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Abstract. The formation of west Pacific tropical cyclone
Nuri (2008) was observed over four days from easterly wave
to typhoon stage by aircraft using scanning Doppler radar
and dropsonde data. This disturbance developed rapidly in a
significantly sheared environment. In spite of the shear, over-
lapping closed circulations existed in the frame of reference
of the storm in the planetary boundary layer and at 5 km ele-
vation, providing a deep region protected from environmen-
tal influences. The rapid spinup of Nuri can be attributed to
the strong increase with height at low levels of the vertical
mass flux during and after the tropical depression stage, and
the correspondingly strong vorticity convergence in the plan-
etary boundary layer. As Nuri developed, convective regions
of boundary layer vortex stretching became fewer but more
intense, culminating in a single nascent eyewall at the trop-
ical storm stage. A non-developing tropical wave case was
also analyzed. This system started with much weaker circu-
lations in the boundary layer and aloft, leaving it unprotected
against environmental intrusion. This may explain its failure
to develop.

1 Introduction

A detailed accounting of the vorticity budget of a developing
tropical cyclone is necessary to understand how the storm
spins up. A variety of different mechanisms have been ad-
vanced to explain this process.

Developing tropical systems often first exhibit signifi-
cant cyclonic vorticity at middle levels in the troposphere
(Ritchie and Holland, 1997; Simpson et al.(1997); Bister
and Emanuel, 1997; Raymond et al., 1998). However, the
development of strong near-surface vorticity and the associ-
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ated warm core is a key element of tropical cyclone spinup.
An important problem is then to understand how the surface
vortex develops.

Ritchie and Holland(1997) andSimpson et al.(1997) as-
sert that mid-level vortex merger leads to downward vortex
development, but do not explain how this might occur. Po-
tential vorticity anomalies with larger horizontal scale exhibit
greater vertical penetration. Quasi-geostrophic calculations
of this effect for the vortices described in their paper sug-
gest that the increased penetration is minimal, but asDavis
(1992) has shown, stronger vortices in the nonlinear bal-
ance regime exhibit greater vertical penetration than quasi-
geostrophic calculations would suggest.

Bister and Emanuel(1997) argue that the development of a
cool, moist environment resulting from stratiform rain serves
as the incubation region for the formation of a low-level,
warm-core vortex. Cloud resolving model calculations by
Raymond and Sessions(2007) support this assertion. En-
vironments cooler at low levels and warmer at upper lev-
els by of order 1 K lower the elevation of maximum verti-
cal mass flux from≈10 km to≈5 km in their calculations,
and by virtue of mass continuity, intensify the low-level in-
flow into the convection. In the presence of ambient vortic-
ity, low-level convergence would contribute to the spinup of
the system. This effect may explain why tropical-wave-scale
mid-level vorticity fosters tropical storm formation. The bal-
anced response to a mid-level vortex is a cold core below
the vortex and a warm core above, as assumed byRaymond
and Sessions(2007). Mapes and Houze(1995) may have
detected this phenomenon in the outer rainbands of a south
Pacific tropical cyclone, a region far removed from the cy-
clone’s warm core.

Dunkerton et al.(2009) emphasize the importance of a
continuing protected region or “pouch” consisting of a quasi-
closed circulation in the low to middle troposphere. This
pouch occurs where the critical latitude for a tropical wave
(latitude at which the wave propagation speed equals the
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wind speed) intersects the wave trough axis. Near this
point the system-relative circulation is approximately closed,
which means that dry air from the surrounding environ-
ment cannot easily enter and vorticity cannot easily escape.
Dunkerton et al.(2009) also emphasized that strong defor-
mation flow impedes the organization of vorticity into a co-
herent, axially symmetric structure.

Assuming that convergence of low-level vorticity is the
most important mechanism for spinning up a tropical cy-
clone, how much of this convergence is the result of
widespread, ordinary convection and how much of it oc-
curs in strong but isolated convective systems? The overall
circulation tendency around the cyclone doesn’t depend on
how vorticity convergence is distributed within the circula-
tion loop, but the internal structure of the system does.

Hendricks et al.(2004) and Montgomery et al.(2006)
present evidence that strong, isolated convection prevails,
and denote these convective systems vortical hot towers
(VHTs). The updrafts of VHTs are rotating rapidly andHen-
dricks et al.(2004) suggest that this rotation may be rapid
enough to suppress entrainment and thus alter the vertical
mass flux profile of VHTs compared to more mundane forms
of deep tropical convection. Furthermore, the core of the de-
veloping tropical cyclone appears to form from the merger of
the residual vortices left by VHTs.

Measurements from a recent field program are used here
to clarify the vorticity budget during the formation and in-
tensification of typhoon Nuri (2008) and in a non-developing
tropical wave. The THORPEX Pacific Asian Regional Cam-
paign (TPARC) and the associated Tropical Cyclone Struc-
ture experiment (TCS08) (Elsberry and Harr, 2008) studied
various aspects of western Pacific typhoons in August and
September of 2008. Numerous observational tools were fo-
cused on the formation and development of typhoons and on
their extratropical transitions during this period.

Typhoon Nuri (2008) intensified from a tropical wave to
a typhoon in three days.Montgomery et al.(2010) present
the synoptic conditions in which the precursor tropical wave
developed into a tropical cyclone. They show that the core
of the cyclone formed at the critical latitude, i.e., the lati-
tude at which the low-level wind equaled the wave propaga-
tion speed. This supports the hypothesis ofDunkerton et al.
(2009) that the region of the wave at the critical latitude is fa-
vored for development due to the weak wave-relative winds
and the lack of import of dry environmental air at this lati-
tude. A measure of shear versus curvature vorticity showed
that the latter dominated in the favored region during the pe-
riod of development as well, thus avoiding severe deforma-
tion of the vorticity anomaly.

We were able to observe tropical cyclone Nuri on four suc-
cessive days, later denoted “Nuri 1” through “Nuri 4”, with
varying combinations of dropsondes and airborne Doppler
radar. On these four days the system was successively a trop-
ical wave (TW), a tropical depression (TD), a tropical storm
(TS), and a typhoon (TY). The data are sufficient to analyze

all terms in the vorticity equation through the full depth of
the system on the first three days and in the lowest 3 km on
the fourth day. The absence of Doppler radar data limits the
analysis at higher levels on day four. We captured an un-
usually complete picture of Nuri’s intensification from these
observations, shedding significant light on the vorticity dy-
namics of tropical storm formation. We also observed in a
single mission a non-developing tropical wave, designated
TCS030. The contrast between this system and the earliest
observed stage of Nuri is enlightening.

Section2 covers the theoretical underpinnings of our ob-
servational analysis. Section3 discusses the data sources and
analysis methods used in this case study. The vorticity bud-
gets of tropical cyclone Nuri at its various stages and of trop-
ical wave TCS030 are described in Sect.4. The implications
of these results are discussed in Sect.5 and conclusions are
presented in Sect.6.

2 Theoretical considerations

Our analysis of Doppler radar and dropsonde observations is
enhanced by an understanding of certain aspects of the vor-
ticity and divergence equations discussed below.

