind fields (temporary deviations from the pre-
vailing wind direction).

The gradients are derived by calculating meridional aver-
ages of seasonally averaged (May–August) SCIAMACHY
and CarbonTracker XCO2 as a function of longitude (in 0.5◦

bins) and linear fitting the corresponding west-to-east gra-
dient weighted according to the standard deviations of the
meridional averages (see Fig.7). The associated error is de-
rived from the square root of the covariance of the linear
fit parameter. The gradients for the whole considered time
period 2003–2008 are listed in Table2 showing that the re-
sults for SCIAMACHY and CarbonTracker agree within er-
ror bars in the overall region and the North American part
and that the gradients in the Russian part differ by only
0.1 ppm (100◦)−1 when taking the error bars into account.
For the overall boreal forest region the respective longitu-
dinal gradients which are linked to total flux strength are
in good agreement amounting to−2.5±1.7 ppm (100◦)−1

for SCIAMACHY and−2.3±0.6 ppm (100◦)−1 for Carbon-
Tracker. However, the SCIAMACHY data suggest that the
main contribution to the gradient comes from the North
American part of the region in contrast to CarbonTracker
pointing to the Russian part.
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Fig. 7. Linear fits of the west-to-east longitudinal gradients of sea-
sonally averaged (May–August) SCIAMACHY (black) and Car-
bonTracker (red) XCO2 during 2003–2008 for(a) North Amer-
ica and(b) Russia weighted according to the standard deviations
(shaded areas) of the meridional averages (0.5◦ bins). The associ-
ated errors are derived from the square root of the covariance of the
linear fit parameter.

The longitudinal gradients and their errors for the individ-
ual years are illustrated in Fig.8. As expected, most of the
gradients are negative. Taking the error bars into account the
only significant positive longitudinal gradient occurs 2003
in Russia. Interestingly, this is true for SCIAMACHY and
CarbonTracker indicating that there actually might have been
something special in this region in this year. This could be
potentially linked to the special meteorological situation dur-
ing 2003 with one of the hottest summers on record in Eu-
rope. The gradients derived from SCIAMACHY and Car-
bonTracker show very similar inter-annual variations. The
absolute values of the gradients are in good agreement for
the combined North American and Russian boreal forest re-
gion (Fig. 8a). For North America (Fig.8b) the gradients
observed by SCIAMACHY are systematically larger (more
negative) compared to CarbonTracker. However, both data
sets agree within their error bars. For Russia (Fig.8c) the
single-year gradients also agree within their error bars but
the observed gradients are systematically smaller (less neg-

Table 2. West-to-east longitudinal gradients of 2003–2008 XCO2
during the growing season (May–August) for the regions of Fig.6.
Also shown are the corresponding gradients for the shorter time pe-
riod June–August minimising uncertainties due to potential regional
timing errors in the onset of the forest uptake in the CASA model.

Longitudinal gradient Longitudinal gradient
May–August June–August

Boreal forest [ ppm (100◦)−1] [ ppm (100◦)−1]
SCIA CT SCIA CT

Overall region −2.5±1.7 −2.3±0.6 −2.4±1.7 −2.1±0.6
North American part −4.1±1.9 −1.5±0.8 −3.5±1.8 −1.6±0.6

Russian part −0.9±1.6 −3.1±0.5 −1.3±1.5 −2.6±0.5

ative) compared to CarbonTracker. Thus, the satellite data
suggest a stronger North American boreal forest CO2 uptake
than CarbonTracker and a weaker Russian boreal forest CO2
uptake. There is no obvious reason for assuming that this
indication concerning the regional partitioning of the longi-
tudinal gradients is affected by potential biases of the satel-
lite data: errors caused by light path variations or residual
spectroscopic errors (Schneising et al., 2008) are expected to
have only a minor effect on the inferred gradients over these
regions because the observations are taken at similar solar
zenith angles and surface albedos and because the gradients
do not depend on the absolute values of the retrieved XCO2
but only on regional differences.

