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Abstract. Aerosol optical depth (AOD) retrievals from geo-
stationary satellites have high temporal resolution compared
to the polar orbiting satellites and thus enable us to monitor
aerosol motion. However, current Geostationary Operational
Environmental Satellites (GOES) have only one visible chan-
nel for retrieving aerosols and hence the retrieval accuracy is
lower than those from the multichannel polar-orbiting satel-
lite instruments such as the Moderate Resolution Imaging
Spectroradiometer (MODIS). The operational GOES AOD
retrieval algorithm (GOES Aerosol/Smoke Product, GASP)
uses 28-day composite images from the visible channel to
derive surface reflectance, which can produce large uncer-
tainties. In this work, we develop a new AOD retrieval al-
gorithm for the GOES imager by applying a modified Multi-
Angle Implementation of Atmospheric Correction (MAIAC)
algorithm. The algorithm assumes the surface Bidirectional
Reflectance Distribution Function (BRDF) in the channel 1
of GOES is proportional to seasonal average MODIS BRDF
in the 2.1 µm channel. The ratios between them are de-
rived through time series analysis of the GOES visible chan-
nel images. The results of AOD and surface reflectance
retrievals are evaluated through comparisons against those
from Aerosol Robotic Network (AERONET), GASP, and
MODIS. The AOD retrievals from the new algorithm demon-
strate good agreement with AERONET retrievals at several
sites across the US with correlation coefficients ranges from
0.71 to 0.85 at five out of six sites. At the two western sites
Railroad Valley and UCSB, the MAIAC AOD retrievals have
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correlations of 0.8 and 0.85 with AERONET AOD, and are
more accurate than GASP retrievals, which have correlations
of 0.7 and 0.74 with AERONET AOD. At the three eastern
sites, the correlations with AERONET AOD are from 0.71 to
0.81, comparable to the GASP retrievals. In the western US
where surface reflectance is higher than 0.15, the new algo-
rithm also produces larger AOD retrieval coverage than both
GASP and MODIS.

1 Introduction

Aerosols play an important role in the atmosphere by mod-
ifying radiative forcing, climate, weather, and air quality.
They can affect the Earth’s radiative budget by directly
changing the radiation reflected from the Earth and can also
indirectly change the radiative forcing by modifying the
cloud properties through microphysical process (Charlson
et al., 1992; Kiehl et al., 1993; Ramanathan et al., 2001;
Lohmann and Feichter, 2005; Intergovernmental Panel on
Climate Change, 2007). Aerosols influence other aspects in
climate and weather such as precipitation (Rosenfeld et al.,
2008), monsoon (Lau et al., 2008), lightening (Yuan et al.,
2011), etc. In addition, aerosols also influence the air qual-
ity close to the surface and affect the human health (Pope
et al., 2002, 2006; Chow et al., 2006; Pope et al., 2009).
Thus, accurate measurements of aerosols can both improve
our knowledge on climate change (Intergovernmental Panel
on Climate Change, 2007) and improve our ability to monitor
and to forecast particulate matter air quality (e.g.Al-Saadi et
al., 2005; Hoff and Christopher, 2009; Hidy et al., 2009).
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Many polar orbiting satellite instruments are used to mea-
sure aerosols, such as MODIS (Kaufman et al., 1997; Tanŕe
et al., 1997; Levy et al., 2007), Multiangle Imaging Spectro-
radiometer (MISR) (Martonchik et al., 1998), POLarization
and Directionality of the Earth’s Reflectances (POLDER,
Deuźe et al. (2001)) etc., but they all have low temporal
resolution. For example, the widely used aerosol product
from MODIS only has a twice-daily coverage from Terra and
Aqua platform. Geostationary satellites can overcome this
shortcoming: the National Oceanic and Atmospheric Admin-
istration (NOAA) GOES makes the monitoring of aerosols
available at a higher temporal resolution over the United
States with a rate of every half hour during sun-lit period
(Prados et al., 2007). However, current GOES only has one
visible channel that can be used for retrieving AOD, which
makes the uncertainty of retrievals larger than those from
MODIS that utilizes multi-spectral signal for the AOD re-
trieval (Prados et al., 2007).

The current operational GASP product uses 28-day com-
posite image from channel 1 (visible channel with spectral
range of 0.52-0.72 µm) to find the second darkest day at each
observation time and uses it to retrieve surface reflectance.
The GASP algorithm assumes that the surface reflectance
does not change during the 28-day period for each observa-
tion time. To retrieve surface reflectance, AOD at the sec-
ond darkest day is assumed to be 0.02. The uncertainties of
GASP originate from assumptions of aerosol model, surface
reflectance, cloud/cloud shadow contamination, and calibra-
tion errors. Analysis of uncertainties from aerosol model,
surface reflectance, and calibration for GOES can be found
in Zhang et al.(2001): the AOD uncertainty from calibration
error is about 10 % for small AOD (τ = 0.5) and 7 % for large
AOD (τ = 1.5), from aerosol model is 10 % for small AOD
(τ = 0.5) and 32 % for large AOD (τ = 1.5). The uncertainty
in the surface reflectance retrieval may result in large error
in AOD retrievals. As shown inZhang et al.(2001), 1 % er-
ror in surface reflectance can introduce 10 % AOD error for
small AOD (τ = 0.5). In reality, we sometimes can observe
20 % to 30 % change in surface reflectance within 28 days,
which can lead to much larger uncertainty than those from
aerosol model and calibration. Several factors can contribute
to the changes in surface reflectance in 28 days. First, during
the 28-day period for surface reflectance retrieval, the surface
property may change due to the change in the color and grow-
ing state of vegetation. Second, the surface reflectance may
also be different between the day of AOD retrieval and the
day of surface reflectance retrieval because of the difference
in Sun-satellite geometry between these two days. Third, the
existence of cloud shadow may introduce too low surface re-
flectance retrieval at the times when cloud shadow occurs
frequently. In addition, the look-up-table (LUT) in GASP
is generated from 6S with Lambertian assumption. The ig-
norance of non-Lambertian nature of surface may generate
errors in some situations. The motivation of this research
is to develop a new algorithm that can retrieve surface re-

flectance more accurately by reducing the period for surface
reflectance retrieval. In this new method, we abandon the
Lambertian assumption and make use of BRDF to model the
surface property in order to reduce the uncertainty in surface
reflectance retrievals.

