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Abstract. The secondary organic aerosol (SOA) yield ofβ-
caryophyllene photooxidation is enhanced by aerosol acid-
ity. In the present study, the influence of aerosol acid-
ity on the chemical composition ofβ-caryophyllene SOA
is investigated using ultra performance liquid chromatog-
raphy/electrospray ionization-time-of-flight mass spectrom-
etry (UPLC/ESI-TOFMS). A number of first-, second- and
higher-generation gas-phase products having carbonyl and
carboxylic acid functional groups are detected in the particle
phase. Particle-phase reaction products formed via hydration
and organosulfate formation processes are also detected. In-
creased acidity leads to different effects on the abundance of
individual products; significantly, abundances of organosul-
fates are correlated with aerosol acidity. To our knowl-
edge, this is the first detection of organosulfates and nitrated
organosulfates derived from a sesquiterpene. The increase of
certain particle-phase reaction products with increased acid-
ity provides chemical evidence to support the acid-enhanced
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SOA yields. Based on the agreement between the chromato-
graphic retention times and accurate mass measurements of
chamber and field samples, threeβ-caryophyllene products
(i.e.,β-nocaryophyllon aldehyde,β-hydroxynocaryophyllon
aldehyde, andβ-dihydroxynocaryophyllon aldehyde) are
suggested as chemical tracers forβ-caryophyllene SOA.
These compounds are detected in both day and night am-
bient samples collected in downtown Atlanta, GA and rural
Yorkville, GA during the 2008 August Mini-Intensive Gas
and Aerosol Study (AMIGAS).

1 Introduction

Secondary organic aerosol (SOA) formation from the ox-
idation of biogenic precursors, such as isoprene (C5H8),
monoterpenes (C10H16), sesquiterpenes (C15H24), and oxy-
genated terpenes, contributes significantly to atmospheric
aerosol mass (Hallquist et al., 2009 and references therein).
β-caryophyllene (C15H24) is one of the most reactive
sesquiterpenes, with two double bonds (one endocyclic and
one exocyclic), and has high reactivity towards ozone (O3),
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hydroxyl radicals (OH), and nitrate radicals (NO3). Shu and
Atkinson (1994, 1995) estimated that under typical tropo-
spheric conditions the lifetime ofβ-caryophyllene with re-
spect to O3 and OH reaction is 2 min and 53 min, respec-
tively. β-caryophyllene also has a high aerosol formation
potential (Griffin et al., 1999; Jaoui et al., 2003; Lee et al.,
2006a, b; Ng et al., 2006; Winterhalter et al., 2009; Li et
al., 2011). A range of aerosol yields (mass of SOA formed
per mass of hydrocarbon reacted) has been reported (O3: 5–
46%; OH: 17–68%), depending on aerosol organic mass and
experimental conditions.

Particle-phase products ofβ-caryophyllene ozonolysis
have been extensively studied in the presence or absence of
ammonium sulfate ((NH4)2SO4) seed particles. A number
of first-generation ozonolysis products, such as aldehydes
(e.g.,β-caryophyllon aldehyde andβ-hydroxycaryophyllon
aldehyde) and acids (e.g.,β-caryophyllonic acid andβ-
caryophyllinic acid), have been identified (Calogirou et al.,
1997; Jaoui et al., 2003; Kanawati et al., 2008; Winter-
halter et al., 2009; Li et al., 2011). Ng et al. (2006) ob-
served continued aerosol growth after allβ-caryophyllene
was consumed in ozonolysis and photooxidation experi-
ments, demonstrating the importance of second- or higher-
generation reactions. More recently, Li et al. (2011) showed
that first-generation ozonolysis products, which still con-
tain a double bond, can be oxidized to second-generation
ozonolysis products (e.g.,β-nocaryophyllon aldehyde andβ-
hydroxynocaryophyllon aldehyde), which represent a larger
contribution to the SOA mass than first-generation ozonol-
ysis products. β-caryophyllinic acid has been detected in
both chamber and ambient aerosol samples and has been
suggested as a tracer forβ-caryophyllene SOA (Jaoui et
al., 2007). Using the tracer-to-SOA mass fractions obtained
in laboratory chamber experiments,β-caryophyllene SOA
is estimated to contribute about 1–10% of the atmospheric
aerosol organic mass in the southeastern and midwestern
United States (Kleindienst et al., 2007; Lewandowski et al.,
2008).

Chamber studies have shown that increasing aerosol acid-
ity enhances SOA formation from the oxidation of cer-
tain biogenic hydrocarbons such as isoprene,α-pinene,
and β-pinene (Kroll and Seinfeld, 2008, and references
therein). Acid-catalyzed reactions (e.g., hydration, esterifica-
tion, hemiacetal/acetal formation, aldol condensation) lead-
ing to the formation of higher molecular-weight compounds
have been proposed to explain the enhanced SOA yields
(Jang et al., 2002). When the acidity is provided by sulfu-
ric acid (H2SO4), sulfate esters (or organosulfates) can form
(Liggio and Li, 2006; Surratt et al., 2007a, b, 2008; Iinuma et
al., 2009). By comparing mass spectrometric measurements
for both laboratory-generated and ambient aerosol, Iinuma et
al. (2007) and Surratt et al. (2007a, b, 2008) have reported the
presence of organosulfates derived from isoprene,α-pinene,
β-pinene, and limonene-like monoterpenes (e.g., myrcene)
in ambient aerosol.

SOA yields are enhanced by aerosol acidity in the pho-
tooxidation of mixtures ofβ-caryophyllene/NOx (Offen-
berg et al., 2009). In the present study, the influence
of aerosol acidity on the chemical composition ofβ-
caryophyllene SOA fromβ-caryophyllene photooxidation
is investigated using ultra performance liquid chromatogra-
phy/electrospray ionization-time-of-flight mass spectrome-
try (UPLC/ESI-TOFMS). Certainβ-caryophyllene reaction
products are shown to serve as tracers for the identifica-
tion of β-caryophyllene SOA in ambient aerosol collected in
downtown Atlanta (at Jefferson Street (JST)), GA and rural
Yorkville (YRK), GA during the 2008 August Mini-Intensive
Gas and Aerosol Study (AMIGAS).

