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Abstract. The isotopic composition of stratospheric
methane has been determined on a large suite of air sam-
ples from stratospheric balloon flights covering subtropical
to polar latitudes and a time period of 16 yr. 154 samples
were analyzed forδ13C and 119 samples forδD, increasing
the previously published dataset for balloon borne samples
by an order of magnitude, and more than doubling the to-
tal available stratospheric data (including aircraft samples)
published to date. The samples also cover a large range in
mixing ratio from tropospheric values near 1800 ppb down
to only 250 ppb, and the strong isotope fractionation pro-
cesses accordingly increase the isotopic composition up to
δ13C= −14 ‰ andδD = +190 ‰, the largest enrichments
observed for atmospheric CH4 so far. When analyzing and
comparing kinetic isotope effects (KIEs) derived from sin-
gle balloon profiles, it is necessary to take into account the
residence time in the stratosphere in combination with the
observed mixing ratio and isotope trends in the troposphere,
and the range of isotope values covered by the individual pro-
file. The isotopic composition of CH4 in the stratosphere is
affected by both chemical and dynamical processes. This
severely hampers interpretation of the data in terms of the
relative fractions of the three important sink mechanisms (re-
action with OH, O(1D) and Cl). It is shown that a formal sink
partitioning using the measured data severely underestimates
the fraction removed by OH, which is likely due to the insen-
sitivity of the measurements to the kinetic fractionation in
the lower stratosphere. Full quantitative interpretation of the
CH4 isotope data in terms of the three sink reactions requires
a global model.
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(t.roeckmann@uu.nl)

1 Introduction

In the well-mixed troposphere, the CH4 mixing ratio and its
isotopic composition are determined by the principal balance
between the sources (and their isotopic signatures) and sinks
(and the corresponding kinetic fractionation factors) (Stevens
and Rust, 1982; Quay et al., 1999; Miller et al., 2002). For
a long-lived gas as methane, this leads to rather stable mix-
ing ratio and isotope values throughout the troposphere that
are modulated by the seasonal variations in the production
and destruction rates and long-term temporal trends, result-
ing from disequilibrium of production and removal (Stevens
and Rust, 1982; Lowe et al., 1997; Bergamaschi et al., 1998,
2000, 2001; Quay et al., 1999; Tyler et al., 1999; Miller et
al., 2002; Tarasova et al., 2006).

In the stratosphere the situation is different, since the only
source for stratospheric methane is the tropospheric flux into
the stratosphere, occurring mainly in the tropics. In the ab-
sence of in situ sources CH4 mixing ratios decrease strongly
in the stratosphere due to the removal by the three chemical
(1st order) reactions with OH, O(1D) and Cl (Wahlen et al.,
1989; Wahlen, 1993; Brenninkmeijer et al., 1995; Irion et al.,
1996; Sugawara et al., 1997; Ridal and Siskind, 2002; Mc-
Carthy et al., 2003; Rice et al., 2003). Removal of CH4 by
photolysis becomes important only in the mesosphere. How-
ever, throughout most of the stratosphere, the local chem-
ical removal rates of CH4 are actually slower than typical
transport times (Zahn et al., 2006). Consequently, the CH4
mixing ratio and its isotopic composition in an air parcel is
dependent on the reaction with OH, O(1D) and Cl (chemi-
cal removal) on the one hand and its pathway through the
stratosphere (physical transport, dynamics, see Sect. 2) on
the other hand. In general, the longer the residence time of
an air mass in the stratosphere, the more it is processed pho-
tochemically and the more CH4 has been removed.
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As CH4 is not fully oxidized in the stratosphere, but a large
fraction returns to the troposphere, the isotope effects in the
stratosphere have a significant effect on the tropospheric CH4
isotope budget (Gupta et al., 1996; McCarthy et al., 2001;
Wang et al., 2002).

Only a limited number of data on isotopic composition of
stratospheric methane have been previously published. Sug-
awara et al. (1997) presented oneδ13C profile from a bal-
loon flight over Japan in 1994 and Rice et al. (2003) pre-
sentedδ13C andδD values from various flights with the high-
altitude aircraft ER-2 between 1996–2000 up to 21 km. Fur-
thermore, Brenninkmeijer et al. (1995, 1996) published few
δ13C data obtained on aircraft flights between New Zealand
and Antarctica.

In this paper we present data from 13 stratospheric balloon
flights, which increase the number of balloon observations
in the literature by more than an order of magnitude and the
number of total published data for the stratosphere by a factor
of more than 2.

2 Short review of stratospheric dynamics and its effect
on tracer distributions

After air enters the stratosphere, mainly in the tropics, it is
first transported upwards in the tropics and then polewards
and downwards, and it descends back to the troposphere at
higher latitudes. The turnaround time for this global merid-
ional circulation, the so-called Brewer-Dobson-circulation
(BDC, Dobson et al., 1946; Brewer, 1949) is several years
for the middle and upper stratosphere (Boering et al., 1996).
Next to this so-called deep branch of the BDC, which dom-
inates the middle stratosphere, a shallow branch exists in
which air is transported more directly from the tropics to the
extratropics, without passing through high altitudes (Birner
and B̈onisch, 2011; B̈onisch et al., 2011). The Brewer Dob-
son circulation is a combination of the net residual trans-
port described above with fast mixing along isentropes. The
global distributions and the surfaces of constant mixing ratio
(isopleths) of long lived tracers are thus a result of two ef-
fects. First, the meridional net circulation lifts the tracer iso-
pleths in the tropics and depresses them at high-latitudes and
second, the quasi-horizontal mixing equilibrates the tracer
distribution along the isentropes. For long-lived tracers, the
fast quasi-horizontal mixing forms rapid exchange surfaces,
common to all (sufficiently) long-lived tracers, on which lo-
cal deviations are homogenized. As a consequence two long-
lived tracers will form a compact relation in a tracer:tracer
plot, i.e. ideally a single curve for the correlation of their
mixing ratios (Holton, 1986; Mahlman et al., 1986; Plumb
and Ko, 1992). This idealized model is sometimes referred
to as “global mixing scheme”. It has successively been ex-
tended to better describe the situation in the tropics. Subtrop-
ical barriers split the global isopleths into the hemispheric
“surf zones” and a “tropical pipe” (Plumb, 1996; Andrews

et al., 2001). The “leaky tropical pipe” model allows for re-
circulation of mid latitude air back into the tropics (Avallone
and Prather, 1996; Volk et al., 1996; Neu and Plumb, 1999).
The region below the tropical pipe corresponds to the shal-
low branch of the BDC where fast direct exchange between
tropics and extratropics is possible.

The polar vortices are seasonal transport barriers that are
not included in these general global transport schemes. The
radiative cooling in the polar night and the stronger down-
ward forcing from the BDC in winter leads to a large-scale
subsidence of air from the upper stratosphere and even meso-
sphere, which stays substantially isolated from extra-vortex
air. Thus, the vortex edge, similar to the subtropical bar-
rier, is characterised by strong horizontal tracer and potential
vorticity gradients and the tracer isopleths are no more “al-
most parallel” to isentropes. Several mechanisms are known
or discussed for interaction between vortex and extra-vortex
air. Waugh et al. (1997) showed the occurrence of “anoma-
lous mixing” lines, i.e. deviating from the general compact
tracer:tracer relation, and related them to end member mix-
ing between vortex and mid-latitudes. Plumb et al. (2000) of-
fered two alternative mechanisms, a “continuous weak mix-
ing” through the vortex edge and the intrusion of extra-vortex
air in a single (or multiple) event(s) throughout the phase of
descent, and its subsequent vertical redistribution inside the
vortex. Such an intrusion was used in Engel et al. (2006) to
explain the enclosure of mesospheric air observed in strato-
spheric balloon samples. With increasing solar heating after
the polar night, the latitudinal temperature gradient, circum-
polar jet, wave activities, and vortex isolation decrease and
vortex air dissipates into the surrounding extra-vortex region
(WMO, 2003). How the dynamical properties of the strato-
sphere affect the mixing ratio and isotopic composition of
CH4 will be discussed in detail in Sects. 5 and 6.3.