The MAIAC algorithm is an aerosol retrieval and atmo-
spheric correction scheme over land for MODIS data (Lya-
pustin and Wang, 2009; Lyapustin et al., 2011a,b). The al-
gorithm uses time series of multi-channel images to retrieve
surface BRDF and aerosol properties. The surface BRDF is
first retrieved in the 2.12 µm band assuming this band is not
affected by aerosol. Then surface BRDF in the blue band
and the red band are assumed to be proportional to that in the
2.12 µm band, and the ratios are retrieved from time series
analysis with the aid of a look-up-table (LUT). The bene-
fit of this method is that it can be applied to regions where
the surface reflectance relations between blue, red and SWIR
band in MODIS operational retrieval algorithm (MOD04)
are inaccurate. For example, MAIAC algorithm can retrieve
AOD over bright surfaces such as desert where MOD04 does
not have retrievals. In this paper, we modify this algorithm
so that it can be applied on GOES data to retrieve surface
BRDF and AOD. Since current GOES does not contain a
SWIR band, we use seasonal averages of MODIS BRDF in
the 2.12 µm band for reference, and assume that BRDF in
the GOES visible band is proportional to MODIS BRDF in
2.12 µm. The MAIAC algorithm can hence be applied for
aerosol retrieval using GOES visible band data.

In Sect. 2, we describe the data used in this work. In
Sect. 3, we describe the details of the modified MAIAC al-
gorithm. In Sect. 4, we evaluate the retrieval results through
comparisons to AERONET, GASP and MODIS retrievals. In
Sect. 5, we conclude the work.

2 Data

2.1 GOES data

The current GOES satellite imager measures radiances re-
flected and emitted from the Earth and atmosphere in one
visible channel and four infrared channels. In this study,
we use channel 1 (visible channel, 0.52–0.72 µm), chan-
nel 2 (3.9 µm) and channel 4 (10.7 µm) radiances from
GOES-12, which is located at 75◦ W above the equa-
tor. The visible channel radiances are used for surface
reflectance and AOD retrieval. The visible channel and
the two infrared channels radiances are used for deriv-
ing cloud masks. The spatial resolution at nadir is 1 km
for the visible channel and is 4 km for the two IR chan-
nels. Since there is no on-board calibration device for
the imager, the radiances are calibrated using a vicarious
method (seehttp://www.oso.noaa.gov/goes/goes-calibration/
goes-vis-ch-calibration.htm). GOES-12 images covering
continental US have a temporal resolution of half hour.
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Fig. 1. Locations of the AERONET sites used for validation.

To evaluate the retrieval results of the MAIAC algorithm,
we compare them with those from the current operational al-
gorithm: GASP (Knapp et al., 2005; Prados et al., 2007).
GASP provides AOD retrievals at 0.55 µm with a spatial res-
olution of 4 km. As mentioned above, it uses a 28-day com-
posite image of visible channel to derive surface reflectance
with an assumption of 0.02 background AOD on the second
clearest day. The retrieved surface reflectance is used along
with channel 1 radiances and the LUT from 6S radiative
transfer model to retrieve AOD. The cloud-masking algo-
rithm is based on CLAVR (Clouds from AVHRR) algorithm
from AVHRR (Advanced Very High Resolution Radiometer)
(Stowe et al., 1999; Heidinger et al., 2001). GASP provides
values at 0.55 µm but the measurement is between 0.52 µm
and 0.72 µm. The uncertainty caused by it is the same as the
uncertainty due to the choice of a fixed aerosol model, since
once the aerosol model is determined, i.e. size distribution,
refractive index etc, the relation between 0.55 µm AOD and
the GOES channel 1 TOA reflectance is determined.

2.2 AERONET data

AERONET (http://aeronet.gsfc.nasa.gov) is a global network
for aerosol monitoring from ground stations using Sunpho-
tometers. The quality assured level 2.0 AERONET AOD
data is used for evaluating the AOD retrievals and for evalu-
ating the surface BRDF retrievals from GOES data. Since the
AERONET AOD retrievals have an accuracy of±0.02 (Hol-
ben et al., 1998), they can be treated as ground truth. Since
AERONET AOD does not measure at wavelength 0.55 µm,
we calculate it through log-linear interpolation from two
nearest wavelengths, i.e. 0.5 µm and 0.675 µm. We select
six AERONET sites across continental US for the validation
of MAIAC algorithm. Table1 summarizes the locations of
the AERONET sites used for the validation in this work and
Fig. 1 shows their locations on the map of the United States.

2.3 MODIS data

MODIS BRDF (Lucht et al., 2000) in the band 2.12 µm
is used as an aid for the retrieval of surface BRDF from
GOES visible channel radiances. Here, BRDF is modeled
by RossThick-LiSparse model (Roujean et al., 1992), which
contains three parts, including isotropic, geometric and volu-
metric scattering reflectance, as shown in the following equa-
tion:

ρ(θs,θv,φ) = kiso+kgeofgeo(θs,θv,φ)+kvolfvol(θs,θv,φ) (1)

where ρ(θs,θv,φ) is BRDF, kiso, kgeo, and kvol are the
weights for the three components andfgeoandfvol are kernel
functions for geometric and volumetric components, respec-
tively. The three BRDF weight parameters (kiso, kgeo, kvol) in
the 2.1 µm band are obtained from the MODIS level 2 land
products MCD43D19, MCD43D20, and MCD43D21 with
a spatial resolution of 1 km. These BRDF parameters are
derived from 16 days of MODIS surface reflectance (Ver-
mote and Kotchenova, 2008) and are updated every eight
days. MODIS surface reflectance has an uncertainty of
0.005+0.05ρ (Vermote and Kotchenova, 2008). Therefore,
the surface BRDF uncertainty is of similar magnitude.