The suggested difference between CarbonTracker and
SCIAMACHY concerning the relative strengths of the Rus-
sian and North American boreal forest uptake might be
linked to the recent finding ofKeppel-Aleks et al., 2010
that modified CASA flux strengths and timings of the sea-
sonal cycle introduce differences in corresponding gradients.
Therefore, a potential regional timing error in the onset of
the forest uptake in the CASA model might contribute to the
difference between CarbonTracker and SCIAMACHY ob-
served here. This potential contribution to the differences can
be minimised by averaging over shorter time periods starting
later. Actually, the restriction to June–August reduces the
differences between CarbonTracker and SCIAMACHY con-
cerning the relative regional uptake strengths to some extent
and the gradients agree within error bars in all regions (see
Table2) indicating that regional timing uncertainties in the
onset of the boreal forest uptake in the CASA model can con-
tribute to the observed differences of the longitudinal gradi-
ents. This result is consistent withKeppel-Aleks et al., 2010.
However, the qualitative findings concerning regional parti-
tioning remain the same.

Figure9 shows the spatial pattern during the growing sea-
son which leads to the derived longitudinal gradients of the
North American boreal forest slice discussed above. Also
depicted are the gradients based on the shown smoothed
patterns derived by fitting linear combinations of a Gaus-
sian and a quadratic polynomial to the SCIAMACHY and
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Fig. 7. Linear fits of the west-to-east longitudinal gradients of sea-
sonally averaged (May–August) SCIAMACHY (black) and Car-
bonTracker (red) XCO2 during 2003–2008 for (a) North Amer-
ica and (b) Russia weighted according to the standard deviations
(shaded areas) of the meridional averages (0.5◦ bins). The associ-
ated errors are derived from the square root of the covariance of the
linear fit parameter.

Fig. 8. Annual west-to-east longitudinal XCO2 gradients from
SCIAMACHY (black) and CarbonTracker (red) for boreal forests
during the growing season to infer the corresponding carbon diox-
ide uptake of the terrestrial biosphere. The examined boreal forest
region is composed of the two equally sized regions in North Amer-
ica and Russia shown in green which was motivated in Fig. 6. The
gradients and associated errors are illustrated for (a) the overall re-
gion (mean of the partial regions) and (b) the North American and
(c) Russian part individually.

Fig. 8. Annual west-to-east longitudinal XCO2 gradients from
SCIAMACHY (black) and CarbonTracker (red) for boreal forests
during the growing season to infer the corresponding carbon diox-
ide uptake of the terrestrial biosphere. The examined boreal forest
region is composed of the two equally sized regions in North Amer-
ica and Russia shown in green which was motivated in Fig.6. The
gradients and associated errors are illustrated for(a) the overall re-
gion (mean of the partial regions) and(b) the North American and
(c) Russian part individually.

CarbonTracker data. However, Fig.10 shows using the ex-
ample of North America that there is also a complex curved
north-south gradient during the growing season due to trans-
port in the atmosphere which makes a direct translation of
the differences in the observed partitioning of the longitudi-
nal gradients to total flux strength difficult. In this context it
has to be noted that linear fits might be insufficient to capture
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Fig. 9. Seasonally averaged (May–August) SCIAMACHY (top)
and CarbonTracker (bottom) XCO2 during 2003–2008 over the
North American boreal forest slice motivated in Fig. 6 showing the
spatial pattern during the growing season which leads to the longi-
tudinal gradients of Fig. 7a. The middle panel shows the gradients
based on the smoothed pattern shown here derived by fitting linear
combinations of a Gaussian and a quadratic polynomial.

Fig. 9. Seasonally averaged (May–August) SCIAMACHY (top)
and CarbonTracker (bottom) XCO2 during 2003–2008 over the
North American boreal forest slice motivated in Fig.6 showing the
spatial pattern during the growing season which leads to the longi-
tudinal gradients of Fig.7a. The middle panel shows the gradients
based on the smoothed pattern shown here derived by fitting linear
combinations of a Gaussian and a quadratic polynomial.

the more complex structure of the gradients in the latitudi-
nal case. Therefore, Fig.10 shows fits of linear combina-
tions of a Gaussian and a quadratic polynomial to the two
data sets analogue to Fig.9. The longitudinal/latitudinal fits
of Figs.9 and10 for SCIAMACHY and CarbonTracker are
highly correlated (r = 0.90 in the longitudinal andr = 0.99
in the latitudinal case), although SCIAMACHY seems to be
more sensitive to changes in the meridional/zonal averages.