3 Experimental

High-altitude samples (up to 35 km) from stratospheric bal-
loon borne air samplers were provided by the Max-Planck-
Institut (MPI) für Sonnensystemforschung (formerly Max-
Planck-Institut f̈ur Aeronomie), Katlenburg-Lindau, Ger-
many and the Institut für Atmospḧare und Umwelt (formerly
Institut für Meteorologie und Geophysik), Universität Frank-
furt, Germany. The samplers from both groups consist of
15 electro-polished stainless steel tubes immersed into liquid
neon at a temperature of 27 K, but differ especially in the in-
take design (Schmidt et al., 1987). The sampling tubes have
an internal volume of about 0.5 dm3 that is filled to pressures
between∼5 to 50 bar (at room temperature). The vertical
sampling resolution is usually about 1 km, sampling latitudes
are essentially invariant, and longitude variations can be a
few degrees, depending on the prevailing zonal winds during
sample collection.
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Table 1. Measured and calculated kinetic isotope effects and coefficients for their temperature dependence KIE(T ) = Aexp(B/T ).

KIE
13C(T = 296 K) T A B KIE

13C (T = 223 K)

OH 1.0039± 0.0004 ? ? Saueressig et al. (2001)
O(1D) 1.013 223–295 0 1.013 meas. Saueressig et al. (2001)
Cl 1.066± 0.02 223–297 1.043 6.455 1.075± 0.005 meas. Saueressig et al. (1995)

KIED KIED

OH 1.294± 0.018 1.097∗ 49± 22 1.367 calc. Saueressig et al. (2001)
O(1D) 1.066± 0.002 224-295 0 1.06 meas. Saueressig et al. (2001)
Cl 1.508± 0.04 223-295 1.278 51.31± 19.1 1.61 meas. Saueressig et al. (1996)

∗ Adjusted T-dependence from (Gierzak et al., 1997) to match room temperature measurement.

The MPI group had stored a large number of stratospheric
air samples from scientific balloon flights covering more than
a decade (1987–1999) as stratospheric air archive. These
samples were made available for isotope analysis on long-
lived greenhouse gases. From 2000 to 2003, samples from 5
more stratospheric flights with the BONBON cryogenic sam-
pler operated by the Universität Frankfurt group were ana-
lyzed. Those samples were measured within few months af-
ter the flight. Table 2 gives an overview of the exact sampling
dates and locations.

Mixing ratio and isotopic composition of the air samples
were determined on a high-precision continuous flow iso-
tope ratio mass spectrometry system (Brass and Röckmann,
2010) that has been used in various studies to determine the
isotopic composition of CH4 (Keppler et al., 2006, 2008;
Tarasova et al., 2006; Vigano et al., 2009, 2010). The sam-
ples are analyzed automatically relative to a laboratory stan-
dard air cylinder that is usually measured after each two sam-
ples. The reproducibility of the system, as determined from
extensive tests, including subsets of the stratospheric sam-
ples presented here, is 18 ppb for CH4 mixing ratios, 0.07 ‰
for δ13C and 2.3 ‰ forδD (Brass and R̈ockmann, 2010).
For δ13C analysis we use the peak integration routine of
the standard ISODAT software package, forδD an improved
peak integration software has been developed (Brass and
Röckmann, 2010). Isotope ratios are reported in the common
δ notation relative to the international standard materials Vi-
enna PeeDeeBelemnite forδ13C and Vienna Standard Mean
Ocean Water forδD. CH4 mixing ratios are reported on the
NOAA04 scale (Dlugokencky et al., 2005). Most samples
were attached to the analytical system directly from the orig-
inal sampling containers, only a subset of samples was first
expanded into 2 l volume stainless steel flasks and analyzed
later.

4 Results

4.1 General classification of flight profiles

Figure 1a shows the full set of methane mixing ratio pro-
files obtained from the balloon flights. As outlined in the
introduction, mixing ratios decrease from tropospheric lev-
els with altitude and latitude in the stratosphere. This is due
to CH4 destruction related to the photochemical processing
of stratospheric air and the global transport and mixing pat-
terns outlined in Sect. 2. The extent of chemical removal is
clearly different for the individual profiles and the samples
split into three groups, roughly according to the flight lati-
tude, i.e. high latitudes (polar, here Arctic), mid latitudes and
subtropics.

Generally, theδ13C and δD vertical profiles mirror the
mixing ratio profiles (lower mixing ratio corresponds to
higher δ-values) and therefore they generally show similar
structural variations (Fig.1b and c). Theδ-values increase
with altitude and latitude. Vortex air, with its very low CH4
content, shows the highest isotope enrichments. The degree
of this enrichment depends on the extent of photochemical
processing in the stratosphere.

While previous measurements (Rice et al., 2003) cover
mixing ratios between 700–1800 ppb withδ13C reaching
from tropospheric values∼−48 ‰ to−34 ‰, andδD from
−90 ‰ to∼+26 ‰, respectively, this work considerably ex-
tends the range of available data, to CH4 mixing ratios down
to ∼250 ppb, corresponding to values up to−13.7 ‰ for
δ13C and+190 ‰ forδD.

4.1.1 Polar profiles

The Arctic samples (all collected using Kiruna as operational
base) show additional differences for different sampling sea-
sons. The winter samples (KIR-92-01, -02, -03, KIR-00-01,
KIR-03-03) reflect the presence of the polar vortex. Air that
descends in the vortex has undergone massive methane oxi-
dation. These profiles are characterised by the occurrence of
very low CH4 mixing ratios (down to∼250 ppb) and strong
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Table 2. Overview of balloon flights and number of samples analyzed forδ13C andδD (column13C and D). Each flight is given a flight ID
as STA-JJ-MM, where STA is the 3-letter-code for the balloon launch station, JJ the year and MM the month of sampling.

Flight ID Flight date Location 13C D Characteristics

Flights operated by MPI für Sonnensystemforschung

HYD-87-03 03/26/87 HYD1 5 5 Subtropical
KIR-92-01 01/18/92 KIR2 13 13 Arctic weak vortex, final warming series
KIR-92-02 02/06/92 KIR2 10 10 final warming series
KIR-92-03 03/20/92 KIR2 10 9 final warming series
ASA-93-09 09/30/93 ASA3 15 15 mid-latitudinal background
KIR-95-03 03/07/95 KIR2 11 11 Arctic with mid-latitudinal characteristics
HYD-99-04 04/29/99 HYD1 10 9 Subtropical
GAP-99-06 06/23/99 GAP4 15 15 mid-latitudinal summer

Flights operated by Institut für Meteorologie und Geophysik, Universität Frankfurt

KIR-00-01 01/03/00 KIR2 13 −
5 Arctic strong vortex

ASA-01-10 10/11/01 ASA3 13 −
5 mid-latitudinal background

ASA-02-09 09/15/02 ASA3 13 6 mid-latitudinal background
KIR-03-03 03/06/03 KIR2 13 13 Arctic vortex, mesospheric enclosure
KIR-03-06 06/09/03 KIR2 13 13 Arctic summer

1 HYD: Hyderabad, India (17.5◦ N, 78.60◦ E); 2 KIR: Kiruna, Sweden (67.9◦ N, 21.10◦ E); 3 ASA: Aire sur l’Adour, France (43.70◦ N, −0.30◦ E); 4 GAP: Gap, France (44.44◦ N,

6.14◦ E); 5 δD analyses not fully developed at that time.

isotope enrichments. The spring and summer profiles (KIR-
95-03, KIR-03-06) are similar to mid-latitudinal profiles.

The balloon profile KIR-03-03 shows a distinct feature,
i.e. above 24 km the CH4 mixing ratio increases and above
23 km δ13C andδD decrease again with height. A detailed
analysis of this flight, using several tracers, shows that at
least the two samples above this CH4 minimum show clear
mesospheric characteristics like high CO and H2 mixing ra-
tios (Engel et al., 2006). Above those “mesospheric” sam-
ples, the air exhibits stratospheric characteristics again, and
the methane mixing ratio and isotope data suggest that mid-
latitudinal air is mixed into the resolving vortex from above.
The samples will be discussed in detail in Sect. 8.1.

4.1.2 Mid-latitude profiles

Four profiles from mid-latitudes are available (ASA-93-09,
GAP-99-06, ASA-01-10, and ASA-02-09). Three flights
took place in autumn and to some degree can be regarded
as a stratospheric background. Photochemistry is decreased
compared to summer and dynamical activity starts to inten-
sify with the change from the summer to the winter circu-
lation. All four profiles show wave structures in the vertical
distribution of mixing ratio and isotopic composition with al-
titude, which indicate large-scale dynamical effects that dis-
turb the smooth vertical evolution. In general, the mixing
ratio and isotope values of the mid latitude flights are in the
range of the Arctic summer profile (KIR-03-06), especially
for altitudes above 20 km.

