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Abstract. Biomass burning (BB) is a large source of primary
and secondary organic aerosols (POA and SOA). This study
addresses the physical and chemical evolution of BB organic
aerosols. Firstly, the evolution and lifetime of BB POA and
SOA signatures observed with the Aerodyne Aerosol Mass
Spectrometer are investigated, focusing on measurements
at high-latitudes acquired during the 2008 NASA ARCTAS
mission, in comparison to data from other field studies and
from laboratory aging experiments. The parameterf60, the
ratio of the integrated signal atm/z 60 to the total sig-
nal in the organic component mass spectrum, is used as a
marker to study the rate of oxidation and fate of the BB
POA. A background level off60 ∼0.3 %± 0.06 % for SOA-
dominated ambient OA is shown to be an appropriate back-
ground level for this tracer. Using alsof44 as a tracer for
SOA and aged POA and a surrogate of organic O:C, a novel
graphical method is presented to characterise the aging of
BB plumes. Similar trends of decreasingf60 and increas-
ing f44 with aging are observed in most field and lab stud-
ies. At least some very aged BB plumes retain a clear
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f60 signature. A statistically significant difference inf60
between highly-oxygenated OA of BB and non-BB origin
is observed using this tracer, consistent with a substantial
contribution of BBOA to the springtime Arctic aerosol bur-
den in 2008. Secondly, a summary is presented of results
on the net enhancement of OA with aging of BB plumes,
which shows large variability. The estimates of net OA
gain range from1OA/1CO(mass) =−0.01 to∼0.05, with
a mean1OA/POA ∼19 %. With these ratios and global in-
ventories of BB CO and POA a global net OA source due to
aging of BB plumes of∼8± 7 Tg OA yr−1 is estimated, of
the order of 5 % of recent total OA source estimates. Further
field data following BB plume advection should be a focus
of future research in order to better constrain this potentially
important contribution to the OA burden.

1 Introduction

Organic aerosols (OA) are an important subset of the sub-
micron aerosol population worldwide (Murphy et al., 2006;
Zhang et al., 2007). Despite intensive research, the impacts
of OA on climate, human health and visibility are poorly
constrained and further understanding of their sources,
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physical and chemical properties and atmospheric process-
ing is needed. Biomass-burning (BB) aerosols are composed
of a large fraction of organic matter (BBOA), and are an
important global contributor to the global OA load due to
their emissions of primary OA (POA) (e.g. Bond et al., 2004;
de Gouw and Jimenez, 2009). Recent studies have demon-
strated the semi-volatile nature of BB POA, which can lead to
substantial evaporation upon dilution of BB plumes (Robin-
son et al., 2007; Huffman et al., 2009a, b). BB emissions
have been recently confirmed as a potentially large source of
secondary OA (SOA), at least some of which may be formed
from reactions of evaporated POA (Grieshop et al., 2009a, b).
The net enhancement of the OA mass after evaporation and
SOA formation in BB plumes has only recently been quan-
tified in several recent field studies using fast instrumenta-
tion, and has sometimes been substantial (e.g. Yokelson et al.,
2009) and other times negligible (Capes et al., 2008; Heco-
bian et al., 2011). Results from laboratory studies of the ag-
ing of open BB emissions mirror these findings, demonstrat-
ing a wide range of measured net OA production depend-
ing on, among other factors, the fuel and burning conditions
(Hennigan et al., 2011; Ortega et al., 2010). Further under-
standing of the magnitude and extent of both the primary and
secondary components of BBOA is required to fully assess
the impacts from local to global geographical scales.

The chemical aging of BB POA and formation of oxy-
genated organic aerosol (OOA) due to photochemistry has
been observed in both chamber (Grieshop et al., 2009b;
Jimenez et al., 2009) and field studies (DeCarlo et al., 2010).
Following from the study of Alfarra et al. (2004), the chang-
ing oxidation of OA under the influence of photochemical
processes has been extensively described in the literature us-
ing the parameterf44, the fraction of the OA mass spectrum
signal atm/z 44 in Aerodyne Aerosol Mass Spectrometer
(AMS; Canagaratna et al., 2007) data. (Additional ratios
for other m/z i, fi , are similarly defined for other integer
mass signals.) Higherf44 values represent higher fractions
of OOA and/or more-oxidised OOA, which has been shown
to be a surrogate for SOA under most conditions (Volka-
mer et al., 2006; Jimenez et al., 2009). Some OOA can be
formed via heterogeneous aging of POA, although this pro-
cess is slower than SOA formation (DeCarlo et al., 2008;
Jimenez et al., 2009; George and Abbatt, 2010).f44 has
also been shown to be linearly correlated with the elemen-
tal oxygen/carbon ratio (O:C) of ambient OA (Aiken et al.,
2007). Higherf44 and O:C are also associated with in-
creasing hygroscopicity and cloud nucleation ability of OA
particles (Jimenez et al., 2009; Duplissy et al., 2011), with
increasing carboxylic acid content (Takegawa et al., 2007;
Duplissy et al., 2011; Hawkins and Russell, 2010), and
also with decreasing volatility of the OOA, giving rise to
the lumped OOA subtypes semi-volatile-OOA (SV-OOA)
and low-volatility-OOA (LV-OOA) (Huffman et al., 2009;
Jimenez et al., 2009; Cappa and Jimenez, 2010). All of
the previously reported systems in the literature have shown

chemical transformations that push the measured OA toward
LV-OOA, independent of the original OA source (Jimenez et
al., 2009; Ng et al., 2010), with an endpoint inf44 space at
∼0.27. Beyond this point, it has been suggested that further
chemical transformations are either slow or result in OA loss
through volatilisation (Jimenez et al., 2009; Kessler et al.,
2010; Kroll et al., 2011).

