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Abstract. The relationship between “clean marine” aerosol
optical properties and ocean surface wind speed is explored
using remotely sensed data from the Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) on board the
CALIPSO satellite and the Advanced Microwave Scanning
Radiometer (AMSR-E) on board the AQUA satellite. De-
tailed data analyses are carried out over 15 regions selected
to be representative of different areas of the global ocean
for the time period from June 2006 to April 2011. Based
on remotely sensed optical properties the CALIPSO algo-
rithm is capable of discriminating “clean marine” aerosols
from other types often present over the ocean (such as ur-
ban/industrial pollution, desert dust and biomass burning).
The global mean optical depth of “clean marine” aerosol at
532 nm (AOD532) is found to be 0.052± 0.038 (mean plus or
minus standard deviation). The mean layer integrated partic-
ulate depolarization ratio of marine aerosols is 0.02± 0.016.
Integrated attenuated backscatter and color ratio of marine
aerosols at 532 nm were found to be 0.003± 0.002 sr−1 and
0.530± 0.149, respectively. A logistic regression between
AOD532 and 10-m surface wind speed (U10) revealed three
distinct regimes. ForU10≤ 4 m s−1 the mean CALIPSO-
derived AOD532 is found to be 0.02± 0.003 with little depen-
dency on the surface wind speed. For 4< U10≤ 12 m s−1,
representing the dominant fraction of all available data, ma-
rine aerosol optical depth is linearly correlated with the sur-
face wind speed values, with a slope of 0.006 s m−1. In this
intermediate wind speed region, the AOD532 vs.U10 regres-
sion slope derived here is comparable to previously reported
values. At very high wind speed values (U10> 18 m s−1),
the AOD532-wind speed relationship showed a tendency to-
ward leveling off, asymptotically approaching value of 0.15.
The conclusions of this study regarding the aerosol extinc-
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tion vs. wind speed relationship may have been influenced by
the constant lidar ratio used for CALIPSO-derived AOD532.
Nevertheless, active satellite sensor used in this study that
allows separation of maritime wind induced component of
AOD from the total AOD over the ocean could lead to im-
provements in optical properties of sea spray aerosols and
their production mechanisms.

1 Introduction

Marine aerosols play significant role in global energy bud-
get; they influence the planetary radiation balance directly
by scattering and absorbing sunlight and indirectly by mod-
ifying cloud microphysical properties (Clarke and Kapustin,
2003; Murphy et al., 1998; Pierce and Adams, 2006). As
cloud properties are most sensitive to the addition of parti-
cles when the background concentration is low (Platnick and
Twomey, 1994), marine aerosols are very important for un-
derstanding the cloud-mediated effects of aerosols on climate
(Andreae, 2007). Because the anthropogenic contribution to
climate forcing represents the difference between the total
forcing and that from natural aerosols, the accurate informa-
tion about the background levels of aerosols or the “aerosols
before pollution” is necessary for correct assessment of the
role of anthropogenic aerosols in climate change (Penner et
al., 1994; Andreae, 2007).

Marine aerosols have different natural sources that can
be broadly classified as primary, i.e. derived from the me-
chanical process of bubble bursting, and secondary, de-
rived through ocean emission of precursor biogenic volatile
organic compounds (Blanchard and Woodcock, 1957 and
references therein; O’Dowd and de Leeuw, 2007). Al-
though sea salt particles, frequently associated with clean
marine aerosol, are often a major component of aerosol mass
over the remote oceanic regions (Prospero, 2002; Lewis
and Schwartz, 2004), it was shown that sulfates from the
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oxidation of biogenic dimethylsulfide (DMS) and ocean pro-
duced organics could also contribute considerably to total
aerosol budget (Shaw, 1983; Charlson et al., 1987; O’Dowd
et al., 2004; Meskhidze and Nenes, 2006; de Leeuw et al.,
2011).

The dependency of marine aerosol optical properties on
sea surface wind speed and sea state has been exam-
ined by numerous investigators. Based on the measure-
ments from Minicoy Island in the Arabian Sea, Moor-
thy and Satheesh (2000) derived an exponential relation-
ship between aerosol optical depth (AOD) and surface wind
speed. Smirnov et al. (2003a) studied the effects of sur-
face wind speed on aerosol optical properties using ground
based AErosol RObotic NETwork (AERONET) (Holben et
al., 1998) located on Midway Island in the Pacific Ocean.
Shinozuka et al. (2004) explored sea-salt contribution to
AOD over the tropical Pacific Ocean and the Southern
Ocean. Huang et al. (2010) derived relationship between
AOD from Advanced Along-Track Scanning Radiometer
(AATSR) onboard European Space Agency’s Envisat and
10 m wind speed from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Glantz et al. (2009) re-
ported a power-law fit between Sea-viewing Wide Field-of-
view Sensor (SeaWiFS) retrieved AOD and ECMWF wind
speed over the Northern Pacific ocean. Based on the mea-
surements of aerosol properties at the Mace Head atmo-
spheric research station under moderately windy conditions,
Mulcahy et al. (2008) established a power-law relationship
between marine AOD and surface wind speed. Using a sys-
tematic comparison between multiple satellite-retrieved sur-
face wind speed values, MODIS-derived AOD, and aerosol
fine mode fraction, Lehahn et al. (2010) managed to isolate
the marine component of AOD over the ocean and quantify
its dependence on surface wind speed. Table 1 summarizes
available regression statistics of AOD versus wind speed.