4.1.3 Subtropical profiles

The subtropical region is represented by samples from two
balloon flights from Hyderabad, India, HYD-87-03 and
HYD-99-04. Methane mixing ratios are rather constant up
to the tropopause at 18 km and slightly decrease above the
tropopause, followed by a significant decrease starting at 20–
23 km. Only 5 samples were still available from the HYD-
87-03 flight, resulting in two groups of similar characteris-
tics. Thus, this dataset alone holds only limited information.
Compared to HYD-99-04 the HYD-87-03 profile is shifted
to lower mixing ratios and looks similar to a mid-latitudinal
profile. One has to take into account that 12 yr passed be-
tween the two profiles. An age correction that takes the tro-
pospheric trend into account will be applied in Sect. 6.1.

Sample HYD-99-04/15 is the highest altitude subtropical
sample with a mixing ratio∼1200 ppb and an extremely high
δ13C-value (for a sample with 1200 ppb). When the balloon
samples are compared to CH4:N2O tracer correlations for
different latitude bins taken from (Michelsen et al., 1998), the
tracer:tracer-plot identifies HYD-99-04/15 as the only deep
tropical sample in the balloon set. However, this was one
of the samples that were only available as an aliquot (not
the original balloon sample container) and were analysed for
δ13C only at the very beginning of measurement. Also the
original container had rather low pressure. Since experimen-
tal problems cannot definitely be excluded, this sample will
not be interpreted further.
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Fig. 1. Methane mixing ratio(a), δ13C (b) andδD (c) for all anal-
ysed balloon samples.1: Arctic samples (blue: vortex, purple:
non-vortex,�: mid-latitudes (green, yellow), solid symbols: sam-
pled in summer,©: tropics (red).

4.2 Isotope – mixing ratio correlations

It is obvious from Fig.1 that there is considerable variabil-
ity between the individual flight profiles. However, the vari-
ations in mixing ratio and isotopic composition are closely
correlated, and it is useful and common to investigate isotope
results as isotope – mixing ratio correlations (Fig.2). Two
points are remarkable in these correlations. First, each flight
profile shows up as a relatively compact correlation curve and
second, isotope-mixing ratio correlations are relatively stable
over the full period of time, in different seasons and at vari-
ous latitudinal regions (subtropics, mid-latitudes and polar).
Thus, most of the variation observed in the vertical profiles
disappears whenδ values are discussed on the mixing ratio
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Figure 2: Isotope:tracer relations δ(c) for the balloon data shown in Fig. 1. 
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Fig. 2. Isotope:tracer relationsδ(c) for the balloon data shown in
Fig. 1.

scale (as alternative height coordinate) and the correlation
curves can be regarded as (quasi) steady state functions for
δ13C(c) andδD(c). Here and in the following,c represents
the mixing ratio.

The first observation reflects the previous finding that
compact stratospheric tracer-tracer correlations occur for
trace gases whose chemical removal time constants are larger
than the transport time constants (Plumb and Ko, 1992),
which is the case for the individual CH4 isotopologues. Thus
this property can be explained by the global mixing scheme.
The second observation shows the global validity of this
scheme and that it is not strongly variable in time. This is
expected, since CH4 is a long-lived trace gas with only small
temporal trends since 1990 (e.g. Dlugokencky et al., 1998).
From these correlations we can already conclude that no ma-
jor changes in dynamics in the stratosphere and/or changes
in the chemical sinks are observed.

Nevertheless, two areas of variability can be easily identi-
fied in Fig.2: first, there is increased variability in bothδ val-
ues for methane mixing ratios<∼1000 ppb, which is mainly
vortex or vortex edge air. For this region the assumptions
of Plumb and Ko (1992) fail, since at the vortex edge the
quasi-horizontal mixing on an isentrope is not fast enough to
equilibrate mixing ratio variations. In the inner vortex region
the time scale for vertical advection is of the same size as
horizontal transport across the edge. Furthermore, the vor-
tex undergoes dramatic changes over the seasons (it forms,
breaks up and resolves).
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Fig. 3. Isotope-isotope correlation(a) for tropical (red) mid-latitude
(green) and polar (blue) samples, exceptional samples from KIR-
03-03 (4) in orange. Mid-latitude samples follow a linear fit,
whereas polar samples follow a parabolic fit. The parabolic shape
dominates in the fit to all data(b). Here, the data was binned in
0.5 ‰ δ13C intervals to reduce the statistical weight of the more
abundant higher mixing ratio (lowerδ-values) samples. The residu-
als between parabolic fit and data(c), excluding the highest enrich-
ment point, show no systematic structure. The error bars represent
typical variations in a 0.5 ‰δ13C bin.

Secondly, there is comparably large scatter forδD at high
methane mixing ratios, i.e. near the tropopause, where theδD
– mixing ratio correlations are slightly shifted between indi-
vidual flights. This point will be further investigated below.

4.2.1 Isotope – isotope correlations

Figure3 shows the isotope – isotope correlation betweenδD
and δ13C. In such a plot, air that is a result of mixing be-
tween two air parcels is found on a straight line connect-

ing these two parcels. Such a linear mixing correlation in
fact fits the mid-latitude data points well. This means that
the spatial and temporal distribution of CH4 and its isotopic
composition can be explained by mixing of tropospheric air
with a representative strongly processed reservoir in the up-
per stratosphere. Interestingly, the vortex samples signifi-
cantly deviate from this straight (mid-latitudinal) correlation.
For a global fit, the data was binned in 0.5 ‰δ13C intervals
to reduce the statistical weight of the more abundant higher
mixing ratio (lowerδ-values) samples. When the point with
highest isotope enrichment (sample KIR-03-03/12) is disre-
garded, a parabolic fit of the form

δD = −0.0557·(δ13C)2
+3.9017·δ13C+229.39

r2
= 0.9978 (1)

fits the data well without systematic structure in the residuals
(Fig. 3c). The most interesting feature of the fit in Fig.3b is
its monotonically decreasing slope. This implies a decrease
of D fractionation compared to13C fractionation at higher to-
tal enrichments (see below). Pure Rayleigh fractionation pro-
cesses would actually show a slightly increasing slope, which
is due to the non-linearity of the Rayleigh fractionation equa-
tion, so other process must contribute. Given the large differ-
ences in the fractionation constants associated with the three
chemical sink reactions (see below), the overall monotonous
decrease can only be caused by a continuously decreasing
strength of the OH sink and the related increase of the O(1D)
and Cl strength (and to a minor degree shifting from Cl to
O(1D)).

The two vortex samples that fall below and above the
mesospheric enclosure in flight KIR-03-03 deviate from this
general description. According to Engel et al. (2006), sam-
ple KIR-03-03/8, has typical characteristics of upper strato-
spheric air from the mid-latitudes and indeed it accurately
falls onto the mid-latitudinal mixing line and marks its most
enriched end-point (Fig.3a). The second sample, KIR-03-
03/12, is more difficult to interpret, as it is completely iso-
lated from the other samples in the isotope:isotope plane. It
will be further discussed below.

4.3 Comparison to previous datasets

4.3.1 δ13C comparison

In the published literature, there is a clear difference between
the δ13C data from Sugawara et al. (1997) (balloon) and
Rice et al. (2003) (ER-2 flights). The data from Sugawara
et al. (1997) are approximately 0.5 ‰ more depleted, which
has been attributed either to the different location/time period
of sampling or to lab-specific calibration procedures (Rice et
al., 2001). When compared to our data, the Rice et al. (2003)
data (1996–2000) fall in the range of the Arctic aircraft and
balloon samples from 2003. At the same time, the KIR-92-
01 profile agrees well with the Sugawara et al. (1997) data
from the 1994 balloon profile. Thus, the new comprehensive
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measurements indicate that the difference between the Sug-
awara et al. (1997) and Rice et al. (2003) data is likely not an
analytical artefact and probably due to the temporal trends.