Estimates of BB aerosol concentrations from field data
(containing OA also from various non-BB sources) have
been traditionally based on tracer species. The two most
commonly used tracers are potassium and levoglucosan.
Potassium (K) is not reactive, but Zhang et al. (2010) report
poor correlation between K and fire counts in the Southeast
US, which they attribute to the influence of other K sources
such as soil dust, sea salt, vegetation and meat cooking. A
high K background due to non-BB sources was also reported
by Aiken et al. (2010) for Mexico City. Levoglucosan is an
organic molecule formed in the pyrolysis of cellulose that is
emitted in substantial amounts by BB sources (Simoneit et
al., 1999), but it has been shown in recent studies to degrade
during photochemical aging (Hennigan et al., 2010).

Recently BBOA has also been identified in a range of en-
vironments through deconvolution of OA mass-spectra from
the AMS (e.g. Alfarra et al., 2007; Jimenez et al., 2009;
Aiken et al., 2009, 2010). Fresh BBOA observed with the
AMS has been shown to correlate well with well-known gas-
phase markers of BB activity such as acetonitrile, in addition
to a number of other metrics for BB (Aiken et al., 2010).
BBOA identified with the AMS was also recently shown to
be strongly correlated (R = 0.89) with BBOA extracted from
factor analysis of Fourier Transform Infrared Spectroscopy
(FTIR) analysis of BB-influenced organic matter (OM) data
(Hawkins and Russell, 2010, their Fig. 2). Key tracers of
BBOA in AMS spectra are the enhanced signals atm/z 60
and 73 from the ions C2H4O+

2 and C3H5O+

2 (Schneider et
al., 2006; Alfarra et al., 2007). Levoglucosan and similar
species (mannosan, galactosan) produce an enhanced sig-
nal atm/z 60. For example,f60 for levoglucosan is 13 %
(Schneider et al., 2006; Aiken et al., 2007). However the to-
tal signal atm/z 60 in BBOA is 3–10 times larger than would
be expected from levoglucosan, mannosan, or galactosan, in-
dicating that most of it arises from different molecules that
fragment in a similar way as levoglucosan in the AMS (Aiken
et al., 2009; Lee et al., 2010). As levoglucosan is a monomer
arising from the pyrolysis of cellulose, it is possible that
species such as dimers and trimers of similar molecules ac-
count for the rest of the signal atm/z 60 in BBOA. We define
such species here as “levoglucosan-like” species.

In addition, it is known that signal atm/z 60 is also ob-
served from carboxylic acids from SOA (DeCarlo et al.,
2008; Docherty et al., 2008; Ulbrich et al., 2009a; Aiken et
al., 2010) and fatty acids in cooking POA (Mohr et al., 2009),
while motor vehicle exhaust produces very low levels of this
tracer (Mohr et al., 2009). Typical gas-phase electron ionisa-
tion of carboxylic acids produces major ions atm/z 60 and
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73 (see NIST database, http://webbook.nist.gov/chemistry/)
but, in the AMS, these acids produce ions mostly atm/z 44
due to thermal decomposition on the vapouriser, and only
produce minor signals atm/z 60 and 73. In ambient obser-
vations at several locations,f60 of ∼0.3 % has been observed
as a background level in air masses not impacted by active
open biomass burning, as characterised by fire counts and
other BB tracers such as acetonitrile (Docherty et al., 2008;
DeCarlo et al., 2008; Aiken et al., 2009). This background
level needs to be taken into account in any attempt to infer
BBOA impact from ambient AMS observations off60.

The persistence of atmospheric markers is a required as-
sumption for standard receptor model studies (Schauer et al.,
1996), but recent studies have shown that organic molecu-
lar tracers can decay in the atmosphere due to photochem-
ical processing (e.g. Robinson et al., 2006). Levoglucosan
is known to oxidise in the atmosphere and the pathways and
rate of its oxidation have been the subject of recent research
(Hoffman et al., 2010; Kessler et al., 2010; Hennigan et
al., 2010). These laboratory-based studies have estimated a
range of lifetimes for levoglucosan under typical atmospheric
conditions of 15 h to 10 days. However, the extent of levoglu-
cosan orf60 degradation after long aging times is difficult
to assess from chamber measurements owing to wall effects
and the finite measurement period. Differences in phase and
morphology between laboratory and ambient particles may
also result in differences between oxidation lifetimes. For
example, previous studies showed that oleic acid survives
in the atmosphere much longer than expected based on its
pure-component reactivity (Ziemann, 2005), potentially due
to being trapped on a solid or glassy phase (Katrib et al.,
2005; Hung and Tang, 2010). Such glassy organic phases
are thought to be common in the atmosphere (Virtanen et al.,
2010; Vaden et al., 2011) and similar effects may play a role
for levoglucosan and other levoglucosan-like species.

AMS f60 has also been reported to decrease during pho-
tochemical processing of BBOA, due to both addition of
SOA and evaporation/reaction of POA species. Huffman
et al. (2009b) reported thatf60 showed a volatility slightly
higher than the bulk primary BBOA for many different
biomasses, so it is likely that evaporation plays a role in
the evolution of this tracer. However, it remains unclear
whetherf60 will persist sufficiently in aged BBOA to serve
as a marker, especially for BBOA plumes advected on a con-
tinental or global scale where the transport times are multiple
days.

In this study, the physical and chemical aging of BBOA
were studied in the field and compared to laboratory results.
The decay of the AMSf60 marker of primary BBOA and
the increase of thef44 marker of secondary BBOA were in-
vestigated. Through comparison of BBOA-dominated mea-
surements with those known to be free of BB influence, the
chemical evolution of BBOA can be assessed. The net effect
of BB plume aging on OA mass is also summarised, and a
first global estimate of the net OA source is presented.