2.1 Governing equations

Using the identityv ·∇v = ∇(v2/2)−v ×ζ r wherev is the
wind field, v = |v|, andζ r = ∇ ×v is the relative vorticity,
the horizontal momentum equation may be written

∂vh

∂t
+∇h(v

2/2)+ k̂×Z+θ∇h5 = 0 (1)

where the subscriptedh indicates the horizontal part of a
vector, a subscriptedz indicates the vertical component, and
where

Z = Z1+Z2+Zf = vhζz −ζ hvz + k̂×F . (2)

The quantity(ζ h,ζz) is the absolute vorticity vector,θ is
the potential temperature,5 = Cp(p/pref)

κ
= CpT/θ is the

Exner function,p is the pressure,pref = 1000 hPa is a con-
stant reference pressure,Cp is the specific heat of air at con-
stant pressure,κ = R/Cp, R is the gas constant for air, and
T is the temperature.

The vorticity equation in flux form (Haynes and McIntyre,
1987) is obtained by applyinĝk ·∇h× to (Eq.1),

∂ζz

∂t
+∇h ·Z+ k̂ ·∇hθ ×∇h5 = 0, (3)

from which it is clear thatZ is the horizontal flux of the verti-
cal component of absolute vorticity, consisting of three parts,
Z1 the advective flux,Z2 the vorticity flux associated with
vortex tilting, andZf the flux of vorticity due to the horizon-
tal force per unit massF associated with the divergence of
the Reynolds stress. This force is generally thought to be due
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primarily to surface friction. The termsZ2 andZf are to-
gether called the non-advective flux of vorticity. The vertical
component of the baroclinic generation termk̂ ·∇hθ ×∇h5

is generally neglected except in highly baroclinic environ-
ments such as the hurricane eyewall or mid-latitude fronts.

The divergence equation comes from applying∇h· to
(Eq.1):

∂δ

∂t
+∇h · [∇h(v

2/2)+ k̂×Z+θ∇h5] = 0 (4)

whereδ = ∇h ·vh is the divergence. The hydrostatic equation
in terms of the Exner function is

θ
∂5

∂z
+g = 0. (5)

The anelastic mass continuity equation relates the vertical
mass fluxM = ρ0vz to the horizontal mass divergenceρ0δ

∂M

∂z
= −ρ0δ (6)

where the densityρ0(z) is approximated as depending only
on height.

The divergence of the advective flux of vorticityZ1 can be
split into two pieces,

−∇h ·Z1 = −vh ·∇hζz −ζzδ, (7)

the first of which simply advects vertical vorticity in the hor-
izontal plane and the second of which modifies vorticity via
vertical stretching. The advection does not change the mag-
nitude of vorticity in a parcel in the flux form of the equa-
tions; this role is reserved for the second term, commonly
called the stretching term, which can increase or decrease the
magnitude of vorticity (but not change the sign). This split is
sometimes useful in distinguishing the stretching part of the
vorticity flux from the horizontal advection part.

2.2 Vorticity balance

We introduce a balance condition which is obtained by drop-
ping the partial time derivative from the vorticity (Eq.3)
equation:

∇h ·Z+ k̂ ·∇hθ ×∇h5 = 0. (8)

As noted above, we can often ignore the vertical component
of the baroclinic generation of vorticity, leaving us with the
simplified form of vorticity balance,

∇h ·Z = 0. (9)

Aside from the neglect of vertical baroclinic generation, this
is an exact equation in the steady state.

Vorticity balance is of interest because vorticity imbalance
in the sense defined here is an indicator of evolution of the
vorticity field. We demonstrate in Sect.4 that all terms in the
vorticity balance equation can be estimated from the data at
hand, thus allowing vorticity tendencies to be calculated.

An additional balance condition is obtained by setting the
time tendency of divergence to zero in (Eq.4):

∇h · [∇h(v
2/2)+ k̂×Z+θ∇h5] = 0. (10)

If the irrotational part of the horizontal velocity as well as the
vertical velocity in (Eq.10) are neglected, then this equation
becomes the nonlinear balance equation (Raymond, 1992).
Given the velocity and friction fields, this equation can be
used in conjunction with the hydrostatic Eq. (5) to diagnose
the potential temperature and pressure perturbation fields, or
at least that part of those fields not associated with large time
tendencies in the divergence. We will not use Eq. (10), but it
is included for completeness.

Equations (8–10) are not Galilean-invariant, as the dis-
carded partial time derivative is different in different ref-
erence frames. For instance, imagine a disturbance which
moves rapidly at constant speed but other than that evolves
only slowly with time. In the reference frame moving with
the disturbance, the partial derivative of vorticity with time is
small. However, this is not true in the stationary frame, since
the vorticity at a fixed point in this frame changes rapidly
with time as the disturbance passes by. In order to eliminate
time tendencies due to system motion, we do all calculations
in the co-moving reference frame of the disturbance being
studied.

2.3 Effects of shear on tropical cyclogenesis

Vertical shear of the horizontal wind has long been consid-
ered to be detrimental to both developing and mature tropi-
cal cyclones (Gray, 1968, McBride and Zehr, 1981). Con-
siderable attention has been given to the dynamical effects
of shear on a strong, isolated vortex (Jones, 1995, 2000a,
2000b;Reasor et al., 2004). In this case one frequently finds
a precession of the vortex tilt relative to the shear vector, cul-
minating in some situations in a tilt of the vortex down and
to the left of the shear (in the Northern Hemisphere).

In the formation stage of a tropical cyclone the pattern of
vorticity is quite different from that seen in a mature cyclone.
Most commonly one finds an evolving, chaotic distribution
of mesoscale vorticity perturbations produced by convection
and other processes, the ensemble of which constitutes the
larger pattern of vorticity associated with the parent distur-
bance, be it a monsoon trough, a tropical wave, or other sys-
tem. This situation generally has lower Rossby number than
the strong vortex case, possibly allowing the use of quasi-
geostrophic dynamics.Reasor and Montgomery(2001) find
a vortex tilt to the left of the shear vector in certain circum-
stances under these conditions, particularly when a strong
negative gradient in potential vorticity exists beyond some
radius. However, it is unclear whether the Nuri 1 case falls
in this category, and the neglect of the generation of vorticity
by convection in that paper may limit its applicability.

We consider here an alternative idealization in which the
parent disturbance is assumed to be a vertically aligned
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150 D. J. Raymond and C. López Carrillo: Vorticity budget in typhoon Nuri

2 1 0 1 2
2

1

0

1

2

U

2 1 0 1 2
2

1

0

1

2

Fig. 1. Schematic illustration of the flow produced by a circu-
lar region of constant relative vorticity bounded by the circle (left
panel) and the same flow with a superimposed constant wind to-
ward the right (right panel). The constant windU in the right panel
is half that of the induced tangential wind at the radius of the disk of
vorticity. This component is graphically represented by the arrow
between the plots. The thick line represents the dividing streamline
between an interior closed circulation and the exterior flow.

cylinder of enhanced relative vorticity. This vorticity is as-
sumed constant at each level within the cylinder and zero out-
side. The resulting induced flow is solid body rotation about
the cylinder axis within the cylinder and a tangential wind
inversely proportional to the distance from the axis outside.
We thus neglect the fine-scale structure of the vorticity field.
The magnitude of the vorticity and the induced flow can vary
with height.