2 Experimental section

β−caryophyllene/NOx irradiation experiments in the pres-
ence of seed aerosol of varying acidity were carried out in
a 14.5 m3 fixed volume Teflon-coated reaction chamber at
297 K and 30% RH. Details of the experiments have been
given in Offenberg et al. (2009). Initial aerosol acidity was
controlled by nebulizing dilute aqueous (NH4)2SO4/H2SO4
solutions. To change the acidity of the seed aerosol, the ratio
of the two liquids was changed to produce a constant aerosol
sulfate concentration of 30 µg m−3 across the range of re-
sulting acidities. The reaction chamber was operated as a
continuous stirred tank reactor, having a residence time of
6 h, to produce a constant, steady-state aerosol distribution.
For the aerosol acidity measurement, filters were extracted
by sonication for 30 min using 10 mL of distilled, deionized
water in a 50 mL polypropylene vial. Once the extract cooled
to room temperature, the pH of each extract was measured
with a Mettler-Toledo MP220 pH meter using an InLab 413
pH electrode. Aerosol acidity is expressed as the hydrogen
ion air concentrations ([H+]air), which was calculated by
dividing the measured aqueous concentration of the hydro-
gen ion by the volume of air collected. Table 1 summarizes
the steady state concentrations of gas-phase species, aerosol
acidity, and secondary organic carbon (SOC) for the experi-
ments.

For the chemical analysis, aerosol was collected on Teflon
impregnated glass fiber filters (Pall Gelman Laboratory,
47 mm diameter, Teflon impregnated). To collect sufficient
aerosol mass for the analysis, about 0.7–1.0 mg was col-
lected on each filter and the sampling air volume was about
15.4–16.3 m3. One-half of each filter was extracted with
methanol (LC-MS CHROMASOLV-grade, Sigma-Aldrich)
under ultrasonication for 45 min. The extract was dried un-
der ultra-pure nitrogen gas and the residue was reconstituted
with a 50:50 (v/v) solvent mixture of methanol with 0.1%
acetic acid (LC-MS CHROMASOLV-grade, Sigma-Aldrich)
and water with 0.1% acetic acid (LC-MS CHROMASOLV-
grade, Sigma-Aldrich). Day (10:00 a.m.–06:00 p.m., lo-
cal time)- and night (10:00 p.m.–06:00 a.m., local time) –
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Table 1. Steady state concentrations of gas-phase species, aerosol acidity, and secondary organic carbon (SOC) forβ-caryophyllene/NOx
irradiation experiments, reproduced from Offenberg et al. (2009).

Experiment 1[HC] (ppmC) [NO] (ppbV) [NOx-NO] (ppbV) O3 (ppbV) [H+]air (nmol m−3) SOC (µgC m−3)

1 0.58 60 51 25 112 9.97
2 0.58 61 51 24 204 14.7
3 0.58 63 54 29 467 21.3
4 0.58 65 53 24 1150 34.0

segregated PM2.5 (particulate matter with an aerodynamic
diameter<2.5 µm) high-volume quartz filter samples (i.e.,
quartz microfibre, 20.3× 25.4 cm, Whatman) were collected
from JST and YRK sites during the 2008 AMIGAS cam-
paign was analyzed for the presence ofβ-caryophyllene SOA
constituents. Details of the 2008 AMIGAS campaign, fil-
ter collection, and sample preparation procedures are given
by Chan et al. (2010). Both chamber and field sample ex-
tracts were analyzed by UPLC/ESI-TOFMS operated in both
positive and negative ion modes. Details of the UPLC/ESI-
TOFMS analysis have been given in Surratt et al. (2008).
All accurate mass measurements were within±5 mDa of the
theoretical mass associated with the proposed chemical for-
mula for each observed ion. Owing to the lack of authentic
standards or suitable surrogates, concentrations are reported
as the sum of the UPLC chromatographic peak area of the
ions normalized by the volume of air collected. From re-
peated UPLC/ESI-TOFMS measurements, the variations in
the chromatographic peak areas are about 5%. The concen-
trations are not corrected for extraction efficiencies.

3 Results and discussion

3.1 Gas- and particle-phase reactions

In the series ofβ-caryophyllene photooxidation experi-
ments, β-caryophyllene and its gas-phase products react
with O3 and OH in the presence of NOx. Rate con-
stants (296 K) for the reaction ofβ-caryophyllene with O3
(kO3 = 1.16× 10−14 cm3 molecule−1 s−1) and OH (kOH =

1.97× 10−10 cm3 molecule−1 s−1) have been reported by
Shu and Atkinson (1994, 1995). At steady state in the re-
action chamber, the O3 level was 24–29 ppb (5.93× 1011–
7.16× 1011 molecules cm−3) (Table 1). The OH concentra-
tion in the chamber was not directly measured. At an as-
sumed OH level of 106 molecules cm−3, the ratio of the rates
of β-caryophyllene reaction with O3 to OH at the O3 lev-
els in the reaction chamber is about 36.β-caryophyllene
ozonolysis is therefore likely the dominant reaction pathway
in the first oxidization step. The two double bonds ofβ-
caryophyllene have different reactivity with respect to O3.
Nguyen et al. (2009) predicted that the rate coefficient for O3
attack on the exocyclic double bond is less than 5% of that

for O3 attack on the endocyclic double bond. Thus, addi-
tion of O3 to the endocyclic double bond is likely the dom-
inant reaction ofβ-caryophyllene with O3. Since O3 and
OH are in excess relative toβ-caryophyllene in the reac-
tion chamber, the remaining double bond (either exocyclic
or endocyclic) of the first-generation products undergoes a
second ozonolysis or reacts with OH, leading to second- or
higher-generation products. Based on an average rate co-
efficient for the ozonolysis of the first-generation products
(kO3 = 1.1×10−16 cm3 molecule−1 s−1) reported by Winter-
halter et al. (2009) at 295 K, the average lifetime of the first-
generation products with respect to ozonolysis is about 3.5
to 4.2 h. Rate coefficients for the photooxidation of the first-
generation products have not been reported. If the rate co-
efficient for the photooxidation ofβ-caryophyllene is used
(kOH = 1.97×10−10 cm3 molecule−1 s−1), as an approxima-
tion, the average lifetime of the first-generation products with
respect to photooxidation is about 1.4 h at an OH level of
106 molecules cm−3. Thus, the first generation products can
be further oxidized in the gas phase at the residence time in
the reaction chamber.