4.3.2 δD comparison

In comparison to Rice et al. (2003) theδD values presented
here are about 10 ‰ heavier. The difference appears to de-
crease towards lower mixing ratios and may disappear at
700 ppb. Several processes may contribute to the discrep-
ancy. A fractionation in the sampling procedure is unlikely
for our analyses, as samples from different sampling de-
vices agree well. Given the fact that bothδD datasets cover
large regions of the stratosphere, it is unlikely that the ob-
served difference indicates a real atmospheric difference.
Most likely the deviation inδD originates from different, lab-
specific calibration scales. This typically leads to systematic
deviations. Ideally, these deviations are constant, but they
can also increase or decrease with mixing ratio, as observed.
Because of this non-constant deviation, the ER-2 data dis-
cussed by Rice et al. (2003) and McCarthy et al. (2003) show
a more pronounced relative vertical increase ofδD in the
stratosphere, i.e. a generally higher slope ofδD(c) relation,
and consequently slightly higher KIED-values are reported
by Rice et al. (2003) and McCarthy et al. (2003).

5 Chemical and physical effects on the isotopic
composition

5.1 Chemical isotope fractionation in the removal
reactions

In the stratosphere methane is oxidised by OH, O(1D) and
Cl. Due to slightly different reaction rate coefficients for the
different isotopologues, chemical removal by these reactions
leads to a shift in the isotope ratio of the residual material.
Neglecting other effects, this can be described by the well-
known Rayleigh fractionation equation (Kaiser et al., 2002b).

ln

(
δ+1

δ0+1

)
=

(
1

KIE
−1

)
ln

(
c

c0

)
(2)

δ and δ0 are the initial and finalδ-values andc0 andc are
the initial and final mixing ratios. KIE is the kinetic isotope
effect, defined as the ratio of the reaction rate constants for
the light (k) and heavy (k′) isotopologue

KIE =
k

k′
(3)

A normal kinetic isotope effect is characterised byk > k′. In
case of a constant KIE, it can be determined from the slope of
a Rayleigh fractionation plot where(δ+1) is plotted versus

ln
(

c
c0

)
(Eq. 2). The corresponding fractionation constantε

is defined as

ε = KIE −1 (4)

As for δ-values, the numerical values ofε are usually stated
in per mille. Note that in many publicationsε is defined as
α − 1 (whereα = k′/k = (KIE)−1). The same symbolε is
used in both cases, which are not equivalent.

Saueressig et al. (2001) determined the KIE values and
their temperature dependence for the reactions of OH, O(1D)
and Cl with the three major isotopologues12CH4,13CH4,
12CH3D (Table 1). Rice et al. (2003) showed that for three
simultaneous sink reactions the combinedeffectiveKIE can
be written as the sum of the KIEs weighted by the respective
sink fractionsaY of methane oxidised by Y (Y= OH, O(1D),
Cl).

KIE
13C
eff = aOHKIE

13C
OH +aO1DKIE

13C
O1D

+aClKIE
13C
Cl

KIED
eff = aOHKIED

OH+aO1DKIED
O1D

+aClKIED
Cl

1= aOH+aO1D +aCl

(5)

Equation (5) is a set of 3 linear equations with 3 unknowns
and can also be formulated as vector equationKIE

13C
eff

KIED
eff

1

 =

KIE
13C
OH KIE

13C
O1D

KIE
13C
Cl

KIED
OH KIED

O1D
KIED

Cl
1 1 1


 aOH

aO1D
aCl

 (6)

In this framework it is possible to formally derive the relative
sink fractions (aOH, aO1D andaCl) from the measurement of
both KIEeff values, if KIEeff is accessible from measurements
in the stratosphere.

5.2 The effect of mixing

The isotopic composition in the stratosphere is not only de-
termined by the KIE in the chemical removal reactions, but
also by transport and mixing processes. Mixing always acts
to reduce gradients, and therefore the actually observedap-
parentKIEapp in the stratosphere is always smaller than the
averageeffectiveKIEeff from the formal sink partitioning de-
rived above (see e.g. Rahn et al., 1998; Kaiser et al., 2002a).
The effect of mixing can be quantified by introducing two
dynamical parametersf

13C andf D .

f
13C

:=
KIE

13C
app−1

KIE
13C
eff −1

=
ε

13C
app

ε
13C
eff

; f D
: =

KIED
app−1

KIED
eff−1

=
εD

app

εD
eff

(7)

Thus,f = 1 characterises an undisturbed Rayleigh fractiona-
tion process, whereas mixing generally leads to lower values
of f , i.e. KIEapp< KIEeff. f

13C andf D can be included in
the Eq. (6) to derive the sink partitioning as follows:

 aOH
aO1D
aCl

 =

KIE
13C
OH KIE

13C
O1D

KIE
13C
Cl

KIED
OH KIED

O1D
KIED

Cl
1 1 1


−1


1+

KIE
13C
eff −1

f
13C

1+
KIED

eff−1
f D

1


(8)
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Table 3. Mean KIE per flight, in brackets error on last digits. Additionally the column “cmin” shows the minimal mixing ratio in a sample
set used to derive the corresponding mean KIE.

Sample set KIE
13C r2 Excluded cmin KIED r2 Excluded cmin

samples ppb samples ppb

KIR-92-01 1.0162 (3) 0.996 265 1.142 (1) 0.999 8,9 335
KIR-92-02 1.0157 (3) 0.997 272 1.129 (2) 0.999 272
KIR-92-03 1.0144 (3) 0.996 397 1.128 (3) 0.997 397
KIR-00-01 1.0170 (2) 0.999 248
KIR-03-03 1.0168 (3) 0.998 1,12 271 1.133 (5) 0.991 12 271

average (vortex) 1.0160 (10) 1.133 (6)

KIR-03-06 1.0168 (5) 0.991 652 1.147 (4) 0.993 652
KIR-95-03 1.0148 (4) 0.995 835 1.150 (3) 0.998 835

average (non-vortex) 1.0158 (14) 1.146(0.5)

average (all polar) 1.0159 (9) 1.138 (8)

ASA-93-09 1.0153 (5) 0.989 7 831 1.160 (6) 0.984 613
GAP-99-06 1.0165 (4) 0.993 631 1.153 (3) 0.997 631
ASA-01-10 1.0153 (2) 0.998 957
ASA-02-09 1.0151 (5) 0.989 897 1.140 (21) 0.936 897

average (mid) 1.0156 (6) 1.151 (10)

HYD-87-03 1.0119 (8) 0.987 1233 1.123 (9) 0.988 1233
HYD-99-04 1.0135 (10) 0.964 15 1486 1.122 (12) 0.947 1486

average (subtropics) 1.0127 (11) 1.122 (1)

average (all latitudes) 1.0147 (2) 1.137 (14)

A consequence of the steady-state in the global mixing
scheme is that the net vertical trace gas fluxes are purely dif-
fusive (Plumb, 1996). For this specific case of pure diffu-
sive mixing, a simplified discussion on the resulting isotope
profile was already presented in Kaye (1987) (see also Erik-
son, 1965). In this idealised 1-D-diffusive steady-state model
f -values between 0.5 and 1 are theoretically possible (inde-
pendent of molecule and/or isotope), wheref = 0.5 charac-
terises the so-called diffusion-limited case, which describes
the situation expected for the stratosphere (Rahn et al., 1998;
Kaiser et al., 2002a). Thus, the apparent KIEapp is only half
of the expected KIEeff. It will be shown below that in general
this 1-D-diffusive model (thusf = 0.5) already predicts the
stratospheric fractionation surprisingly well.

An additional effect in the real stratosphere occurs by
mixing across transport barriers, where air masses (or parts
of them) with distinct characteristics are irreversibly mixed.
Also in this case, the observed KIEapp will always be lower
than KIEeff (i.e. f < 1) (Kaiser et al., 2002a). If the KIEapp
values of the mixing air masses themselves are already at the
diffusion-limited extreme individually (f = 0.5), then the ad-
ditional effect of mixing across a transport barrier (e.g. the
polar vortex) will be to reducef further tof < 0.5.

6 Mean fractionation factor

For each individual balloon profile, a mean KIE can be de-
termined from a linear fit to the data in a double-logarithmic
plot such as Fig.4 according to Eq. (2). The results of those
mean KIE values are shown in Table 3. The corresponding
fractionation factors vary for the individual flights over the
range 12–17 ‰ forε

13C and 122–160 ‰ forεD.

In general the fits are of very good quality and give high
accuracy KIE values with the following exceptions. The
HYD-87-03 profile basically consists of only two groups
of points. For HYD-99-04 half of the profile shows nearly
constant (tropospheric) values, which effectively reduces the
number of useful samples. Additionally, both HYD profiles
occupy only a small c-interval in theδ(c) relations. Also for
KIED(ASA-02-09) the regression coefficient is lower, likely
due to the limited number of samples analysed forδD.

