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Abstract. In order to improve the surface ozone fore-
cast over Beijing and surrounding regions, data assimilation
method integrated into a high-resolution regional air quality
model and a regional air quality monitoring network are em-
ployed. Several advanced data assimilation strategies based
on ensemble Kalman filter are designed to adjust O3 initial
conditions, NOx initial conditions and emissions, VOCs ini-
tial conditions and emissions separately or jointly through as-
similating ozone observations. As a result, adjusting precur-
sor initial conditions demonstrates potential improvement of
the 1-h ozone forecast almost as great as shown by adjusting
precursor emissions. Nevertheless, either adjusting precursor
initial conditions or emissions show deficiency in improving
the short-term ozone forecast at suburban areas. Adjusting
ozone initial values brings significant improvement to the 1-
h ozone forecast, and its limitations lie in the difficulty in
improving the 1-h forecast at some urban site. A simulta-
neous adjustment of the above five variables is found to be
able to reduce these limitations and display an overall bet-
ter performance in improving both the 1-h and 24-h ozone
forecast over these areas. The root mean square errors of 1-
h ozone forecast at urban sites and suburban sites decrease
by 51 % and 58 % respectively compared with those in free
run. Through these experiments, we found that assimilating
local ozone observations is determinant for ozone forecast
over the observational area, while assimilating remote ozone
observations could reduce the uncertainty in regional trans-
port ozone.
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1 Introduction

As one of the typical city clusters in China, Beijing and
its surrounding areas are facing serious challenges in sur-
face ozone pollutions within urbanization and motorization
processes (Chan and Yao, 2008; Shao et al., 2006). Expo-
sure to high ozone concentrations leads to heavy damages
on both human health and plant life (Anderson et al., 1996;
Chameides et al., 1999). Providing ozone forecast is un-
doubtedly of great importance, not only for the public, but
also for the policy makers. Forecasting and early warning
of ozone pollution, performed during the Beijing Olympic
Games to ensure a health environment for athletes and at-
tendees, constituted an important issue for the Campaign of
Air Quality Research in Beijing and the Surrounding Region
(CAREBEIJING-2008, Wang et al., 2011). However, ozone
forecast has not been integrated in the current operational air
quality forecast over these areas, and little studies focused on
this issue.

In previous studies on ozone forecast over Beijing, An et
al. (2010) and Yu et al. (2011) developed statistical forecast
models to forecast ozone concentrations based on several sta-
tistical techniques including multiple linear regressions, prin-
cipal component analysis and neural network methods, while
Tang et al. (2010a) and Zhang et al. (2010) employed en-
semble forecast methods based on chemical transport model
(CTM) to forecast ozone. A main drawback with the statis-
tical forecast model is the difficulty in describing non-local
influences such as emission changes, transport processes and
complex chemical reactions (Flemming et al., 2001). The
ensemble forecasting methods with CTM contain the influ-
ences from the complex chemical and dynamical processes
and do not have the conceptional limitations with statistical
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forecast method. Its limitations lie in that large uncertainty in
CTM is still a great challenge so that forecast with ensemble
mean brings limited improvement of forecast skill (Mallet et
al., 2009; von Loon et al., 2007). Linear combination of each
ensemble member based on past observations and past fore-
casts can produce better forecast performances (Mallet et al.,
2009; Zhang et al., 2010), but the effectiveness of the com-
bining weights is limited to the locations and variables with
observations, and the errors in observation are normally not
taken into account (Mallet et al., 2010).

In this paper, advanced data assimilation method as an al-
ternative approach is employed to improve the ozone forecast
of CTM over Beijing and its surrounding areas. This is the
first attempt to employ data assimilation method to overcome
difficulties related to regional ozone forecast over these ar-
eas. This method consists of integration of observational in-
formation into a numerical model with the purpose of obtain-
ing the estimate of the model state that minimizes the error
variance. The attractive features of data assimilation method
reside not only in its ability to improve the estimations of the
physical properties that are not observed directly, but also in
its adequate consideration of the observation errors. Several
applications of data assimilation method in ozone modeling
brought out relevant findings for ozone forecast improvement
in many locations (Chai et al., 2006; Elbern et al., 2007;
van Loon et al., 2000; Hanea et al., 2004; Constantinescu
et al., 2007a). However, adoption of suitable data assimila-
tion method with well-fitting data strategy for ozone forecast
improvement over Beijing and its surrounding areas has not
yet been addressed in previous publications.

Compared with the previous ozone data assimilation stud-
ies focusing on the ozone forecast over Europe or North
America, ozone data assimilation over Beijing and surround-
ing regions has its particularities. At first, as a typical city
cluster within urbanization and motorization processes, Bei-
jing and surrounding regions is undergoing rapid and com-
plex variations of air pollutant emissions. The number of
motor vehicles in Beijing rocketed from about 3.5 million
in 2008 to around 5 million in 2010, while several emission
reduction measures such as traffic restriction are conducted.
These rapid changes can hardly be described by the existing
emission inventory updated once every 2-3 years, inducing
large uncertainty into ozone modeling. What is more, com-
plex regional transport processes of air pollutants over these
areas (Streets et al., 2007; Wu et al., 2011) complicate this
problem and become a barrier to improve the ozone forecast.
Another difficulty for improving ozone forecast over these
areas is the lack of routine observations of ozone and precur-
sors. Therefore, how to deal with the above problems and
overcome such difficulties is a key ingredient for improving
the ozone forecast over these areas.

The objective of this study is to investigate the possi-
bility to overcome these difficulties with data assimilation
method. Several data assimilation strategies are designed to
adjust ozone initial conditions, precursor initial conditions

and emission rates separately or jointly through assimilat-
ing ozone observations, exploring possible solutions to re-
ducing the uncertainty in precursor emission and initial con-
ditions when precursor observations are scarce. A regional
air quality observation network covering Beijing, Tianjin and
Hebei Province is employed to provide ozone observations
for data assimilation, and the roles of the monitoring sta-
tions of this network in data assimilation are evaluated. En-
semble Kalman filter (EnKF) is employed as the data assim-
ilation method for its strong attractive features in applica-
tion for complex models (Carmichael et al., 2008; Evensen,
2009). It supports fully nonlinear evolution of the error statis-
tics through the highly nonlinear model and is convenient to
dealing with model error. Furthermore, its implementation
is very simple and suitable for parallel computation without
needing for tangent linear or adjoint model.

Section 2 describes the adopted data assimilation method,
regional air quality model, regional air quality observation
network and the designed experiments. Results and discus-
sions are presented in Sect. 4 and conclusions are given in
Sect. 5.