2 Methods

The OA measurements presented here have been obtained,
unless stated otherwise, using the University of Colorado
Aerodyne high-resolution time-of-flight mass spectrometer
(HR-ToF-AMS, DeCarlo et al., 2006). The AMS vapouriser
temperature was 600◦ C for all studies. All data were anal-
ysed in high-resolution (HR), but are mostly reported here at
unit-mass-resolution (UMR) for simplicity. The AMS UMR
signal atm/z 60 and the high-resolution C2H4O+

2 AMS
ion signal are tightly correlated for data from two ARC-
TAS flights (Fig. S1). This correlation spans three orders
of magnitude and demonstrates the the negligible contribu-
tion of other ions in the ambient AMS spectrum to the unit
mass integration atm/z 60, validating the application of the
UMR ratio f60 in use as a tracer. A similar analysis as to
that presented in this work could also be conducted using
f73, which shows a well-correlated linear relationship with
f60 in the ARCTAS measurements. This slope is very sim-
ilar slope than for BBOA data from the AMS database, and
different from the higher slopes observed for most chamber
SOA (Fig. S2). However, the aircraft signal atm/z 73 is
somewhat lower and noisier than atm/z 60, so somewhat
more restrictive constraints would be required on the signal-
to-noise ratios in order to draw similar conclusions.

While gas-phase CO2 also produces a signal atm/z 44, the
effect of this interference in aerosol variables such asf44 is
minor for the AMS, and can be corrected for. The AMS sam-
ples particles more efficiently than gases by a factor of about
107. Therefore the equivalent particle-phase signal from typ-
ical ambient concentrations of gas-phase CO2 (∼380 ppm)
corresponds to an equivalent organic aerosol concentration
of ∼40 ng m−3. This average is always subtracted from the
reported OA concentrations using the fragmentation table ap-
proach of Allan et al. (2004). Therefore it is only increases
above the background CO2 concentration that would produce
a positive bias on the aerosol concentration andf44. If only
the average subtraction is used, and for typical gas-phase
CO2 enhancements during ARCTAS of the order of 10 ppm
or less, the false aerosol concentration will be∼1 ng m−3,
and the error inf44 will be less than 1 % of its value (assum-
ing a typical background concentration of OA of 1 µg m−3

andf44 = 15 %). For the large forest fire plumes observed in
this study, CO2 is typically 390 ppm (i.e. an enhancement of
10 ppm above background values) while OA is 100 µg m−3

andf44 is 10 %, and using the same method we estimate that
the positive bias in OA due to this effect is∼1 ng m−3, thus
the positive bias inf44 is 0.01 % percent of its value. We
do note that in some situations with low OA concentrations,
and large CO2 variations due to ecosystem uptake and respi-
ration, the constant correction discussed here is not sufficient
(Chen et al., 2009). During ARCTAS them/z 44 correc-
tion was applied using the time-series gas-phase CO2 mea-
surements alongside the standard filter interpolation method;
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the two methods produced corrections values consistent to
within 0.5 %.

Measurements with negligible BB influence were ac-
quired during three ground-based field campaigns. Two ur-
ban datasets are presented, from Pasadena, CA, during the
CalNex-LA campaign of 2010, and Riverside, CA, during the
Study of Organic Aerosols at Riverside (SOAR-1) in 2005
(Docherty et al., 2008, 2011). The CalNex-LA campaign
was a ground supersite located in the Caltech campus in
Pasadena, CA, during 15 May to 15 June 2010. An HR-ToF-
AMS sampled ambient air during that period, with a very
similar setup to the SOAR-1 measurements. Ambient sam-
pling during CalNex was performed 5 m above ground level
through a radiation-shielded, insulated inlet system. Large
super-micron particles that are not transmitted through the
AMS aerodynamic lens system, and can lead to clogging of
orifices, were removed at the inlet head using a cyclone with
2.5 µm size cut (URG-2000-30EN,http://www.urgcorp.com/
index.php/products/cyclones). To reduce particle losses, the
inlet system was maintained under laminar flow conditions
using mass-flow and critical-orifice control of the inlet flows,
and split to the various instruments using dedicated stainless
steel flow splitters (Brechtel Inc.,http://www.brechtel.com).
Standard sizing and ionization efficiency calibrations were
performed regularly (Jimenez et al., 2003; Canagaratna et
al., 2007, and references therein). Data were analysed us-
ing standard AMS data analysis software based on the al-
gorithms in Jimenez et al. (2003), Allan et al. (2004) and
DeCarlo et al. (2006). In addition, measurements are pre-
sented from a remote site at Blodgett Forest, CA, during the
Biosphere Effects on Aerosols and Photochemistry Experi-
ment (BEARPEX) of 2007 (Farmer et al., 2011). A period
with variable BB impact as determined by several tracers has
been removed from the BEARPEX dataset. Together, these
measurements represent organic mass loadings from nearly
zero to tens of µg m−3.

Measurements in BB plumes were taken during research
flights of the Arctic Research of the Composition of the
Troposphere from Aircraft and Satellites (ARCTAS) mis-
sion of 2008 (Jacob et al., 2010). The ARCTAS data pre-
sented here were recorded aboard the NASA DC-8 platform
and span locations above the North American continent from
35 to 90 degrees latitude and 150 to 12 000 m in altitude.
In addition to BB plumes advected thousands of kilometres
from the Asian continent, near-field plumes were sampled
from the mid-latitudes of California and the boreal forests
of high-latitude Canada. These plumes came from a wide
range of source fuels, meteorological and burn conditions,
although the observed physical and chemical characteristics
of the plumes were remarkably similar in nature (Singh et
al., 2010). To ensure the capture of the true chemical na-
ture of the BBOA, the AMS was operated through most
plume penetrations in a new “Fast-MS” mode (FMS, Kim-
mel et al., 2011), with a time resolution of 1 Hz translat-
ing to an approximate geographical resolution of 100–200 m.