Although the effect of wind speed on marine aerosol opti-
cal properties was thoroughly studied over the last several
decades, comprehensive quantification of marine aerosols
using remotely-sensed and ground-based measurement data
suffered from a number of difficulties. The sensors were not
able to make explicit distinction of “clean marine” aerosols
from ones influenced by the terrestrial sources (i.e. mineral
dust, biomass burning, anthropogenic pollution). Passive in-
struments used in earlier studies of marine aerosol optical
properties also could not give vertical distribution of aerosols
over the ocean nor could retrieve aerosols over the regions
without sunlight (e.g. at night and north/south of the Arc-
tic and the Antarctic Circles, respectively), above continuous
cloud cover, or beneath thin cirrus (Winker and Pelon, 2003).
In this study, we expand upon previous satellite remote sens-
ing analyses by employing a novel approach that allows
an explicit distinction of “clean marine” aerosols properties
from those of other aerosol subtypes through the use of the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO) satellite. Due to its unique capabili-

Table 1. Regression statistics of aerosol optical depth versus wind
speed.

Regression relation r2 Reference

AOD532= 0.15
1+6.7·e−0.17·U10

0.97a
Current work

0.25b

AOD500,SM = 0.0068· U10+ 0.056 0.14 Smirnov et al. (2003a)

AOD500,SH = 4.9· 10−5
· U3

10− 3.7· 10−5
· U2

10+ 0.017 NAc Shinozuka et al. (2004)

AOD550,cm = 0.009· (U10− 4) + 0.03 0.50 Lehahn et al. (2010)

AOD550,m = 0.013· (U10− 4) + 0.08 0.45 Lehahn et al. (2010)

AOD555,GL = 0.00016· U2.3
10 + 0.036 0.98 Glantz et al. (2009)

AOD500,ML = 0.00055· U2.195+ 0.06 0.97 Mulcahy et al. (2008)

AOD550,H = 0.004· U10+ 0.085 0.95 Huang et al. (2010)

a Correlation between logistic regression line and wind speed bin-averaged AOD val-
ues.
b Correlation between logistic regression line and all 539, 549 collocated instantaneous
AOD andU10 values.
c NA stands for not available.

ties, such as accurate determination of the vertical location of
aerosols and the ability to retrieve aerosol properties during
the night as well as the day, CALIPSO can give new insight
into the marine aerosol wind speed relationship.

2 Data analysis and methods

The wind speed dependence of marine aerosol optical depth
is estimated using nearly five years (June 2006 to April 2011)
of remotely sensed AOD data from the Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) onboard the
CALIPSO satellite and the surface wind speed data from
the Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) onboard the AQUA satellite. Two different types
of data analysis were carried out. In the general analysis,
the physical and optical properties of the CALIOP marine
aerosol layers were calculated over the entire global ocean,
while in the detailed analysis, the datasets selected over nu-
merous oceanic regions were compared to derive the relation-
ship between marine aerosol optical depth and surface wind
speed.

2.1 Remotely sensed data/instruments

CALIPSO provides aerosol and cloud optical properties us-
ing a two wavelength (532 nm and 1064 nm) polarization
sensitive lidar, CALIOP, an Imaging Infrared Radiometer
(IIR), and a Wide Field Camera (WFC) (Winker et al., 2009;
Hunt et al., 2009). The CALIPSO retrieval algorithm con-
siders scattering properties from particles and molecules,
where molecular scattering properties are determined from
the Global Modeling and Assimilation Office (GMAO) me-
teorological data (Vaughan et al., 2004, 2009; Young and
Vaughan, 2009; Omar et al., 2009; Liu et al., 2009). In this
study we use Level 2, version 3.01 “clean marine” aerosol
layer properties from CALIPSO derived at 5 km horizontal
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resolution. The CALIPSO marine aerosol layer products
were spatially and temporally collocated with Level 3, ver-
sion 5 gridded AMSR-E-derived daily surface wind speed
at 0.25◦ × 0.25◦. As both sensors are located on satellites
that are part of the A-Train constellation (CALIOP on the
CALIPSO and AMSR-E on the Aqua) (Hu et al., 2008; Kit-
taka et al., 2011; L’Ecuyer and Jiang, 2010), virtually the
same scene is viewed by the sensors as CALIPSO flies about
75 s behind the Aqua satellite. Both CALIPSO lidar and
AMSR-E are capable of collecting day and night observa-
tions (Hu et al., 2008). In this study AMSR-E wind speed and
CALIPSO layer optical properties from ascending (equato-
rial crossing time at 13:30 local time) and descending (equa-
torial crossing time at 01:30 local time) passes were used.