4.2 Methane

Figure11 shows quality filtered annual composite averages
of atmospheric XCH4 for the years 2003–2009. Clearly vis-
ible are major methane source regions and the interhemi-
spheric gradient. Due to proceeding detector degradation in
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Fig. 10. Seasonally averaged (May–August) SCIAMACHY (left) and CarbonTracker (right) XCO2 during 2003–2008 over North America
demonstrating that there is also a complex curved north-south gradient in the atmosphere during the growing season. The corresponding
latitudinal gradients derived by fitting linear combinations of a Gaussian and a quadratic polynomial are shown in the middle panel as solid
black and red lines together with the standard deviations (shaded regions) of the zonal XCO2 averages (0.5◦ bins). The dash-dotted pale
straight lines are linear fits of the gradients.

Fig. 11. As Fig.2 but for WFMDv2.0.2 XCH4. Due to proceeding detector degradation in the spectral range used for the methane column
retrieval and the corresponding availability of considerably fewer detector pixels the results since November 2005 exhibit larger scatter (see
also Fig.12). For this reason and because of the larger noise over oceans the results after October 2005 are restricted to land only. As can be
seen, after years of near-zero growth, the globally averaged atmospheric methane started to increase again in recent years. The standard error
on the global means is about 0.04 ppb before 2006 and 0.07 ppb since 2006. These estimates are confirmed by a bootstrapping technique.
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Fig. 12. Monthly means of northern hemispheric SCIA-
MACHY WFMDv2.0.2 XCH4 and corresponding standard devia-
tions demonstrating that the scatter since the pixel mask alteration at
the end of October 2005 is on average about twice as large. Never-
theless, the seasonal cycle of the monthly means can still be clearly
observed.

the spectral range used for the methane column retrieval and
the corresponding availability of considerably fewer detector
pixels the results since November 2005 are of reduced qual-
ity manifesting itself in particular by larger scatter. Figure12
demonstrates using the example of the Northern Hemisphere
that the standard deviation of the monthly means since the
pixel mask change at the end of October 2005 is on average
about twice as large. Nevertheless, the seasonal cycle of the
monthly means can still be clearly observed. The pixel mask
alteration at the end of October 2005 might potentially also
introduce systematic regional biases; e.g., it seems that the
tropical enhancement relative to the surrounding areas is less
pronounced 2006–2009 compared to 2003–2005 indicating
that the magnitude of the retrieved tropical methane enhance-
ment not only depends on the used spectroscopic parameters
in the forward model (Frankenberg et al., 2008b; Schneis-
ing et al., 2009; Bergamaschi et al., 2009) but also on the
detector pixel mask used. This is supported by the fact that
a reanalysis of a subset of pre-2005 data (November 2004)
with the pixel mask from November 2005 provides latitudi-
nal averages similar to later years with less methane in the
tropics (see Fig.13). The analysis of the global mean val-
ues shows that after years of near-zero growth, atmospheric
methane started to increase again in recent years which is
qualitatively consistent with the findings ofRigby et al., 2008
andDlugokencky et al., 2009for surface methane concentra-
tions. In this context it has to be pointed out that a static pixel
mask is used for 2006–2009 containing only detector pixels
that are not turning dead or bad during this period (accord-
ing to the flagging provided by SRON which is available for
Orbits until March 2009) to ensure that the observed growth
is not artificially introduced by proceeding detector degrada-
tion. This is also supported by the fact that the fit quality is
stable for the whole considered time period 2003–2009 indi-
cating that there are actually no dead or bad detector pixels
which are not excluded in the used pixel mask approach.

Fig. 13. Reanalysis of a subset of pre-2005 data (November 2004)
with the pixel mask since November 2005 (shown in dashed blue)
providing monthly latitudinal averages similar to later years with
less methane retrieved in the tropics. This suggests that the pixel
mask alteration potentially introduces systematic regional biases.

To examine this renewed methane increase in recent years
more quantitatively Fig.14 shows the temporal evolution of
retrieved SCIAMACHY methane based on monthly means
as well as the corresponding deseasonalised trend and its
derivative for both hemispheres analogue to Fig.3 for carbon
dioxide. The already mentioned larger scatter since Novem-
ber 2005 due to the decreased number of usable detector pix-
els is also observed in the monthly data. This is in particu-
lar true for the Southern Hemisphere where the stricter filter
criteria accompanying the pixel mask change lead to con-
siderably fewer measurements available for the computation
of the monthly means because of the additional exclusion of
scenes over oceans and the relatively small land mass frac-
tion. Nevertheless, the renewed methane growth is visible in
Fig. 14 for both hemispheres.