The total flow is the superposition of the flow induced by
the vorticity pattern plus the ambient wind. The left panel
in Fig. 1 shows schematically the flow induced by the vor-
ticity pattern, which has non-zero vorticity within the con-
fines of the circle. As expected, zero wind is found at the
center of the circle. A constant wind toward the right super-
imposed on this flow produces the flow pattern shown in the
right panel of Fig.1. The point with zero resultant wind has
moved away from the center of the disk of vorticity toward
the upper boundary, or 90◦ to the left of the constant wind.
If the constant wind is too strong, then the resultant wind is
non-zero everywhere in the flow. This occurs in our simple
model when the constant wind exceeds the speed of the in-
duced flow at the edge of the disk of vorticity.

The point of zero wind can be viewed as the center of a
closed circulation. In the case of no superimposed constant
wind, the radius of the closed circulation is infinite. How-
ever, with the superimposed constant flow, the closed circu-
lation occupies a limited area delimited by the thick line in
the right panel. The size, shape, and existence of this closed
circulation depend on the area and magnitude of the region of
non-zero vorticity and on the strength of the constant wind.

For a vertically aligned cylinder of vorticity in shear, the
location and extent of the closed region will vary with height
and the displacement of the center of the circulation at each
level will be normal to the direction of the relative wind at
that level. These arguments will be used later to explain

the relative locations of circulation centers (in the reference
frame of the moving disturbance) at the various stages of de-
veloping tropical cyclones. The overlap of closed circula-
tions through a deep layer will be identified as a condition
favoring the intensification of a tropical wave or depression.

A vertical cylinder of constant vorticity would of course
be subject to disruption by environmental shear, but given
the dimensions of a typical wave, the time for this disruption
would be long compared to the time scale of the embryonic
cyclone embedded in the parent disturbance. Furthermore,
the parent disturbance would exhibit its own mechanisms
for survival in the face of shear, which would likely include
quasi-geostrophic and convective processes. Shear might tilt
the cylinder to a certain degree, but if this tilt were weak it
would result in only minor complication in the determination
of the regions of closed circulation at each level.

If in addition to a solenoidal component to the flow (as
represented by the stream function) there were an irrotational
component, there would be flow across the streamlines, and
parcels could spiral in or out across the boundary between
the closed and the external flow. However, if the irrotational
part were small compared to the solenoidal part, this would
constitute minor leakage between the regions. Time depen-
dence of the flow could also reduce the isolation of the closed
region, as noted byDunkerton et al.(2009).

2.4 Questions to be addressed

An analysis of observational data in the light of the vorticity
and divergence equations can yield significant insight into
the process of tropical cyclogenesis. Among the issues con-
sidered here are the following:

1. How does the vertical mass flux profile of convection af-
fect the development of a cyclone? The vorticity Eq. (3)
together with Eq. (7) indicate that the strongest spinup
exists at levels with the largest values of the product of
absolute vorticity and convergence−ζzδ. The strongest
convergence (strictly, the mass convergence−ρ0δ) oc-
curs where the vertical mass flux increases most rapidly
with height.

2. What are the effects of shear on the early stages of the
development of a cyclone embedded in an extensive re-
gion of pre-existing vorticity, such as that provided by
a tropical wave? This is a very different situation from
that of an isolated vortex in shear, as discussed above.

3. What is the horizontal distribution of vertical stretch-
ing responsible for cyclone spinup? Is it concentrated
in a few intense VHTs as proposed byHendricks et
al. (2004) andMontgomery et al.(2006), or is it more
widely distributed in numerous but less intense convec-
tive systems?

4. How close does the pre-cyclone system come to vortic-
ity balance in the boundary layer?
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Table 1. Information about the four flights into Nuri (15–19 August) and one into TCS030 (1–2 September). The second and third columns
give the operation altitude of the two aircraft. The fourth column specifies the reference time to which all observations are reduced, given in
units of kiloseconds since the UTC beginning of the first date listed in column one. Thus, reference times exceeding 86.4 ks actually occur
on the following UTC day. The fifth and sixth columns give the location of the low-level circulation center of the system at the reference
time and the eastward and northward components of the observed propagation speed of the system.

Date P3 WC130J Ref time Ref location Storm velocity

15–16 August 2.4 km 9.4 km 93.0 ks (145.5◦ E, 15.5◦ N) (−4.9, 0.0) m s−1

16–17 August 2.4 km 9.4 km 86.0 ks (140.0◦ E, 16.7◦ N) (−8.7, 0.0) m s−1

17–18 August 3.6 km – 90.0 ks (132.7◦ E, 16.5◦ N) (−8.7, 0.6) m s−1

18–19 August – 3.0 km 83.0 ks (127.1◦ E, 17.1◦ N) (−6.8, 1.9) m s−1

1–2 September 2.4 km 9.4 km 76.0 ks (145.0◦ E, 14.5◦ N) (−6.3, 0.6) m s−1

3 Data and methods

3.1 TPARC/TCS08

The TPARC/TCS08 field program took place from 1 August
through 3 October 2008. Though the main operations center
was located at the US Naval Postgraduate School in Mon-
terey, California, aircraft bases were located in Guam, Tai-
wan, and Japan. Okinawa was sometimes used as an aux-
iliary aircraft base. Driftsonde balloons capable of deploy-
ing dropsondes from stratospheric elevations, were launched
from the Island of Hawaii.

The aircraft available to the project were two WC-130J
turboprops from the US Air Force Reserve 53rd Weather Re-
connaissance Squadron, the US Naval Research Laboratory
(NRL) P-3 aircraft (all based in Guam), the Taiwanese DOT-
STAR aircraft, a modified Astra business jet operated by the
National Taiwan University (Taipei), and the German Das-
sault Falcon 20-E5 jet operated by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR; Atsugi, Japan). All aircraft were
capable of deploying dropsondes. In addition, the DLR Fal-
con carried downward-looking wind, temperature, and water
vapor lidars, while the NRL P-3 carried the National Center
for Atmospheric Research’s ELDORA radar and a Doppler
wind lidar.

3.2 Observations

Table 1 gives information about the four aircraft missions
into developing tropical cyclone Nuri and the single mission
into TCS030. The aircraft involved in the observations of
Nuri were the two WC-130Js and the NRL P-3, all operating
out of Guam. Though the P-3 generally operated between
elevations of 2.4 km and 3.6 km, it climbed for a short time
to 7.3 km during the first mission in order to deploy drop-
sondes from a higher altitude. The WC130J deployed a few
dropsondes in Nuri from 9.4 km during the third mission, but
had to return to Guam due to mechanical problems. The pre-
ferred altitude of operation for the WC130J was 9.4 km, but

it descended to 3.0 km when icing or turbulence became a
problem at the higher altitude.