2 Methodology

2.1 Data assimilation with EnKF

EnKF, proposed by Evensen (1994), is an approximate ver-
sion or extension of Kalman filter (Kalman, 1960). It uses
ensembles of random samples to obtain error statistics of
model state variable or parameter. Error statistics can be
propagated with linear or nonlinear dynamic model through
simply implementing ensemble simulations of the dynamic
model. Several variants of EnKF are available for application
in large geophysical system (Anderson, 2001; Houtekamer
and Mitchell, 2001; Keppenne, 2000; Sakov and Oke, 2008).
We adopt the sequential algorithm proposed by Houtekamer
and Mitchell (2001) to implement EnKF for its efficiency in
computation. The implementation process and setup are de-
tailed below.

2.1.1 Definition of state vector

In CTM, the state vectorx of model system evolves from
timek-1 to timek can be represented in discrete form:

x
f
k = Mk−1(x

b
k−1,θ

b
k−1) (1)

where the superscriptsf and b denote forecast and back-
ground (or first guess) respectively,Mk−1 denotes the model
dynamic operator.θ represents model inputs such as me-
teorological inputs, chemical reaction parameters and emis-
sions. The state vectorx defined in this study contains O3
initial conditions, VOCs and NOx initial conditions. Note
that the state vector can be extended to including more other
variables.
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2.1.2 Initial perturbation of state vector

A key step of EnKF is generating an initial set of samples
of state vector to provide initial conditions for Monte Carlo
ensemble simulations. The initial ensemble samples are ob-
tained through perturbing the background value of state vec-
tor:

x
′

0(i) = xb
0 +δx0(i), i = 1,2,...,N (2)

whereδx0 represents the random perturbation samples added
to the background value at the initial time, andi denotes its
index in ensemble.x

′

0 is the obtained initial ensemble sample
of state vector. The ensemble sizeN is set as 50, which can
keep a good balance between computational efficiency and
assimilation performance and has been proved to be cred-
ible for application in ozone data assimilation by previous
publications (Carmichael et al., 2008; Constantinescu et al.,
2007b).

Ideally, initial perturbation should reflect the statistic char-
acterization of the error in background values (Evensen,
2003). For application in CTM, the importance of initial per-
turbation seems not as great as that in application for meteo-
rological and ocean model. Wu et al. (2008) present credible
results of ozone data assimilation without initial perturbation
in EnKF. In this study, we employ the method suggested by
Evensen (1994) to generate a pseudo smooth random pertur-
bation field in three dimensions. This method is convenient
for setting the amplitude, horizontal and vertical scales of
perturbations. The perturbation ranges of initial conditions
of O3, NOx and VOCs are assumed to be 50 % of the back-
ground values. The spatial correlation scale of initial pertur-
bation fields is set as 54 km in horizontal and 3 model grids
(about 200 m) in vertical after several sensitivity tests. The
correlation scale in horizontal or vertical is chosen indepen-
dently from several scales with the purpose of minimizing
the root mean square error (RMSE) of the analyzed ozone.
In addition, during initial perturbation, the variables in state
vector are assumed to be independent with each other con-
sidering the difficulty in obtaining their correlations directly.

2.1.3 Perturbation of input parameter

The forecast error of state vector comes not only from the ini-
tial error of state vector, but also from error in other sources
such as model parameter or numerical technique. We define
the latter as model error. A critical issue for data assimilation
is how to deal with model errors. Neglecting model errors in
EnKF may lead to filter divergence which is characterized
by too small ensemble spread and disregard of observation
during analysis (Mitchell and Houtekamer, 2000). A simple
method to compensate the missed model errors is inflating
background error covariance (Constantinescu et al., 2007c).
However, lacking physical basis and inducing spurious lin-
ear increase of background error at the area far away from

observation sites make this method limited. In this study, we
adopt an alternative approach to deal with model errors.

First, we assume model errors are mainly from uncertain
model parameters (θ in Eq. 1). In order to represent their un-
certainty in the form of ensemble, Gaussian distributed ran-
dom noise is generated and added to the first guess value (θb)

of model parameters at each integration step as below:

θ
′

k−1(i) = θb
k−1+δθk−1(i), i = 1,2,...,N (3)

whereδθ is the random perturbation sample from Gaussian
distribution, andi denotes its index in ensemble. Precursor
emissions, photolysis rates and vertical diffusion coefficients
are assumed to be dominant sources of model error and are
perturbed in Eq. (3). Referring to the uncertainty analysis
result of Tang et al. (2010b), the perturbation magnitude of
NOx emissions is restricted within 60 % of the first guess
emission rates and that of VOCs emissions within 80 %. The
perturbations of NO2 photolysis rate and vertical diffusion
coefficient are restricted within 30–35 % of the first guess
values respectively.

Here, we split the above parameters into two categories:
the parameters needed to be updated by EnKF (denoted by
η); the parameters without needing update (denoted byλ).
For η, we adopt a time-correlated noise to simulate the tem-
poral evolution of their errors:

η
′

k(i) = ηb
k +δηk(i)

δηk(i) = αδηk−1(i)+
√

1−α2σwk−1(i), i = 1,2,...,N (4)

whereηb
k is the first guess of the parameter andδηk+1(i) de-

notes the random perturbation sample.wk−1(i) is random
sample drawn from Gaussian distribution with mean zero and
standard deviation one,σ denotes the standard deviation of
the error in parameter.α represents the smooth coefficient
that is dependent on time-decorrelation scale (τ ):

α = exp(−1/τ) (5)

We use 24 h as the first guess value of the time-decorrelation
scale, similar as the decorrelation length employed by
Segers (2002). Note that this assumption may not be true;
other options might improve the performance of EnKF. The
advantages of using a colored noise process for the adjusted
parameter lie in that it can avoid rapid fluctuations of pertur-
bations (e.g., the fluctuation of perturbation from−30 % to
30 % within 2 h). Correlations between the red noise of the
parameter and the ensemble of state variable will be devel-
oped, making it possible to update the parameter consistently
with observations of state variable (Evensen, 2003). Forλ,
their errors are simulated as white noise process without tem-
poral correlations:

λ
′

k(i) = λb
k +δλk(i) (6)

δλk(i) is random sample drawn from Gaussian distribution
with mean zero and standard deviation set as the perturbation
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magnitude of parameters. It should be noted that in the actual
simulations only the parameters perturbed with red noise are
modified by EnKF before being used by the simulation.

2.1.4 Update of state vector and input parameter

After obtaining ensemble of initial conditions of state vector
and ensemble of parameters, ensemble runs of original CTM
are conducted to propagate these errors in model. Each initial
ensemble sample of state vector from Eq. (2) and ensemble
sample of parameter from Eqs. (4) and (6) serve as inputs in
each ensemble run, and the Eq. (1) is transformed as:

x
f
k (i) = Mk−1(x

′

k−1(i), η
′

k−1(i), λ
′

k−1(i)), i = 1,2,...,N (7)

Note thatθ is replaced byη andλ here. Then, a key step
of EnKF is to update the forecast state vectorxf and the
parameterη in Eq. (7) through assimilating observation data.