Previously published mean KIE values are listed in Ta-
ble 4 for comparison. The KIE

13C derived by Sugawara et
al. (1997), the only previously published result from a strato-
spheric balloon flight, is similar to the subtropical (HYD-99-
04) result from this study. The overall average of Rice et
al. (2003) is in very good agreement with the mid-latitudinal
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exceptional points have been neglected for the fitting procedure. The lines in the graphs connect the 841 

points of each flight according to the sampling altitude. Regression lines are left out, since the 842 
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846 

Fig. 4. Rayleigh plots used for deriving the mean fractionation fac-
tors forδ13C andδD. Some exceptional points have been neglected
for the fitting procedure. The lines in the graphs connect the points
of each flight according to the sampling altitude. Regression lines
are left out, since the principal linear dependence is obvious.

average of this work. Rice et al. (2003) observed an apparent
increase of the KIEapp towards decreasing mixing ratios in
the regions of higher mixing ratios. For our data, a slight cur-
vature towards lower mixing ratios can be detected forδ13C
(Fig. 4a). ForδD (Fig. 4b), including the results of highly
processed polar air from our high altitude polar balloon sam-
ples leads to slightly lower values forεD compared to Rice
et al. (2003). The change of KIEappwith mixing ratio will be
discussed in detail in Sect. 6.2.

The samples reported in Brenninkmeijer et al. (1995,
1996) were collected in the southern hemispheric lower
stratosphere (10–12 km) at mid and high latitudes. They
cover only a small range in mixing ratio (1620–1690 ppb).
No comparable data set is available from this work. Nev-
ertheless, similar KIEs are observed, if the new dataset is
restricted to high mixing ratio samples only.

A long-term temporal trend in the KIE-values is not dis-
cernible from the data in Table 3. Nevertheless, one further
factor needs to be corrected for, namely the correction of the
bias introduced by the presence of the tropospheric temporal
trends.

6.1 Correction for tropospheric trends

The evaluation of mean KIEs from each single profile as dis-
cussed so far relates the highest altitude sample, which has
resided in the stratosphere for years, to the lowermost sam-
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). KIR-00-01 and ASA-01-10 in the bottom figure are based on
pseudo-δD values calculated from the isotope:isotope correlation.

In the top figure only the real KIE
13C values are shown for those

flights, indicated by vertical lines. Additionally, the only previous
published balloon profile (13C only) from Sugawara et al. (1997) is
included for direct comparison to the other flights.

ple, which only recently entered the stratosphere or is still
located in the upper troposphere. This method will only
reflect the true chemical and dynamical stratospheric frac-
tionation in the absence of tropospheric trends. If, how-
ever, tropospheric trends exist, then the higher altitude strato-
spheric samples are related to initial tropospheric values that
do not reflect the conditions at the time the sample entered
the stratosphere. The deviation is the bigger the larger the
tropospheric trends are and the longer the sample of inter-
est already resides in the stratosphere. A correction for the
tropospheric trends using the concept of stratospheric “mean
age” Kida (1983) is presented in Appendix A.

The mean age corrected fractionation constants are listed
in Table 5 together with the absolute and relative change
from the uncorrected values (Table 3). In general the mean
age correction leads to higher KIE-values, and the effect in-
creases towards lower latitudes. In tendency, it amplifies the
KIED signal relative to KIE

13C. This is related to the relative
size of the troposphericδ-trend, which forδ13C is small.

www.atmos-chem-phys.net/11/13287/2011/ Atmos. Chem. Phys., 11, 13287–13304, 2011



13296 T. R̈ockmann et al.: The isotopic composition of methane in the stratosphere

Table 4. Previously published mean KIE values.

Location max. altitude year-month KIE
13C KIED Reference

Antarctica supply Aircraft 12 1993-06 1.012 Brenninkmeijer et al. (1995)
Antarctica supply Aircraft 12 1993-10 1.010 Brenninkmeijer et al. (1996)
Japan Balloon 34.7 1994-08 1.0131 (6) Sugawara et al. (1997)
STRAT, POLARIS, SOLVE Aircraft 21 1996-09 to 2000-03 1.0154 (8) 1.153 (10) Rice et al. (2003), overall average (2σ)

Table 5. Mean fractionation constantsε
13C andεD, corrected for tropospheric trends. The absolute differences in ‰ and the relative change

in % to the uncorrected fractionation constants are stated in the right columns.

Set cmin ε
13C cmin εD changes abs. changes rel.

ppb ‰ ppb ‰ 1 [‰] 1 [‰] [%] [%]

KIR-00-01 248 17.2 (248)∗ (160)∗ 0.2 1.4
KIR-92-01 265 16.6 335 151 0.5 9 2.8 6.1
KIR-92-02 272 16.1 272 135 0.4 6 2.7 4.9
KIR-92-03 397 14.9 397 135 0.5 7 3.2 5.7
KIR-03-03 271 17.2 271 137 0.4 3 2.4 2.6
KIR-03-06 652 17.0 652 152 0.2 6 1.4 4.1
ASA-93-09 831 16.2 613 163 0.9 4 5.9 2.2
KIR-95-03 835 15.7 835 161 0.8 16 5.6 10.7
GAP-99-06 631 17.0 631 162 0.4 9 2.6 5.9
ASA-01-10 957 15.8 (957)∗ (159)∗ 0.5 3.3
ASA-02-09 897 15.5 897 152 0.4 12 2.8 8.3
HYD-87-03 1233 13.6 1233 152 1.7 30 14.6 24.0
HYD-99-04 1486 14.5 1486 147 1.1 25 7.9 20.5

∗ Using pseudo data, i.e. calculatedδD-values according to theδD – δ13C correlation (1).

Figure5 shows the uncorrected (a) and the mean age cor-
rected (b) mean KIE values in direct comparison. After
applying the correction the mean KIEs are grouped more
closely together in the KIE – KIE plane, but the remaining
scatter is still about 3 ‰ for KIE

13C and∼30 ‰ for KIED.
The largest systematic feature in Fig.5b is the rather low
KIE

13C for the subtropical flights. In addition, KIED is lower
for the vortex flights than for the mid latitude flights. These
variations will be examined in the following sections. In the
remainder of this paper only the mean age corrected fraction-
ation constants are discussed.

6.2 Latitudinal mixing ratio cut-off bias and non-
constant apparent KIE

An additional effect can cause apparent differences between
measurements at different latitudes. If the apparent KIE is
not constant over the entire range of mixing ratios, the value
of the minimum mixing ratiocmin of each sample profile af-
fects the mean KIEs at different latitudes. Due to the strong
latitudinal mixing ratio gradient in the stratosphere, the min-
imum mixing ratio cmin that is sampled on each balloon
flight differs for the different regions. At altitudes of about

30 km (typical maximum altitude of the balloon flights)cmin
is around 1200 ppb for the subtropics, 650 ppb–900 ppb for
mid latitudes and polar regions without vortex influence, and
∼300 ppb for vortex flights. The difference incmin can lead
to a bias when comparing profiles from different regions if
KIE increases with decreasing mixing ratio. In this case, the
mean KIEs from the subtropical flights would be higher sim-
ply because only air with relatively high CH4 mixing ratios
was sampled. Figure6 shows that indeed KIE

13C decreases
with decreasingcmin. We call this effect “latitudinal cut-off”
bias.

In order to assess whether a latitudinal cut-off bias occurs
in our set of samples, Fig.7 shows how the KIE changes
when successively the highest points of each individual pro-
file are truncated (“bottom-up” profiles). Conversely, each
point in these figures presents the KIE calculated for each
individual balloon profile when only the points up to the des-
ignated altitude (x-axis) are included. For KIE

13C, it is ev-
ident that in particular for the vortex profiles, the value of
KIE

13C increases when successively lower mixing ratios are
included in the evaluation of KIE

13C. For the same mixing
ratio range, KIE

13C values for the subtropics are similar than
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Fig. 6. Dependence of mean fractionation factors of each flight

(ε
13C in blue,εD in red) on the corresponding lowest mixing ratio

cmin observed. Fractionation factors are taken from Table 5 and
include the correction for the tropospheric temporal trends.

those observed for mid and high latitudes. Thus, the fact
that the tropical KIE

13C values stand out low in Fig.5b is
mainly due to the latitudinal cut-off bias. There is even a ten-
dency for the subtropical and mid latitude KIE’s to be slightly
higher than the vortex profiles in Fig.7a.