Co-located gas-phase measurements taken on the DC-8 are
also used in airmass classification. The University of Inns-
bruck Proton-Transfer- Reaction Mass-Spectrometer (PTR-
MS, Hansel et al., 1995; Wisthaler et al., 2002) measured,
amongst other species, acetonitrile (CH3CN) for 1 s in every
5. The same species was also measured by the Trace Or-
ganic Gas Analyser (TOGA, Apel et al., 2003) instrument of
the National Center for Atmospheric Research (NCAR). The
NASA Langley Research Center measured Carbon Monox-
ide (CO) at a rate of 1 Hz using a tunable diode-laser (Sachse
et al., 1987). Ozone (O3) was also measured at a 1 Hz rate by
the NCAR 4-channel chemiluminescence instrument (Wein-
heimer et al.,1994). As such, the transition from background
to plume conditions is apparent in the plume transect and
edge effects can be eliminated.

Meteorological support during ARCTAS was led by
Florida State University; we use here kinematic back-
trajectories for plume transects for which the in-situ data is
used in this analysis. The trajectories (http://fuelberg.met.
fsu.edu/research/arctas/traj/traj.html) were based upon mete-
orological data from the Weather Research and Forecasting
numerical model (Skamarock et al., 2008); for a detailed dis-
cussion the reader is referred to Fuelberg et al. (2010). The
geographical extent and chemical evolution of BB plumes
during ARCTAS was modeled by the Atmospheric Chem-
istry Modeling group at Harvard University using the GEOS-
Chem chemical transport model v8-02-03 (http://geos-chem.
org/), which has been extensively compared to aerosol and
gas phase measurements from ARCTAS (Fisher et al., 2010;
Fisher et al., 2011, Wang et al., 2011). The aerosol opti-
cal depth and CO, in particular, are useful tracers within the
model outputs for determining expected plume transects and
BB vs. non-BB contributions in the in-situ data.

AMS measurements of BBOA from controlled chamber
open burning of specimens (∼300 g) were taken in the US
Department of Agriculture Fire Sciences Laboratory, Mis-
soula, MT, as part of the third Fire Lab at Missoula Exper-
iment (FLAME-3) of 2009 (McMeeking et al., 2009). The
BB smoke was diluted in a large chamber (∼3000 m3) where
it stayed for∼2 h and was gradually diluted with ambient
air with much lower OA concentrations. Smoke from the
chamber passed through an in-line photochemical reaction
flow tube (a fourth generation Potential Aerosol Mass flow
tube, or PAM, Kang et al., 2007, 2011) and was exposed
to high concentrations of OH, such that the integrated ex-
posure was equivalent to hours to days of aging for typical
atmospheric oxidant concentrations. With a residence time
of ∼5 min., the PAM flow tube allowed the study of aged
POA and SOA in each burn for several “equivalent atmo-
spheric ages”, calibrated against SO2 decay, simulating the
aging that may occur during advection from an ambient BB
plume source region. Recent results indicate that the compo-
sition and hygroscopicity of the SOA produced by the PAM
chamber resemble atmospheric OOA of variable to high ag-
ing (Kang et al., 2011; Massoli et al., 2010). We present here
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lumped measurements of the unprocessed POA and the pho-
tochemically processed POA/SOA mixture, for smoke from
four different fuels in the fire chamber.

Finally, data are presented from multiple mass spectra
from the AMS Spectral Database (Ulbrich et al., 2009b).
These data were acquired by a number of groups, predomi-
nantly with the quadrupole version of the AMS. In particular,
the measured spectra are presented from traditional environ-
mental chamber studies of (a) SOA formed from exposing
VOC precursors to oxidants (Bahreini et al., 2005; Liggio et
al., 2005; Sage et al., 2008) and (b) POA from BB (Schneider
et al., 2006; Weimer et al., 2008).

To provide context for the BB plumes observed over the
Arctic in spring-time, an “Arctic-background” dataset was
defined for ARCTAS-A (Spring), using co-located measure-
ments to remove periods in intense biomass-burning plumes.
Following the methodology of Wisthaler et al. (2009), the
correlation of gas-phase acetonitrile to carbon monoxide was
used in assessment of the different air mass types encoun-
tered (see Fig. S3 for further detail). In this study, the back-
ground data are accumulated after conservatively eliminat-
ing measurements according to a number of criteria. Data
with CO >180 nmol mol−1 were eliminated, as CO is a
known long-lived tracer for incomplete combustion of all
kinds. Data with acetonitrile>160 pmol mol−1 were elim-
inated. Values below this were determined by Wisthaler et
al. to be “out-of-plume”, and comfortably below the marked
increase in concentrations noted in the upper quartile of the
cumulative distribution functions for both the PTR-MS and
TOGA instruments (shown in Fig. S4). To further filter out
clear BB plumes, periods where the OA mass loading ex-
ceeded that of the omnipresent background sulphate are also
removed, although this has little influence after application
of the acetonitrile filter. To help reduce scatter due to noise
in the data, all points with OA mass loading<1 µg s m−3 are
eliminated. Finally, those data in the stratosphere (defined by
O3/CO>1.25 mol mol−1, Hudman et al., 2007) and marine
boundary layer (based on altitude) are eliminated. The re-
maining 252 measurement points, representing∼250 km of
aircraft flight range, were used to construct a so-called “Arc-
tic background” dataset. The average parameters of interest
were constructed for only four flights during ARCTAS-A be-
cause the rigorous screening process did not leave sufficient
data in the rest of the flights to compose a meaningful aver-
age.