To facilitate the description, we define an extended state
vector including parameterη:

b
f
k (i) =

∣∣∣∣∣xf
k (i)

η
f
k (i)

∣∣∣∣∣, i = 1,2,...,N (8)

The forecast error covariancePf of the extended state vector
is estimated based on the forecast ensemble from Eq. (9):

Pf

k =
1

N −1

N∑
i=1

(b
f
k (i)−b

f
k )(b

f
k (i)−b

f
k )T (9)

where the overline denotes the ensemble mean. The obser-
vation error is assumed to be Gaussian with mean zero and
covarianceR. An ensemble of observation samples is gener-
ated accordingly:

yk
′

(i) = yk +γ k(k), i = 1,2,...,N

γ k ∈ N(0,Rk) (10)

whereyk is the original observation value andγ k is the ran-
dom perturbation sample from Gaussian distribution. The
observation errors, including both representation error and
measurement error, are assumed to be uncorrelated in time
and space and are set as 10 % of the original observation
value with reference to von Loon et al. (2000).

Based on the error statistics of the forecast and observa-
tional state vector, the extended state vector is updated ac-
cording to the following formulations:

ba
k(i) = b

f
k (i)+K k(y

′

k −Hb
f
k (i)), i = 1,2,...,N

Kk = P
f
k H T

k (H kP
f
k H T

k +Rk)
−1 (11)

H is the observation operator that maps the extended state
vector from model space to the observation space.K repre-
sents the Kalman gain dependent on forecast error covariance
and observation error covariance.ba

k is the updated extended

state vector (analysis). In order to avoid storing and invert-
ing very large matrices during analysis, ozone observations
at different sites are assimilated into model in a sequential
way with observations assimilated site by site. The updated
extended state vector from assimilating observation of one
site is used as the background for assimilating observation at
next sites. The sequential way has been reported to be better
than the way with observations of all sites assimilated simul-
taneously as long as the observation errors of different sites
are uncorrelated (Houtekamer and Mitchell, 2001).

A major limitation of EnKF is the use of finite ensem-
ble size which can induce spurious correlation between two
independent variables leading to underestimation of analy-
sis error covariance and spurious increment of state vector
(Evensen, 2009). In order to reduce the spurious influence
caused by the finite ensemble size, we employ a local analy-
sis scheme in which only observations within a cutoff radius
(localization scale) of the analysis grid are used to update the
state vector. Its advantage lies in its convenience in elimi-
nating the weak influence from remote observation, which is
difficult to be accurately estimated. After several sensitivity
tests with various localization scales (81 km, 72 km, 63 km,
54 km, 45 km, 36 km), the cutoff radius for updating ozone
initial conditions is set as 54 km and that for updating precur-
sor initial conditions and emissions 45 km. The current local-
ization scale brings better forecast skill than the other tested
scales. It is worth noting that many factors such as ensemble
size, dynamic system and lifetime of chemical species would
influence the choice of localization scale.

3 Air quality model and observation network

3.1 Regional air quality model

The CTM used with EnKF is the Nested Air Quality Pre-
diction Modeling System (NAQPMS) developed by the In-
stitute of Atmospheric Physics of Chinese Academy of Sci-
ences (Wang et al., 1997, 2006). Several applications of
NAQPMS have been reported for simulating chemical pro-
cess and transport of ozone (Li et al., 2009; Tang et al.,
2010c), modeling process of aerosol and acid rain (Li et
al., 2011; Wang et al., 2002) and providing operational air
quality forecast in mega cities such as Beijing and Shanghai
(Wang et al., 2006).

As a multi-scale air quality model, NAQPMS can pro-
vide forecast of both primary and secondary pollutant from
regional to urban scale. It includes modules of emissions,
diffusion, advection/convection, deposition and gas/aqueous
chemistry. The process of gas phase chemistry is modeled
with the Carbon-Bond Mechanism Z (CBM-Z) proposed by
Zaveri and Peters (1999). A revised version of RADM
aqueous-phase chemistry (Wang et al., 2002) is served to
simulate the aqueous-phase chemistry. The dry deposition
modeling follows the scheme of Wesely (1989).
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In this study, the model is configured with three nested
model domains (displayed in Fig. 1a) in order to reduce the
influence of boundary conditions on our focus areas. The
coarse domain (D1 and D2) is to provide boundary condi-
tions for its nested domain with one-way nesting technique.
The boundary conditions of the largest domain are extracted
from a global transport model CHASER (Sudo et al., 2002).
Vertically, the model is set as twenty terrain-following lay-
ers, nine of which are within the lowest 2 km of the atmo-
sphere and the height of the first layer near the surface 50
m. The hourly meteorological driver of chemical transport
model is provided by the Fifth-Generation NCAR/Penn State
Mesoscale Model (MM5) (Grell, 1994) which is configured
with the same horizontal grid structure as the chemical trans-
port model. The initial and boundary conditions for MM5
run are from NCAR/NCEP 1◦×1◦ reanalysis data.

The gridded emission data of the three domains is prepared
via the Sparse Matrix Operator Kernel Emissions (SMOKE)
model (Houyoux et al., 2000) to combine and process the fol-
lowing emission inventories. The INTEX-B Asia inventory
for 2006 with a 0.5◦×0.5◦ resolution (Zhang et al., 2009)
serves as the regional emission inventory for all model do-
mains. Then the power emissions of Beijing and its sur-
rounding provinces (Tianjin, Hebei, Shanxi, Inner Mongolia
and Shandong) in this inventory are updated by the power
plant emission dataset with exact longitude and latitude of
point sources (Hao et al., 2007). Other emissions of Beijing
in INTEX-B emission are also updated with the industrial
boiler, domestic, industrial process emissions, and the mo-
bile emissions derived from Mobile 6 of SMOKE based on
the traffic flow from the annual report of Beijing Traffic De-
velopment Research Center in 2006 (Wu et al., 2010). In or-
der to reflect the emission control measures conducted over
Beijing and its surrounding areas during the Beijing Olympic
Games, we removed the emission sources corresponding to
the control measures from the above updated emission in-
ventory according to the “29th Olympic Games Beijing air
quality protection measures”. More details for the emission
control measures during the Beijing 2008 Olympic Games
are provided in Wang et al. (2009).