MODIS level 2 aerosol optical depth product from Terra
and Aqua is used for comparisons with the AOD retrievals
from GOES. The MODIS aerosol retrieval algorithm over
land uses three bands, i.e. blue band, red band, and SWIR
band (2.12 µm), to derive the aerosol properties with a 10 km
spatial resolution at nadir (Levy et al., 2007).

3 Aerosol optical depth retrieval algorithm

One of the challenges in the satellite aerosol optical depth
retrieval is the separation of the contributions from surface
and from aerosol to the radiances at top of the atmosphere
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Table 1. Geographical locations of the AERONET sites.

Site name Latitude Longitude

GSFC 38.992◦ N 76.84◦ W
Howland 45.2◦ N 68.733◦ W
Bondville 40.053◦ N 88.372◦ W
Railroad valley 38.504◦ N 115.962◦ W
Walker Branch 35.958◦ N 84.287◦ W
UCSB 34.415◦ N 119.845◦ W

(TOA). As mentioned previously, the retrieval of surface re-
flectance in GASP makes use of 28-day composite images
at a specific observation time with an assumption that the
surface reflectance does not change. However, due to the
change of the Sun-satellite geometry and the change of sur-
face vegetation during these 28 days, the surface reflectance
may vary a lot, which may create large uncertainties in the
AOD retrieval. For example, we observed a change from
0.11 to 0.14 in a 28-day period at 16:45 UTC at GSFC site in
the fall, which is obtained from the atmoshperic corrections
of GOES visible data with the aid of AERONET AOD. An
underestimate of surface reflectance of 0.03 can produce an
AOD overestimate as large as 0.6. In Table2, we show the
surface reflectance change caused by the change in vegeta-
tion change. MODIS BRDF in the red band and green band
are used to calculate the surface reflectance at GOES geome-
try in the 200×200 km2 area centered at GSFC for the period
between day 7 October and 8 November 2008. To focus only
on the effect of the change in vegetation change, the geome-
try is fixed at 18:00 UTC on the 7 October 2008. We can see
that the red band surface reflectance increases from 0.072 to
0.092 in the 24-day period from day 7 October to 31 October,
and the green band surface reflectance increases from 0.080
to 0.088 in this period. Since GOES visible channel covers
these two bands, we expect the surface reflectance change in
GOES visible channel have the similar change in magnitude
during the fall, which is about 10 % to 27 % . Therefore, if
we can reduce the number of days involved in the surface re-
flectance retrieval and use a more realistic BRDF model for
surface reflectance retrieval, the uncertainties due to the sur-
face reflectance retrieval can be reduced. Surface reflectance
obtained from GASP algorithm are also affected by cloud
shadows and the assumption of 0.02 background AOD in the
second clearest day of the 28-day time sequence for surface
reflectance retrieval.

The algorithm in this work applies the MAIAC algorithm
designed for MODIS to the retrieval of AOD from GOES
imager data. The algorithm makes following three assump-
tions: (1) BRDF in the GOES visible band is proportional to
BRDF in the MODIS 2.12 µm band, i.e. the BRDF shapes are
the same in these two bands; (2) the BRDF shape does not
change much within a season so that we can use a seasonal
average of 2.12 µm band BRDF from MODIS to represent

BRDF shape for each season; (3) since the mesoscale range
of the aerosols is about 50–60 km (Anderson et al., 2003),
aerosol is assumed to distribute uniformly over a distance of
24 km. We assume AOD to be constant in each 24×24 km2

block when we do time series analysis for surface BRDF re-
trieval.

Before applying the AOD retrieval algorithm, we perform
an image co-registration for the images from GOES imager,
since we found that the GOES images shift from time to time
due to the jitter of the satellite orbit and a relatively low im-
age navigation accuracy (4 km at nadir,GOES I-M databook
(1996)). To do this, we generate a reference image by pro-
jecting the MODIS average surface reflectance image onto
the GOES channel 1 grid. All the input GOES images are
compared against this reference image to correct the shifts.
We select more than one hundred control points along the
coastlines in such a way that the areas around the control
points have high contrast and contain features that are suit-
able for pattern matching using a correlation method. For
example, island and area with complex coastlines are good
places for setting up the control points. The input GOES
channel 1 images are compared against the reference image
at each control point. A small window is selected around the
control point to be used to determine the image shift there.
We set the window size as 40×40. The GOES image from
the small window is shifted iteratively and the correlation
coefficient with the reference image at each shift position is
calculated. If the GOES image within the small window is
free from cloud, a correlation peak can be found when the
small window area is colocated with the reference image.
Therefore, the satellite image shift at the control point is de-
termined to be the value at which the maximum correlation is
found. If the GOES image within the window is covered by
cloud, we are not able to find a large correlation with the ref-
erence. Thus, we require the maximum correlation be larger
than 0.7 to be an effective shift calculation. To determine the
shift over the whole image, we assume the shifts vary linearly
with respect to the location:

1x(i,j) = Ai +Bj +C, (2)

1y(i,j) = Di +Ej +F, (3)

where1x(i,j) and1y(i,j) is the shifts in x and y direction
at pixel with index (i,j),A, B, C, D, E, F are coefficients
to be determined. Since the value of1x(i,j) and1y(i,j)

at the control points free from clouds have already been de-
termined above, we can calculate these coefficients through
linear regression.

After image co-registration, the MAIAC retrieval algo-
rithm for surface BRDF and AOD is applied. The algorithm
flowchart is shown in Fig.2. The GOES channel 1, 2, and 4
images are placed in a queue sorted by the time of acquisi-
tion for processing. We use the CLAVR algorithm for cloud
mask, which is the same as the one used in GASP retrieval
scheme. Since the spatial resolutions of two IR channels are
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Table 2. Surface reflectance change in red and green bands from MODIS BRDF due to the vegetation change. Surface reflectance statistics
(mean± standard deviation) is calculated in the area (land surface only) centered at GSFC with 200×200 km2 using MODIS BRDF in red
and green bands. The geometry is fixed in GOES East geometry at 18:00 UTC on 7 October 2008, in order to remove the effect of the
geometry change.