The CALIPSO algorithm is distinctive from other satellite
algorithms in its capability to discriminate marine aerosols
from other subtypes (such as clean continental, desert dust,
polluted continental, polluted dust, and smoke) (Omar et al.,
2009). The aerosol optical depth as well as extinction and
backscatter profile retrievals require particulate extinction to
backscatter ratio also known as lidar ratio (Sa). TheSa is an
intensive aerosol property, i.e. a property that does not de-
pend on a number density of the aerosol but rather on such
physical and chemical properties as size distribution, shape
and composition. The type and subtype information of the
layer is used to estimate initialSa, whereas a finalSa is de-
rived by applying transmittance correction to the extinction
processing (Omar et al., 2004, 2009; Young and Vaughan,
2009). Only the high confidence retrievals (aerosol layers
with the same initialSa and finalSa) are used in the cur-
rent analysis (Kittaka et al., 2011). Level 2 version 3.01
CALIPSO aerosol subtypes are defined with 532-nm and
1064 nm lidar ratios (mean plus or minus standard devia-
tion) as clean continental (35± 16 sr and 30± 17 sr), clean
marine (20± 6 sr and 45± 23 sr), desert dust (40± 20 sr and
55± 17 sr), polluted continental (70± 25 sr and 30± 14 sr),
polluted dust (55± 22 sr and 48± 24 sr), and biomass burn-
ing (70± 28 sr and 40± 24 sr) (Cattrall et al., 2005; Omar
et al., 2005, 2009; Mielonen et al., 2009). In Level 2
aerosol layer products, CALIPSO provides vertically re-
solved aerosol properties for up to 8 aerosol layers in a col-
umn and each layer is further classified into one of six aerosol
subtypes. For most of the aerosol types used in CALIPSO
retrieval algorithm, the size distributions and complex re-
fractive indices are based on AERONET-derived model pa-
rameters. However, clean marine aerosol properties used in
the CALIPSO aerosol-type identification algorithm are not
derived from AERONET, as the marine aerosol cluster is
comprised of a small number of records (<4 % of the to-
tal) (Omar et al., 2005, 2009). In addition, most AERONET
oceanic sites are actually land based and therefore may not
be free from terrestrial and anthropogenic influences (Omar
et al., 2009). Therefore, theSa value for CALIPSO clean
marine aerosol was derived using Mie theory with the sea
spray aerosol size distribution measured during the Shore-

line Environmental Aerosol Study (SEAS) experiment (Ma-
sonis et al., 2003; Omar et al., 2004, 2009). It should be
noted, however, that measurements and model calculations
often report a wide range (20≤ Sa≤ 90 at 532 nm) inSa
values for clean marine aerosol, with different magnitudes
for sub-micron (with equilibrium radius at relative humid-
ity of 80 %,r80< 1 µm) and super-micron (r80> 1 µm) sized
aerosols (Welton et al., 2002; Masonis et al., 2003; Cattrall
et al., 2005). The bias and variance in the assumed value of
Sa creates errors in both backscatter and extinction profiles
and can strongly influence AOD retrievals. Section 4 gives
a brief summary of some of the caveats and uncertainties in
CALIPSO sea spray AOD calculations related to the uncer-
tainty inSa value of clean marine aerosol.

The CALIOP separates clouds and aerosols and provides
the cloud-aerosol discrimination (CAD) score for each layer
(Liu et al., 2004, 2005, 2009; Vaughan et al., 2005). The
standard CAD scores in the CALIPSO layer products range
from −100 to 0 for aerosols and from 0 to +100 for clouds.
Larger absolute value of CAD indicates higher confidence
in the aerosol-cloud feature classification. The CALIPSO
aerosol optical depths are provided at wavelengths 532 nm
and 1064 nm. To extract marine aerosol types and the cor-
responding aerosol optical thicknesses, we have used CAD
score of−70 to −100 which gives high confidence cloud
cleared optical thickness layer data (Kittaka et al., 2011;
Liu et al., 2009; Omar et al., 2009). To reduce uncertainties
and increase quality assessment and reliability of layer
optical depth, only aerosol layers corresponding to values
from 0 to 0.01 sr−1 of integrated attenuated backscatter at
532 nm, values from 0 to 0.1 of estimated uncertainty of
layer optical depth at 532 nm, and values from 0 to 2.0 of
integrated attenuated total color ratio are used in the current
analysis. The information provided by the layer integrated
particulate depolarization ratio, extinction quality control
values, and opacity flag of the layers are also used to retrieve
high confidence aerosol layers (Kittaka et al., 2011; Liu et
al., 2005; http://eosweb.larc.nasa.gov/PRODOCS/calipso/
Quality Summaries/CALIOPL2LayerProducts3.01.html,
last access: September 2011).