3 Results and discussion

3.1 Levels off 60 in air without biomass burning
influence

Figure 1 showsf44 as a function off60 for the data of negli-
gible BB-influence from SOAR-1, BEARPEX (BB-impacted
period removed) and CalNex-LA, binned into quintile plots

Fig. 1. Upper Panel:f44 as a function off60 for measurements with
little or negligible BB influence. Coloured points represent data
from the ground campaigns SOAR-1, BEARPEX and CalNex-LA,
and are also shown binned to quintiles for clarity. Text represents
averaged periods from the ARCTAS-CARB mission: LA = Los
Angeles overpass, LAX = missed approach on LAX, CVL = San
Joaquin valley, SAC = Sacramento overpass. Also shown is the av-
erage hydrocarbon-like OA across 15 urban studies (and its variabil-
ity) from Ng et al. (2011b) for reference. Lower Panel: Normalised
histograms off60 for the three ground campaigns. Note that thefx
quantities are dimensionless as they are ratios of two concentrations
with the same units.

to exemplify the observed variations. The continuum of ob-
servedf44 values suggests a range of oxidation states in the
measured OA for these three campaigns, due to both coex-
istence of POA and SOA in air, as well as a variable degree
of OOA oxidation (Jimenez et al., 2009; Ng et al., 2010).
The representation of photochemical aging of SOA in af44
vs. f43 diagram, in whichf44 increases andf43 decreases
with aging (the so-called “triangle plot”, Ng et al., 2010, e.g.
Fig. S5) allows a simplified description of SOA aging and
comparison across studies. Similarly, thef44 vs. f60 plot is
introduced here to map the formation and transformation of
primary and secondary BBOA as BB plumes are advected
from source to background regions. This analysis can be
performed with data from any version of the AMS, includ-
ing the newly developed monitoring version (ACSM, Ng et
al., 2011b). Fig. 1 shows that for a wide range of states of ox-
idation, the measurements in air masses with negligible BB
influence exhibit only a very small range inf60, from about
0.2 to 0.4 % of total OA. Such data form a broad vertical
line in thef44 vs. f60 plot; the histograms for each of these
three datasets are shown on the bottom panel of Fig. 1, and
give median values of 0.25, 0.27 and 0.33 % for SOAR-1,
BEARPEX and CalNex-LA, respectively.

www.atmos-chem-phys.net/11/12049/2011/ Atmos. Chem. Phys., 11, 12049–12064, 2011



12054 M. J. Cubison et al.: Effects of aging on organic aerosol

Fig. 2. Two long-range plumes intercepted during flight 9 of ARCTAS-A (top) and flight 21 of ARCTAS-B (bottom). Left panels: GEOS-
Chem model output showing the aerosol optical depth curtain along the flight tracks with plume time-frames indicated by dashed lines (top),
and global CO at a time and altitude relevant to the plume crossings (bottom). DC-8 flight tracks are also shown on the map, coloured and
sized by gas-phase acetonitrile mixing ratio. Right panels: Time-series in-situ data for the plume transects aboard the DC-8 aircraft, showing
the increase in gas- and aerosol-phase species associated with the plumes predicted by the model. The plume time-frames are indicated by
dashed lines.

In addition, data are also shown in Fig. 1 for five distinct
periods during the California segment of the ARCTAS mis-
sion (ARCTAS-CARB), representing flyovers at or below
1000ft above ground level and within the mixed layer, during
periods without forest fires, of Los Angeles and Los Angeles
International Airport (LAX) (both on 12 June 2008), Sacra-
mento and the California Central Valley (both on 14 June
2008). Several µg m−3 of OA loading were observed at all
these locations, but low averagef60 ratios are observed, in
the range 0.1 to 0.4 %.

Thus, thef60 tracer does not fall to zero for air without
apparent BB influence, owing to the contributions atm/z 60
from non-BB sources. Fig. 1 demonstrates that, for the entire

range of previously reported values off44, over a wide vari-
ety of atmospheric conditions, the previously applied metric
of backgroundf60 = 0.3 % of OA is indeed appropriate.

3.2 Observation of elevatedf 60 in BB plumes
transported thousands of kilometres

The persistence off60 over long timescales is investigated
looking at two separate BB plume case-studies from ARC-
TAS. Firstly, we present data from 16 April 2008, for the
inter-continental transport to Alaska of BB plumes from
fires burning in southern Russia, a straight-line distance of
∼6000 km, although the actual eastward transport path was
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Fig. 3. Box and whisker plots representing the 10th, 25th, median,
75th and 90th percentiles for 245 BB plumes intercepted during
ARCTAS. Classification of the plumes, and transport times shown
on the horizontal axis, are adapted from Hecobian et al. (2011).
Also shown are data from two ground campaigns free of BB influ-
ence.

in fact fairly complex and thus likely covered a substan-
tially longer distance (Fuelberg et al., 2010). Secondly,
we also present data from 8 July 2008, a separate case of
inter-continental transport, from fires burning near and west
of Beijing to western Canada, a straight-line distance of
∼8000 km. These summer plumes followed a looped path
across the Pacific, at much lower latitudes than the spring-
time event. Figure 2 shows the time-series off60, total OA
and co-located gas-phase measurements across these plumes.
The independent gas-phase tracers provide evidence that the
intersected plumes are impacted by BB smoke, due to high
levels and high correlation of BB tracers such as acetonitrile
and CO. The in situ time-series data is also consistent with
the model predictions of the BB plume transport shown on
the left panels of Fig. 2. Back-trajectories from the plume
transect points suggest that the sampled air-masses origi-
nated over the Asian continent in both cases; for a detailed
discussion on the long-range transport of these, and other,
plumes sampled during the ARCTAS mission, including par-
cel dispersion model output, see Fuelberg et al. (2010, their
Figs. 12, 13, 23, 24).

The scatter inf60 apparent in the low-loadings out-of-
plume contrasts with the more consistent values, elevated
above the 0.3 % of OA background level, observed in the
plumes (cf. Fig. 2, top panel). A key question for the use-
fulness of thef60 tracer and the ability of the AMS to iden-
tify BB plumes in ambient air is “Does the oxidation of
levoglucosan-like species in ambient BB plumes occur at a
sufficient rate so as to decreasef60 to background values be-
fore f44 reaches the LV-OOA range? Or, does it persist for
even very oxidised OOA?” Component deconvolution meth-

ods such as PMF may identify subsets of OA if they comprise
a sufficient fraction of the total, but their identification as BB
plumes requires thatf60 of those components persists above
background levels. In the cases presented in Fig. 2, thef60
tracer indeed appears to persist after long advection and ag-
ing times in the atmosphere.