The anomaly since 2007 is derived from the difference of
the mean values of the derivative of the deseasonalised trend
after and before middle of 2006. To avoid a possible dis-
tortion of the analysed curves due to potentially introduced
systematic regional biases caused by the alteration of the de-
tector pixel mask at the end of October 2005, all values over
a period of plus or minus 6 months from this date are not
considered in the calculation of the mean value before 2007.

It would be desirable to have model simulations for the
whole time period 2003–2009 for a quantitative comparison
of the respective anomalies. In this study we use Scenario
S1 ofBergamaschi et al., 2007(based on the NOAA surface
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Fig. 14.As Fig.3 but for WFMDv2.0.2 XCH4. The anomaly (num-
bers on the right border) is defined as the difference of the mean
values of the derivative of the deseasonalised trend after and before
middle of 2006. Values one year around the detector pixel mask al-
teration end of October 2005 (indicated by the dotted lines) are not
considered because systematic offsets due to the change are poten-
tially distorting the deseasonalised trend (obtained by smoothing)
and its derivative. As the TM5 model is only available for 2003,
the corresponding values are repeated every year to study the am-
plitudes of the seasonal cycles and the impact of sampling on the
observed anomaly because it is expected to be zero for the repeated
model if there is no sampling influence. Hence, the anomaly of the
model is a lower bound of the error of the observed SCIAMACHY
anomaly. To assess the expected absolute values and temporal evo-
lution of the increase at least approximately, the SCIAMACHY
data are also compared to the deseasonalised trend of the Marine
Boundary Layer reference matrix derived using NOAA/ESRL sur-
face measurements averaged over the respective hemisphere (blue).
The MBL reference data through 2009 are preliminary.

measurements) of the TM5 model (Krol et al., 2005). Un-
fortunately, the TM5 model data set is currently only avail-
able for 2003. The corresponding values are repeated ev-
ery year to study at least the seasonal behaviour. For this
analysis the SCIAMACHY data are scaled with 0.995 to be
on the same level as the model data in 2003. The TM5
fields as used for this study have been sampled in space
and time as the SCIAMACHY satellite instrument measures.
The SCIAMACHY altitude sensitivity has been taken into

account by applying the SCIAMACHY CH4 column aver-
aging kernels to the model vertical profiles. Of course, the
expected anomaly since 2007 for this yearly repeated model
is zero. Nevertheless, a deviation from zero is a measure of
the impact of sampling in particular due to the different fil-
ter criteria after October 2005; e.g., the restriction to land
leads to a smaller seasonal cycle for the Southern Hemi-
sphere being visible in both the satellite and model data.
Hence, the anomaly of the model is a lower bound of the
error of the observed SCIAMACHY anomaly. Neglecting
other possible error sources the anomaly of SCIAMACHY
XCH4 amounts to 8.2±0.5 ppb yr−1 for the Northern Hemi-
sphere and 5.4±0.6 ppb yr−1 for the Southern Hemisphere.
The contribution of the restriction to land after October
2005 to the sampling error of the anomalies is smaller
than 0.2 ppb yr−1 as estimated by additionally restricting to
land for the whole time series and comparing the respec-
tive anomalies to the previously derived values. Hence, the
potential error of the anomalies induced by using land and
ocean scenes before and land only scenes after the end of
October 2005 is small. This is a reasonable result because
the amount of available data over the ocean is comparatively
thin, anyway.