Times are given in UTC in this paper. Local time in Guam
is UTC + 10 hr. All on-station times for Nuri and TCS030
flights by the P-3 were in daylight. The Nuri flights departed
Guam around 08:00 LT and returned around 15:00 LT. The
TCS030 flight of the P-3 departed at 05:00 LT and returned
near 12:00 LT. The WC-130J generally took off a few hours
before the P-3.

The mission of the WC-130Js was to deploy a grid of drop-
sondes over the disturbance in question from as high an al-
titude as feasible given the conditions. The main mission of
the P-3 was to make Doppler radar measurements of convec-
tion using the ELDORA radar. In most cases the strategy was
to obtain snapshots of as many convective systems as possi-
ble within the cyclone; repeated measurements on convective
systems were generally not made, as obtaining a large statis-
tical sample of convection was considered to be more valu-
able than following the life cycles of a few systems. In addi-
tion, the P-3 deployed dropsondes along the flight path and
made Doppler wind lidar measurements of the atmospheric
boundary layer beneath the aircraft.

The ELDORA radar was configured as shown in Table2.
The unambiguous range of 75 km means that Doppler radar
measurements in a 150 km swath were made, centered on the
P-3 track, albeit with reduced spatial resolution and sensitiv-
ity at the outer limits. Since ELDORA is an X-band radar,
attenuation is a significant issue. However, the large unam-
biguous velocity of 62 m s−1 means that unfolding of radial
velocities is not a significant problem with the systems ob-
served in this case study.

The Doppler radar measurements from the P-3 aircraft
and dropsondes from the P-3 and the WC130J were used
for the first three Nuri missions to produce gridded hori-
zontal and vertical winds satisfying mass continuity using
a three-dimensional variational analysis scheme (3D-VAR).
This scheme is described in detail byLópez Carrillo and Ray-
mond(2010). Only dropsondes deployed during the 4–6 hr
in which the P-3 was flying in the system were used. The
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Table 2. Characteristics of the ELDORA radar during TPARC/
TCS08.

Radar characteristic Value

Wavelength 3.2 cm
Beamwidth (H x V) 1.8◦ ×2.0◦

Antenna gain 39.2 dB
Beam tilt angle +15.6◦ fore;−16.5◦ aft
Antenna rotation rate ≈ 78◦ s−1

Peak transmitted power 40 kW
Pulse repetition frequency 1600/2000 Hz
Minimum detectable signal at 10 km −12 dBZ
Unambiguous range 75 km
Unambiguous velocity (dual PRT) ± 62 m s−1

Number of frequencies 3
Total cell length 150 m
Along track sweep spacing ≈500 m

fourth Nuri mission produced only dropsonde data from the
WC-130J, and these soundings (deployed from 3 km for op-
erational reasons) were used to produce an analysis with the
3D-VAR system.

For the first three Nuri missions for which radar data are
available and for the single TCS030 mission, the grid size
is 0.125◦ in both latitude and longitude (roughly 14 km) and
0.625 km in the vertical. The gridded domain is 5◦

×5◦
×

20 km or 40×40×32 cells for Nuri missions 2 and 3 and 7◦
×

7◦
×20 km or 56×56×32 cells for Nuri mission 1 and the

TCS030 mission. For the fourth Nuri mission in which only
dropsonde data are available, the horizontal grid resolution
is also 0.125◦ with a 4◦

× 4◦ domain size, for a grid with
32×32×32 cells.

Though the 3D-VAR scheme produces results in the en-
tire domain analyzed, these results are not reliable outside of
the region where data exist. The results are therefore masked
to include only regions which contain either radar or drop-
sonde data (or both). At higher altitudes radar data cover less
area. Furthermore, the deepest dropsonde soundings begin
near roughly 9 km. For this reason, the regions above 12 km
are ignored and most results come from observations at 5 km
and below. The 3D-VAR scheme is capable of incorporating
high elevation angle radar data. However, radar rays with el-
evation angles exceeding± 30◦ were not used in the analysis
in order to avoid contaminating our results with uncertain-
ties in the estimation of particle terminal velocities. Results
obtained with and without this limitation are quite similar,
but the high elevation angle data introduce some “cosmetic”
artifacts in vertical velocities which we prefer to avoid. A
minimum of 200 radar radial velocity samples are required
in each grid cell and the conditiona2 ≥ 0.03 (a measure of
the quality of the geometry for dual Doppler analysis) is im-
posed in order to ensure that only valid dual Doppler results
are included (see Ĺopez and Raymond 2010). These condi-

tions largely eliminate random outliers in the radar synthesis
without significantly limiting radar coverage.

Before applying the 3D-VAR scheme, radar and drop-
sonde observations are adjusted to their corresponding po-
sitions at a specified reference time using the observed prop-
agation velocity of the disturbance over the measurement pe-
riod. System positions were estimated from vorticity fields in
National Centers for Environmental Prediction Final Analy-
sis (NCEP FNL) data. Both propagation velocities and ref-
erence times are listed in Table1. The low-level circulation
centers at the reference time for each mission are also given
in this table.

Different ways of estimating system propagation speeds
can yield somewhat different answers early in a system’s de-
velopment. In particular,Montgomery et al.(2010) estimate
that Nuri was moving to the west approximately 2 m s−1

faster than we estimated for the first observational period.
Tests indicate that our results are not overly sensitive to such
differences.

3.3 Vorticity analysis

Once the velocity grid is obtained, all components of the vor-
ticity are computed using centered differences. The first two
terms on the right side of (Eq.3) are then computed from
the vorticity and the velocity. The advection and stretching
components of the first term are also computed separately as
indicated in (Eq.7).

In order to compute the third term, the surface wind stress
needs to be calculated and an assumption has to be made
about the depth over which the stress is distributed. The sur-
face stressτ is computed from a bulk flux formula

τ = −ρBLCD|UBL |UBL (11)

where a subscript BL indicates a boundary layer value, with
ρ indicating air density andU indicating the horizontal wind
in the earth’s reference frame. Since Doppler radar observa-
tions close to the surface are problematic due to sea clutter,
UBL is derived primarily from radar (and dropsonde) winds
at the first analyzed level above the surface atz = 0.625 km.

Results from the CBLAST (Coupled Boundary Layer
Air–Sea Transfer) experiment (figure 5 ofBlack et al., 2007)
suggest an estimate for the drag coefficient

CD ≈ (1+0.028|UBL |)×10−3 (12)

thought to be valid up to approximately 30 m s−1. Since
CBLAST results are for 10 m winds, our use of winds near
625 m results in a slight overestimate for the surface stress.