3.3 Tracer evolution with aging for ambient BB plumes

Hecobian et al. (2011) identified and classified 245 BB
plumes intercepted by the NASA DC-8 aircraft during
ARCTAS-B, representing a wide range of source loca-
tions, fuels and meteorological conditions. These plumes
were identified by coincident CO and CO2 enhancements of
greater than twice the experimental uncertainty and longer
than 4 seconds in length. Identified plumes were only clas-
sified as BB if theR2 of correlation between CO and both
CH3CN and HCN was greater than 0.6. An estimate of
plume age was obtained from wind-vector analysis using air-
craft GPS position and fire locations determined visually and
through the Fire Information for Resource Management Sys-
tem (FIRMS). The uncertainty in plume age was estimated
at 40 %. The reader is referred to Hecobian et al. (2011) for
further details.

Despite the differences in the sources, the variation inf60
andf44 as a function of transport time of the plume from
source is sufficiently strong so as to indicate trends in the
data, as shown in Fig. 3. The plumef60 values are in all
cases substantially larger than the measured ratios during the
campaigns unaffected by BB also shown on the plot. The
observedf44 in the plumes appears to increase into the LV-
OOA range on the timescale of approximately a day and, al-
though the plume aerosol is a combination of primary and
secondary components, the progression of its evolution in the
f44 vs. f43 space falls within the expected range for ambi-
ent OOA (Ng et al., 2010) (Fig. S5). However, despite the
increasingly oxygenated nature of the aged BBOA,f60 re-
mains above background levels for all the measured plumes.
There is a clear contrast of thef60 values measured in the
ARCTAS plumes to those recorded during the BEARPEX
and CalNex-LA campaigns; the latter measurements lie on
the background 0.3 % line and show little deviation from
this value when compared to the difference with the BB-
influenced values. Thus for ambient BB plumes less than
or around one day in transport time from the source region,
Fig. 3 suggests thatf60 may be a robust tracer for BB for
aging timescales of one day.

The decay off60 in ambient plumes from source to trans-
port times of multiple days is represented in thef44 vs. f60
space in Fig. 4, showing the long-range plumes introduced
in Fig. 2 together with all of the previously-discussed am-
bient BB plumes, and measurements of tropical agricultural
residue BB plumes over the Yucatan peninsula reported in
Yokelson et al. (2009). All the BB plume measurements ex-
hibit a trend toward higherf44 and lowerf60 values with age,
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although the direction of the trends in thef44 vs. f60 space
varies. The representation of the measurements inf44 vs.
f60 space facilitates a direct comparison with the measure-
ments from campaigns free of BB influence; this concept is
mapped in the right panel of Fig. 4. Despite the widely vary-
ing conditions and number of BB plumes presented here, all
exhibit a negative slope in this space upon aging. Given that
the levoglucosan-like species that give rise tof60 only con-
tribute a small fraction of the OA mass, their contribution to
the total signalm/z 44 before or after aging is also neces-
sarily small. E.g. Aiken et al. (2009) show that levoglucosan
only accounted for 6 % of AMS-observed BBOA in Mexico
City. As such, even when sampling smoke directly above
a wildfire, where we can expect almost all OA to be classi-
fied as BBOA, the observed changes inf44 are thus driven
by oxidation of the bulk OA, and not just by the oxidation
of levoglucosan and similar species. Thus the vertical axis
in Fig. 4. is controlled by oxidation of the bulk OA, and the
horizontal axis by oxidation of the levoglucosan-like species.
The relative slopes of the different plume data then facilitate
a comparison of the rates of oxidation of the OA as a whole to
those of just the levoglucosan-like species. Considerm, the

absolute slope of decay observed in thef44 vs.f60 space for
a given set of measurements (i.e.1f44/1f60). In the extreme
cases we havem = ∞ for the data with negligible BB influ-
ence, and the lowest values for the near-field data in the Lake
McKay plume observed on 1 July 2008. The Lake MacKay
fire burned in north-western Saskatchewan province, and was
classified at the time of sampling as a surface-to-torching
fire with a flame front traveling over 15 km per day at an
intensity along the front of 9000 kW m−1, producing a very
large plume that was intersected by the DC-8 between 3000
and 6000 ft altitude. This plume was followed downwind,
exhibiting a similar value ofm to that for the lumped BB
plumes observed during ARCTAS. Both show a similar in-
creasing progression off44 during advection, but the Lake
McKay plume was the most intense of those sampled on the
project, and the levoglucosan-like content of the aerosol in
the plume was the highest of all the ambient plumes. No-
tably, the tropical plumes from Yokelson et al. (2009) show a
lower initial f60 and a higherm, whilst still tending towards
the same point in thef44 vs. f60 space as the boreal data.
The endpoint for the most oxidised plumes within these data
appears to bef44∼0.20–0.22 (equivalent to O:C∼0.9).
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From Fig. 4, it appears as thoughm increases slightly for
more oxidised aerosol (sof60 appears to change less for the
same change inf44). This increase is perhaps due to the
combination of a near exponential decay of levoglucosan-
like species (Hennigan et al., 2010; Hoffmann et al., 2010)
with the more linear increase inf44 with age. The potential
elevation of the endpoint inf60 above background levels will
be discussed later.

3.4 Tracer evolution in laboratory aging of BB
emissions

We investigate here the evolution off44 and f60 in mass
spectra of fresh and aged OA smoke from controlled burns
during the FLAME-3 campaign, after aging in the PAM pho-
tochemical oxidation flow tube. The progression of these
metrics as a function of the equivalent atmospheric age is
shown in Fig. 5. The trends are very similar to those ob-
served for the field data in Fig. 4.f44 increases with aging,

as oxidation of the BB-POA and/or SOA formation in the
PAM flow-tube trends the overall OA oxidation state into the
SV-OOA range.f60 is reduced by oxidation in most cases,
although all the measurements lie well above the 0.3 % back-
ground level, but the different fuels also exhibit very differ-
ent degrees of change and trajectories (slopes) inf44 vs.f60
space. The direction of the trends, however, is similar to the
field data and always toward the top-left corner of the plot, a
progression of BBOA oxidation toward the SV- and LV-OOA
range.