Except for a large scatter in the high mixing ratio regime,
where the inverse mixing ratio spans only a small interval and
high extrapolation errors are expected, no systematic cut-off
bias is observed for KIED (Fig. 7b). The values in this figure
support the observation from Fig.5b that the KIED values for
vortex air are generally slightly lower than for mid latitude
air.

7 Limitations of global mean sink partitioning

In this section it will be investigated whether/how the derived
mean KIE can be used to derive the mean relative strengths
of the three stratospheric sink reactions. It is already clear
from Eq. (8) that the results will depend onf

13C andf D, but
we will show that there are even more limitations.

7.1 Sink partitioning – results from previous models

Two extended 2-D-model studies on the isotopic composi-
tion of stratospheric methane have been published. Bergam-
aschi et al. (1996), updated in Saueressig et al. (2001), used a
photochemical 2-D-model to predict the distribution of OH,
O(1D) and Cl in the stratosphere. The model is able to re-
produce theδ13C(c) fractionation profile from Sugawara et
al. (1997). According to this model, in the middle and up-
per stratosphere (p < 10 hPa) Cl accounts for∼20 % of the
CH4 sink strength at low and mid-latitudes and for∼30 %
at high latitudes. O(1D) is estimated to cause 30 % of the
loss in the tropics and mid-latitudes (Fig. 5 in Bergamaschi
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Figure 11: The bottom-up profiles show the increase in ε13C  with decreasing cmin, which illustrates 867 

the decreasing importance of OH with increasing altitude (decreasing mixing ratio) and reduction of 868 

δD relative to δ13C in the vortex. Some data points that include only lower stratospheric samples 869 

have been left out in the graphs, since they reflect tropospheric variations. The last data point (on 870 

the left side) of each line corresponds to the KIEmean results of Table 5, but as exceptional samples 871 

have not been excluded here, they can slightly differ from the values given there. Typically the 872 

topmost sample has the lowest methane mixing ratio in a profile and therefore defines cmin. The 873 

Fig. 7. The bottom-up profiles show the increase inε
13C with de-

creasingcmin, which illustrates the decreasing importance of OH
with increasing altitude (decreasing mixing ratio) and reduction of
δD relative toδ13C in the vortex. Some data points that include
only lower stratospheric samples have been left out in the graphs,
since they reflect tropospheric variations. The last data point (on the
left side) of each line corresponds to the KIEmeanresults of Table 5,
but as exceptional samples have not been excluded here, they can
slightly differ from the values given there. Typically the topmost
sample has the lowest methane mixing ratio in a profile and there-
fore definescmin. The major exception is KIR-03-03 (light blue),
which has a minimum in the vertical mixing ratio profile, so that
instead ofcmin the mixing ratio of the topmost sample characterises
the related mean fractionation factor.

et al., 1996). The relative global mean sink strengths and the
corresponding effective KIEs for these model results are for
the year 1993 (C. Brühl, MPI für Chemie, Germany, personal
communication, 2003):(
aG

OH,aG
O1D,aG

Cl

)
= (0.41,0.33,0.26) (9)

The second modelling study from McCarthy et al. (2003)
yields similar numbers for the sink partitioning. Using the
available KIEs for the individual reactions (Table 1), this
translates into effective KIEs of

KIE
13C
eff

= 25.39

KIED
eff

= 328.6
(10)

In an inverse approach, the model results from Eq. (9) can
be used in Eq. (8) to calculatef

13C andf D from the aver-
age KIE measurements (Table 5). To take the cut-off bias in
the determination of mean KIEs into account, this was done
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Table 6. Global mean dynamical factorsf
13C andf D inferred from the modelled sink partitioning and the averaged mean fractionation

constantsε
13C andεD. The second column of values for a certain signature always gives the error.

average ε
13C εD f

13C f D

1 subtropics 14.0 0.7 150 4 0.553 0.026 0.456 0.011
2 mid-latitudes 16.1 0.6 159 5 0.635 0.025 0.484 0.016
3 non-vortex 16.3 0.9 157 6 0.643 0.037 0.478 0.019
4 vortex 16.2 1.0 144 10 0.639 0.038 0.437 0.031
5 polar1 (3/4) 16.3 0.9 147 11 0.640 0.035 0.447 0.033
6 Global2 (1/2/5) 15.5 1.2 152 6 0.610 0.049 0.462 0.019

1 Polar: average of rows 3 and 4;2 Global: average of rows 1,2 and 5.

separately for the different groups of flights and the results
for f

13C andf D are shown in Table 6.

It is obvious that f
13C and f D differ significantly.

Whereas allf
13C values exceed 0.5,f D is always below 0.5.

This is surprising since the effects of transport on the differ-
ent isotope signatures are expected to be similar. (Note that
small differences can occur sinceδD values are much larger
than δ13C values.) However, in the formal sink partition-
ing approach based on Rice et al. (2003) (Eq. 8), the signal
in δD appears strongly attenuated, when sink strengths from
previous model studies are used. This is unexpected, since
these models do agree with previous stratospheric observa-
tions. Given the good agreement of our dataset with previous
measurements, we expect that the models would not strongly
deviate from our data. Therefore, the low value off D and
the strong difference fromf

13C likely indicate other short-
comings. We will refer to this issue as KIED-discrimination.
The KIED-discrimination increases towards higher latitudes,
which is mainly caused by the latitudinal cut-off bias in the
determination of the mean KIE. Additionally, the attenuation
increases when deuterium depleted vortex air (compare the
vortex branch of theδD:δ13C relation, Sect. 4.2.1) is included
in the sample set.

The observed KIED-discrimination and the fact thatf D <

0.5 point towards conceptual limitations of the sink partition-
ing approach using Eq. (8), which will be further examined
in the following.

7.2 Conceptual limitations of the partitioning approach
and the origin of the KIE D-discrimination

The approach of deducing the sink partitioning from Eq. (8)
is strictly applicable only for an idealized removal process
where all three sink processes occur simultaneously in a
well-mixed volume, i.e. KIEeff is constant. However, the
stratospheric sink processes do not occur simultaneously.
The OH sink clearly dominates in the lower stratosphere and
the other two sinks gain in importance with altitude. This
partly sequential removal of CH4 is generally masked by the

fact that diffusive mixing removes most of the resulting gra-
dients in the apparent fractionation constants. This on the one
hand precludes deriving details of the altitude distribution of
the different sink processes in the stratosphere from isotope
data, but also limits the use of the mean kinetic isotope ef-
fects in Eq. (8). This can be demonstrated in a simple cal-
culation: the isotope fractionation of a typical tropospheric
air sample (c = 1750 ppb,δ13C= −47.5 ‰, δD = −81 ‰)
is calculated when three times 300 ppb are subsequently re-
moved by all three chemical sinks, but in different order. Ta-
ble 7 lists the finalδ values for all permutations of the sinks
and clearly the final enrichments are very different. Although
the perfect sequential removal in this idealized experiment
exaggerates the issue, it illustrates that the order of removal
is important for the final isotopic composition. In this ideal-
ized experiment we then use the final isotope composition to
calculate again the apparent KIEs and the relative sink frac-
tions (under the conditionf

13C = f D) for each scenario. The-
oretically the sink partitioning should be calculated to (1/3;
1/3; 1/3), but this result is only retrieved for case 7 when the
removal in fact occurs simultaneously.

The results in Table 7 illustrate that the mean KIEeff, and
thus the sink partitioning derived using the mean KIE ap-
proach, is pathway dependent. A fairly realistic sink parti-
tioning is only retrieved when the chemical loss due to OH
occurs last (case 2 and 4). In all other cases, the OH fraction
is severely underestimated, especially if loss by OH occurs
first. The fractionaO1D is always overestimated, especially
if O(1D) is the last sink in the sequence. As a general rule,
the last sink has the largest impact on the finalδ-value. This
is not surprising, because the relative fraction of the 300 ppb
removed increases in the three successive steps (300/1750 in
the first step, 300/1450 in the second step and 300/1150 in the
third step). Since Rayleigh fractionation increases with the
relative fraction removed, the last step has the largest impact.