The specific frictional forceF is postulated to take the
form

ρF ≈ τ exp(−z/zs)/zs (13)

where a scale height ofzs = 1.25 km is chosen to represent
the average depth of the planetary boundary layer (PBL) in
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Fig. 2. Sea surface temperature and the observed low-level cir-
culation centers of Nuri (white stars) during tropical wave (TW),
tropical depression (TD), tropical storm (TS), and typhoon (TY)
missions. The blue line indicates the track of the vorticity center in
850 hPa FNL data, with the blue dots spaced at 6 hr intervals. The
larger magenta dots indicate the 00:00 UTC FNL positions nearest
to the reference times shown in Table1 for the observational mis-
sions.

tropical regions. The postulated scale height is consistent
with the idea that surface friction is mixed through the full
PBL, i.e., the layer containing boundary layer clouds as well
as the sub-cloud layer, via turbulent eddies. Unfortunately,
not enough is known about boundary layers topped by con-
vective clouds in developing tropical storms to justify a more
refined estimate of the vertical distribution of the drag force
resulting from the surface stress. Given these uncertainties,
F is probably known to within only a factor of two. How-
ever, this accuracy is sufficient to draw some significant con-
clusions, as noted below.

With F roughly known, the third term on the right side
of (Eq.2) is estimated. Substituting this equation in (Eq.3),
dropping the vertical baroclinic term, integrating over a hor-
izontal areaA, and applying Gauss’s law, we obtain the ten-
dency of the absolute circulation around the areaA,

d0

dt
= −

∮
vnζzdl+

∮
ζnvzdl+

∮
Ftdl, (14)

where the line integrals are taken to be in the counterclock-
wise direction over the periphery ofA, vn and ζn are the
horizontal outward normal components of the velocity and
vorticity, andFt is the component ofF tangential to the pe-
riphery of A in the direction of the integration. Thus, the
circulation around the areaA depends only on what is hap-
pening on the periphery ofA and not in the interior. The first
term on the right is the spinup tendency due to the conver-
gence of absolute vorticity, the second expresses the effect
of vortex tilting on the periphery ofA, and the third is the
spindown tendency due to friction.
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Fig. 3. Histogram of satellite infrared brightness temperatures of
pixels in a 5◦ ×5◦ square as a function of time, centered on trop-
ical cyclone Nuri as it intensified. The stages of the storm (wave,
tropical depression, tropical storm, typhoon) are shown, as well as
the approximate times of the four aircraft missions, M1-M4 (see Ta-
ble1). The color scale indicates the number of pixels with the given
temperature at the given time.
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Fig. 4. As in Fig.1 except for tropical wave TCS030.

The terms on the right side of (Eq.14) may be computed
directly, or by area integrating the right side of (Eq.3). We
choose the latter approach as it is computationally simpler.
In addition, by expressing the horizontal velocityvh as rel-
ative to the motion of a propagating system, the circulation
tendency around the moving system can be computed using
(Eq.14).
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4 Results

In this section we document the overall development of Nuri
and of the tropical wave TCS030. We then examine the vor-
ticity structure of these systems and finally analyze the vor-
ticity dynamics of intensification.

4.1 Overview of development

Figure 2 shows the locations of tropical cyclone Nuri de-
termined from FNL 850 hPa vorticity patterns as well as
low-level circulation centers from our observational analy-
sis, along with the Reynolds (Reynolds and Marsico, 1993)
sea surface temperature (SST) distribution for the period of
Nuri’s intensification. Previous to the typhoon stage, Nuri
passed over SSTs of approximately 30◦C. It later encoun-
tered decreasing SSTs. The FNL positions are obtained from
subjective estimates of the vorticity center. As the scatter
in successive position estimates shows, this procedure is not
very precise in the tropical wave stage. It also appears to lead
to a systematic southward displacement of the estimated po-
sition of Nuri during this phase, compared to our observa-
tions of the low-level circulation center.

Figure3 shows a time series of the distribution in satellite
infrared brightness temperature in a 5◦

×5◦ square centered
on Nuri as it intensified and moved to the west. The input for
this figure is a series of Japanese MTSAT geosynchronous
satellite infrared images interpolated to a longitude-latitude
grid with a resolution of 0.2◦

× 0.2◦. A pronounced diur-
nal cycle is seen, with coldest cloud tops occurring near
18:00 UTC. This diurnal cycle diminishes in amplitude as
the storm intensifies and produces a more extensive region of
high overcast. Note that the aircraft missions took place dur-
ing periods of warming cloud tops. Operational constraints
prevented us from exploring the diurnal cycle with the air-
craft.

Figure4 shows the SST at the time TCS030 was observed
and its location at this time. SSTs were in excess of 30◦C
and the system was moving toward even warmer water. In
spite of these favorable conditions, TCS030 did not develop.
Instead it fluctuated in intensity and finally made landfall in
the southern Philippines as a tropical wave. The white star in
Fig. 4 is located near the most intense convection observed
in TCS030 since no low-level circulation center was obvious.
This estimate is displaced well to the northeast of the position
estimate based on FNL 850 hPa vorticity.

4.2 Vorticity structure

Figures5–7 show the storm-relative winds and absolute vor-
ticity at 1.2 km and 5 km for the first three missions into trop-
ical cyclone Nuri. The track of the P-3 aircraft and locations
of usable dropsondes are shown in the left-hand panels. Re-
flectivities greater than 25 dBZ at 5 km are shown as gray-
scale insets in the right-hand panels.

As storm-relative winds are used, the circulation centers
in both panels are physically significant since the associated
streamlines are close to being parcel trajectories. These cir-
culation centers are also important thermodynamically, as
they are protected from the injection of dry air from outside
the system (Dunkerton et al., 2009). The 1.2 km circulation
centers are listed in Table1 and shown in Fig.5.

The low-level circulation center is somewhat ill-defined in
the case of Nuri 1 (first Nuri flight), though it is plausibly
located at the white star in Fig.5. The low-level vorticity
in Nuri 1 shows a northwest-southeast band to the northeast
of the assumed center (Fig.5) and an otherwise random pat-
tern of vorticity fluctuations. The band bounds the southern
limit of the strong cyclonic flow on the north side of the sys-
tem. At 5 km, the pattern is quite different, with the strongest
vorticity on the east and southeast sides of the disturbance,
encompassing the 5 km circulation center. Visual observa-
tion from the P-3 indicated that this region of vorticity aloft
coincided with a large stratiform rain area. This is in con-
trast with the western part of the disturbance, which exhib-
ited a much more convective structure. The elongated center
of the system-relative circulation at 5 km is in the form of
a northeast-southwest band displaced≈3◦ to the southeast
of the low-level center. The southwestern end of this band
is close to the position inferred from FNL 850 hPa vorticity.
Maximum relative winds are near 10 m s−1 at both levels.

Given the uncertainty in the Nuri 1 propagation velocity,
Fig. 5 was replotted (not shown) with an assumed propaga-
tion velocity of (−7,0) m s−1, which is about 2 m s−1 faster
to the west than indicated in Table1 and closer to the ob-
served propagation speed for Nuri 2 and Nuri 3. This change
in the propagation velocity moves the circulation centers at
both levels to the north-northeast by about 0.6◦, but does not
change the character of the overall storm-relative flow or any
of the conclusions drawn from this plot.

The strength of vorticity perturbations has intensified at
both 1.2 km and 5 km in Nuri 2 (second Nuri flight; see
Fig.6), though there is still little system-wide organization at
1.2 km. The 1.2 km circulation center is located at the north-
west corner of the observed region in this case and the circu-
lation center at 5 km is displaced≈ 2◦ to the south-southeast
of the low-level center. At 5 km there is a rather strong
north-south band of vorticity located roughly between the
low and mid-level circulation centers. The overall circulation
is slightly stronger than that seen in Nuri 1. Maximum rela-
tive winds are near 15 m s−1, with somewhat stronger winds
occurring at 5 km.