The gas-phase chemistry ofβ-caryophyllene in our sys-
tem involves OH, O3, and NOx. For clarity and simplic-
ity, we focus on the reactions of the first-generation products
of β-caryophyllene in the gas and particle phases, leading
to particle-phase products detected by UPLC/ESI-TOFMS
(Scheme 1). Formation mechanisms ofβ-caryophyllon alde-
hyde,β-hydroxycaryophyllon aldehyde,β-oxocaryophyllon
aldehyde, andβ-norcaryophyllon aldehyde from the pho-
tooxidation and ozonolysis ofβ-caryophyllene have been
proposed (Jaoui et al., 2003; Lee et al., 2006a, b; Winterhal-
ter et al., 2009; Li et al., 2011). Additionally, ring-retaining
compounds can form (Jaoui et al., 2003; Lee et al., 2006b).
For example,β-caryophyllene oxide can form from the re-
action ofβ-caryophyllene with O3 similar toα-pinene oxide
formation (Iinuma et al., 2009) and has been detected in both
gas- and particle phases in the ozonolysis ofβ-caryophyllene
(Jaoui et al., 2003).β-caryophylla ketone can form fromβ-
caryophyllene reaction with O3 or OH at its exocyclic dou-
ble bond (Jaoui et al., 2003; Lee et al., 2006b). The first-
generation ring-retaining compounds, which contain an un-
reacted double bond, can be further oxidized before parti-
tioning to the particle phase.
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Scheme 1. Proposed reaction pathways ofβ-caryophyllene, leading to compounds detected by ESI in the particle phase. Boxes indicate
compounds detected by ESI in the particle phase. One possible structural isomer is shown. SCI is the stabilized Criegee intermediates
channel.

Schemes 2–5 show the further oxidation of the first-
generation products, leading to compounds detected by ESI
in the particle phase. In the presence of excess O3 and OH,
it can be assumed that the remaining double bond (exocyclic
double bond) of the gas-phase products will be rapidly ox-
idized. Reaction of gas-phase products with O3 generally
proceeds via four channels: stabilized Criegee intermedi-
ates (CIs), isomerization, hydroperoxide, and ester channels.
Detailed reaction mechanisms for these channels have been
given by Jaoui et al. (2003), Winterhalter et al. (2009), and
Li et al. (2011). Stabilized CIs and hydroperoxide channels
are considered to explain the formation of detected com-
pounds. The stabilized CIs can react with H2O, NO2, and
carbonyls. The stabilized CIs channel (SCI) here refers to
the reaction between the stabilized CIs and H2O or NO2
to form carbonyls. For example,β-caryophyllon aldehyde
andβ-caryophyllonic acid undergo oxidation by O3 on their
exocyclic double bond formingβ-nocaryophyllon aldehyde
andβ-nocaryophyllonic acid (Scheme 2). The stabilized CIs
can react with carbonyls to form secondary ozonides (SOZ).
Winterhalter et al. (2009) have detected the presence of SOZ
in the particle phase using Fourier transform infrared spec-
troscopy in theirβ-caryophyllene ozonolysis experiments.
SOZ were not detected in the particle phase in the present

study. It is possible that SOZ may decompose to form or-
ganic acids in the particle phase under acidic conditions (or
during the analytical procedure) (Winterhalter et al., 2009).
For the hydroperoxide channel, the CIs can rearrange via a
1,4-hydrogen shift to a vinyl hydroperoxide, which can sub-
sequently form hydroxyl carbonyls and dicarbonyls (Win-
terhalter et al., 2009). The hydroperoxide channel refers
to the formation of hydroxyl carbonyls. For example,β-
caryophyllon aldehyde undergoes oxidation by O3 on the
exocyclic double bond formingβ-hydroxynocaryophyllon
aldehyde (Scheme 2).

The OH reaction with the exocyclic double bond of the
gas-phase products forms alkyl radicals, followed by rapid
addition of O2 to yield peroxy radicals. In the presence of
NOx, peroxy radicals react with NO to form either alkoxy
radicals plus NO2 or organic nitrates. Alkoxy radicals
can also form from the reactions between peroxy radicals.
Alkoxy radicals can decompose, isomerize or react with O2.
Here, alkoxy radicals are considered to undergo decomposi-
tion to produce a carbonyl and an alkyl radical (CH2OH·).
For example,β-nocaryophyllon aldehyde can form from the
reaction ofβ-caryophyllon aldehyde with OH at its exocyclic
double bond (Scheme 2). Many gas-phase products have
an aldehyde group. An aldehydic hydrogen atom can be
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abstracted by OH to produce an acyl radical, which rapidly
adds O2 to yield an acyl peroxy radical. The reaction of acyl
peroxy radicals with HO2 forms carboxylic acid (Winterhal-
ter et al., 2009). The acyl peroxy radicals can also react with
NO and subsequently undergo decomposition or can react
with NO2 in the presence of NOx to form peroxyacyl nitrates.
The reaction of acyl peroxy radicals with HO2 to form car-
boxylic acid may explain the formation of acids detected in
the particle phase. For example, acyl peroxy radicals formed
from the aldehydic hydrogen abstraction ofβ-caryophyllon
aldehyde can react with HO2 to form β-caryophyllonic acid
(Scheme 2). However, it cannot be ruled out that the acids
can form via other reaction pathways in the gas and particle
phases. The OH abstraction of secondary or tertiary hydro-
gen may also occur (Jaoui et al., 2003) but is not considered
here. Once the gas-phase products partition into the particle
phase, they may undergo further chemical reactions. Reac-
tion products formed via hydration and organosulfate forma-
tion have been detected in the particle phase, as discussed
below.

3.2 Particle-phaseβ-caryophyllene products detected
by UPLC/ESI-TOFMS

Tables 2–5 summarize the compounds detected by
UPLC/ESI-TOFMS in both positive and negative ion

modes in the series ofβ-caryophyllene/NOx irradiation
experiments. Proposed chemical structures are derived
from accurate mass measurements, proposed reaction
pathways, and previously identified chemical structures
reported in the literature (Jaoui et al., 2003; Kanawati et al.,
2008; Winterhalter et al., 2009; Li et al., 2011). Table 2
shows the compounds detected by ESI in the positive ion
mode. Products having carbonyl groups can be ionized
via proton attachment to form [M+H]+ ions and are de-
tected in the positive ion mode (Kanawati et al., 2008).
Adducts with sodium [M+Na]+ and with methanol + sodium
[M+CH3OH+Na]+ are used for redundant determination
of the chemical formulas of the products (Li et al., 2011).
Recently, Parshintsev et al. (2008) have synthesizedβ-
caryophyllene aldehyde andβ-nocaryophyllone aldehyde.
They reported that sodium adduct ions were the most
abundant ions in their accurate mass measurements using
ESI-TOF and could be used for identification and quan-
tification of these two compounds in the aerosol samples
by liquid chromatography–mass spectrometry. First-
generation products (e.g.,β-hydroxycaryophyllon aldehyde)
and second-generation products (e.g.,β-nocaryophyllon
aldehyde, β-hydroxynocaryophyllon aldehyde, andβ-
dihydroxynocaryophyllon aldehyde) are detected in the
particle phase.
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Table 2. Compounds detected by ESI in the positive ion mode in the series ofβ-caryophyllene/NOx irradiation experiments.