day 7 October 15 October 23 October 31 October 8 November

red 0.072±0.022 0.077±0.022 0.088±0.023 0.092±0.025 0.090±0.025
green 0.080±0.017 0.081±0.016 0.088±0.017 0.088±0.019 0.083±0.021

Read in a image into queue

Group 1km pixels into 24x24

Cloud screen

clear blocks > 3 in sequence and 
last update time of sfc > 1day

no

yes

Retrieve AOD in 4 km resolution

Assume AOD be 0, calculate SRC.
Clearest block is the one with smallest avg SRC

Assume AOD at clearest block is 0, determine the 
AOD difference between clearest block 

and the other blocks by minimizing 
1

N
{bij

clear

i, j
∑ − bij

k (∆τ k )}2

Determine AOD at clearest day by finding τ0

that minimizes
{Rij

Meas,k

i, j
∑

k
∑ − Rij

Th,k (τ 0 + ∆τ
k )}2 Retrieve SRC from clearest day

More images ?

yes

done

initialization

no

Fig. 2. Flowchart of the MAIAC algorithm for GOES AOD retrieval.

4 km, we break each pixel into 4×4 pixels with 1 km in size
and assign each of the new pixels with the same value as
the original one. With such arrangement, CLAVR algorithm
can be applied at 1 km spatial resolution. Such arrangement
is just a convenience to facilitate processing and it does not
increase the information content of the GOES data. In ad-
dition, we also apply the following criterion to determine
cloud pixels that fail to be masked in CLAVR algorithm: if
the standard deviation of a 3×3 box surrounding a pixel in
channel 1 TOA reflectance is greater than 0.015, the pixel is
also marked as cloudy, which is similar to the MODIS cloud
mask algorithm byMartins et al.(2002). Because of the tex-
ture of the land surface, some boundaries with high contrast
are misclassified as cloud. However, it is good to remove
those boundaries in surface and aerosol retrievals since they
are most likely to reduce retrieval accuracy due to the rela-
tively high residue error in image co-registration.

After cloud masking, the 1 km spatial resolution grids are
grouped into blocks with size 24× 24. Surface BRDF at

each pixel is derived through retrieving the spectral regres-
sion coefficients (SRC) between MODIS 2.12 µm BRDF and
GOES channel 1 BRDF. Here, SRC is defined as the ratio
between GOES channel 1 band BRDF and MODIS 2.12 µm
band BRDF. We perform SRC retrieval if there are at least
three cloud free blocks in the time sequence. The time se-
quence of a block contains the GOES images of the same
area measured at different time. We set the size of the time
sequence to be 20, which contains about one day of GOES
data. For each pixel within a block, we calculate the SRC
with the assumption that AOD is 0. A block is considered
to be clearest (with lowest AOD) if its average SRC is the
lowest in the time sequence. Next, the AOD difference be-
tween each block and the clearest block is determined by
looking for the AOD difference that minimizes the difference
between SRCs from these two observations, i.e. the AOD dif-
ference is1τ k that minimizes1

N

∑
i,j {b

clearest
ij −bk

ij (1τ k)}2,
whereN is the number of pixels that are cloud free in both
the clearest image block and the image block for comparison
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(k), bclearest
ij is SRC at the clearest time for pixel with indices

i andj , bk
ij (1τ k) is the SRC at observationk for pixel with

indicesi andj if the AOD difference between image blockk

and the clearest image block is1τ k.
Next, we calculate AOD at the clearest observation, which

is obtained by looking for the AOD value that minimizes the
root mean square differences between the theoretical TOA
radiance and the measured TOA radiance for all the blocks
in the queue, i.e. looking forτ0 that minimizes the quan-
tity

∑
k

∑
i,j {R

Meas,kij −R
T h,k
ij (τ0 +1τ k)2, whereR

Meas,k
ij

is the measured radiance at pixel (i,j ) for image blockk,
R

T h,k
ij (τ0 +1τ k) is the theoretical radiance at this pixel for

image blockk if AOD for the clearest image isτ0. AOD de-
rived at this step is the average AOD over the whole block to
help retrieve surface BRDF.

AOD at the clearest observation is then used to retrieve
SRC and surface BRDF at each pixel within the block. To re-
trieve AOD at a higher spatial resolution, we regroup GOES
channel 1 image into 4×4. If the total number of cloud free
pixels in a group is greater than 8, i.e. more than half of the
pixels are cloud free, we retrieve AOD in this group using
average TOA reflectance and average surface BRDF of the
cloud free pixels.

The retrieval algorithm described above is implemented
with the aid of a look-up-table (LUT). Unlike GASP, in
which Lambertian 6S radiative transfer model (Vermote et
al., 1997) is used to generate LUT, we use non-Lambertian
SHARM model (Lyapustin and Knyazikhin, 2001; Lyapustin
and Wang, 2005). In this model, the reflectance at the top of
the atmosphere (ρ) can approximately be written as (Lya-
pustin and Wang, 2008):

ρ = ρD(τ )+b[kB7
isoFiso(τ )+kB7

geoFgeo(τ )+kB7
volFvol(τ )], (4)

where ρD represents the atmospheric path reflectance,b

is the SRC between GOES channel 1 and MODIS 2.1 µm
band BRDF,kB7

iso, kB7
geo, kB7

vol are weights of BRDF in the
MODIS 2.1 µm band,Fiso, Fgeo, Fvol are reflectance contri-
bution from isotropic, geometric and volumetric part of sur-
face BRDF, respectively. The detailed expressions ofFiso,
Fgeo, Fvol can be found inLyapustin and Wang(2008). In
LUT, we saveρD and functions to calculateFiso, Fgeo, Fvol
for different sun-satellite geometry and AOD combinations.

We use an aerosol model with fine and coarse frac-
tions in lognormal distribution with following parameters:
Rv = 0.14 µm, 3.2 µm,σv = 0.35 µm, 0.7 µm,nr = 1.45,ni =

0.006. The ratio of volumetric concentrations between the
coarse and fine mode isCvcoarse/Cvfine= 0.5. This model is
similar to the aerosol model from AERONET at GSFC. We
use climatological values of column ozone and water vapor
for gaseous absorption calculation since their variations do
not introduce much variation on the surface reflectance and
AOD retrievals (Knapp et al., 2002; Zhang et al., 2008).