Figure 7 shows that the circulation pattern has changed
drastically for Nuri 3 (third Nuri flight), with a strong central
vorticity maximum at 1.2 km and a spiral band of vorticity
linked to the central maximum. A nearly co-located maxi-
mum in vorticity exists at 5 km. The maximum winds are
about 20 m s−1 at both levels, with the largest values occur-
ring near the central vorticity maximum.
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D. J. Raymond and C. Ĺopez Carrillo: Vorticity budget in typhoon Nuri 155

10 m/s

143 144 145 146 147 148 149 150
longitude (deg E)

11

12

13

14

15

16

17

18

la
ti

tu
d
e
 (

d
e
g
 N

)

z = 1.2 km

0.3

0.2

0.1

0.0

0.1

0.2

0.3

143 144 145 146 147 148 149 150
longitude (deg E)

11

12

13

14

15

16

17

18

la
ti

tu
d
e
 (

d
e
g
 N

)

z = 5.0 km

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Nuri 1: relative winds, absolute vorticity (ks−1 )

Fig. 5. Absolute vorticity (color levels) and storm-relative winds for Nuri mission 1 at 1.2 km (left panel) and 5 km (right panel). The black
line and black dots in the left panel indicate the P-3 aircraft track and the locations of P-3 and WC-130J dropsondes. The gray scale insets in
the right panel show regions of radar reflectivity exceeding 25 dBZ at 5 km. The white star and the white circle indicate the system-relative
circulation centers in the PBL and at 5 km respectively. The white areas reflect the geometry of the mask chosen for this mission.
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Fig. 6. As in Fig.5 except second Nuri mission.
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Fig. 7. As in Fig.5 except third Nuri mission. The large red box indicates the central core region and the two smaller red boxes on opposite
sides of the core are averaging regions for the wind profile calculation.

www.atmos-chem-phys.net/11/147/2011/ Atmos. Chem. Phys., 11, 147–163, 2011
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Figure8 shows the vorticity and storm-relative winds for
mission 4. No radar reflectivities are available due to the ab-
sence of the P-3 in this mission. The circulation center is
clearly defined at this stage. Due to the lack of observations
between the legs of the “X” pattern flown by the WC-130J,
the analyzed winds and vorticity in the outer regions are dis-
torted. However, with the concentration of observations near
the circulation center, the winds are likely to be more reliable
there. Maximum winds are near 40 m s−1 and the near-core
circulation is highly symmetric.

The circulation in the case of TCS030 (Fig.9) is
very weak, with maximum system-relative winds less than
10 m s−1. To the extent that a circulation can be inferred at
1.2 km, it is centered at the far northeast corner of the ob-
served region. The system-relative flow through the system
at low levels is from the west. Though there is a region of
moderately strong 5 km vorticity near the northeast corner,
the flow at this level does not suggest a closed circulation
even in storm-relative coordinates. In general, vorticities are
less than they are in Nuri 1.

Figure10 shows histograms of the relative frequency of
occurrence of vorticity values at 1.2 km elevation seen in
Figs.5–7 and9. (Results from Fig.8 are not included, as fine
resolution radar data were not available in this case.) As Nuri
intensified, larger values of vorticity developed as expected.
However, the overall distribution broadened as well, with
more negative values also occurring. Negative absolute vor-
ticity values are likely produced by the tilting term in the vor-
ticity equation; the only other possible mechanism would be
convergence of pre-existing negative vorticity, which could
in principle occur, but seems less likely. Increased convec-

tive activity in shear, which promotes tilting, is probably how
this happens. The strong vorticities in the central maximum
seen in Fig.7 are highly limited in areal coverage and ap-
pear in the extreme tail of the Nuri 3 vorticity distribution.
The distribution of vorticity in the tropical wave TCS030 is
somewhat similar to that in the tropical wave stage of Nuri,
but with more negative and fewer positive values of absolute
vorticity.

Figure11shows vertical profiles of wind for the Nuri mis-
sions and the TCS030 mission. All but the Nuri 3 profiles
were obtained from averaging analyzed winds from the 3D-
VAR scheme over the full domains of Figs.5, 6, 8, and9.
There is likely to be some contamination of the environmen-
tal flow with storm generated winds, but by averaging over
the entire domain, which is at least somewhat centered on the
disturbance, much of this contamination should average out.
For Nuri 3, one-degree-square regions on opposite sides of
the central core (see Fig.7) rather than the entire domain are
averaged in order to cancel out axisymmetric storm pertur-
bations to the flow. This seems preferable to averaging over
the full observed domain, since the concentration of obser-
vations on the north side of the core of Nuri 3 is likely to
increase greatly the contamination of the environmental flow
with cyclone-generated winds.

Figure 11 shows moderately strong shears of≈7 m s−1

between the surface and 6 km in Nuri 1 and Nuri 2. The
Nuri 3 shear is considerably stronger, of order 15 m s−1.
The shear was strong enough in the real time forecast for
TPARC/TCS-08 forecasters to discount the possibility that
Nuri would intensify. The initial mission was therefore un-
dertaken as a probable “null” case. The relative wind pro-
file in TCS030 differed little in essential characteristics from
that seen in Nuri 1 with the exception that strong northerly
system-relative flow existed at middle and upper levels.

4.3 Circulation dynamics

As noted in Sect.3, the advective (Z1 in (Eq. 3)) and non-
advective fluxes (Z2+Zf ) of the vertical component of ab-
solute vorticity are estimated from the velocity and vorticity
fields. Figures12–15 show the total vorticity flux and the
vorticity tendency due to vertical stretching for Nuri 1-3 and
TCS030 in the PBL and at 5 km. Note that the scales for
the vorticity flux and the stretching tendency differ between
figures. The stretching tendency−ζz∇h ·vh is shown rather
than the total tendency because stretching is the main mech-
anism by which parcel values of vorticity are increased, at
least in regions of small tilting tendency. The vorticity advec-
tive tendency−vh ·∇hζz exhibits complex patterns which are
irrelevant to the parcel increase in vorticity since advection
simply moves parcels around without changing their vortic-
ity. Of course the advective contributions are needed to com-
pute the overall circulation tendency given by (Eq.14) since
they can move parcels in and out of the circulation domain.
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Fig. 9. As in Fig.5 except the TCS030 mission. No circulation centers are indicated.
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in Figs.5–7 and9.

Also shown is the total vorticity flux. The vorticity flux
(but not the stretching tendency) has been low-pass filtered
with a filter length of 0.5◦ to improve the clarity of the overall
vorticity flow patterns. Mostly the vorticity flux reflects the
horizontal velocity field, demonstrating the large magnitude
of the advective part of the vorticity flux relative to the non-
advective part.