As part of NASA’s Aqua satellite’s global hydrology mis-
sion, over the oceans AMSR-E derives wind speed, sea sur-
face temperature (SST), atmospheric water vapor, cloud wa-
ter, and rain rate (Wentz and Meissner, 2000, 2007; Wentz et
al., 2003). Passive microwave frequencies used by AMSR-
E sensor allow it to “see” through clouds, thus providing
continuous global surface wind observations (Wentz et al.,
2003). The value of AMSR-E-derived 10 m daily surface
wind speed (U10) over the sea surface is determined by the
surface roughness (caused by the wind stress) and is pro-
cessed based on National Centers for Environmental Predic-
tion (NCEP) reanalysis wind direction. Missing data can be
caused by regions of sun glint, near sea ice, and proxim-
ity to land (∼50 km) (Wentz and Meissner, 2007). Under
typical ocean conditions AMSR-E retrieved wind speed data
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compares well to surface buoy observations with the negli-
gible bias and root mean square (rms) difference<1 m s−1

(Wentz and Meissner, 2000; Mears et al., 2001; Bourassa et
al., 2009). However, the AMSR-E data validation at high
wind speeds (winds greater than 20 m s−1) is limited due to
the scarcity of such events that are often located in data-poor
remote regions and the questionable measurements of buoys
or ships in rough oceans due to wave sheltering (Bourassa et
al., 2009).

2.2 Data selection and analysis

The regression statistics for the dependency of marine
aerosol optical properties onU10 were calculated for the
selected 15 regions of interest covering all the major parts
of the global oceans (see Fig. 1a and Table S1 in Supple-
ment). Although CALIPSO can distinguish different aerosol
species, to minimize the contribution from terrestrial sources
the regions were selected to be far from the known trans-
port pathways of anthropogenic pollutants and mineral dust.
The midpoint of each 5 km high confidence single-layer
clean marine aerosol data were spatially and temporally col-
located with the gridded (0.25◦

× 0.25◦) AMSR-E-derived
U10. Previous studies have shown that due to the down-
ward propagations of bias errors into detected layers, the in-
correct choice ofSa for the upper aerosol layers may cause
errors in transmission corrections, causing large uncertain-
ties for multi-layer aerosol retrievals (Winker et al., 2009;
Weitkamp, 2005; Young and Vaughan, 2009). Data analyses
carried out in this study revealed (see below) that the vast ma-
jority of marine aerosol layer tops were placed within 2 km of
the mean sea level. Therefore, to reduce the erroneous clas-
sification of elevated aerosol layers over the ocean (Omar et
al., 2009) only single-layer AODs below 2 km height above
sea level were used for the analysis. Collocated aerosol mea-
surements for the selected regions were merged together and
the resultant dataset was sorted into bins based on the wind
speed. The bins were spaced in 1 m s−1 increments between
0< U10≤ 29 m s−1.

3 Results and discussion

3.1 Physical and optical properties of the CALIOP
marine aerosol layers

The available CALIPSO data products can be analyzed in
terms of aerosol extensive and intensive properties. Ex-
tensive parameters depend directly on particulate amount
within the scattering volume, while intensive properties are
independent of aerosol loading and depend only on optical
properties as determined by aerosol composition, size and
shape (Vaughan et al., 2004; Rogers et al., 2009). Fig-
ure 1 shows global seasonal maps of CALIPSO-derived ma-
rine aerosol extensive property – optical depth. This figure
reveals the large spatial and temporal variations in marine

AOD at 532 nm (AOD532). Inspection of Fig. 1 shows that
the largest values of AOD532 occur over the regions with ele-
vated surface wind speed (i.e. northern and southern oceans),
with the highest values found over the Southern Hemisphere
mid-latitude oceans during austral winter (JJA) season. Re-
gions of moderate winds typically have relatively low values
of AODs. The exceptions are the regions downwind from
dust and/or pollution sources such as mid-latitude North At-
lantic Ocean and the Bay of Bengal (BoB), suggesting that
some dust/pollution aerosols might have been misclassified
as sea salt (see Fig. 1). Figure 1c shows sporadic retrievals
of aerosols over BoB during the summer season, most likely
due to thick, extensive cloud cover associated with the in-
tense summertime monsoon season. The calculated AOD532
is consistent with the baseline aerosol over the Pacific
(AOD500= 0.052) and Atlantic (AOD500= 0.071) Oceans, re-
ported by Kaufman et al. (2001). Calculated global mean
AOD532 is also in a good agreement with AOD500= 0.06,
the most frequently occurring value of aerosol optical depth
over the Central Pacific Ocean (Smirnov et al., 2003a, b) and
within the range 0.02< AOD550< 0.067 of sixteen global
models participated in the Aerosol Comparisons between
Observations and Models (AeroCom) Experiment-A (Rind
et al., 2009). The frequency distribution of CALIPSO li-
dar marine aerosol layer AOD532 for 15 selected regions
over the time period of June 2006 to April 2011 is shown in
Fig. 2. It was found that approximately 99.5 % of clean ma-
rine aerosol layers had AOD532< 0.2, with AOD532= 0.03
being the most frequently occurring value.