Fig. 3. AOD error vs scatter angle at GSFC site, where AOD error
is defined as GOES AOD minus AERONET AOD.

4 Results and validation

4.1 Comparison of AOD retrieval against AERONET
and GASP

The AOD retrieval results are compared to the AERONET
measurements at the six AERONET sites over the United
States described in Sect. 2.2. To find the coincidence be-
tween GOES AOD retrieval and AERONET measurements,
we use the average GOES AOD retrievals within 5×5 box
surrounding the AERONET site and the interpolation of
two closest AERONET measurements within 15 minutes be-
fore and after GOES observation. In cases where only one
AERONET measurement is available within±15 min time
frame, we use that value instead of interpolation. To further
remove cloud contamination, we remove the pixels adjacent
to cloud, require more than 10 effective pixels in the 25 pix-
els, and require standard deviation of AOD in the 5×5 box is
less than 0.2. We also use two additional filters for backscat-
ter geometry and bright surface, which are described in the
following two subsections. GASP data are prepared using
average in 5× 5 box surrounding the AERONET site and
are applied the filters described inPrados et al.(2007). In
addition, GASP data also uses a standard deviation thresh-
old of 0.2 for cloud contamination removal. Because of the
difference in the retrieval and screening algorithm, the coin-
cidences of AOD retrievals are not exactly the same between
MAIAC and GASP. The dataset covers the period between 1
March 2008 and 25 September 2008.

Atmos. Chem. Phys., 11, 11977–11991, 2011 www.atmos-chem-phys.net/11/11977/2011/
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Fig. 4. Contour of TOA reflectance vs surface reflectance and AOD at Railroad Valley site.

4.1.1 Backscatter geometry

At backscatter geometry where the Sun is located directly
at the back of the satellite, we notice large bias in the AOD
retrievals. Figure3 shows the AOD retrieval errors vs scat-
ter angle at GSFC site. We can see that the errors increase
systematically when scatter angle increases above 160◦. The
backscatter geometry corresponds to the location of hot spot
where surface BRDF is the highest. Such errors are caused
by the large errors of MODIS BRDF close to the hot spot.
MODIS BRDF retrievals do not model the hot spot well if
MODIS do not sample at the positions close to the hot spot at
backscatter geometry. We can also see that the errors are rel-
ative small at scatter angles below 160◦, which indicate that
MODIS BRDF works well away from hot spot. In the fol-
lowing validation, we remove the AOD retrievals with scat-
ter angle larger than 160◦. In GASP, most retrievals at such
geometries are also removed due to high surface reflectance
since GASP filters out pixels with surface reflectance larger
than 0.15.

4.1.2 Bright surface

In this work, we use a different filter for bright surfaces,
mostly located in the western US. Railroad Valley site at
Nevada is very bright and it is a good site to test the GOES
AOD retrieval algorithm at locations with high surface re-
flectance. The Sun-satellite geometries at Railroad Valley
can also represent typical geometries of western US. Figure4
shows contours of TOA reflectance as a function of surface
reflectance and AOD at three geometry setups at Railroad
Valley site: morning (16:15 UTC), noon (19:15 UTC), and
afternoon (22:15 UTC). We can see that the 0.2 contour line
at noon with surface reflectance close to 0.2 and AOD close
to 0 is almost flat, which indicates that a small surface re-
flectance error can introduce a large AOD error. Hence AOD
uncertainty is high at such geometry and surface reflectance
combination. We can also see that at high surface reflectance
at some Sun-satellite geometries the TOA reflectance de-
creases even if AOD increases. In such geometries, we get
two solutions of AOD with given TOA reflectance and sur-

face reflectance. Such phenomenon was also observed in
previous research byFraser and Kaufman(1985); Kaufman
(1987). In the afternoon, the contours are mostly falling

downward as AOD increases and, therefore, the AOD re-
trieval error should be much less sensitive to errors in surface
reflectance. From such observation, the sensitivity of AOD
retrieval over surface reflectance is dependent on both the
Sun-satellite geometry and the value of surface reflectance.
It is not appropriate to use a uniform threshold of surface re-
flectance to filter out AOD retrievals with high sensitivity to
surface reflectance retrieval.

Based on the above discussion, instead of using fixed sur-
face reflectance threshold, we apply a new filter to remove
noisy AOD retrievals due to the errors in surface reflectance.
This filter uses ∂τ

∂ρsfc

τ=0, with TOA reflectance and Sun-
satellite geometry fixed, to remove inaccurate retrievals due
to the surface reflectance retrieval errors. The AOD re-
trievals are removed if this value is smaller than−20 and
larger than 0. Since we can write AOD retrieval error as
1τ =

∂τ
∂ρsfc

1ρsfc, if other conditions are not changed, large ∂τ
∂ρsfc

 value means that large AOD error can be introduced

with error in surface reflectance retrieval. If∂τ
∂ρsfc

is positive
at 0 AOD, it is possible that the value turns negative at some
higher AOD value, which suggests two AOD solutions for
the same set of parameters, i.e.ρsfc, ρTOA , and three geo-
metric angles.

4.1.3 Validation of AOD retrievals

Figure5 shows the scatter plots of MAIAC vs AERONET
AOD at the six AERONET sites. For comparison, Fig.
6 shows the corresponding scatter plots of GASP vs
AERONET AOD. MAIAC retrievals have correlation of
more than 0.8 at GSFC, Railroad Valley, and UCSB site.
MAIAC retrievals have smaller RMSE than GASP retrievals
at all the sites. Because the two retrieval algorithms use
different screening scheme to remove noisy data, the num-
bers of AOD retrievals are different in the two retrieval al-
gorithms. Table3 shows the linear regression results for
MAIAC AOD vs. AERONET AOD and GASP AOD vs
AERONET AOD with one-to-one correspondence between
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Table 3. Comparisons between MAIAC vs. AERONET and GASP vs. AERONET with one-to-one correspondence between MAIAC and
GASP AOD.