Table 2. Compounds detected by ESI in the positive ion mode in the series of β-caryophyllene/NOX irradiation experiments 

 
ESI(+) 

compound 
 

Suggested 
chemical 
formula 

[M+H]+ 

(Theoretical 
mass) 

[M+Na]+

(Theoretical 
mass) 

[M+CH3OH+Na]+

(Theoretical 
mass) 

Suggested compound a
(Scheme) 

Proposed 
chemical 
structure b

184(+) C10H26O3
C10H27O3

+

(185.1178) 
C10H16O3Na+

(207.0997)    

238(+) C14H22O3
C14H23O3

+

(239.1647) 
C14H22O3Na+

(261.1467) 
C15H26O4Na+

(293.1729) 
β -nocaryophyllon aldehyde c, d, e

(2) 

 

250(+) C15H22O3
C15H23O3

+

(251.1647) 
C15H22O3Na+

(273.1467)  β -oxocaryophyllon aldehyde d
(4) 

 

252a(+) C14H20O4
C14H21O4

+

(253.1440) 
C14H20O4Na+

(275.1259) 
C15H24O5Na+

(307.1521) 
β -oxonocaryophyllon aldehyde   

(4) 

 

252b(+) C15H24O3
C15H25O3

+

(253.1804)  C16H28O4Na+

(307.1885) 
β -hydroxycaryophyllon aldehyde c, d, e  

(3) 

 

N253(+) C14H23NO3
C14H24NO3

+

(254.1756) 
C14H23NO3Na+

(276.1576)    
 

254a(+) 
 

C14H22O4
 

C14H23O4
+

(255.1596) 
C14H22O4Na+

(277.1416) 
C15H26O5Na+

(309.1678) 
β -hydroxynocaryophyllon aldehyde c, e  

(2, 3) 

 

254b(+) C15H26O3  C15H26O3Na+

(277.1780)    

N267(+) C15H25NO3
C15H26NO3

+

(268.1913) 
C15H25NO3Na+

(290.1732)    

268(+) C15H24O4
C15H25O4

+

(269.1753) 
C15H24O4Na+

(291.1572)    

270(+) C14H22O5
C14H23O5

+

(271.1545) 
C14H22O5Na+

(293.1365) 
C14H26O6Na+

(325.1627) β -dihydroxynocaryophyllon aldehyde c (3) 
 

298(+) C15H22O6
C15H23O6

+

(299.1495) 
C15H22O6Na+

(321.1314)    

O

O

O

 

Labels (+): Compound detected by ESI in positive ion mode; (-): Compound detected by ESI in negative ion mode; N: Nitrogen-containing compound; S: Sulfate 
esters or nitrooxy sulfate esters. Number represents the molecular weight of the compound. M is the compound. a Terpene nomenclature (Larsen et al., 1998); b Only 
one possible isomer is shown for simplicity; c Compound has been reported by Li et al. (2010); d Compound has been reported by Winterhalter et al. (2009); e 
Compound has been reported by Jaoui et al. (2003); 309(+) has been detected by the ESI in positive ion mode in this study, however, no reasonable chemical formula 
can be assigned.  

12 
 
 

Labels (+): compound detected by ESI in positive ion mode; (−): compound detected by ESI in negative ion mode; N: nitrogen-containing compound; S: sulfate esters or nitrooxy

sulfate esters. Number represents the molecular weight of the compound. M is the compound.a Terpene nomenclature, Larsen et al. (1998);b only one possible isomer is shown

for simplicity; c compound has been reported by Li et al. (2011);d compound has been reported by Winterhalter et al. (2009);e compound has been reported by Jaoui et al. (2003);

309(+) has been detected by the ESI in positive ion mode in this study, however, no reasonable chemical formula can be assigned.

Table 3 shows the compounds detected by ESI in neg-
ative ion mode. Products having a carboxylic acid group
can be ionized via deprotonation and are detected in the
negative ion mode as [M-H]− ions. Several acids detected
such as β-caryophyllonic acid, β-caryophyllinic acid,
β-nocaryophyllonic acid,β-hydroxycaryophyllonic acid,
β-hydroxynocaryophyllonic acid, andβ-oxocaryophyllonic
acid have been reported (Jaoui et al., 2003; Winter-
halter et al., 2009; Li et al., 2011). Based on the

accurate mass measurements and proposed reaction
pathways, three new acids (β-dihydroxycaryophyllonic
acid, β-hydroxynornocaryophyllonic acid, andβ-
oxonocaryophyllonic acid) are tentatively identified in
this study. β-caryophyllinic acid andβ-nocaryophyllonic
acid have the same chemical formula (C14H22O4) and
cannot be differentiated in the accurate mass measurements,
especially since our study lacked authentic standards as well
as tandem MS data.
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Table 3. Compounds detected by ESI in the negative ion mode in the series ofβ-caryophyllene/NOx irradiation experiments.Table 3. Compounds detected by ESI in the negative ion mode in the series of β-caryophyllene/NOX  irradiation experiments 

 
ESI(-) 

compound 
 

[M-H]-
Suggested 
chemical 
formula 

Theoretical 
mass 

Suggested compound a
(Scheme) 

Proposed 
chemical 
structure b

Detection of 
dimer in ESI 
negative ion 

mode 

186(-) 185 C9H13O4
- 185.0814  

   

216(-) 215 C10H15O5
- 215.0919  

   

 
252a(-)  251 C14H19O4

- 251.1283 c

 

 

 
252b(-) 251 C15H23O3

- 251.1647 β-caryophyllonic acid (2) c, d, e

 

C30H47O6
-

254(-) 253 C14H21O4
- 253.1440 

β-nocaryophyllonic acid (2) e
 
 

β-caryophyllinic acid c, d, e  

 

C28H43O8
-

256a(-) 255 C13H19O5
- 255.1232 

 
β-hydroxynornocaryophyllonic acid (5) 

 

 

C26H39O10
-

 
256b(-) 255 C14H23O4

- 255.1596 
 

Hydrated β-norcaryophyllonic acid (5) 
 

 

 

 
266(-) 265 C15H21O4

- 265.1440 
 

β-oxocaryophyllonic acid (4) e
 

 

 

 
268a(-) 267 C14H19O5

- 267.1232 
 

β-oxonocaryophyllonic acid (4) 
 

 

 

 
268b(-) 267 C15H23O4

- 267.1596 
 

β-hydroxycaryophyllonic acid (3) e
 

 

 

 
270a(-) 269 C14H21O5

- 269.1389 
 

β-hydroxynocaryophyllonic acid (2, 3) e
 

 