3.2 Regional air quality observation network

A regional air quality observation network covering Bei-
jing, Tianjin and Hebei Province is used to provide surface
ozone observational data for data assimilation. This network
was established in 2008 as part of the air quality protec-
tion project for the Beijing 2008 Olympic Games. It pro-
vided hourly observed data of O3, NOx, SO2, CO, PM2.5
in near real-time during the Beijing 2008 Olympic Games.
The aims of this network are to monitor the variations of the
regional air quality and assess the influence of regional pol-
lutant transport on Beijing’s air quality. It has been applied
to evaluate model performance (Zou et al., 2010), improve
ozone forecast with an ensemble forecast system (Tang et
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Fig. 1. (a) Model domains. The first domain covers East Asia
with 81 km×81 km resolution; the second domain consists of North
China with 27 km×27 km resolution; the third domain includes Bei-
jing and its surrounding areas with 9 km×9 km resolution.(b) Mon-
itoring stations. The six suburban stations are marked as red dots
and the eleven urban stations are represented by blue dots.

al., 2010a), and assess the air quality of Beijing and its sur-
rounding areas during the Beijing 2008 Olympic Games (Xin
et al., 2010).

In this study, this network is employed for data assimi-
lation to investigate its potentials in improving ozone fore-
cast. The distribution of the 17 monitoring stations of this
network is displayed in Fig. 1b. It contains five urban sites
at Beijing (Changping, Beida, Beiyi, IAP, Yangfang), six
suburban sites close to Beijing (Langfang, Xianghe, Xin-
glong, Yanjiao, Yufa, Yongledian), and six urban sites at
the surrounding cities (Baoding, Cangzhou, Qinghuangdao,
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Shijiazhuang, Tangshan, Tianjin). The urban sites are located
at the central urban area with high precursor emission rates,
while the suburban sites are located away from the central
urban area with a relatively low precursor emission rates.

3.3 Experiment design

In order to identify the advantages and disadvantages of ad-
justing initial conditions and emissions through assimilating
ozone observations, we design a series of experiments as
shown in Table 1. The focus is on using EnKF method to
adjust ozone initial conditions, VOCs initial conditions, NOx
initial conditions, VOCs emission rates and NOx emission
rates separately or jointly. Firstly, a free run of model is con-
ducted as the reference experiment EXP0 for further com-
parison with the data assimilation experiments. Ozone initial
conditions are adjusted in EXP1, while initial conditions of
VOCs and NOx are adjusted in EXP2 and EXP4 respectively.
EXP3 and EXP5 are implemented to correct emissions of
VOCs and NOx respectively. In EXP6, a combined experi-
ment is designed to simultaneously adjust the initial condi-
tions and emissions. In order to verify the effects of data
assimilation on the non-observational areas, ozone observa-
tions at two urban sites (IAP and Yangfang) and one subur-
ban site (Langfang) are withdrawn from assimilation in the
six data assimilation experiments and used as independent
data for validation. Moreover, two cross validation data as-
similation experiments, EXP6u and EXP6s, are designed to
further investigate the effects of data assimilation on ozone
forecast over the non-observational areas.

The analyses focus on a two-week simulating period from
00:00 LT 9 August to 00:00 LT 23 August in 2008. The me-
teorological inputs of air quality modeling each day are ob-
tained from a 1.5-day MM5 run, with the first 12-hour as
spin-up time and the remaining one day to provide the meteo-
rological inputs. A free run of MM5 without nudging is con-
ducted with considering of the lack of suitable meteorolog-
ical observations in the fine-resolution nested domains and
the short forecast period of each run. Overall, the predicted
wind, temperature and relative humidity agree well with the
observations except for the underestimation of surface tem-
perature over urban areas and inconsistencies of modeling
wind during 13–17August (not shown here). For air quality
modeling, we firstly conducted two-week spin-up simulation
with clean initial conditions in order to minimize the influ-
ence of artifacts from initial conditions. Then we perturbed
the initial conditions of state vector at 19:00 LT on 8 August
2008 in the way as Eq. (2) and started implementation of
ensemble simulation. The first five hours of ensemble sim-
ulation are also set as spin-up time, which would be helpful
for recovering the balance of model after perturbation and
obtaining a flow-dependent background error covariance. At
00:00 LT on 9 August 2008 the observed ozone data started
to be assimilated hour by hour. The assimilation ended at
00:00 LT on 23 August 2008. In order to reduce the compu-
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Fig. 2. Simulated daytime ozone concentrations (ppbv) on August
14 in the third domain obtained from(a) free run and(b) EXP1. The
observed daytime ozone values (numbers near dots) at monitoring
stations are also shown.

tational cost, data assimilation is only performed in the third
model domain. To investigate the quick response of ozone
forecast to assimilation, we mainly assess the performance
of 1-h ozone forecast after assimilating observational data.
Furthermore, the effects of data assimilation on 24-h forecast
are also discussed in Sect. 4.6.

4 Results and discussions

4.1 Adjustment of ozone initial conditions

As the most frequently employed control variable in ozone
data assimilation studies (e.g., Eben et al., 2005; Elbern et al.,
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Table 1. Experiments designed for evaluating the performance of different data assimilation strategies.

Variable adjusted in EnKF

Experiment O3
initial
conditions

VOCs initial
conditions

VOCs
emission
rates

NOx
initial
conditions

NOx
emission
rates

Observations
assimilated

Observations
for forecast
evaluation

EXP0 None 17 sites
EXP1

√
9 urban sites
5 suburban
sites

17 sites

EXP2
√

the same sites
as EXP1

17 sites

EXP3
√

the same sites
as EXP1

17 sites

EXP4
√

the same sites
as EXP1

17 sites

EXP5
√

the same sites
as EXP1

17 sites

EXP6
√ √ √ √ √

the same sites
as EXP1

17 sites

EXP6u
√ √ √ √ √

11 urban sites 17 sites
EXP6s

√ √ √ √ √
6 suburban
sites

17 sites

2007; Wu et al., 2008), ozone initial conditions are adjusted
separately in EXP1 through assimilating ozone observations.
A comparison of the observed daytime ozone on 14 August
2008 against the 1-h forecast daytime ozone concentrations
after adjustment in EXP1 is presented in Fig. 2b, while a cor-
responding comparison in the reference experiment EXP0 is
shown in Fig. 2a. Obvious overestimation by reference sim-
ulation is observed in the urban areas of Beijing, Tianjin and
their trans-boundary suburban areas. Ajdusting ozone ini-
tial conditions in EXP1 significantly reduces this overesti-
mation especially at the urban and suburban areas of Bei-
jing with abundant monitoring stations. Additionally, at the
downwind areas of Beijing without monitoring stations, the
forecasted ozone concentrations after assimilation also show
significant decrease. The present results indicate that adjust-
ing ozone initial conditions with the current regional moni-
toring network can bring significant improvement of ozone
forecast over Beijing and its surrounding areas. The results
demonstrate that ozone concentrations over Beijing and its
surrounding areas are regional concern. Thus, improving
ozone forecast at a regional scale is crucial in improving
ozone forecast over Beijing and its surrounding areas.