The vertical distribution of marine aerosols for variable
wind conditions and seasons was obtained by detailed in-
spection of the frequency of occurrences of marine aerosols
with different layer base and layer top altitudes. Figure 3
shows that optically active marine aerosols are generally con-
fined within 2 km above mean sea level with little transport to
higher altitudes in the troposphere. For the entire study pe-
riod, virtually all CALIPSO-retrieved marine aerosol layer
bases were below 0.5 km and 96 % of aerosol layer tops
were below 2 km above sea level (Fig. 3), suggesting that
the 2 km layer threshold selected in this study captures the
majority of optically active marine aerosols. This result is in
a good agreement with ambient measurements (e.g. Maring
et al. (2003) found no evidence of sea-salt aerosols above the
marine boundary layer, MBL), model results (e.g. Grini et
al. (2002) found no significant amount of sea salt mass above
750 hPa), and remote sensing (e.g. Kaufman et al. (2005),
based on correlation between the wind speed and the AOD,
suggested that sea salt aerosols should reside largely in the
lowest 500 m of the atmosphere). Although marine aerosols
layer base altitudes do not reveal any considerable variation,
Fig. 3 shows dependence of aerosol layer top altitude on
seasonality and surface wind speed. According to this fig-
ure, ∼1 km height is the most commonly occurring value
of the aerosol layer top altitude for the entire study period.
Figure 3a shows that over the Northern Hemisphere (NH)
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Fig. 1. Global distribution of 1◦ × 1◦ degree averaged CALIPSO level 2 version 3.01 mean AOD532 for “clean marine” single-layer aerosols.
Layer optical depths are averaged for boreal winter (DJF), spring (MAM), summer (JJA), and fall (SON) from June 2006 to April 2011. Areas
surrounded by solid red line in Fig. 1a illustrate the regions selected for the detailed analysis. Latitudes and longitudes of the selected 15
regions are summarized in Table S1 in Supplement.

Fig. 2. The CALIPSO lidar marine AOD532 histogram for 15 se-
lected regions over the time period of June 2006 to April 2011.

mid-latitude waters (30◦ N to 60◦ N) the seasonal distribu-
tion of layer top altitude is positively skewed in winter (DJF)
and negatively skewed during the summer (JJA) months. The
vertical turbulent transport of sea salt particles and associ-

ated changes in aerosol layer heights over the selected NH
mid-latitude regions are likely to be influenced by multiple
different parameters including turbulence and convection in
MBL, dry and wet removal processes, and location of sub-
tropical highs often leading to strong summertime subsid-
ing motion. Figure 3b suggests that there is a positive re-
lationship between surface wind speed and the optically ac-
tive aerosol layer height. For the surface wind speed values
less than 4 m s−1 the vast majority of aerosol layer tops are
placed below 1.5 km, while for 4< U10≤ 12 m s−1 consid-
erable fraction of aerosol later tops occur at close to 2 km
height. For the surface wind speed in excess of 12 m s−1,
number of occurrences is positively skewed with the fre-
quency of layer top altitudes at 1.8 km comparable to that
at 1 km. Over the Southern Hemisphere (SH) mid-latitude
waters (30◦ S to 60◦ S) Fig. 3c shows that layer top altitude
is positively skewed during the winter (JJA) and negatively
skewed during the summer (DJF) months. Comparison of
Fig. 3b and d shows that despite higher wind speed values
in the SH, sea salt particles in the NH are more frequently
lifted at higher altitudes compared to the SH. The observed
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Fig. 3. The CALIPSO lidar frequency histogram of marine AOD532 aerosol layer base height (solid filled histograms), and aerosol layer top
height (line filled histograms) as a function of the season (left) and wind speed (right) for the 15 selected regions over the time period of
June 2006 to April 2011. The top panel(a, b) shows aerosol layers for regions 30◦ N to 90◦ N (regions 10 and 15 on Fig. 1) the middle panel
(c, d) for regions 35◦ S to 90◦ S (regions 1, 2, 3, 4, 6, 8, and 14 on Fig. 1) and the lower panel(e, f) 30◦ N to 35◦ S (regions 5, 7, 9, 11, 12,
and 13 on Fig. 1). Different color bars represent frequency of occurrences for different data groups.

difference may be associated with SST-related modification
of marine atmospheric boundary layer stability and vertical
turbulent transport (O’Neill et al., 2003). When considered
on the basin scale (larger than about 1000 km), very cold wa-
ters of the Southern Ocean may have a dominant effect on in
capping of the marine boundary layer and causing reduction
in the vertical momentum mixing (Xie, 2004). Although,
based on the CALIPSO data analysis alone the reason for
such a discrepancy between the northern and the Southern

Hemispheres cannot be fully ascertained. Figure 3e, f show
that in tropical waters (30◦ S to 30◦ N) there is no defined sea-
sonality and the frequency of the layer top altitudes are con-
sistently higher compared to NH and SH mid-latitude waters.
Given relatively low wind speed in this region (Fig. 3f shows
that there are very few cases withU10> 12 m s−1) such el-
evated layer tops are likely to be associated with the deep
atmospheric convection over tropical oceans.