C28H43O10
-

 
270b(-) 269 C15H25O4

- 269.1753 
 

Hydrated β-caryophyllonic acid (2) 
 

 

 

 
272(-) 271 C14H23O5

- 271.1545 
 

Hydrated β-nocaryophyllonic acid (2) 
 

 

C28H47O10
-

 

284(-) 283 C15H23O5
- 283.1545 Hydrated β-oxocaryophyllonic acid (4) 

 

C30H47O10
-

286a(-) 285 C14H21O6
- 285.1338 β-dihydroxynocaryophyllonic acid (3, 4) 

 

C28H43O12
-

286b(-) 285 C15H25O5
- 285.1702 Hydrated β-hydroxycaryophyllonic acid (3) 

 

C30H51O10
-

 

 

O

OH

OH
OH

 

Table 3. Compounds detected by ESI in the negative ion mode in the series of β-caryophyllene/NOX  irradiation experiments 
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Table 3. Continued.
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Page 1/1 

 

 

 

 

 

 

 
ESI(-) 

compound 
 

[M-H]- 
Suggested 
chemical 
formula 

Theoretical 
mass 

Suggested compound a 
(Scheme) 

Proposed 
chemical 

structure b 

Detection of 
dimer in ESI 
negative ion 

mode 

294(-) 293 C17H25O4
- 293.1753   C34H51O8

-

312(-) 311 C13H27O8
- 311.1706    

314a(-) 313 C15H21O7
- 313.1287   

  

314b(-) 313 C16H25O6
- 313.1651    

320(-) 319 C14H23O8
- 319.1393   

  

328(-) 327 C17H27O6
- 327.1808  

   

330a(-) 329 C16H25O7
- 329.1600    

330b(-) 329 C17H29O6
- 329.1964   

  

 

 
a Terpene nomenclature, Larsen et al. (1998);b only one possible isomer is shown for simplicity;c compound has been reported by Li et al. (2011);d compound has been reported

by Winterhalter et al. (2009);e compound has been reported by Jaoui et al. (2003).

β-caryophyllonic acid andβ-caryophyllinic acid have tra-
ditionally been detected as first-generation products in the
ozonolysis ofβ-caryophyllene. In the presence of OH and
NOx, β-caryophyllonic acid can form from the oxidation of
β-caryophyllon aldehyde, which can form in the ozonoly-
sis and photooxidation ofβ-caryophyllene (Scheme 2).β-
caryophyllonic acid thus can be considered as either a first-
or second-generation product. A number of other acids have
been detected in this study. As shown in Schemes 2–5, many
first- or higher-generation gas-phase products formed from
the reaction ofβ-caryophyllene with O3 and OH have an
aldehyde group. In the presence of OH, the aldehydic hydro-
gen can be abstracted by OH, leading to an acyl peroxy rad-
ical, which reacts with HO2 to give a carboxylic acid. This
pathway could explain the formation of most of the organic
acids observed in this study. However, it cannot be ruled out
that the acids can form via other reaction pathways in the gas
and particle phases. As shown in Tables 2 and 4, nitrogen-
containing compounds have been detected by ESI in both

positive and negative ion modes. The formation of nitrogen-
containing compounds may attribute to the gas-phase reac-
tions of peroxy radicals with NO; however, heterogeneous
reaction processes in the particle phase (e.g., reactions be-
tween ammonia/ammonium ions with condensed gas-phase
products containing carbonyl groups) cannot be completely
ruled out (Nozìere et al., 2009; Bones et al., 2010) and war-
rants future investigation.

Particle-phase reaction products formed via hydration and
organosulfate formation of gas-phase products have been de-
tected. Condensed gas-phase products can undergo hydrol-
ysis in the particle phase. For example, a carbonyl group
of β-hydroxycaryophyllonic acid could be hydrated into a
diol (Scheme 3). The hydrated gas-phase products tend to
have low volatility and are preferentially present in the par-
ticle phase. Compounds having molecular weights larger
than 300 Da have been detected. It is likely that these com-
pounds are esters, which can be detected by ESI due to their
stability and ionization efficiency (Camredon et al., 2010).
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Table 4. Compounds detected by ESI in the negative ion mode in the series ofβ-caryophyllene/NOx irradiation experiments (Nitrogen-
containing compounds).

Table 4. Compounds detected by ESI in the negative ion mode in the series of β-caryophyllene/NOX irradiation experiments (Nitrogen-containing 
compounds) 

 
ESI(-) 

compound 
 

[M-H]-
Suggested 
chemical 
formula 

Theoretical 
mass 

Suggested compound  
(Scheme) 

Proposed 
chemical 
structure a

Detection of 
dimer in ESI 
negative ion 

mode 

N195(-) 194 C10H12NO3
- 194.0817 

 

 
 C20H25N2O6

-

N345(-) 344 C16H26NO7
- 344.1709 

 

 
  

 
N347(-) 

 
346 C15H24NO8

- 346.1502 (3) 
 

C30H49N2O16
-

N349a(-) 348 C14H22NO9
- 348.1295 

 

 
 C28H45N2O18

-

 
N349b(-) 

 
348 C15H26NO8

- 348.1658 (2) 
 

 

N350(-) 349 C13H21N2O9
- 349.1247 

 

 
 

 
 

 
N363a(-) 

 
362 C15H24NO9

- 362.1451 (4) 
 

C30H49N2O18
-

N363b(-) 362 C16H28NO8
- 362.1815 

 

 
 

 
 

N375(-) 374 C17H28NO8
- 374.1815 

 

 
 

 
 

N546(-) 545 C24H37N2O12
- 545.2347   

C12H18NO6
- 

(Monomer) 

O

OH

OH
OH

OH ONO2

a  Only one possible isomer is shown for simplicity  
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a Only one possible isomer is shown for simplicity.