In order to identify the effects of adjusting ozone initial
conditions at individual sites, the RMSEs of 1-h ozone fore-
cast at each site in EXP1 is compared with that in EXP0, as
shown in Fig. 3. At most of the stations, the RMSE in EXP1
is much lower than that in EXP0. The RMSE averaged over
urban sites is reduced by 31 % after adjusting ozone initial
conditions and that over suburban sites reduced by 46 %. The
large decreases of RMSE highlight the importance of adjust-
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Fig. 3. Comparison of RMSE of 1-h ozone forecast at urban sites
(dots) and suburban sites (triangles) in free run against those in
EXP1.

ing ozone initial values for short-term ozone forecast over
Beijing and its surrounding areas. The fact that the impact of
correcting ozone initial conditions at suburban sites is greater
than that obtained from urban sites, might be due to the dif-
ferent ozone formation mechanisms and their related differ-
ent roles of uncertainty sources in ozone forecast in urban
and suburban areas.
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Fig. 4. Time series of the hourly ozone concentrations obtained from observation (rectangle), free run (black line), analysis (blue line) and
1-h forecast in EXP1 (red line) at two urban sites (Tianjin and Tangshan) and at two suburban sites (Yanjiao and Yufa).

In order to further understand this discrepancy, a compari-
son of the hourly ozone concentrations from the 1-h forecast
in EXP1 against those from the analysis in EXP1, simula-
tion in EXP0 and observation at two urban sites (Tianjin and
Tangshan) and two suburban sites (Yanjiao and Yufa) is pre-
sented in Fig. 4. At the two suburban sites, assimilating local
ozone observations in EXP1 strongly adjust the analysis and
greatly improve the forecast with the analyzed values and
forecasted values quite close to the observations. At the two
urban sites, the simulation in EXP0 overestimates the day-
time ozone at Tianjin and underestimates the daytime ozone
at Tangshan during most of the time. Assimilating local ob-
servations can correct the analysis as well as showed at the
two suburban sites. However, the 1-h forecast shows a large
difference of performances between the two urban sites and
the two suburban sites. The 1-h forecast at the two urban sites
rapidly relaxes toward the reference simulation especially at
Tangshan. This result suggests that ozone forecast error at ur-
ban areas can increase quickly within 1-h model integration
even with good ozone initial conditions. The most plausi-
ble reasons of this phenomenon might be: (1) freshly emit-
ted precursors at urban areas and their uncertainties in model
emission inventory and initial values would affect the short
term ozone forecast immediately; (2) the influence of ozone
observations of urban site during analysis may limit to a rela-

tively small area due to the short life cycle of ozone at urban
areas. Further attention should be paid to reducing the uncer-
tainties of other factors (e.g., initial conditions and emissions
of ozone precursors) for improving ozone forecast at urban
areas. In addition, it is interesting to remark on Fig. 4 that
at the two urban sites, EnKF show a deficiency in correct-
ing ozone initial values during the nighttime on several days
(e.g., 11–12 August at Tianjin; 13 August at Tangshan). This
is probably caused by the almost zero values of the simulated
nighttime ozone which can lead to a very small background
error covariance, disregarding the observation in EnKF.

4.2 Adjustment of precursor initial conditions

Uncertainty in ozone forecast not only originates from the
uncertainty of its own initial conditions, but also from the
uncertainty in the initial values of those precursors. One of
the difficulties in improving ozone forecast over Beijing and
its surrounding areas lies in the fact that present observations
of precursors are scarce and not sufficient for constraining
the uncertainty of the precursor initial values. Thus, we ex-
plore the possibility to improve ozone forecast with assimi-
lating ozone observations to adjust the precursor initial val-
ues. EXP2 and EXP4 are designed to adjust VOCs initial
conditions and NOx initial conditions respectively.
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Fig. 5. Time series of hourly RMSE of 1-h ozone forecast in free
run (solid line), EXP2 (dash line with circles) and EXP4 (dash line).

In Fig. 5, the hourly RMSEs of 1-h ozone forecast in EXP2
and EXP4 are compared with those in EXP0. Obviously,
adjustment of VOCs or NOx initial values brings significant
improvement of ozone forecast during the daytime, and the
daily-averaged RMSEs of ozone forecast decrease by 10 %
in EXP2 and 18 % in EXP4. Such similar relatively sig-
nificant improvements of daytime ozone forecast from ad-
justing NOx initial values and VOCs initial values suggest
that both NOx and VOCs initial conditions have an impor-
tant role in the forecast daytime ozone levels. This might
relate to the rapid photochemical reactions between ozone,
NOx and VOCs during daytime. It also indicates that precur-
sor initial conditions may serve as good control variables for
ozone data assimilation. Moreover, a performance of night-
time ozone forecast from adjusting NOx initial values, bet-
ter than that obtained from adjusting VOCs initial values, is
observed. Such performance might relate to the important
role of titration reaction between ozone and NO in nighttime
ozone chemistry.

In order to investigate the response of precursor concentra-
tions to the cross-species data assimilation, the departures of
forecasted daytime VOCs in EXP2 and daytime NO in EXP4
from those in the reference experiment on 14 August 2008
are shown in Fig. 6a and 6b respectively. Obvious responses
of the forecasted precursor concentrations are obtained in ur-
ban areas of Beijing, Tianjin and Tangshan where the precur-
sor emission rates are higher and ozone observations avail-
able. A noteworthy phenomenon is that the responses of day-
time VOCs concentrations in EXP 2 are almost in contrast to
those of daytime NOx concentrations in EXP4. For instance,
adjustment of VOCs initial values in EXP2 leads to increase
of the forecasted daytime VOCs concentrations in the urban
areas of Beijing, while adjustment of NOx initial values in
EXP4 induces decrease of the forecasted NO concentrations.
The discrepancy between these responses is probably related
to the nonlinear relationship between ozone and its precur-
sors. At the areas with a “VOCs-limited” ozone formation
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Fig. 6. (a) Departure of daytime VOCs concentrations (ppbv) in EXP2 from those in free run 3 
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Fig. 6. (a) Departure of daytime VOCs concentrations (ppbv) in
EXP2 from those in free run during 10 a.m.–4 p.m. on 14 August
2008 (LT); (b) Departure of daytime NO concentrations (ppbv) in
EXP4 from those in free run during 10 a.m.–4 p.m. on 14 August
2008 (LT).

scheme such as urban areas of Beijing and Tianjin (Tang et
al., 2010c; Shao et al., 2006), the statistical correlations in
the background error covariance are positive for O3-VOCs
correlation and negative for O3-NO correlation.