Atmos. Chem. Phys., 11, 11401–11413, 2011 www.atmos-chem-phys.net/11/11401/2011/



V. P. Kiliyanpilakkil and N. Meskhidze: Deriving the effect of wind speed on clean marine aerosol 11407

Intensive scattering properties of aerosols, such as color
ratio (the ratio of aerosol backscatter at the two wavelengths)
and aerosol depolarization ratio are also examined to gain
some more insight into marine aerosol optical properties.
Particle sizes for most marine aerosols exhibit a spectrally
dependent scattering efficiency. Due to diffraction of light,
large particles are expected show more forward scattering
(extinction) (Weitkamp, 2005; Hu et al., 2007). Figure 4a
shows that for the majority of layer-integrated aerosols ex-
amined over the selected fifteen regions,β532 is greater
than β1064, indicating that the optically important parti-
cles are dominated by super-micron sized particles. The
larger values ofβ532 compared toβ1064 (smaller backscat-
ter at 1064 nm than that at 532) resulting in values of layer-
integrated attenuated total color ratio (χ =β1064/β532) from
∼0.4 to 0.7 (Fig. 4b), consistent with the expected values for
the marine aerosols (Vaughan et al., 2004; Liu et al., 2005).
The integrated attenuated backscatter of single-layer marine
aerosols averaged over the entire study period over the se-
lected 15 regions were found to beβ532= 0.003± 0.002 sr−1

andβ1064= 0.002± 0.001 sr−1, yieldingχ = 0.530± 0.149.
Another intensive property of aerosols, depolarization ra-

tio (or particle non-sphericity) can provide an indication of
aerosol shape. Deliquesced sea salt particles are expected
to exhibit low depolarization (when neglecting multiple scat-
tering), whereas irregularly shaped particles (e.g. dust) could
significantly depolarize the backscattered signal (Liu et al.,
2005; Gobbi et al., 2000; Murayama et al., 2001). The
layer-integrated particulate depolarization ratio,δp, calcu-
lated as ratio of the layer integrated perpendicular and par-
allel polarization components of particulate backscatter co-
efficient (δp =

β⊥,p

β‖,p
), is directly related to the hydration state

of sea spray aerosol. Figure 4c shows that the majority
of marine aerosols had layer-integrated particulate depo-
larization ratios at 532 nm from 0.005 to 0.05, consistent
with linear depolarization ratios reported for sea salt crystals
(0.08± 0.01) and deliquesced droplets (0.01± 0.001) (Sakai
et al., 2010). The mean layer-integrated particulate depo-
larization ratio of single-layer marine aerosols obtained in
this studyδp = 0.02± 0.016, suggesting that most of the op-
tically important sea spray aerosols in the marine boundary
layer are likely to be deliquesced and exhibit optical proper-
ties of droplets. Overall, detailed analyses of clean marine
aerosol intensive scattering properties suggest that large ma-
jority of optically important particles in the selected fifteen
regions had physical and optical properties characteristic of
sea salt. In the next chapter CALIPSO retrievals will be used
to derive relationship between surface wind speed and ma-
rine aerosol optical depth. Some potential differences be-
tween CALIPSO-retrieved “clean marine” aerosols and nat-
ural marine aerosols will also be addressed in Sect. 4.

Fig. 4. The CALIPSO lidar relationships for(a) β1064–β532 (b) χ–
β532 and(c) δp–β532 for 15 selected regions over the time period
of June 2006 to April 2011. The color of each pixel represents the
frequency of occurrence and the dashed line on Fig. 4a indicates 1:1
ratio.
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3.2 Regression statistics for AOD532-wind speed
relationships

The relationship between collocated CALIPSO-AOD532 and
AMSR-E wind speed at selected marine regions is shown
on Fig. 5. According to Fig. 5 the majority of all the
AOD532 retrievals (84.8 % of all available data) fall between
2 m s−1 < U10≤ 12 m s−1 wind speed values. Our calcula-
tions indicate that the remaining number of retrievals fall
between 12< U10≤ 24 ms−1 wind speed values (13.7 % of
retrievals or 73 944 instances) andU10≤ 2 m s−1 (1.5 % of
retrievals or 8208 instances). Although very few data points
are available for the wind speeds above 24 m s−1 (0.02 %
of retrievals or 95 instances) these data point were also
included in the current study for the completeness. Re-
moval of these points also does not change the conclusions
drawn from the data analysis. Using the MATLAB curve
fitting tool we have developed a logistic function for the
CALIPSO-derived AOD532 and AMSR-E wind speed rela-
tionship. The results of our analysis show that the logistic
regression AOD532= 0.15