To assess the expected absolute values and temporal evolu-
tion of the increase at least approximately, the SCIAMACHY
data are also compared to the Marine Boundary Layer ref-
erence matrix derived using NOAA/ESRL surface measure-
ments from sites which are believed to be representative
of large well-mixed marine air masses (Dlugokencky et al.,
2010) and the data extension and integration techniques de-
scribed byMasarie and Tans, 1995. The MBL reference
data through 2009 are preliminary. As the phase of the sea-
sonal cycle of methane can differ for column-averaged and
surface data, only the deseasonalised trends for the hemi-
spheric averages of the MBL reference matrix are shown in
Fig. 14. The deseasonalised trends of the satellite and sur-
face data are in reasonable to good agreement in particular
for the Northern Hemisphere when considering the different
absolute values of the data sets because surface data are al-
ways higher than column-averaged data (note the differenty-
axes). The derived surface anomaly values of 11.0 ppb yr−1

for the Northern Hemisphere and 7.7 ppb yr−1 for the South-
ern Hemisphere are only a coarse estimate of the magnitude
of the expected hemispheric column-averaged anomalies as
seen by SCIAMACHY due to the limitations of comparabil-
ity between surface and satellite trends already explained in
the discussion of the carbon dioxide results. In conformity
with expectations the actual corresponding SCIAMACHY
values stated above are smaller than for the surface measure-
ments. Additionally, the northern hemispheric anomalies for
both data sets are higher than for the Southern Hemisphere
(about 3 ppb yr−1 in both cases) further indicating that the
values derived from the satellite data are consistent with the
surface measurements and seem reasonable.
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Table 3. Mean amplitude of seasonal cycle and observed annual
anomaly since 2007 for SCIAMACHY and TM5 XCH4 for the two
hemispheres and other latitude bands. The anomaly of the model
(2003 repeated) is an estimate of the impact of sampling because it
is expected to be zero and is therefore a lower bound of the error of
the SCIAMACHY anomaly.

Mean amplitude Anomaly
Latitude band seasonal cycle since 2007

[ppb] [ppb yr−1]
SCIA TM5(2003) SCIA TM5(2003)

Global 13.4±4.0 9.8±2.9 7.4 −0.4
NH 13.7±2.6 9.3±0.3 8.2 −0.5
SH 8.5±5.3 8.5±1.7 5.4 −0.6

30◦ N–90◦ N 12.4±8.0 11.2±0.8 6.6 −0.6
30◦ S–30◦ N 7.3±3.7 5.1±0.9 8.2 −0.2
30◦ S–90◦ S 10.6±1.2 8.5±3.1 4.4 0.0
0◦ N–30◦ N 17.2±1.9 10.8±1.0 9.1 −0.4
0◦ S–30◦ S 6.1±2.7 5.2±0.3 5.8 −0.5

According to Table3, where also the results for other zonal
averages are listed, the largest increase of the SCIAMACHY
data is observed for the tropics and northern mid- and high-
latitudes (≈7.5±1.5 ppb yr−1 since 2007). This is consistent
with Dlugokencky et al., 2009. The analysis of the seasonal
variations shows that the mean amplitudes of the seasonal cy-
cles of the SCIAMACHY data and the TM5 model typically
differ by less than 4 ppb for the analysed latitude bands.

5 Conclusions

This manuscript presented and discussed a long-term (2003–
2009) global data set of atmospheric carbon dioxide and
methane column-averaged dry air mole fractions retrieved
from the spectral near-infrared/shortwave-infrared nadir ob-
servations of the SCIAMACHY instrument onboard the Eu-
ropean environmental satellite ENVISAT using the improved
version 2.0/2.1 of the scientific retrieval algorithm WFM-
DOAS.

To assess the quality of the data, we have performed com-
parisons with NOAA’s global assimilation system Carbon-
Tracker for carbon dioxide as well as with the TM5 model
and surface measurements for methane focusing on seasonal
variations and long-term increase. The amplitudes of the
seasonal cycles of the satellite retrievals for the considered
zonal averages are typically higher than for the model data:
about 0.5–1.5 ppm for CO2 and typically less than 4 ppb for
CH4. The corresponding phases are generally in reason-
able to good agreement with the exception of southern hemi-
spheric XCO2. This systematic difference is ascribed to sea-
sonally varying subvisual thin cirrus cloud cover.

The continuous CO2 increase with time is obvious in
both the SCIAMACHY data and the CarbonTracker reanal-

ysis product. The retrieved global annual mean increase
agrees with CarbonTracker within the error bars amounting
to 1.80±0.13 ppm yr−1 compared to 1.81±0.09 ppm yr−1.
To further examine the differences in the values of seasonal
amplitude and to quantify the relative accuracy of the data,
comparisons with independent column-averaged mole frac-
tion data from ground-based Fourier Transform Spectrom-
eters (FTS) are intended for the future. However, such a
quantitative comparison will not be trivial due to the different
averaging kernels of WFM-DOAS and FTS influencing the
respective absolute amounts of retrieved seasonal variability
and annual increase. Therefore, the differing sensitivities of
the instruments have to be taken into account appropriately.