4.3 Adjustment of precursor emission rates

Precursor emissions have been pointed out as the important
uncertainty sources of ozone forecast by many previous stud-
ies (Carmichael et al., 2008; Constantinescu et al., 2007b;
Hanna et al., 1998). For ozone forecast over Beijing and
its surrounding areas, Tang et al. (2010b) also reported the
importance of the uncertainty in precursor emissions during
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Fig. 7. Comparison of(a) RMSE of 1-h ozone forecast at urban
sites (dots) and suburban sites (triangles) in free run against those
in EXP3 and(b) against those in EXP5.

Beijing 2008 Olympic Games. In this study, we attempt to
adjust precursor emissions through assimilating ozone obser-
vations in order to reduce the uncertainty in ozone forecast.
EXP3 and EXP5 are conducted to adjust VOCs and NOx
emissions respectively. The correction factors of emission
rate are restricted in the range between 0.2 and 5 in order to
exclude unreasonable correction values. The updated emis-
sion rates at each analysis step are used for the model to fore-
cast ozone during next hour.

Figure 7a presents a comparison of the RMSE of 1-h ozone
forecast at each site in EXP3 against that in the reference
experiment. A similar comparison between EXP5 and the
reference experiment is made in Fig. 7b. At the urban sites,
the site-averaged RMSE is reduced by 16 % in EXP3 and
by 27 % in EXP5. On the other hand, a relatively minor in-
fluence from adjusting precursor emissions is observed for
ozone forecast at the suburban sites, and the site-averaged
RMSE is reduced by 8 % in EXP3 and by 12 % in EXP5. The
present results suggest that adjusting precursor emissions
through assimilating ozone observations can serve as an effi-
cient way to improve ozone forecast at urban areas over Bei-
jing and its surrounding areas. The discrepancy between the
performances of adjusting precursor emissions over urban ar-
eas and those over suburban areas might due to the different
impacts of emission uncertainty on the ozone forecast over
various regions. As reported by Tang et al. (2010b), precur-
sor emissions are the most important uncertainty sources for
short-term ozone forecast over urban areas beside ozone ini-
tial conditions, in contrast to the short-term ozone forecast
over suburban areas where the precursor emissions show mi-
nor role.

Figure 8a displays the change of daytime VOCs emission
rates after adjusting VOCs emissions in EXP3 on 14 August
2008, while the change of daytime NOx emission rates af-
ter adjusting NOx emissions in EXP5 is presented in Fig. 8b.
The horizontal distribution of the daytime VOCs emission
discrepancy between EXP3 and EXP0 is showed to be simi-
lar to that of the daytime VOCs initial value discrepancy be-
tween EXP2 and EXP0 (Fig. 6a). The distribution of the day-
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Fig. 8. (a) Departure of VOCs emission rates (ton/km2 /year) in EXP3 from those in free run 3 
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Fig. 8. (a) Departure of VOCs emission rates (ton km−2 yr−1) in
EXP3 from those in free run during 10 a.m.–4 p.m. on 14 August
2008 (LT); (b) Departure of NOx emission rates (ton km−2 yr−1)
in EXP5 from those in free run during 10 a.m.–4 p.m. on 14 August
2008 (LT).

time NOx emission discrepancy between EXP5 and EXP0 is
also quite similar to that of the daytime NO initial value dis-
crepancy between EXP4 and EXP0 (Fig. 6b). The most ob-
vious changes of the precursor emission rates are observed at
the urban areas of Beijing, Tianjin and Tangshan. This sug-
gests that assimilating ozone observations can effectively ad-
just precursor emission rates. An explanation for the similar
responses of precursor initial conditions and emission rates
after adjustment is that the characterization of the correla-
tion between ozone and its precursor initial values is simi-
lar to that of the correlation between ozone and its precursor
emission rates. We also examined the temporal variations
of the emission correction factors during the simulation time
(not shown here). The factors vary greatly over time, but a
relatively strong signal with diurnal cycle can be identified.
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For example, adjusting NOx emissions in urban Beijing fre-
quently result in increase of NOx emission rates during day-
time and decrease of NOx emission rates during nighttime.
This result indicates that it is possible to extract a systematic
correction factor as a bias correction factor for ozone simu-
lation. Nevertheless, such a revision of precursor emissions
may not be interpreted as optimization of precursor emis-
sions, since all these adjustments are based on the purpose of
minimizing the error variance of the estimated ozone instead
of the error variance of the adjusted factors. Further investi-
gations are therefore necessary in order to assess the impacts
of these inversed adjustments on the forecast of precursors
such as NO2 and VOCs species.

4.4 Simultaneous adjustment of initial conditions and
emissions

In the above data assimilation experiments, ozone initial val-
ues, VOCs initial values, NOx initial values, VOCs emis-
sion rates and NOx emission rates are adjusted separately
through assimilating ozone observations. All these assimila-
tion strategies exhibit good performances in improving ozone
forecast over Beijing and its surrounding areas. However,
strategies are limited. As evoked above, adjusting ozone ini-
tial values shows poor efficiency in improving ozone forecast
at some urban sites, while adjusting precursor initial values
or emissions shows a deficiency in improving the short-term
ozone forecast at suburban areas. Therefore, we propose a
comprehensive data assimilation strategy in EXP6 with si-
multaneous adjustment of the above five variables in order to
explore the possibility of overcoming the limitations of the
previous strategies.

The daily variations of the RMSEs of 1-h ozone forecast
in EXP6 and in the previous six experiments are shown in
Fig. 9. The adjusting precursor initial conditions demon-
strates a potential for improving the short-term ozone fore-
cast almost as great as shown by adjusting precursor emis-
sions. The improvements of ozone forecast from separately
adjusting precursor initial conditions or emissions are mainly
exhibited during daytime especial for adjusting VOC initial
conditions and emissions. Adjusting ozone initial conditions
is efficient in reducing the RMSEs of both daytime and night-
time ozone forecast, and the averaged RMSE is 35 % lower
than that of the reference experiment. The best performances
of ozone forecast are obtained in EXP6 with simultaneously
adjusting the five variables, and the averaged RMSE of ozone
forecast is 54 % lower than that of the reference experiment.
Both daytime and nighttime ozone forecasts are significantly
improved.