1+6.7·e−0.17·U10
provides the best fit for

marine aerosol optical depth and 10-m surface wind speed
relationship. High correlation (r2 = 0.97) between logistic
regression line and wind speed bin-averaged AOD values
suggests that proposed regression equation gives robust mea-
sure for global, spatiotemporally averaged sea salt AOD as a
function of surface wind speed. However, when all (over
half a million) collocated data points of AOD and wind
speed are considered, the correlation reduces considerably
(r2 = 0.25) highlighting the importance of the wind speed his-
tory for the generation of sea salt aerosol prior to retrieval
(e.g. Smirnov et al., 2003a; Mulcahy et al., 2008). We prefer
logistic regression over linear, exponential or power-law re-
lationships because logistic regression better captures three
distinct regions in AOD versusU10 relationship shown on
Fig. 5. For theU10≤ 4 m s−1 marine aerosol optical depth
is only weakly related to wind speed. For the intermedi-
ate wind speed values 4< U10≤ 12 m s−1, AOD532 increases
qasi-linearly with the increase in surface wind. Finally, for
higher wind speed values (U10> 18 m s−1) the aerosol ef-
fects on optical turbidity of air appear to level off.

The regional differences in AOD532 dependence on sur-
face wind speed are examined in Fig. S1 in Supplement. This
figure shows that compared to the mean logistic regression
for marine aerosol optical depth and 10-meter surface wind
speed, mid- and high-latitudes (low SST) show somewhat
lower, while tropics (high SST) show higher AOD532 val-
ues. Similar dependence of sea salt AOD on wind speed was
noticed by Jaeglé et al. (2011). It was suggested that temper-
ature, through its effect on kinematic viscosity of water, can
influence the terminal velocity of rising air bubbles as well
as the wave breaking and a lifetime of individual whitecaps
(Jaegĺe et al., 2011). Laboratory experiments also revealed
considerable increase in production of sea salt (with diame-
ter> 0.35 µm) with increasing water temperatures from 5◦C

Fig. 5. The relationship between CALIPSO AOD532 and AMSR-E
wind speed for 15 selected regions over the time period of June 2006
to April 2011. The analysis is based on a total 539, 549 collocated
data points of AOD and wind speed. The number of available data
points for each wind speed bin is plotted at the background in grey
color. Dotted line indicates that the AOD – wind speed relation-
ship for U10> 24 m s−1 is based on limited number of data points.
Circles and error bars show mean values and standard deviation of
AOD for each 1 m s−1 wind speed bin, respectively. Logistic re-
gression relationship between AOD532 and wind speed is shown
with the solid black line.

to 25◦C (Mårtensson et al., 2003; Sellegri et al., 2006).
Further research should be conducted to better quantify the
AOD-wind speed relationships over low and high SST re-
gions.

On Fig. 6 the logistic relationship for CALIPSO-AOD532
and AMSR-E wind speed is compared to linear, exponential
and power-law relationships derived in previous studies. De-
spite some similarities, Fig. 6 shows considerable differences
that will be discussed below. Parameters for the current and
other regression statistics are summarized in Table 1.

For U10≤ 4 m s−1, the mean CALIPSO derived AOD532
of marine aerosols is found to be roughly 0.02± 0.003.
Figure 6 shows that at low wind speed values CALIPSO-
derived AOD is comparable to AOD550,cm the coarse mode
aerosol component of the wind induced marine aerosol opti-
cal depth derived by Lehahn et al. (2010). However, Fig. 6
also shows that CALIPSO-AOD532 is roughly a factor of
3 lower than AOD550,m, the total (sum of coarse and fine
mode) marine aerosol optical depth calculated using Lehahn
et al. (2010) relationship. Our estimated AOD532 is also
considerably lower than one calculated using the linear re-
lationship of Smirnov et al. (2003a) (AOD500,SM) and AOD
derived by Huang et al. (2010) (AOD550,H), but compa-
rable to values derived from Glantz et al. (2009) regres-
sion relationship (AOD555,GL). It is interesting to note that
the physical mechanism for the weak dependence of ma-
rine aerosol optical depth on surface wind speed at low
wind values was suggested to be associated with a thresh-
old wind speed of∼4 m s−1, above which ocean surface
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Fig. 6. Marine aerosol optical depth as a function of wind speed.
The regression statistics and the acronyms are summarized in Ta-
ble 1. See text for more details.

waves start breaking, initiating the white cap formation and
bursting of the entrained bubbles (Lehahn et al., 2010). At
such low wind-low AOD conditions increasingly larger frac-
tion of marine aerosol volume size distribution can be con-
tributed by sub-micron sized aerosols, with size distribu-
tion and chemical composition different from sea salt (de
Leeuw et al., 2011). When biogenic particles of marine
origin (from marine organics and DMS-oxidized sulfate)
comprise significant fraction of optically important aerosols
over the ocean the lidar ratio for clean marine aerosol used
in CALIPSO retrievals could lead to significant underesti-
mation of AOD532 (see discussion in Sect. 4). However, po-
tential contributions from terrestrial fine mode aerosols (e.g.
pollution, smoke and dust) to elevated optical depth values of
marine aerosol reported by previous investigators also cannot
be ruled out.