In the stratosphere, the OH sink dominates at the lowest
altitudes, which corresponds to case 1 or 6 in Table 7. It
is clear thataOH is severely underestimated in both cases,
and this can lead to the KIED discrimination, as described
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Table 7. Final isotope fractionation (column 3 and 4) and effective kinetic isotope effect KIEeff (column 5 and 6) fractionation for different
permutations (column 2) of the three methane sinks. The simulatedδ-values are different and thus the KIEeff is pathway dependent. Case 7
is a parallel removal by all three sink processes of equal strength, i.e. KIEeff is constant along the fractionation pathway.

case permutation δ13C δD KIE
13C
eff KIED

eff aOH aO1D aCl

1 OH-O(1D)-Cl −24.3 93 1.035 1.327 0.18 0.44 0.39
2 O(1D)-Cl-OH −28.9 95 1.028 1.330 0.35 0.35 0.30
3 Cl-OH-O(1D) −30.7 65 1.026 1.264 0.24 0.52 0.24
4 Cl-O(1D)-OH −31.2 80 1.025 1.297 0.35 0.41 0.24
5 OH-Cl-O(1D) −28.0 70 1.030 1.275 0.17 0.53 0.29
6 O(1D)-OH-Cl −24.6 103 1.035 1.349 0.25 0.36 0.39
7 3×1/3 −27.3 101 1.031 1.345 0.33 0.33 0.33

above. These calculations indicate that the formal sink parti-
tioning approach using observed values of KIEapp, assump-
tions about dynamical factors and effective KIEs expressed
in Eq. (8) has conceptual deficiencies. For a realistic treat-
ment it is necessary to use global models, where both chem-
istry and transport can be included explicitly.

8 Global scale interpretation from the chemical and
dynamical perspective

Building on previous studies on the isotopic composition of
CH4 and N2O in the stratosphere (e.g. Griffith et al., 2000;
Röckmann et al., 2001; McCarthy et al., 2003; Rice et al.,
2003; Park et al., 2004; Toyoda et al., 2001), Kaiser et
al. (2006) presented a detailed interpretation of N2O iso-
tope measurements from the majority of balloon samples
presented in this study. Similar to N2O, the chemical life-
time of CH4 throughout most of the stratosphere is longer
than typical transport times and most of the CH4 is actu-
ally removed in the middle to upper stratosphere. One inter-
esting question is whether the distribution of the long-lived
gases in the stratosphere can therefore be fully described by
an idealized “two end member mixing” where tropospheric
air simply mixes with a representative upper stratospheric
reservoir that has been strongly processed photochemically.
Kaiser et al. (2006) demonstrated that such a two end mem-
ber mixing produces a straight line in a plot ofδ value ver-
sus inverse mixing ratio, a so-called “Keeling” plot. Sam-
ples with N2O mixing ratios above 200 ppb actually show
this behaviour. In the stratosphere, 200 ppb of N2O roughly
corresponds to 1200 ppb of CH4 (Park et al., 2004). Fig-
ure 8 shows that the CH4 isotope data in this high mixing
ratio regime (>1200 ppb) plot on a straight line on the Keel-
ing plot. This subset of data contains all subtropical samples
and most samples from the mid latitudes. However, for the
samples from polar regions with much lower mixing ratios,
the simple two end member mixing model actually deviates
strongly from the observations.

Fig. 8. δ13C plotted versus inverse mixing ratio. Mixing of two
distinct air masses should result in a straight line in this plot (thick
orange line), derived by a linear fit to all samples with mixing ra-
tios below 1200 ppb, which is approximately equivalent to the high
mixing ratio regime of>200 ppb N2O (Kaiser et al., 2006). Also

shown is a Rayleigh fractionation curve withε
13C

= 16 ‰ (thick
grey line), a value representative for the vortex flights (Table 3).

Figure8 also shows that a Rayleigh fraction model with an
apparent fractionation constantεapp= 16 ‰ (average value
for the vortex flights) actually fits the general evolution of
the entire dataset well (including the lower mixing ratios).
This is equivalent to the observation that the data fall ap-
proximately on a straight line in a Rayleigh fractionation plot
Fig. 4. However, the Rayleigh model attributes the vertical
mixing and isotope ratio changes to chemistry only, which
is conceptually inadequate given that transport time scales
are slower than chemical timescales in the lower and middle
stratosphere, as described above.

To investigate the role of mixing across the polar vortex,
Kaiser et al. (2006) presented a simple advective-diffusive
model of continuous weak mixing after Plumb et al. (2000)
and showed that this model leads to a qualitatively similar
trace in a Keeling plot as we find in Fig.8. In that analysis,
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Figure 12: Assuming that KIR-03-03/12 is the result of an end-member mixing process between 879 

vortex air (blue) and upper stratospheric air outside the vortex (green), an appropriate upper 880 
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Fig. 9. Assuming that KIR-03-03/12 is the result of an end-member
mixing process between vortex air (blue) and upper stratospheric
air outside the vortex (green), an appropriate upper stratospheric
member KIR-03-03/US can be constructed. Note that the vortex
and upper stratospheric end members may shift along the respective
lines.

also samples from high-altitude aircraft flights that crossed
the vortex edge horizontally were analyzed. Continuous
weak mixing will certainly also affect our samples taken near
the vortex edge, but a set of isolated vertical balloon profiles
is less adequate to investigate this in detail.

Mixing of chemically different air masses across the po-
lar vortex edge, in combination with descent of air from the
mesosphere (see next section) is likely responsible for the
remaining variability around the average isotope-mixing ra-
tio correlation curve. The corresponding deviations are spa-
tially and/or temporally confined and therefore result in a
scatter. Points falling below the average curve represent air
parcels that have experienced more than average mixing or
less chemical fractionation. The opposite is true for points
above the curve. In general, the interpretation of the CH4
isotope signals is in agreement with the situation as discussed
for N2O (Kaiser et al., 2006).

8.1 Mesosphere-stratosphere exchange in the vortex

It was already discussed above that the isotope:isotope corre-
lation is different for mid-latitude and vortex samples Fig.3.
The correlation for the mid latitudes is practically linear. The
correlation for the vortex samples becomes successively flat-
ter, i.e. it has lowerδD for a givenδ13C value. Based on
the KIE values in Table 1 this can be tentatively attributed
to stronger removal by O(1D) for the vortex samples, since
the reaction of CH4 with O(1D) has the lowest KIED. The
vortex samples have descended from high altitudes where
removal by O(1D) is expected to be relatively more impor-
tant. The vortex region is generally characterized by subsi-
dence of air from higher altitudes in the stratosphere and ad-
ditionally mesospheric air can subside into the stratospheric
polar vortex. For flight KIR-03-03, this has been investi-
gated in detail in Engel et al. (2006), and it is interesting to

note that the samples that were characterized there as having
mesospheric influence do not show unusual behaviour in our
isotope-isotope correlations. This suggests that the influence
of mesospheric air on CH4 in the vortex is not an exception
in 2003 as it looks in the individual profiles, but that the de-
scent of mesospheric air causes the general deviation of the
isotope-isotope correlation in the vortex from the one at mid
latitudes.

Surprisingly, the sample right below the mesospheric in-
trusion (KIR-03-03/12) deviates from this general classifica-
tion. In Table 8 this sample is compared to sample KIR-03-
03/6, which is the most enriched sample of the vortex branch
of the isotope-isotope correlation, and clearly influenced by
mesospheric air (Engel et al., 2006). Although KIR-03-03/06
contains less methane than KIR-03-03/12, i.e. it has under-
gone more methane removal, it is less enriched. This can be
explained if KIR-03-03/12 has been processed more strongly
by sink process with strong KIE, namely Cl. We propose that
sample KIR-03-03/12, represents air that originates from the
upper stratosphere, likely close to the stratopause, and from
outside the vortex, which descends to the middle and lower
stratosphere below the mesospheric intrusion.

Based on the previous results of this mesospheric air dis-
cussed in Engel et al. (2006) and the specific position of
KIR-03-03/12 between the two characteristic lines in the
isotope:isotope plot (Fig.9), it can be speculated that sam-
ple KIR-03-03/12 is a result of an end-member mixing be-
tween the most enriched air sample on the vortex branch, i.e.
KIR-03-03/6, and a suitable (unknown) end member from
the upper stratosphere, denoted KIR-03-03/US. As the prod-
ucts of mixing are found on a straight line connecting the
two end members, the unknown upper stratospheric mem-
ber must also fall on an extrapolated line through KIR-03-
03/6 (on the vortex branch) and KIR-03-03/12. We can fur-
ther assume that KIR-03-03/US falls on the extrapolation of
the mid-latitudinal isotope-isotope correlation (Fig.9). The
intersection then defines the isotopic composition of KIR-
03-03/US under the given assumptions as given in Table 8.
In this case, it is also straightforward to determine the rela-
tive contributions of the two end-members as 45 % of KIR-
03-03/US and 55 % of KIR-03-03/6. Note that these rela-
tive fractions are slightly dependent on the choice of the end
members on the vortex and mid latitude lines, since the vor-
tex line has a curvature.