In order to investigate the impact of the simultaneous ad-
justment strategy on ozone forecast at individual sites, we
compare the RMSE of 1-h ozone forecast at each site in
EXP6 with that in reference experiment in Fig. 10. Signifi-
cant decreases of the RMSEs at all sites can be claimed after
employing the simultaneous adjustment strategy. Compared
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Fig. 9. Daily variation of the RMSEs of 1-h ozone forecast in EXP0
(free run), EXP1 (adjusting ozone initial conditions only), EXP2
(adjusting VOCs initial conditions only), EXP3 (adjusting VOCs
emission rates only), EXP4 (adjusting NOx initial conditions only),
EXP5 (adjusting VOCs emission rates only) and EXP6 (adjusting
ozone initial conditions and precursor NOx, VOCs initial conditions
and emission rates jointly). Page 36 
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Fig. 10. Comparison of RMSE of 1-hour ozone forecast at urban sites (dots) and suburban sites 2 
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Fig. 10. Comparison of RMSE of 1-h ozone forecast at urban sites
(dots) and suburban sites (triangles) in free run against those in
EXP6.

with the strategy consisting of separately adjusting ozone ini-
tial values, the simultaneous adjustment brings further im-
provement of ozone forecast at urban sites, and the reduction
rate of RMSE of ozone forecast at urban sites is improved
from 31 % in EXP1 to 51 % in EXP6. Moreover, the inef-
ficiency of separately adjusting precursor emissions in im-
proving ozone forecast at suburban sites disappears in the
simultaneous adjustment experiment, and the site-averaged
RMSE at suburban sites is 58 % lower than that of the refer-
ence experiment.
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In short, the simultaneous adjustment data assimilation
strategy is founded to be able to reduce the limitations of the
previous strategies and produce overall better performances
in improving the 1-h ozone forecast over Beijing and its sur-
rounding areas. EnKF is a powerful tool for improving ozone
forecast. It can simultaneously adjust ozone initial condi-
tions, precursor initial conditions and emissions in an effi-
cient way, despite the complex relationships between ozone
and its precursors. The present result also implies that fur-
ther improvement of ozone forecast may be achieved through
adjusting more uncertainty factors simultaneously. In fact,
there is still 11.6 parts per billion by volume (ppbv) of daily-
averaged RMSE for 1-h ozone forecast in EXP6. The resid-
ual errors may originate from other uncertainty sources such
as meteorological simulation and deposition parameters.

4.5 Cross validation data assimilation experiment

In the previous six data assimilation experiments, ozone ob-
servations at two urban sites and one suburban site are with-
drawn from assimilation and used as independent data for
validation. In order to further investigate the effects of data
assimilation on ozone forecast over the non-observation ar-
eas, we design two cross validation data assimilation experi-
ments. The 17 monitoring stations are split into two subsets,
11 urban sites and 6 suburban sites. The experiment EXP6u
assimilates ozone observations at the 11 urban sites with the
simultaneous adjustment strategy of EXP6, and the remain-
ing 6 suburban sites are withheld for validation. In the other
experiment EXP6s, the 6 suburban sites are used for assim-
ilation with the same data assimilation strategy and the 11
urban sites served as validation sites.

In Fig. 11a, the RMSE of 1-h ozone forecast at each of
the 17 sites in EXP6u is compared with those in reference
experiment and in EXP6. The RMSEs at both assimilation
and independent sites in EXP6u are lower than those in the
reference experiment except for the RMSE at Xinglong. This
result suggests that the current data assimilation strategy with
EnKF can improve the ozone forecast not only over the ob-
servation areas but also over the non-observation areas. On
the other hand, the reduction rate of RMSE at independent
site in EXP6u is lower than that at the same site in EXP6.
This finding highlights the importance of assimilating local
observations in improving ozone forecast over the observa-
tion area. Another interesting phenomenon in Fig. 11a is that
the values of RMSEs at several assimilation sites (e.g., Beida
and Changping) in EXP6u are slightly higher than those in
EXP6. This might relate to the role of the 6 independent
sites in reducing the uncertainty of regional-transport ozone.
These sites are located at the suburban areas between three
megacities (Beijing, Tianjin and Tangshan), and assimilat-
ing their ozone observations in EXP6 may not only improve
ozone initial values over these areas, but also further increase
the performance of ozone forecast at their downwind areas.
This result implies that assimilating remote ozone observa-
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Fig. 11. (a)A comparison of the RMSEs of 1-h ozone forecast at
the 17 sites in EXP6u (with ozone observations at eleven urban sites
assimilated) against those in reference experiment EXP0 and those
in EXP6 (with ozone observations at all sites except for three inde-
pendent sites assimilated).(b) A comparison of the RMSEs of 1-h
ozone forecast at the 17 sites in EXP6s (with ozone observations
at six suburban sites assimilated) against those in reference experi-
ment and those in EXP6.

tions could be useful in reducing the uncertainty in regional
transport ozone.

In Fig. 11b, the RMSE of 1-h ozone forecast at each of
the 17 sites in EXP6s is compared against that in reference
experiment and that in EXP6. At the six assimilation sites
of EXP6s, data assimilation exhibits almost the same perfor-
mances as in EXP6. At the 11 validation sites of EXP6s,
the RMSEs are significantly reduced by data assimilation in
EXP6s except for the RMSE at Qinghuangdao. This vali-
dates the effectiveness of data assimilation on ozone fore-
cast at the areas without ozone observation. Additionally,
the reduction rates of RMSE at Tangshan, Shijiazhuang, and
Qinghuangdao are relatively lower than those at Beiyi, Beida,

Atmos. Chem. Phys., 11, 12901–12916, 2011 www.atmos-chem-phys.net/11/12901/2011/



X. Tang et al.: Improvement of ozone forecast over Beijing 12913

IAP and Tianjin. This deficiency of data assimilation is prob-
ably due to the long distance of these urban sites from the six
assimilation stations. Based on the cross validation exper-
iments, we can conclude that assimilating local ozone ob-
servations is determinant in ozone forecast over the obser-
vational area, although the current data assimilation strategy
with EnKF is able to improve the ozone forecast over both
the observational areas and the non-observational areas.

4.6 Impacts of data assimilation on 24-h ozone forecast

In the previous data assimilation experiments, we evaluate
the impacts of different data assimilation strategies on 1-h
ozone forecast. In order to further investigate the effects of
data assimilation on much longer ozone forecast cycle, we
also conduct a 24-h ozone forecast experiment for each of
the six data assimilation strategies. The 24-h free forecast
(without data assimilation) is implemented once each day
during 9–22 August. It starts every time at 8 a.m. and ends at
7 a.m. the next day. The initial conditions and the correction
factors of emission are obtained from the last hour output
of the assimilation window in which ozone observations are
assimilated with the same setting as the 1-h forecast experi-
ment. Here, we use EXP1.F24 to represent the 24-h forecast
experiment and employ the same data assimilation strategy
as the experiment EXP1. Similarly, EXP2.F24, EXP3.F24,
EXP4.F24, EXP5.F24 and EXP6.F24 denote the 24-h fore-
cast experiments with the corresponding strategies of EXP2,
EXP3, EXP4, EXP5 and EXP6 respectively.