MAIAC GASP

N R RMSE slope intercept R RMSE slope intercept

GSFC 749 0.82 0.08 0.84 0.00 0.81 0.10 1.12 −0.01
Walker Branch 537 0.73 0.09 0.70 0.05 0.74 0.10 0.86 0.00
Howland 298 0.67 0.07 0.65 0.00 0.66 0.08 0.79 0.00
Bondville 510 0.43 0.14 0.66 0.07 0.42 0.20 0.89 0.08
Railroad Valley 155 0.83 0.04 0.84 −0.01 0.69 0.14 1.28 0.10
UCSB 132 0.86 0.04 1.07 −0.03 0.67 0.08 1.11 0.03

Fig. 5. Scatter plot of MAIAC vs. AERONET AOD.

MAIAC and GASP retrievals. With one-to-one corre-
spondence, MAIAC retrievals have similar correlation with
AERONET AOD to the GASP retrievals vs AERONET AOD
at eastern and central sites, i.e. GSFC, Walker Branch, How-
land, and Bondville, but MAIAC have smaller RMSE at three
of them: GSFC, Walker Branch, and Bondville. At the two
western sites, MAIAC AOD retrievals are much more accu-
rate than GASP retrievals in both correlation coefficient and
RMSE.

There are several reasons that may increase or decrease the
accuracy in the MAIAC algorithm in comparison to GASP.
First, MAIAC algorithm requires less number of days to
retrieve surface BRDF: normally surface BRDF can be re-
trieved in one day if three clear observations are found. This
can reduce uncertainties in surface BRDF retrieval due to
the change in surface BRDF during a period shorter than 28
days, which is used in GASP for surface retrieval. The GASP
method tends to pick up cloud shadow in some geometries,
e.g. during the afternoon in the western US when the sun

shines from the west. Second, in MAIAC, we use a more re-
alistic aerosol model which is similar to that retrieved from
GSFC. GASP uses a different aerosol model, i.e. continental
model, which has a lower single single scatter albedo, and
hence GASP tends to have higher AOD retrievals than MA-
IAC. Third, we use a new screen algorithm at bright surface
described in the last section. This screen scheme generates a
larger number of retrievals at bright surface than the use of
simple threshold of 0.15 surface reflectance. We can see that
at Railroad Valley there are more coincidences available in
MAIAC than those in GASP.

The difference between seasonally averaged BRDF shape
and BRDF shape of a particular day may also introduce
AOD retrieval error. MODIS BRDF retrieval error is also
a major source of uncertainty, which is extremely large at
backscattering position. The retrieval algorithm is based on
an assumption that surface BRDF is relative stable from day
to day. If the surface BRDF is unstable, large AOD error
may occur. This is especially serious at Bondville, where
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Fig. 6. Scatter plot of GASP vs. AERONET AOD.

Fig. 7. AOD retrieval errors vs. UTC time. AOD retrieval error is defined as GOES AOD minus AERONET AOD.

both MAIAC and GASP have large retrieval errors compared
to AERONET. We found that at Bondville site the surface
BRDF changes rapidly during the period between March and
June, when there is no vegetation there. During that pe-
riod, there are raining days from time to time and the sur-
face changes between wet and dry from day to day, which
introduces instability of surface reflectance. Since the west-
ern US has much less precipitation, BRDF has less variation
from time to time. This is one of the reason that AOD re-

trievals are more accurate at the two western sites than those
at the eastern sites.

Figure7 shows the diurnal variations of the average errors
of AOD retrievals with standard deviation as error bar. The
patterns vary from site to site. We don’t observe any apparent
pattern at the three eastern sites. However, at the other three
sites, i.e. Bondville, Railroad Valley, and UCSB, we find that
the errors are larger at noon than in the morning and in the
afternoon.
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Fig. 8. Comparison of TOA reflectance between Lambertian and non-Lambertian surface at site GSFC and Railroad Valley. The three pairs
of lines from bottom to top are calculated using AOD values of 0, 0.5, and 1.0, respectively.

4.1.4 Non-Lambertian effect

We use non-Lambertian SHARM radiative transfer model in
our retrieval, which can introduce AOD retrieval difference
from the retrievals using radiative transfer models that as-
sumes Lambertian surface. To analyze the AOD retrieval
difference between using non-Lambertian model and using
Lambertian model, we calculate the diurnal variations of the
TOA reflectance at GSFC and Railroad Valley using typical
values of surface BRDF at these two sites, shown in Fig.8.
GSFC site is located in the eastern US in Maryland state
and surface reflectance peaks at local noon due to the Sun-
satellite geometry. Railroad Valley is located in the western
US in Nevada and the surface reflectance is high in the morn-
ing and decreases during the day time. In both sites, we can
see that the TOA reflectance is overestimated at high surface
BRDF geometry and underestimated at low surface BRDF
geometry. If Lambertian surface is assumed, AOD will be
underestimated at noon at GSFC and in the morning at Rail-
road Valley and will be overestimated in the early morning
and in the late afternoon at GSFC and in the afternoon at
Railroad Valley. At GSFC site, the differences of TOA re-
flectance between the two surface assumptions are about 0.05
at AOD 0.5 and 1.0, and about 0.02 at AOD close to 0 at
noon when the differences are large. Such differences can
introduce underestimates of AOD 0.15 for AOD equal to 0.5
and 1.0 and introduce underestimate of AOD 0.05 if AOD is
close to 0. At Railroad Valley, we don’t have retrievals in
the morning because of the high surface reflectance caused
uncertainty discussed in the previous sections. The AOD re-
trievals are more sensitive to the surface assumption in the
early afternoon than in the late afternoon. At 20:15 UTC,
Lambertian assumption can cause 0.07, 0.2, and 0.25 error
for AOD at 0, 0.5, and 1.0, respectively. At 22:15 UTC, Lam-
bertian assumption can introduce 0.03, 0.1, and 0.18 error for
AOD at 0, 0.5, and 1.0, respectively. In both time instances,
the AOD retrievals are overestimated if Lambertian surface is
assumed. From the analysis above, we introduce an AOD re-

trieval uncertainty as large as 15–20 % in some Sun-satellite
geometry if we use a Lambertian surface assumption. How-
ever, error of such magnitude is small compared to other er-
ror sources such as surface reflectance and cloud contami-
nation. From the scatter plots shown above, the AOD re-
trieval error is about 0.2 for AOD close to 0, which is much
larger than the error from using Lambertian model. There-
fore, the improvement through using the non-Lambertian ra-
diative transfer model is small and do not show a big influ-
ence in the scatter plots comparisons between MAIAC and
GASP.