9 Conclusions

Measurements of the13C and D content of CH4 on a large
set of stratospheric air samples collected over a period of
16 yr provide the most comprehensive picture so far on the
isotopic composition of stratospheric CH4. A method to
take into account the residence time in the stratosphere in
combination with the observed mixing ratio and isotope
trends in the troposphere has been presented. The highest
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Table 8. Comparison of two samples from flight KIR-03-03, where mesospheric air was sampled. KIR-03-03/6 is found on the vortex branch
of the isotope:isotope relation. It is evident that KIR-03-03/12 must have experienced a different fractionation/mixing history. Although its
methane mixing ratio is higher than that of KIR-03-03/6, it is much more enriched. Interpreting KIR-03-03/12 as a result of mixing between
vortex air and upper stratospheric air from mid latitudes, an appropriate upper stratospheric end-member is reconstructed (KIR-03-03/US).

KIR-03-03 altitude c δ13C δD
# km ppb ‰ ‰

6 23.9 271 1.8 −17.91 0.14 143.1 11 vortex sample, mesospheric influence
12 22.5 291 0.4 −13.70 0.67 191.3 2.4 mix
US ∼ 40∗ 314 −9.35 241.1 hypothetical mid-latitudinal upper stratosphere

∗ Estimated from typical mid-latitude profile.

isotope enrichments are found in the polar vortex with values
up toδ13C= −19 ‰ andδD = +190 ‰, strongly extending
the range of isotope enrichments observed before. The pre-
viously available isotope data from different laboratories and
on air samples collected at different locations and times can
be linked and compared by relating them to the new large
dataset. It also becomes apparent that inter-laboratory differ-
ences exist, especially forδD.

It has been shown that care has to be taken when mean ki-
netic isotope effects derived from single balloon profiles are
compared. Due to the non-linearity of the isotope-mixing ra-
tio relation in a Rayleigh fractionation plot the samples at the
lowest mixing ratio have the strongest leverage on the overall
slope. Therefore, only profiles that cover the same range of
mixing ratios should be compared directly. If profiles from
different times are compared, the temporal mixing ratio and
isotope trends also need to be taken into account.

Isotope-isotope correlations show that samples from the
polar vortex are less depleted inδD than at mid-latitudes,
which is attributed to enhanced chemical destruction by
O(1D) for the vortex samples. A critical analysis of methods
to derive a sink partitioning from global mean kinetic isotope
effects is carried out. The classical formal sink partitioning,
which is based on the assumption that all sinks act simulta-
neously, underestimates the contribution from OH, because
the KIE values derived in the stratosphere are less influenced
by the removal in the lower stratosphere compared to the up-
per stratosphere. Therefore, global models that include the
isotopic composition are needed to derive a reliable sink par-
titioning from the measurements, similar to the study by Mc-
Carthy et al. (2003).

Appendix A

Tropospheric trend correction by mean age

Kida (1983) introduced the concept of stratospheric “mean
age”. This concept describes a stratospheric air mass as a
collection of individual isolated air parcels. Each parcel has
been transported on its own path associated with a character-
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Figure 8: stratospheric mean age plotted versus CH4 mixing ratio (red,”+”). The original age 847 

inferred from the N2O mixing ratio is shown in blue (“-”). 848 

849 

Fig. A1. Stratospheric mean age plotted versus CH4 mixing ratio
(red, “+”). The original age inferred from the N2O mixing ratio is
shown in blue (“×”).

istic transport time and thus the air mass has a spectrum of
transport times, of which the mean value defines the mean
(stratospheric) age. The age distribution is quite sharp for
lower stratospheric tropical air and gets wider towards higher
altitudes and latitudes (for further details see Hall and Plumb,
1994; Waugh and Rong, 2002, and references therein).

When the stratospheric mean age is known and the atmo-
spheric trend can be approximated by a linear function, the
Rayleigh fractionation Eq. (2) can be modified as:

ln

(
δ+1

δT(ts−0)+1

)
=

(
1

KIE
−1

)
ln

(
c

cT(ts−0)

)
(A1)

where0 is the mean age of the sample,ts the date of sam-
pling andδT(t) andcT(t) the tropospheric time series of the
δ value and mixing ratio.

N2O is a well-suited age indicator for several reasons. It
has primarily surface sources and a very small (negligible)
seasonal variation. Moreover, it is inert in the troposphere
and long-lived in the stratosphere. The tropospheric mix-
ing ratio c(N2O)T increases to a good approximation lin-
early in time, thus it is well-defined and well-known. The
stratospheric mean age for most samples presented here was

www.atmos-chem-phys.net/11/13287/2011/ Atmos. Chem. Phys., 11, 13287–13304, 2011



13302 T. R̈ockmann et al.: The isotopic composition of methane in the stratosphere

already derived from the N2O measurements by Kaiser et
al. (2006), yielding the formula:

0N2O

(
c(N2O)
c(N2O)T

)
= −(7.43±0.34)

(
c(N2O)
c(N2O)T

)3

+(3.68±0.56)
(

c(N2O)
c(N2O)T

)2

−(1.94±0.28)
(

c(N2O)
c(N2O)T

)
+(5.69±0.04)yr

where c(N2O) is the N2O mixing ratio measured in the
stratosphere andc(N2O)T is its value in the troposphere.
c(N2O)T is calculated from the mean annual trend ob-
served at Mace Head (AGAGE), Ireland, from April 1994 to
September 2003, derived from monthly averaged N2O mix-
ing ratio measurements.

c(N2O)T(ts) = 0.765 ppbyr−1
·(ts−1994)+311.21 ppb(A2)

Based on the N2O derived mean age (0N2O), a relation be-
tween CH4 mixing ratio and0N2O (Fig. A1) is derived and
then used to interpolate0 from the CH4 mixing ratio, when
N2O data are missing. Neglecting the small (here negligible)
methane trend, the mean age (in years) derived this way is:

0CH4 = −2.131c3
+2.460c2

−1.1c+5.788 (A3)

where c is the CH4 mixing ratio in ppm. Some slightly neg-
ative values for0CH4 relate to samples with mixing ratios
slightly higher than the assumed tropospheric background
values. Those samples are either from the troposphere or
samples strongly influenced by tropospheric air and/or sea-
sonal variation in CH4 mixing ratio. The negative ages0CH4

do not lead to major changes in mean KIE. To stay consistent
for all samples in Fig.A1 only 0CH4 is used in the following.
The differences between0CH4 and0N2O do not cause signif-
icant changes in the determination of KIE. The tropospheric
CH4 trendcT(t) used in (A1) is constructed from measure-
ments at Mace Head, Ireland, 40◦ N between May 1994 and
September 2003 (Simpson et al., 2002), extrapolated back
to 1984 with growth rates from (Dlugokencky et al., 1998),
yielding

cT(CH4) = ko+k1 ·yr+k2 ·yr2 (A4)

with values ofk0 = −1766.707 ppb,k1 = 1766.723 ppb/yr,
k2 = −0.441245 ppb yr−2. Temporal isotope trends are de-
rived from the upper tropospheric samples of our dataset
and calculated relative to the tropospheric sample HYD-99-
04/3 (c = 1766 ppb,δ13C= −47.30 ‰ andδD = −81.3 ‰)
on reference datetref = 1999.445 (26 April 1999).

δ13CT(t) = −47.30 ‰+0.034 ‰/yr ·(t − tref) (A5)

δDT(t) = −81.3 ‰+0.86 ‰/yr ·(t − tref)

The δ values are reported versus the international standards
Vienna PeeDeeBelemnite (VPDB) forδ13C and Vienna Stan-
dard Mean Ocean Water (VSMOW) forδD. The mean age
corrected KIE values derived this way are rather insensitive

to parameter changes. Of course, the magnitudes of tropo-
sphericδ-trends are of relevance. Further the correction is
sensitive to the shape of the function that describes the mean
age relation0CH4, whereas shifting0CH4 by±1 yr or stretch-
ing it for 1 additional year does not significantly change the
results.
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