The investigation of the longitudinal gradients for boreal
forests during the growing season being valuable to infer re-
gional fluxes shows good agreement between SCIAMACHY
and CarbonTracker concerning inter-annual variability and
absolute values of the gradients for the overall region cov-
ering the bulk of the boreal forest area of the planet. The
satellite results point to a stronger North American boreal
forest uptake and a weaker Russian boreal forest uptake com-
pared to CarbonTracker, although the yearly gradients deter-
mined from the two data sets agree within their error bars. In
consistency withKeppel-Aleks et al., 2010our analysis in-
dicates that regional timing uncertainties in the onset of the
boreal forest uptake in the CASA model which is used in Car-
bonTracker can contribute to the observed differences of the
longitudinal gradients. However, due to the additional co-
existence of complex curved varying north-south gradients
in the atmosphere no strong conclusions about the regional
partitioning of total flux strength can be drawn in the end.

The SCIAMACHY methane data are consistent with sur-
face measurements reporting a renewed increase of atmo-
spheric CH4 after years of near-zero growth. The largest re-
trieved increase from the SCIAMACHY data is observed for
the tropics and northern mid- and high-latitudes amounting
to about 7.5±1.5 ppb yr−1 since 2007. However, a compar-
ison of the anomaly with long-term column-averaged model
data would be more suited to quantify the expected increase
of the satellite data than the comparison based on surface data
presented here. Therefore, it is planned for the future to com-
pare the increase more quantitatively with the TM5 model
being optimised versus the highly accurate surface measure-
ments from the NOAA/ESRL network once the model runs
are available for the whole time period 2003–2009 to assess
the quality of the absolute values of the retrieved anomaly in
more detail.

Future research will also analyse to what extent the larger
noise on the methane data since November 2005 caused by
detector degradation adversely affects the retrieval results
when focusing on more regional applications which unavoid-
ably leads to fewer measurements being available for aver-
aging. In this context it would also be interesting to inves-
tigate if it is possible in certain circumstances by means of
alternative calibration approaches to use detector pixels at

Atmos. Chem. Phys., 11, 2863–2880, 2011 www.atmos-chem-phys.net/11/2863/2011/



O. Schneising et al.: Long-term analysis of XCO2 and XCH4 retrieved from SCIAMACHY 2877

wavelengths with strong methane absorption in the Q-branch
of the 2ν3 band which are not useable when using the stan-
dard calibration.
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Buchwitz, M., de Beek, R., Nöel, S., Burrows, J. P., Bovens-
mann, H., Schneising, O., Khlystova, I., Bruns, M., Bremer, H.,
Bergamaschi, P., K̈orner, S., and Heimann, M.: Atmospheric
carbon gases retrieved from SCIAMACHY by WFM-DOAS:
version 0.5 CO and CH4 and impact of calibration improve-
ments on CO2 retrieval, Atmos. Chem. Phys., 6, 2727–2751,
doi:10.5194/acp-6-2727-2006, 2006.

Buchwitz, M., Schneising, O., Burrows, J. P., Bovensmann, H.,
Reuter, M., and Notholt, J.: First direct observation of the at-
mospheric CO2 year-to-year increase from space, Atmos. Chem.
Phys., 7, 4249–4256,doi:10.5194/acp-7-4249-2007, 2007.

Burrows, J. P. and Chance, K. V.: Scanning imaging absorption
spectrometer for atmospheric chartography, in: Future European
and Japanese Remote Sensing Sensors and Programs, edited by:
Slater, P. N., P. SPIE, 1490, 146–155, 1991.

Burrows, J. P., Schneider, W., Geary, J. C., Chance, K. V.,
Goede, A. P. H., Aarts, H. J. M., de Vries, J., Smorenburg, C.,
and Visser, H.: Atmospheric remote sensing with SCIAMACHY,
Digest of Topical Meeting on Optical Remote Sensing of the At-
mosphere, Optical Society of America, Washington DC, USA, 4,
71–74, 1990.
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