Several organosulfates, as well as two nitrated organosul-
fates, have been detected (Table 5). As shown in Schemes
1–5, many gas-phase products contain hydroxyl groups, car-
bonyl groups, epoxide groups, or a combination of these
groups. Organosulfates can possibly form from the particle-
phase esterification of sulfate ions with gas-phase products
containing one or more hydroxyl groups; however, this reac-
tion process has been shown to be kinetically infeasible for
smaller alcohols at atmospherically relevant pH conditions
(Minerath et al., 2008, 2009). Additionally, organosulfates
can form from gas-phase products containing an aldehyde or
a keto group. The reaction involves the electron pair of the
carbonyl oxygen accepting a proton, producing the oxonium
ion, and becoming susceptible to nucleophilic attack from a
lone pair of electrons on one of the oxygen atoms of the sul-
fate ions (Surratt et al., 2007a, 2008).β-caryophyllene oxide
can form in the ozonolysis ofβ-caryophyllene (Jaoui et al.,
2003); this compound has been detected in a forested area in
central Greece (Pio et al., 2001). Recent work has shown that

organosulfates can form from the reactive uptake of epoxide
intermediates (Minerath et al., 2009), such as those derived
from isoprene (Cole-Filipiak et al., 2010; Eddingsaas et al.,
2010; Surratt et al., 2010) or fromα- andβ-pinene (Iinuma
et al., 2009). Reactive uptake of simple epoxides leading to
organosulfates has been estimated to be kinetically feasible
under atmospherically relevant pH conditions (Minerath et
al., 2009; Cole-Filipiak et al., 2010, Eddingsaas et al., 2010).
Similar to isoprene-derived epoxydiols andα- andβ-pinene
oxides, the sulfate ester ofm/z 317 (Table 5) likely arises
from the acid-catalyzed ring opening ofβ-caryophyllene ox-
ide in the presence of acidic sulfate (Scheme 1). Most re-
cently, organosulfates have also been shown to form from the
irradiation of the aqueous-aerosol phase that contains sulfate
(Galloway et al., 2009; Rudzinski et al., 2009; Nozière et
al., 2010; Perri et al., 2010). The formation of organosul-
fates via sulfate radical reaction mechanisms may warrant
further investigation. It is noted that isobaric organosulfates
cannot be differentiated by the accurate mass measurements;
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Table 5. Compounds detected by ESI in the negative ion mode in the series ofβ-caryophyllene/NOx irradiation experiments (Organosul-
fates).

 
 

 

 
ESI(-) 

compound 
 

[M-H]-
Suggested 
chemical 
formula 

Theoretical 
mass 

Suggested 
compound 
(Scheme) 

Proposed chemical structurea

 

 
S252(-) 

 
251 C9H15O6S- 251.0589     

 
S304(-) 
 

303 C14H23O5S- 303.1266 (1) 
 
 
 

  

 
S318(-) 

 
317 C15H25O5S- 317.1423 (1) 

 
  

 
S320(-) 

 
319 C14H23O6S- 319.1215 (1), (5) 

  
 

 
S334a(-) 

 
333 C14H21O7S- 333.1008 (2), (3) 

 
  

 
S334b(-) 

 
333 C15H25O6S- 333.1372 (2) 

 
  

 
S348(-) 
 

347 C15H23O7S- 347.1165 (3), (4) 
  

 

 
S350a(-) 

 
349 C14H21O8S- 349.0957 (2), (3), (4) 

   

 
S350b(-) 

 
349 C15H25O7S- 349.1321 (2), (3) 

  
 

 
S352(-) 

 
351 C14H23O8S- 351.1114 (2), (3) 

  
 

 
S364a(-) 

 
363 C15H23O8S- 363.1114 (4) 

 
  

S364b(-) 363 C16H27O7S- 363.1478  
    

S380(-) 379 C16H27O8S- 379.1427  
    

 
Nitrated Organosulfates 

 
     

 
S363(-) 

 
362 C15H24NO7S- 362.1273 (1) 

 
  

S383(-) 382 C14H24NO9S- 382.1172 (1) 
 
 
   

O

O

OH

OSO3H
O

O

OH

OSO3H

 

 
O

OH

O

O OSO3H

a Only one possible isomer is shown for simplicity.
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ß-hydroxycaryophyllon 
aldehyde
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-CH2O

OH/O
2 /HO

2
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O
H

/O
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O
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OH/O
2 /NO

O
H

/O
2
/H

O
2

ß-dihydroxynocaryophyllon 
aldehyde ß-hydroxycaryophyllonic acid

ß-hydroxynocaryophyllonic acid

S350a(-)

N347(-)
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ß-dihydroxynocaryophyllonic acid
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O

O

OH

O

O
O

OH

OH
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O
O

OH

OH

OH

O

O

OH
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O
O
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O
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O
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OHHO
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O
O

OH

OH

O

OSO3H

OH

O

O

O

O
O

OH

OH

OH
ß-dihydroxy-

nocaryophyllonic acid
286a(-)

ß-hydroxycaryophyllonic acid
268b(-)

O

O

OH

OH

O

OH

OH

HO
OH

S348(-)

O

O

OSO3H

OH

286b(-)

O

O

OH

OHONO2
HO

ß-hydroxy-
nocaryophyllonic acid

270a(-)

O

O

O

OH

OH

O

O
OH

OHHO OH O

O
O

OSO3H

OH

S350a(-)

ß-hydroxynocaryophyllon
 aldehyde
254a(+)

O

O
O

OH

O

O

O

OSO3H

O

O

HO
OSO3H

OH

S334a(-) S352(-)

Scheme 3.Proposed reaction pathways ofβ-hydroxycaryophyllon aldehyde, leading to compounds detected by ESI in the particle phase.
Formation mechanism ofβ-hydroxycaryophyllon aldehyde from the ozonolysis ofβ-caryophyllene (Winterhalter et al., 2009).β-14-
hydroxycaryophyllon aldehyde is chosen as illustration. Boxes indicate compounds detected by ESI in the particle phase. One possible
structural isomer is shown. SCI is the stabilized Criegee intermediates channel. HP is the hydroperoxide channel.
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Scheme 4.Proposed reaction pathways ofβ-oxocaryophyllon aldehyde, leading to compounds detected by ESI in the particle phase. Forma-
tion mechanism ofβ-oxocaryophyllon aldehyde from the ozonolysis ofβ-caryophyllene (Winterhalter et al., 2009).β-14-oxocaryophyllon
aldehyde is chosen as illustration. Boxes indicate compounds detected by ESI in the particle phase. One possible structural isomer is shown.
SCI is the stabilized Criegee intermediates channel.
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Gas Phase

Particle Phase

O

O

ß-norcaryophyllon aldehyde

O
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P)

O O

OH

O

ß-hydroxynornocaryophyllon 
aldehyde

O

O

OH

OH/O2/HO2
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O
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O
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O 3
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P)

OH/O
2/HO

2
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O
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O
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O
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O

O

OH

ß-norcaryophyllonic acid

O

OH

HO
OH
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Scheme 5.Proposed reaction pathways ofβ-norcaryophyllon aldehyde, leading to compounds detected by ESI in the particle phase. For-
mation mechanism ofβ-norcaryophyllon aldehyde from the ozonolysis ofβ-caryophyllene (Winterhalter et al., 2009). Boxes indicate
compounds detected by ESI in the particle phase. One possible structural isomer is shown. HP is the hydroperoxide channel.

however, further tandem MS studies, as well as synthesis of
authentic standards, could elucidate these isobaric structures.
Depending on theβ-caryophyllene oxidation product (e.g.,
carbonyls or epoxides) formed, a number of chemical path-
ways may be leading to the formation of the organosulfates
we observe.