4.2 Evaluation of surface reflectance retrievals

The benefit of MAIAC algorithm is the potential of improv-
ing the accuracy of the surface reflectance retrievals. This is
achieved by reducing the number of days used in the time se-
quence for the surface reflectance retrieval, and also by aban-
doning the assumption of AOD = 0.02 in the second clearest
day, which is used in GASP surface reflectance retrieval. The
retrieval of surface reflectance over a block can usually be
obtained by a sequence of cloud free images from the same
day if more than three such images are found for this block.
AOD at the clearest observation time is retrieved using time
sequence analysis. However, two new assumptions are made
in such retrievals: the BRDF shape of GOES channel 1 is
proportional to that derived from MODIS 2.12 µm channel,
and the BRDF shape does not have large variation during a
season. The accuracy of such assumptions and the accuracy
of MODIS 2.12 µm BRDF retrievals has direct effect on the
accuracy of GOES surface reflectance retrievals and hence
the accuracy of AOD retrievals.

To evaluate the accuracy of the surface reflectance, we use
the GOES channel 1 TOA reflectance and AERONET AOD
together with LUT to correct the atmosphere effect and ob-
tain estimation of the surface reflectance at the AERONET
sites. This method was also used previously byHauser et al.
(2005), Knapp et al.(2005), andPopp et al.(2007) and its
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Fig. 9. Surface BRDF error at GSFC and Railroad Valley, which is defined as surface reflectance retrieval from MAIAC or GASP minus
surface reflectance retrieval using GOES channel 1 data and AERONET AOD.

accuracy is affected by cloud and cloud shadow contamina-
tion.

Figure 9 shows the BRDF retrieval errors at two
AERONET sites, i.e. GSFC and Railroad Valley, vs. UTC
time. To compare MAIAC and GASP, the data shown have
one-to-one correspondence between MAIAC and GASP. At
GSFC site, both MAIAC and GASP appear to have simi-
lar error magnitudes and variations. At Railroad Valley, be-
cause surface reflectance is high and the TOA reflectance is
not sensitive to AOD during the morning and noon, the re-
trievals are only available in the afternoon. MAIAC surface
reflectance retrievals are more accurate than GASP surface
reflectance retrievals at Railroad Valley site. We can notice
that GASP tends to underestimate surface BRDF there. To
understand the causes of the surface retrieval errors in GASP
and the benefit of MAIAC algorithm, we plot in Fig.10 time
series of surface reflectance at GSFC (19:15 UTC) and Rail-
road Valley (22:15 UTC) in areas of 20×20 km2. The sur-
face reflectance is obtained using channel 1 GOES signal and
AERONET AOD, as described in the previous paragraph.
We can see that the surface reflectance is not a constant over
time. The variation of surface reflectance is less at GSFC
than at Railroad Valley. At GSFC, the surface reflectance
has a down trend in the testing period. Since GASP retrieval
picks second darkest in 28-day period, it tends to select the
latest surface reflectance. Therefore, GASP algorithm does
not have large bias. Although using MAIAC can reduce the
time period for surface retrieval, such benefit does not show

at GSFC site for the period of test. However, the situation is
different at Railroad Valley site. We observe high frequency
of variation in surface reflectance with large range. Using
GASP, surface reflectance retrieved tends to be at the lower
bound of the time series. Also, during day 100 to 200, the
uptrend of the time series induces GASP to select the ear-
liest surface reflectance within the 28-day period. Due to
this reason, we observe underestimates of surface reflectance
in GASP around 0.03. Since MAIAC retrieval does not se-
lect the dark pixels in the time series, it does not have such
tendancy to retrieve lower bound of the surface reflectance
and its retrievals are between the lower bound and the up-
per bound. In addition, MAIAC uses a short period of time
for surface retrieval. It does not suffer from the long term
tendancy of surface reflectance variation.

4.3 Other sources of errors

Besides surface reflectance, there are other sources of AOD
retrieval errors, including calibration, cloud contamination,
aerosol model, etc. GOES visible channel uses vicarious
calibration methods (http://www.star.nesdis.noaa.gov/smcd/
spb/fwu/homepage/GOESImagerVis OpCal.php). The
methods include star-based calibration, lunar-based calibra-
tion, deep convection cloud calibration, desert-based cal-
ibration, GOES-GOME inter-calibration, calibration using
MODIS. The calibration methods estimate the degradation
rate of GOES visible channel sensor. From the difference be-
tween the different calibration methods, we estimate that the
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Fig. 10. Surface reflectance timeseries at GSFC (19:15 UTC) and Railroad Valley (22:15 UTC). The surface reflectance is retrieved using
GOES channel 1 TOA reflectance and AERONET AOD in 20×20 km2 areas at the AERONET sites.

calibration error is about 5 % . However, since surface BRDF
is also derived from the same calibration, the error from the
calibration tends to be lower since both surface BRDF and
TOA reflectance are biased similarly.

Cloud contamination is another source of error. We have
made efforts to improve cloud masks, such as applying
threshold for standard deviation in 3×3 pixels box. How-
ever, we still cannot eliminate the subpixel scale cloud and
thin cirus cloud, which can generate overestimated AOD.

Because we only have one visible channel to be used for
aerosol retrieval, we do not have the degree of freedom to
select aerosol models and therefore we use a single aerosol
model in the retrieval. In reality, aerosol model can change
and thus cause AOD retrieval error. To estimate such error,
we calculated TOA reflectance using biomass burning model
and dust model at different geometries and compare against
the one used in MAIAC. We find that the error from using
wrong aerosol model can be as high as 25 % .