The stretching tendency of vorticity indicates regions of
mass convergence, so maxima in this quantity indicate re-
gions of convection with significant convergence in the
boundary layer. Comparison of stretching maxima in the
PBL with regions of strong 5 km reflectivity in the right pan-
els of Figs.5–7 and9 shows moderately good, but not per-
fect agreement in this respect. Notable examples exhibiting
strong correlations in this regard include the convection near
(145.8◦ E, 14.2◦ N) in Nuri 1, (140.2◦ E, 14.4◦ N) in Nuri 2,
and (133.0◦ E, 16.0◦ N) in Nuri 3. The strongest stretching
tendencies at 5 km are greater than PBL tendencies in Nuri
1, Nuri 2, and in TCS030.
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Fig. 11. Storm-relative westerly (left panel) and southerly (right
panel) wind components for the four Nuri missions and TCS030.

As Nuri intensifies, the regions of stretching become fewer
and more intense, culminating in a single strong central vor-
tex in Nuri 3. This suggests a transformation from scattered
ordinary convection to a more limited number of strong con-
vective systems reminiscent of VHTs, which in turn give way
to the cyclone eyewall. Such behavior is seen in the three-
dimensional numerical simulations ofNguyen et al.(2008).

Circulations of vorticity flux in the PBL in Nuri 1 and 2,
as seen in Figs.12–14 appear to be closed, but the observed
regions are too restricted to say with absolute certainty. At
5 km the Nuri 1 circulation also suggests closure. For Nuri 2
at 5 km and Nuri 3 at both altitudes the vorticity flux circu-
lation is clearly closed. These results suggest that regions of
strong vorticity created by stretching are not exported from
Nuri during its growing stage. The pattern of vorticity flux in
TCS030 in the PBL may be closed, but observations do not
extend far enough to the north to verify this. At 5 km there is
no hint of a closed circulation in TCS030, allowing export of
generated vorticity at this altitude.

The centers of vorticity circulations are near, but not
necessarily colocated with the centers of mass circulations.
This difference in location is due to a combination of
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Fig. 13. As in Fig.12except for Nuri 2. Note the change in scales.

non-advective fluxes, i.e., tilting and frictional fluxes rep-
resented by the second and third terms on the right side of
(Eq.3).

Figures16–22 show vertical profiles of planetary and ab-
solute circulation0 around the observed regions in Figs.5–
8 and9 as well as the integrated vertical mass fluxM. In
addition, the vertical profiles of the various components of
circulation tendency are shown. By hypothesis, the friction
tendency is concentrated primarily in the PBL. The domain
sizes are different for each case. However, the magnitude
of the integrated planetary circulation, which is roughly the
Coriolis parameter times the area, gives a visual estimate of
the relative domain sizes between plots since the Coriolis pa-
rameter is very similar in all cases.

Figure16 shows profiles for Nuri 1. The maximum circu-
lation in this tropical wave case occurs in a nearly uniform
layer from the surface up to 4 km with a value of roughly
twice the planetary circulation. The circulation decreases
monotonically above this level. The vertical mass flux max-
imizes at high levels, near 10 km elevation and is actually

negative at low levels, suggesting that downdrafts are strong
there. The vertical derivative of mass flux is very small or
negative in the PBL. Thus, boundary layer convergence as-
sociated with convection is small and the circulation ten-
dency due to vorticity convergence near the surface is corre-
spondingly small. The frictional spindown tendency exceeds
vorticity convergence below 1 km. Vorticity convergence in-
creases up to the mid-troposphere and then decreases. Above
this level, tilting makes a significant positive contribution to
the circulation tendency.

Nuri 2 (Fig. 17) exhibits a very different pattern, with the
vorticity convergence term greatly exceeding frictional spin-
down in the PBL. This is related to the rapid increase in ver-
tical mass flux with height and the associated strong mass
convergence in the PBL. The vertical mass flux maximizes
near an elevation of 5 km, which is significantly lower than
in Nuri 1. The contribution of tilting is comparatively weak
at all levels. The surface circulation is still only about twice
the planetary circulation, but the maximum circulation has
increased to three times the planetary circulation near 5 km.
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Fig. 15. As in Fig.12except for TCS030. No circulation centers are shown in this case.

Figure18 shows that for Nuri 3 the circulation measured
relative to the planetary circulation has increased at all levels
in comparison to Nuri 2. The elevation of maximum verti-
cal mass flux has increased to near 6 km and the mass con-
vergence in the PBL is less than for Nuri 2. Tilting con-
tributes negatively to the circulation tendency in the lower
troposphere and positively in the upper troposphere.

The circulation tendency due to vorticity convergence is
actually negative in the PBL. This is due to the apparent sup-
pression of stretching away from the central vorticity maxi-
mum. The circulation tendency in the PBL for a 2◦-square
box centered on the core (Fig.19) is slightly positive, but is
indistinguishable from zero given the potential errors in the
calculation of surface friction. Comparison of Fig.18and19
also shows that the region within the 2◦ box is responsible
for 2/3 of the mass flux and circulation and nearly 100% of
the circulation at the surface.

Figures20 and 21 show the corresponding patterns for
Nuri 4 except that the region over which the integration is
done for21 is the 1.5◦ box illustrated in Fig.8. As for Nuri
3, the circulation tendency due to convergence over the full
domain is small, with a net spindown tendency in the PBL,
while a net spinup tendency exists over the central region.

The spindown tendency over the full domain in Nuri 3 must
be a transient effect, as the overall circulation over the full
domain increased between Nuri 3 and Nuri 4 in spite of the
spindown tendency at the time of observation.

In the TCS030 case (Fig.22) the circulation is almost non-
existent and the vertical mass flux is very weak. Curiously,
the mass flux profile has a double maximum, with peak fluxes
near 2 km and 8 km, suggesting two different convective pop-
ulations. Even though the entrained mass flux in a thin layer
near the surface is quite large in spite of the weak overall pro-
file, the vorticity convergence tendency in the PBL (and at all
levels) is negative due to the export of vorticity. This export
is related to the lack of a closed vorticity flux circulation in
the PBL, as shown in Fig.15. The circulation tendency due
to tilting is positive in the upper troposphere.

5 Discussion

The formation of typhoon Nuri over a three day period was
documented by aircraft missions on four successive days.
During this period the cyclone evolved from a tropical wave
to a tropical depression, a tropical storm, and finally to a
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Fig. 17. As in Fig.16except Nuri 2 (Fig.6).

full-fledged typhoon. This rapid intensification occurred in
an environment of significant easterly and northeasterly shear
(Fig. 11). Intensification began near the island of Guam. The
storm followed a track toward the west during this period
and Nuri was just to the east of the Philippines during the
last mission (see Fig.1).