Bonn and Moortgat (2003) and Li et al. (2011) have
suggested that new particle formation can be initiated by
very low volatile gas-phase products produced fromβ-
caryophyllene ozonolysis. In the present study, some
particle-phase products (first- or higher-generation products)
form dimers in the mass spectra collected in the negative
ion mode of ESI (e.g., forβ-caryophyllonic acid (MW 252,
C15H24O3) [2M-H]− atm/z503 (C30H27O

−

6 ) was detected).
No dimer formation was observed for organosulfates despite
relatively high signal intensity of these compounds. Al-
though dimer formation could be potential artifacts of the
ESI, the importance of dimer formation ofβ-caryophyllene
gas-phase products to new particle formation can be noted
and certainly warrants further investigation.

3.3 Influence of aerosol acidity on theβ-caryophyllene
SOA composition

In the series ofβ-caryophyllene/NOx irradiation experi-
ments, the aerosol acidity ranged from 112 to 1150 nmol
H+ m−3 and SOA concentrations ranged from 9.97 to
34.0 µg C m−3. Higher SOA concentrations were measured
in the presence of increased aerosol acidity. For comparison,
field measurements of aerosol acidity as [H+]air have been
reported (e.g., Liu et al., 1996; Pathak et al., 2003, 2004; Sur-
ratt et al., 2007b). The [H+]air generally ranged from about
20 to 130 nmol H+ m−3. Aerosol acidities have also been
observed to exceed 300 nmol of H+ m−3 during episodes
of high photochemical activity in the eastern US. For exam-
ple, Liu et al. (1996) observed an aerosol acidity of up to
400 nmol of H+ m−3 in particles collected from Uniontown,
PA. Since changes in the aerosol acidity in the present study
had no significant direct effect on the gas-phase chemistry in
these series of experiments (Offenberg et al., 2009), changes
in the composition ofβ-caryophyllene SOA at different
acidities is likely attributed to the particle-phase reactions.
Figures 1–5 show the concentrations of compounds detected
by ESI in both positive and negative ion modes in the series
of β-caryophyllene/NOx irradiation experiments. Different
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effects of acidity on the abundance of individual compounds
have been observed. For gas-phase products (Figs. 1–3)
and nitrogen-containing compounds (Fig. 4) detected, some
compounds (e.g.,β-hydroxynocaryophyllon aldehyde,β-
dihydroxynocaryophyllon aldehyde,β-oxonocaryophyllonic
acid, andβ-hydroxynocaryophyllonic acid) show an increase
with increasing aerosol acidity, while other compounds (e.g.,
β -nocaryophyllon aldehyde,β-hydroxycaryophyllon alde-
hyde,β-caryophyllonic acid, andβ-hydroxycaryophyllonic
acid) exhibit a decrease at higher aerosol acidity. It is also
seen that acidity has no significant effect on the concentration
of some compounds (e.g.,β-hydroxynornocaryophyllonic
acid andβ-dihydroxynocaryophyllonic acid).

For particle-phase reaction products, many hydrated com-
pounds are detected at low aerosol acidity, while a few
hydrated compounds (e.g., hydratedβ-caryophyllonic acid
and hydratedβ-norcaryophyllonic acid) are detected only
at higher aerosol acidity. The concentrations of many,
but not all, hydrated compounds are found to increase
with increasing aerosol acidity. By contrast, hydratedβ-
nocaryophyllonic acid has a lower concentration at higher
aerosol acidity. Different effects of aerosol acidity on
the concentration of high molecular weight compounds
(MW > 300 Da) are observed. Figure 5 shows that the con-
centration of organosulfates and nitrated organosulfates gen-
erally increases with increasing aerosol acidity, exceptm/z
349 and 363. The concentrations of some organosulfates in-
crease substantially with the aerosol acidity. For example,
the signal intensities form/z317 and 347 increase by a factor
of ∼8 at the highest aerosol acidity, as compared to the low-
est aerosol acidity. Also, a larger array of organosulfates is
detected under higher acidic conditions. The aerosol acidity
and sulfate content determine not only the concentration of
organosulfates but also the kinds of organosulfates formed.
To our knowledge, this is the first detection of organosulfates
and nitrated organosulfates derived from a sesquiterpene.

Although the mechanisms by which acidity affects the
concentrations of individual compounds are not well under-
stood, some observations can be made. It is found that not
all particle-phase concentrations of gas-phase products in-
crease with increasing aerosol acidity. Although gas/particle
equilibrium shifts further toward the particle phase due to
enhanced particle-phase reactions, the condensed gas-phase
products can, as a result, react in the particle phase to form
other products (e.g., hydrated compounds and sulfate esters)
at an accelerated rate under acidic conditions. Because such
reactions serve to convert the specific partitioning species
to another compound, the enhanced gas/particle equilibrium
does necessarily lead to an increase in the particle-phase con-
centration of gas-phase products. Although an increase in
gas/particle partitioning coefficients of gas-phase products
may help to capture the acid-enhanced SOA formation in a
model (Kroll and Seinfeld, 2005), increased acidity does not
always lead to an increase in the particle-phase concentration
of gas-phase products.
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Fig. 1. Concentration of compounds detected by ESI in positive ion
mode in the series ofβ-caryophyllene/NOx irradiation experiments.
Chemical formulas and proposed chemical structures of these com-
pounds are given in Table 2.
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Fig. 2. Concentration of compounds detected by ESI in negative ion
mode in the series ofβ-caryophyllene/NOx irradiation experiments.
Chemical formulas and proposed chemical structures of these com-
pounds are given in Table 3.

The concentrations of particle-phase reaction products
formed via acid-catalyzed reactions are expected to increase
with increasing aerosol acidity. However, a few hydrated
gas-phase products and some higher molecular weight com-
pounds have a lower concentration at higher aerosol acidity.
It is possible that other chemical reactions (e.g., organosul-
fate formation processes) may become kinetically more fa-
vorable and competitive at higher aerosol acidity. Due to the
complexity of chemical reactions that can potentially occur
among the compounds in the particle phase, it may not be
surprising to see that the acidity exhibits different effects on
the concentration of particle-phase reaction products at dif-
ferent acidities and not all classes of particle-phase reaction
products have a higher concentration at higher acidity.