The timescales of oxidation observed here are consider-
ably slower than those reported by the lab study of Hennigan
et al. (2010) for levoglucosan. For a constant OH concentra-
tion of 1.5×106 molecules cm−3, Hennigan et al. (2010) re-
port a mean 1/e lifetime for levoglucosan in BB particles of
18 h. Timescales of the same order are consistent with thef60
decay for the ARCTAS data shown in Fig. 3. However the
fastestf60 decay observed in PAM during FLAME-3, that
of the Wire Grass, leads to an estimated lifetime of∼5 days
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Fig. 6. Cumulative probability distributions off60 from multiple datasets. The nominal background value at 0.3 % is shown by the thick
dashed line, and the 3-sigma widths of the negligible-BB datasets by the thin dashed lines. The mean± standard error for the “Arctic-
background” dataset are indicated by the horizontal red bar. The mean and standard deviation of thef44 value for each dataset is indicated
on the plot.

under the same conditions. We note that the one case of de-
cay ofm/z 60 shown by Hennigan et al. (2010) also shows a
timescale much longer than 18 h. The reason for the longer
lifetimes observed in our study vs. that of Hennigan et al.
are unclear.f60 contains contributions from molecules other
than levoglucosan (Aiken et al., 2009; Lee et al., 2010), and
perhaps other molecules do not decay as fast as levoglucosan
does. It is also possible that differences in particle phase be-
tween the lab and ambient data, or the higher concentrations
used in our experiments, may have also shielded some of the
levoglucosan-like species from oxidation.

3.5 Evaluation of background levels off 60 for diluted
and aged BB plumes

In this section we evaluate whether anf60 signature above
background persists for some of the most aged data with
biomass burning influence observed in our aircraft stud-
ies, those within the “Arctic-background” air-masses of
ARCTAS-A (Spring). Warneke et al. (2010, their Fig. 2)
show single-particle measurements from the NOAA P-3 air-
craft during the co-located ARCPAC campaign (Brock et
al., 2011), concluding that particles containing BB material
dominated the distribution above the boundary layer during
ARCPAC. In addition, the air masses transported to the Arc-
tic are known to have been trapped within the polar high and
thus exposed to exceptionally long processing times (Fuel-
berg et al., 2010). As such, the Arctic-background data is
highly aged and oxygenated in nature; represented as flight-
averages in the triangle space of Ng et al. (2010), it reaches
values close to the ultimate state of oxidation observed for
ambient data (Fig. S5). Thus, this Arctic-background air,
even if not entirely representative of the true Arctic back-

ground owing to the targeted nature of the research flights, is
nonetheless considered a good example of oxygenated back-
ground OA containing a fraction of oxidised BB POA and/or
SOA from precursors of BB origin. In thef44 vs.f60 space
of Fig. 4, the Arctic-background OA show high oxidation
and relatively lowf60 values, compared to the long-range
plume of flight 9, and can be considered as an endpoint in
this space of the evolution in BBOA. The question pertinent
here is “Does this endpoint lie elevated inf60 with respect
to the 0.3 % of OA background level, or is this BB signature
completely lost for such prolonged aging?”

This question is addressed through comparison of the ob-
served cumulative probability distribution functions (CDFs)
of f60 in BB plumes, the Arctic-background data and the
negligible-BB data from the ground campaigns, as shown in
Fig. 6. Combining the measurements from the three ground
campaigns, the meanf60 value is 0.3 % with a standard de-
viation of 0.06 % (absolute); both the mean nominal back-
ground value and the three-sigma limits are shown in Fig. 6.
The CDFs of the non-BB data, the two long-range plumes
and the combined ARCTAS plume data are distinct inf60
space. Virtually all of the measurements off60 from the
long-range plumes lie above the average plus 3σ of the back-
ground level.f60 for near-field, less-oxidised, BBOA mea-
surements, represented by BBOA spectra from the AMS
database and the Lake McKay fire plume from ARCTAS-B,
are even more separated from the background level.

Less elevated inf60 than the plumes, but with mean val-
ues elevated above and statistically separable from those
of the ground-campaign data, is the data from the “Arctic-
background” dataset. The reader is reminded that “back-
ground” in this context refers to the omnipresent, disperse
OA observed out-of-plume in the Arctic spring, and thef60
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Fig. 7. Schematic summarising, for the available field BB datasets
presented here and in the literature, the organic aerosol (OA) con-
centration observed as a function of plume age, normalised to the
enhancement in CO concentration above its background. Pho-
tochemical age is the number of hours with an OH exposure of
1.5×106 that produce the same total estimated OH exposure of the
field data.

exhibited by this dataset is distinct from thef60 background
level of 0.3 % discussed earlier. The statistical separation of
the two, although small, suggests consistency with Warneke
et al. (2009,2010), in that BBOA represented a significant
fraction of the total OA burden during the 2008 Arctic spring,
even outside of the clear BB plumes.