As it evolved, Nuri’s convection exhibited a variety of ver-
tical mass flux profiles. In the tropical wave stage (Nuri 1)
the average mass flux peaked at a high elevation, resulting in
a deep inflow which peaks at middle levels. As a result, the
circulation was decaying in the PBL, but increasing in the
free troposphere. This is reflected in the greatly increased
mid-level circulation seen in Nuri 2. While a tropical depres-
sion (Nuri 2), the vertical mass flux increased rapidly with
height below 4 km, resulting in an intense inflow in the PBL.
This inflow was responsible for the strong positive circula-
tion tendency associated with vorticity convergence at these
levels. In the tropical storm stage (Nuri 3), the PBL inflow
was less strong overall, resulting in a net spindown tendency
in the PBL (see Fig.18). However, as Fig.19 shows, the
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Fig. 18. As in Fig. 16 except Nuri 3 (Fig.7). Note the change in
scales.
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Fig. 19. As in Fig.18except for integration over the 2◦-square box
illustrated in Fig.7. Note the change in scales.

spinup tendency around a small box centered on the circula-
tion center remained intense. Figures20and21 indicate that
Nuri continued this trend as it developed into a typhoon.

In Nuri 1 and Nuri 2, the circulation centers in the PBL and
at 5 km are displaced from each other by 2◦–3◦. Comparison
of Figs.5 and6 with the shears shown in Fig.11 shows that
the displacement of the 5 km circulation center relative to the
PBL center is approximately 90◦ to the left of the shear vec-
tor between the PBL and 5 km. Thus, in the case of Nuri 1,
the shear is from the north-northeast in the lowest 5 km and
the 5 km circulation is southeast of the PBL circulation. For
Nuri 2 the shear is east-northeasterly and the corresponding
circulation center displacement is to the south-southeast.

Figure23gives a possible explanation for why the system-
relative circulation centers are displaced from each other. At
each level the total wind is assumed to be the vector sum of
the system-relative ambient wind and the induced circulation
associated with the wave-scale region of positive relative vor-
ticity, which in the idealization of Sect.2.3 is approximated
as an upright cylinder of vorticity which varies in magni-
tude only with height. The circulation center at each level
occurs where the vector sum of these winds is zero. The
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scales.
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Fig. 21. As in Fig. 20 except for integration over the 1.5◦-square
box illustrated in Fig.8. Note the change in scales.

displacement between the circulation centers is due to the
difference in the ambient wind between the two levels, with
the displacement being normal to this difference.

Around these circulation centers are closed regions of cy-
clonic flow as illustrated in Sect.2.3. Air (and vorticity)
at each level inside the bounding closed streamline remains
within the system and is protected from entrainment of envi-
ronmental air as postulated byDunkerton et al.(2009) and
Montgomery et al.(2010). The area where these regions
overlap is protected from environmental incursions through
the full column depth between the PBL and 5 km. It is thus
likely to be the area in which the core of the developing trop-
ical cyclone spins up. In Nuri 1 this region contained the
strongest deep convection. In Nuri 2 the most significant
vorticity at 5 km was also found in this region, suggesting
a history of strong convection there.

As discussed in Sect.2.3, the above explanation for
the displacement of the circulation center with height dif-
fers from explanations based on adiabatic vortex dynamics,
which consider the interaction between potential vorticity
patterns at different elevations. Our explanation depends on
diabatic processes to maintain the form of the wave-scale
vorticity pattern in the face of shear.
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Fig. 22. As in Fig.16except TCS030 (Fig.9).

The high resolution simulation of the development of At-
lantic hurricane Felix (2007) byWang et al.(2010a) and
Wang et al.(2010b) shows many features similar to those
seen in the formation of Nuri. In particular, the low-level
spinup due to vorticity convergence driven by convection in
a protected core and the spinup at upper levels by the tilting
term are reproduced.

Nuri transformed from a pattern of scattered mesoscale
vortices to a highly organized system with a strong central
concentration of vorticity between mission 2 and mission 3.
However, this transformation was not sudden; examination
of Figs. 12–14 shows that the number of regions of vortex
stretching decreased as Nuri evolved and the strength of the
stretching increased. This suggests the development of fewer
but stronger rotating convective systems as Nuri intensified,
culminating in a single core system which developed into the
eyewall.

An interesting aspect of Nuri’s evolution is that vorticity
balance in the PBL was far from satisfied. In Nuri 1 and Nuri
3 (full observed region) the frictional spindown tendencies
slightly exceeded the spinup tendencies due to vorticity con-
vergence. In Nuri 2 spinup due to vorticity convergence far
exceeded frictional spindown. Only in the restricted region
encompassing the core of Nuri 3 was approximate vorticity
balance observed (see Fig.19). Uncertainties in the vertical
distribution of surface stress are insufficient to explain this
discrepancy, particularly for Nuri 2. We note that significant
imbalance was found in the boundary layer of a simulated,
intensifying tropical storm (Bui et al., 2009) in agreement
with our observations. The effects of tilting are generally in-
sufficient to change these qualitative results, at least at low
levels.

Superficially, the pre-Nuri tropical wave observed during
Nuri 1 was similar to the wave seen in TCS030. Both cases
appeared as tropical waves in large-scale analyses and both
had similar values of shear. However, TCS030 did not ex-
hibit a closed circulation at 5 km in our data and the existence
of one in the PBL was doubtful, even in system-relative co-
ordinates. Thus, Nuri was able to retain its moist core and
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Fig. 23. Interaction of shear (thick black vector) with a broad re-
gion of positive relative vorticity (large green circle). The circula-
tion centers in the PBL and at 5 km are located where the system-
relative ambient winds at the respective levels (black arrows) just
balance the induced circulation from the vorticity pattern (green ar-
rows). The blue and red “teardrops” represent the limits of closed
circulation streamlines in the PBL and at 5 km. The magenta-
colored region of overlap between these areas of closed circulation
represents the region where the entire column between the PBL and
5 km is protected from incursions of environmental air.

vorticity over an extended period while TCS030 could not.
The lack of a strong vertical mass flux profile in TCS030
most likely results from the lack of a protected core.

6 Conclusions

Our analyses of typhoon Nuri and tropical wave TCS030
support the following conclusions:

1. Nuri spun up rapidly from a tropical wave to a typhoon
in spite of significant environmental shear. TCS030 was
subject to similar vertical shear but did not spin up. As
Nuri intensified, regions of convective vortex stretching
became fewer and more intense, culminating in the for-
mation of a strong central vortex.

2. The rapid intensification of Nuri appears to be related
to the development of vertical mass flux profiles show-
ing a strong increase with height below 4 km elevation.
Mass continuity implies intense inflow at low levels in
this case and correspondingly strong vorticity conver-
gence. For Nuri 2, this vorticity convergence domi-
nated all other circulation tendency terms in the plan-
etary boundary layer, resulting in the development of
Nuri into a tropical storm by the following day. The
vertical mass flux in the non-developing TCS030 case
was much weaker.

3. The displacement of the center of the Nuri circulation
with height is explained as the result of the interaction
with shear of a large, wave-associated column of posi-
tive relative vorticity. This displacement, though of or-
der 2◦–3◦ between the surface and 5 km in the wave and
tropical depression stages, was still small enough for a
column protected from environmental incursions to ex-
ist through this elevation range. Such a protected col-
umn did not exist for TCS030.

4. The planetary boundary layer was far from vorticity bal-
ance during Nuri’s spinup.

This work complements the larger-scale view of Nuri pre-
sented byMontgomery et al.(2010).
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