Overall, increased acidity exhibits different effects on the
abundance of individual compounds and does not always
enhance the concentration of gas-phase and particle-phase
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Fig. 3. Concentration of compounds detected by ESI in negative ion
mode in the series ofβ-caryophyllene/NOx irradiation experiments.
Chemical formulas and proposed chemical structures of these com-
pounds are given in Table 3.
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Fig. 4. Concentration of compounds detected by ESI in negative
ion mode in the series ofβ-caryophyllene/NOx irradiation exper-
iments (nitrogen-containing compounds). Chemical formulas and
proposed chemical structures of these compounds are given in Ta-
ble 4.

reaction products. Varying acidity also changes the prod-
uct distribution. Although qualitative data are obtained for
the concentrations, the relative increase in concentration of
many gas-phase and particle-phase reaction products pro-
vides chemical evidence for the acid enhanced SOA forma-
tion fromβ-caryophyllene/NOx irradiation experiments.

4 Atmospheric implications

Chemical characterization of particle-phase products in the
chamber samples can suggest possible chemical tracers for
SOA formation fromβ-caryophyllene in ambient aerosol.
Fine ambient aerosol collected in downtown Atlanta, GA
(JST) and rural Yorkville, GA (YRK) during the AMIGAS
campaign was analyzed for the presence ofβ-caryophyllene
SOA constituents characterized from the laboratory stud-
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Fig. 5. Concentration of compounds detected by ESI in negative
ion mode in the series ofβ-caryophyllene/NOx irradiation experi-
ments (organosulfates and nitrated organosulfates). Chemical for-
mulas and proposed chemical structures of these compounds are
given in Table 5.

ies. As shown in Table S1, the retention time and ac-
curate mass measurements match very well for four ions
detected in both ambient and chamber samples by ESI in
the positive ion mode. Three of these compounds have
been tentatively identified in the present study and areβ-
nocaryophyllon aldehyde,β-hydroxynocaryophyllon alde-
hyde, andβ-dihydroxynocaryophyllon aldehyde. Each of
these three compounds is a second-generation ozonolysis
product previously identified inβ-caryophyllene ozonoly-
sis (Li et al., 2011). As shown in Schemes 2–4, these
compounds can also be produced from the reaction ofβ-
caryophyllene with a combination of O3 and OH. The chem-
ical structure of the compound (C15H24O4) is not known yet.
Although the emission ofβ-caryophyllene drops sharply at
night (Sakulyanontvittaya et al., 2008), all these compounds
have been detected in most day and night samples at both
sites. As shown in Table S1, based on the limited sam-
ple sizes,β-nocaryophyllon aldehyde showed a higher con-
centration in the nighttime samples at both JST and YRK
sites. No strong diurnal variation in the concentrations was
observed for the other compounds. Recently, Parshintsev
et al. (2008) reported thatβ-nocaryophyllon aldehyde was
present in ambient aerosol collected during spring 2003 at
Hyytiälä, Finland. β-caryophyllon aldehyde was not de-
tected in their ambient samples.

Gas/particle partitioning coefficients of the three aldehy-
des,Kp (m3 µg−1), are estimated at 297 K (Pankow, 1994).
As a first approximation, the activity coefficients of the prod-
ucts in the particle phase are assumed to be unity and the
molecular weight of the products is used as mean molec-
ular weight in the absorbing phase. Vapor pressures are
estimated at 297 K using the model developed by Pankow
and Asher (2008). Saturation vapor pressure,c∗ is in-
versely proportional toKp (c∗

∼ 1/Kp). The fractionF of a
semivolatile compound in the particle phase can be expressed
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in term of Kp as F = MKp/(1+ MKp), whereM is the
amount of absorbing material (µg m−3). Based on estimated
gas/particle partitioning coefficients ofβ-nocaryophyllon
aldehyde (Kp = 2.5 × 10−3 m3 µg−1; c∗

= 400 µg m−3),
β-hydroxynocaryophyllon aldehyde (Kp = 0.37 m3 µg−1;
c∗

= 2.7 µg m−3), andβ-dihydroxynocaryophyllon aldehyde
(Kp = 54 m3 µg−1; c∗

= 0.018 µg m−3), a significant fraction
of β-hydroxynocaryophyllon aldehyde (F = 0.787) andβ-
dihydroxynocaryophyllon aldehyde (F = 0.998) is present in
the particle phase under typical organic mass loading (M ∼

10 µg m−3). A small portion ofβ-nocaryophyllon aldehyde
(F = 0.024) can partition into the particle phase. The esti-
mated saturated vapor pressures of these compounds in the
present work are lower by a factor of about 2–40 than those
estimated by Li et al. (2011) using a different vapor pressure
estimation model.

Organosulfates detected in the laboratory-generatedβ-
caryophyllene SOA were not observed in the ambient sam-
ples collected from the AMIGAS campaign. It is possi-
ble that the acidity of ambient aerosol is not strong enough
for the formation of β-caryophyllene-derived organosul-
fates. As shown in Fig. 5, most organosulfates detected
in the chamber samples require high aerosol acidity (467–
1150 nmol H+ m−3). It is worth noting that isoprene-derived
organosulfates (e.g., organosulfates of 2-methyltetrols) have
been detected in these AMIGAS ambient samples (Chan et
al., 2010), which were also detected in laboratory-generated
isoprene SOA that employed a lower [H+]air that lied
between 275–517 nmol m−3 (Surratt et al., 2007b). Al-
though accurate mass measurements obtained in the nega-
tive ion mode show that similar molecular ions were de-
tected in both the AMIGAS and chamber samples for some
β-caryophyllene-derived acids, the chromatographic peaks
of these ions in the AMIGAS samples elute at different re-
tention times (RT)(1RT> 0.2 min) and may not correspond
to those of the chamber samples, especially since our study
lacked authentic standards and tandem MS data. The de-
tection ofβ-caryophyllinic acid in ambient samples is also
complicated byβ-nocaryophyllonic acid.β-caryophyllinic
acid andβ-nocaryophyllonic acid have the same chemical
formula (C14H22O4) and cannot be differentiated in the ac-
curate mass measurements.

Overall, the presence ofβ-caryophyllene products in
ambient aerosol has been confirmed based on the agree-
ment of chromatographic retention times and accurate
mass measurements between chamber and field sam-
ples. These results suggest that the presence ofβ-
caryophyllene products in biogenic SOA can be used as
an indication of its contribution to SOA.β-nocaryophyllon
aldehyde, β-hydroxynocaryophyllon aldehyde, andβ-
dihydroxynocaryophyllon aldehyde may be good candidates
for β-caryophyllene SOA tracers.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/1735/2011/
acp-11-1735-2011-supplement.pdf.
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