3.6 Net enhancement of OA mass due to BB plume
aging: compilation of field data and global budget
estimate

We summarise here results from this study and the literature
on the measured OA with aging of evolving ambient open
BB plumes (Capes et al., 2008; Yokelson et al., 2009; Akagi
et al., 2011; DeCarlo et al., 2010; Hecobian et al., 2011). We
define POA as the mass of OA directly emitted from a wild-
fire in the particle phase. Figure 7 shows that total primary
OA (POA) mass, once normalised to excess CO (above back-
ground) mass concentration to remove the effect of dilution,
is highly variable for the six datasets presented, consistent
with the variability in BB POA emissions from previous liter-
ature reports (e.g. de Gouw and Jimenez, 2009; Akagi et al.,
2011). The variability in POA/1CO is not only seen across
the different studies, but also within the ARCTAS-B dataset
utilised in this work (based on the plume transects classified
by Hecobian et al., 2011), for which OA/1CO ranges from
∼0.02 to 0.25 g g−1, independent of plume age but highly
variable between plumes. The Lake McKay plume sampled
on 1 July 2008 was particularly well characterised, exhibiting
an invariant linear relationship between OA and CO enhance-
ments of OA/1CO ∼0.14 g g−1. In contrast, the data from
the Yucatan agricultural fires of Yokelson et al. (2009) sug-
gested a substantial enhancement in OA/1CO with plume
age owing to SOA production. DeCarlo et al. (2010) also

quantified an enhancement of OA/1CO with aging for for-
est fire plumes near Mexico City. Finally Akagi et al. (2011)
observed a small decrease in OA/1CO with aging for brush
fires in California. Aging of controlled-burn chamber data
during FLAME-3 with two different experimental setups also
resulted in a highly variable net OA enhancement, depending
(among other parameters) on fuel type and burn conditions
(Hennigan et al., 2011; Ortega, 2010), which appears con-
sistent with the large degree of variability observed in the
ambient datasets.

We can provide a first estimate of the global source of
OA due to aging of open BB plumes by two complemen-
tary methods. We define1OA as the net enhancement of
OA, with respect to the amount that would be present in the
absence of physical and chemical aging. This net enhance-
ment combines the effects of POA evaporation and SOA for-
mation. For the first method, we calculate the average net
enhancement of OA due to aging, normalized by excess CO
(above its regional background level, to remove the effect
of dilution) for the six field studies summarized in Fig. 7.
1OA/1CO after aging is calculated by subtracting the av-
erage of OA/1CO in aged air from the POA/1CO ratio de-
termined for each case. Note that this calculation does not
usef44, f60, or any other AMS chemical tracer.1OA/1CO
during field aging ranges from−0.01 to 0.05 g g−1, with an
average of 0.013±0.011 (std. error of the mean) g g−1. We
then multiply this net enhancement by the IPCC CO emis-
sions for biomass burning (508 Tg CO yr−1) to obtain an es-
timate of the global net source of OA due to aging of biomass
burning plumes, as 7±6 Tg yr−1. A second estimate can be
obtained in a similar way, but using the POA emissions from
biomass burning as the normalizing variable, instead of gas-
phase CO. The average ratio of the net OA enhancement to
POA, 1OA/POA is 0.19±0.18 g g−1 for the combined six
sets of aircraft measurements. Combining the average in-
crease in1OA/POA with the global emission inventory of
BB POA (41 Tg yr−1, de Gouw and Jimenez, 2009), we ob-
tain an alternative estimate of the global net source of OA
from BB aging as 8±7 Tg yr−1. With respect to the overall
global OA budget, estimated at∼150–300 Tg yr−1 (Hallquist
et al., 2009; Spracklen et al., 2011), the estimated OA source
from net SOA formation in BB smoke aging of∼7–8 Tg yr−1

is of the order of 5 % of the total global OA source. Thus
secondary OA production in BB plumes could represent an
important global source of OA. However, more field mea-
surements are required to better constrain the magnitude, fre-
quency of occurrence, and controlling parameters of net SOA
production in BB plumes.

4 Conclusions

Using HR-ToF-AMS data of negligible BB influence from
three field campaigns, it has been shown that an appro-
priate background level of thef60 tracer is 0.3 % of OA.
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Furthermore, the contribution in signal at unit massm/z 60
arises virtually entirely from a single ion, C2H4O+

2 , allow-
ing the analysis presented here to be performed using UMR
data and thus extended to the lower resolution versions of the
AMS or the recently developed Aerodyne aerosol chemical
speciation monitor (ACSM, Ng et al., 2011a).

A novel method for representing the aging of BBOA in
the atmosphere uses thef44 vs. f60 space, which shows the
increasing oxidation of the OA ensemble in parallel with
the oxidative decay of the levoglucosan-like species emit-
ted as primary aerosol during BB. Measurements of several
hundred ambient BB plumes exhibitf60 levels above back-
ground and negative slopes inf44 vs. f60 space. This be-
haviour was seen for plumes measured over three continents,
with some close to the source and some transported from
sources many days away. These measurements contrast with
measurements free from BB influence which exhibit a similar
progression in oxidation and thusf44, but display much more
uniformf60 values, close to the 0.3 % background level. The
relative rate of decay off60 in ambient BB plumes, as com-
pared to the oxidation of the bulk OA, is shown to differ
between plumes. Oxidation flowtube data from controlled
burns, known to be exclusively BBOA and aged using an in-
line reaction flow-tube, resulted in a similar progression of
BBOA during aging in thef44 vs. f60 space. The BBOA
was observed in some cases to evolve tof44 values associ-
ated with the LV-OOA subtype, but in all cases maintained
f60 values significantly above background for all the flow
chamber measurements.

Statistical analysis of the data shows that BB plumes, even
those having undergone multiple days worth of atmospheric
oxidation, exhibit f60 values elevated by a statistically-
significant level with respect to the negligible-BB campaign
datasets. Whilst consecutive individual measurements may
only retainf60>0.3 % in sampling of clear BB plumes, it is
proposed that cumulative distribution functions off60 may
be used together with representation inf44 vs. f60 space to
make a general, qualitative, statement about the prevalence
of BBOA as a component of OA in AMS mass-spectra. Thus
whilst not inert,f60 appears to be a persistent tracer, and
quantitative analysis of its prevalence in sub-groups of OA
should be the subject of future research addressing source-
receptor relationships.

A first synthesis of the limited field measurements of net
OA production in ambient BB plumes was presented. There
is large variability in the observed values as normalised to
CO or POA emission. Taking a simple average of the six
available datasets shows that aging of open BB smoke may
produce∼8 Tg OA yr−1, of the order of 5 % of the global OA
burden, making this a potentially important atmospheric OA
source.

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/11/12049/2011/
acp-11-12049-2011-supplement.pdf.
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