When AOD is small, the AOD retrieval error originating
from calibration and aerosol model is also small, i.e. the
error approaches 0 if AOD is close to 0. Both GASP and
MAIAC uses similar cloud mask schemes, the difference be-
tween them at small AOD is therefore mainly originated from
the differences in their surface reflectance retrievals. The dif-
ference is apparent at the two western sites as seen in Ta-
ble3. For example, at Railroad Valley, the intercept is 0.1 for
GASP vs. AERONET AOD, and it is−0.01 for MAIAC vs.
AERONET AOD. At the four other sites in the eastern and
central US, the differences are small.

4.4 A regional retrieval example

In this section, we demonstrate a regional retrieval exam-
ple using the MAIAC algorithm for a California fire case in
July 2008. Figure11 shows an example of California fire
AOD retrievals from MAIAC, GASP, Terra and Aqua on 10

July 2008. MAIAC AOD retrievals demonstrate much better
quality than those from GASP and MODIS. The AOD data
coverage from MAIAC is larger than GASP because MAIAC
uses a different screen algorithm for high reflectance surface,
which is described in the previous section. Because of high
surface reflectance over this area and MODIS uses dark pix-
els for AOD retrieval, MODIS AOD maps also show large
areas without retrieval. MAIAC AOD map shows more de-
tailed smoke plume structures than MODIS AOD map be-
cause of the higher spatial resolution. MAIAC AOD re-
trievals are also sensitive to surface reflectance and they have
larger errors when surface reflectance is high. In the western
US, the surface reflectance is high in the morning and low in
the afternoon if the area is viewed from the GOES-12 satel-
lite position. Hence the accuracy of the AOD retrievals for
the western US is high in the afternoon for GOES-12.

Figure 12 shows the scatter plot of the AOD retrievals
from MAIAC vs those from MODIS Aqua. GASP AOD vs.
MODIS Aqua AOD scatter plot is also shown for compari-
son. GOES AOD used here was taken from the retrievals at
20:15 UTC, which is closest to the overpass time of Aqua.
MAIAC AOD has a good correlation of 0.87 with MODIS
Aqua and it is better than that between GASP AOD and
MODIS AOD. MAIAC AOD shows lower retrieval values
than MODIS AOD with a slope of 0.56. This is reasonable
since MODIS AOD was found to overestimate in the south-
west region of US (Drury et al., 2008).

5 Conclusions

We develop a new AOD retrieval algorithm by modifying
the MAIAC algorithm for MODIS. In this algorithm, sea-
sonally averaged MODIS surface BRDF in the 2.1 µm band
is used along with the GOES visible channel for the retrieval
of surface reflectance and AOD. This algorithm can retrieve
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Fig. 11. GOES channel 1 image, AOD retrievals from GOES and MODIS for California fire on 10 July 2008.(a) GOES channel 1 image at
21:45 UTC;(b) MAIAC AOD retrieval at 21:45 UTC;(c) GASP AOD retrieval at 21:45 UTC;(d) MODIS Terra AOD retrieval;(e) MODIS
Aqua AOD retrieval.

(a) (b)

Fig. 12. Scatter plot of GOES AOD vs. MODIS AOD from Aqua for the California fire on 10 July 2008 at Aqua overpass time.(a) MAIAC
AOD vs. MODIS AOD from Aqua;(b) GASP AOD vs. MODIS AOD from Aqua.

surface reflectance using GOES images from a much shorter
period of time than the operational GASP algorithm, which
uses 28-day composites to obtain surface reflectance. The al-
gorithm is validated by comparing with the AERONET and
GASP AOD retrievals at six AERONET sites across conti-
nental US. MAIAC AOD compares good with AERONET
AOD at two western US sites, i.e. Railroad Valley and UCSB,
and is better than GASP retrievals at these sites. At the other

four eastern and central sites, MAIAC algorithm has similar
retrieval accuracy with GASP. This is due to the relative large
variations of surface BRDF caused by the precipitation and
vegetation change in the eastern and central area. Assuming
BRDF shape does not change over a season can reduce the
accuracy of surface reflectance and AOD retrievals in these
areas. The precipitation and vegetation change is much less
in the western US so that surface BRDF is relatively stable
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from day to day. Therefore, MAIAC algorithm is especially
suitable for arid areas where BRDF variations are small.

MODIS BRDF retrieval error can introduce errors in MA-
IAC retrieval. Such uncertainty occurs because the ranges of
the sampling geometries of MODIS in a season and GOES
over diurnal cycles are different. This is extremely serious at
backscatter position where we observed large AOD retrieval
errors, hence we filter out the AOD retrievals at such geom-
etry. Such problem will not exist if MAIAC algorithm is
applied to the data from GOES-R satellite, which is planned
to be launched in 2015. GOES-R ABI (Advanced Baseline
Imager) (Schmit et al., 2005) contains blue, red and SWIR
(2.12 µm) channels similar to those of MODIS. Using this
data, 2.12 µm BRDF can be retrieved directly without using
seasonal average BRDF.

We do not address other sources of uncertainties in the
new algorithm, which also exist in GASP. These uncertainty
sources include fixed aerosol model, radiometric calibration
accuracy of GOES channel 1, and cloud contamination issue,
etc. Such uncertainties can also reduce AOD retrieval accu-
racy and reduce the improvements of the MAIAC algorithm
over GASP.

The half-hourly temporal resolution of GOES AOD re-
trieval is especially useful for air quality monitoring of events
with rapid development and motion such as smoke and pol-
lution transport. Although MAIAC for MODIS also can re-
trieve accurate AOD over western US, it only provides twice
daily retrievals. It is hard for air quality forecasters and re-
searchers to tell the aerosol motion from these two snapshots
from MODIS AOD retrievals. With the help of the anima-
tion of half-hourly GOES AOD retrieval imagery, air quality
forecaster and researchers can easily tell the motion of the
aerosols. On the other hand, due to the block of cloud, it is
possible that none of the two MODIS instruments have re-
trievals in some areas at the times of the satellites passes. At
some other times during the day, the cloud may move out and
the areas are clear to be observed by the geostationary satel-
lites. Thus, high temporal observation from geostationary
satellite can also improve daily AOD retrieval spatial cov-
erage which cannot be achieved by polar-orbiting satellites
with low temporal resolution.
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