In Fig. 12, a comparison between the hourly RMSEs of
ozone forecast in the six 24-h forecast experiments and those
in the reference experiment EXP0 is made. Among all
the 24-h forecast experiments, the simultaneous adjustment
strategy brings overall the best forecast skill with the RMSEs
reduced by 17 % during daytime and 8 % during nighttime. It
validates the high efficiency of this simultaneous adjustment
strategy in reducing the forecast error in a relatively long-
range forecast cycle. Nevertheless, the forecast skill in the
24-h forecast experiment with the simultaneous adjustment
strategy is much lower than that in the 1-h forecast experi-
ment. This result suggests that an hour-by-hour data assimi-
lation can provide a stronger constraint for model and restrict
the growth of ozone forecast error.

The other five strategies have shown less obvious influence
on improving 24-h ozone forecast. Adjustment of VOCs
emissions is efficient in improving the daytime ozone fore-
cast and the RMSE during daytime is lower than the refer-
ence simulation by 15 %. Especially during the high ozone
period, it provides a better forecast performance than the si-
multaneous adjustment. Adjusting NOx initial conditions ex-
hibits similar impact as adjusting O3 initial values on 24-h
ozone forecast and the daily RMSEs decrease by 7 % and
8 % respectively. The smallest influence is shown by adjust-
ing VOCs initial values with only 3 % decrease of the daily
RMSEs.
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Fig. 12. Daily variation of the RMSEs of ozone forecast in the six 24-hour forecast experiments 2 
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Fig. 12. Daily variation of the RMSEs of ozone forecast in the
six 24-h forecast experiments (EXP1.F24, EXP2.F24, EXP3.F24,
EXP4.F24, EXP5.F24, EXP6.F24) and those in free run EXP0.

What is noteworthy is that adjusting NOx emissions
presents relatively complex influence on 24-h ozone forecast.
It has significant effect in reducing the ozone forecast error
during the first 8 h (covering the high ozone period). How-
ever, a negative effect on ozone forecast is induced by this
strategy during the period from 3 p.m. to 11 p.m., with the
RMSEs higher than those in the reference simulation. This
phenomenon is probably related to the use of emission cor-
rection factors obtained from the last-hour (7am) analysis of
the assimilation window for the 24-h forecast. The effective-
ness of the correction factor is limited in similar error con-
texts as the corresponding last-hour analysis where the factor
is obtained. The correction factors in the present experiment
are obtained at 7 a.m. when the reference simulation gener-
ally overestimates the urban ozone concentrations. Their em-
ployment during the evening and nighttime, however, is quite
possible to exacerbate further the underestimation of ozone
concentrations. This phenomenon can be observed at Tianjin
site obviously (seen Fig. 4).

An important message from the 24-h forecast experiments
is that there are still great challenges in improving long-range
ozone forecast with the emission correction factor based
on a temporary error statistic. Ozone forecast errors can
be induced by different sources, many of which have com-
plex temporal variation. For instance, small initial errors in
weather forecast can grow rapidly with model integration in
a strongly nonlinear way, leading to significant forecast un-
certainties especially in long-range ozone forecast. In this
study, lack of considering temporal variation of error sources
largely accounts for the relatively low efficiency of the si-
multaneous adjustment strategy in improving the 24-h ozone
forecast compared to the 1-h ozone forecast experiment. Fur-
ther investigating in the error sources and their temporal vari-
ation will be needed in future studies of ozone data assimila-
tion for long-term forecast.
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5 Conclusions

Aiming at improving the ozone forecast over Beijing and sur-
rounding regions, this study explores several advanced data
assimilation strategies designed to adjust ozone initial con-
ditions, precursor initial conditions and precursor emission
rates separately or jointly through assimilating ozone ob-
servations. Ensemble Kalman filter integrated with a high-
resolution regional air quality model and a regional air qual-
ity monitoring network is employed.

The results suggest that EnKF is a powerful tool for im-
proving ozone forecast over Beijing and surrounding re-
gions. It can efficiently adjust ozone initial conditions, pre-
cursor initial conditions and emissions through assimilat-
ing ozone observations, despite the complex relationships
between ozone and its precursors, and brings improvement
to the short-term ozone forecast. This result implies that
the inversed or cross-species adjustment through assimilating
ozone observations is a possible solution for the large uncer-
tainty in precursor initial conditions and emissions. Among
all the data assimilation strategies, the simultaneous adjust-
ment of initial conditions and emission rates is found to
be the most efficient data assimilation strategy for both 1-
h and 24-h ozone forecast which can reduce the limitations
in the separate adjustment of initial conditions or emission
rates. Assimilating local ozone observations of the regional
air quality monitoring network is decisive in the performance
of ozone forecast over the observation area, while assimilat-
ing remote ozone observations is also useful in reducing the
uncertainty in regional transport ozone.

This study also highlights several limitations of the cur-
rent data assimilation strategies that should be stated. First,
there still subsist more than 10 ppbv of RMSE for 1-h ozone
forecast even with ozone initial conditions, precursor initial
conditions and precursor emission rates simultaneous adjust-
ment. It implies that some other important errors such as the
errors in atmospheric chemistry mechanism, deposition pa-
rameter and especially the errors in meteorological forecast-
ing (diffusion, wind, cloudiness, humidity, temperature etc.)
may have unnegligible influence on ozone forecast. Further
investigation in improving ozone forecast should be therefore
performed to extend the control vector of EnKF and include
more sensitive variable. A particularly beneficial approach
would be the coupling of meteorological and chemical data
assimilation which can not only reduce the possibilities of
initial or emission error compensating for meteorological er-
ror but also improve the estimation of flow-dependent back-
ground error covariance. Moreover, model errors are taken
into account and the errors in precursor emission, photoly-
sis rate and vertical diffusion coefficient are incorporated in
this study. In order to better represent model error, more
error sources such as the above mentioned errors and the
possible errors from Gaussian assumption and the linearity
of the ozone-precursor relationship in EnKF should be in-
corporated into the model error module. Secondly, how to

use the emission correction factor obtained from a tempo-
rary error statistic for long-range ozone forecast is still a great
challenge due to the complex temporal variation of the error
sources of ozone forecast. Further investigating in the error
sources and their temporal variation is needed in future stud-
ies of ozone data assimilation for long-term forecast. Last but
not the least, precursor initial conditions and emissions are
adjusted based on the purpose to minimize the error variance
of the estimated ozone instead of the error variance of the
adjusted factors. Therefore, these inversed or cross-species
adjustments may not lead to an improvement of precursor
forecast, and further investigations are needed to assess their
impacts on the forecast of precursors such as NO2 and VOCs
species, providing multi-species view on the current data as-
similation strategies.
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