For an intermediate wind speed values 4< U10≤ 12 m s−1

the dominant production mechanism for sea salt aerosols
is the bursting of rising air bubbles. Figure 6 shows that
there is a similar linear dependence of AOD on surface
wind speed in most of the parameterizations. In this inter-
mediate region, the regression slope derived in this study
(0.006 s m−1) is consistent with 0.0068 s m−1 reported by
Smirnov et al. (2003a).

Figure 6 also shows that above a wind speed of∼ 12 m s−1

the current CALIPSO-derived AOD532 values are lower
compared to other regressions. Figure 6 shows the discrep-
ancies are particularly pronounced between the AOD values
derived in this study and the power law relations of Mulcahy
et al. (2008) and Glantz et al. (2009). At high wind speeds,
the power law relations show AOD values well above 0.3. It
was shown that for the wind speed values below 15 m s−1,
the relationship of Mulcahy et al. (2008) compares well to
open-ocean MODIS-derived AODs, while at wind speeds
above 15 m s−1, Mulcahy et al. (2008) parameterization pre-
dicts higher values compared to satellite retrievals (O’Dowd
et al., 2010). Overall, it is difficult to compare AOD val-

ues predicted by our logistic relationship with previously
published regression statistics at very high wind speed val-
ues, as the past data analyses are typically limited to surface
wind speed values well below 20 m s−1. Nevertheless, ac-
cording to Fig. 6 CALIPSO-derived AOD532 tends to level
off at very high wind speeds, asymptotically approaching
AOD532= 0.15. Although data sets for aerosol loadings un-
der very high wind speed values obtained in different stud-
ies often show conflicting results (e.g. Pant et al., 2008), a
number of investigators have reported a decrease in sea salt
aerosol concentration with an increase in surface wind speed.
Exton et al. (1985) reported that above 13 m s−1, the mea-
sured amount of airborne material in marine air masses re-
mained constant or decreased slightly with increasing wind
speed. Barteneva et al. (1991) also noticed no increase in
the particle concentrations with wind speeds over 15 m s−1.
During a severe cyclonic storm over south Indian Ocean Pant
et al. (2008) also reported a reduction in total aerosol num-
ber concentration with an increase in the wind speed from
16 to 22 m s−1 after which the aerosol number remained at
a nearly constant value up to the maximum wind speed of
33 m s−1. The reason for such reduction in volumetric load-
ing of aerosols with increasing wind speed was explained by
the presence of very large sea salt particles. At wind speeds
in excess of∼12 m s−1, sea spray generation via mechanical
disruption of wave crests becomes important (Exton et al.,
1985; Wang and Street, 1978; Monahan, 1986; Lewis and
Schwartz, 2004). The spume drops torn from the wave crests
have relatively large sizes starting from 20 µm and reaching
more than 500 µm (Andreas, 2002). Such large spume drops
disperse and deposit more efficiently on the sea surface and
may lead to collection of small aerosols during their descent
(Exton et al., 1985; Pant et al., 2008). As discussed in Sect. 4
below, it is also possible that leveling off CALIPSO-AOD532
seen at very high wind speed values is a retrieval artifact.

4 Caveats and uncertainties

One of the main caveats in our study arises from the lidar
ratio of 20± 6 sr (at 532 nm) used for CALIPSO clean ma-
rine aerosol retrievals. Such lidar ratio may not be charac-
teristic for all types of natural marine aerosols under variable
conditions. The calculated values ofSa for sea spray vary
widely, with pronounced differences between super-micron
(10≤ Sa≤ 20 at 532 nm) and sub-micron (20≤ Sa≤ 90 at
532 nm) mode particles (Masonis et al., 2003). Therefore,
the constant lidar ratio of 20 used by CALIPSO for high
confidence clean marine aerosol is largely characteristic of
super-micron sea salt particles and could lead to a poten-
tial underestimation of sub-micron sea salt or the biogenic
fraction of ocean derived aerosols that become increasingly
important with decreasing particle size. For example, a li-
dar ratio as high as 33± 6 sr (at 523 nm) has been reported
in the absence of any continental influence (Welton et al.,
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2002). AERONET database analysis (Smirnov et al., 2003a)
also shows 532 nm lidar ratios of 34.6 (for Lanai) and 33.1
(for Midway Island). When a lidar ratio of 34 is consid-
ered, the CALIPSO-derived AOD (at 532 nm) increases by
a factor of approximately 1.6 (Sayer and Smirnov, personal
communications), yielding marine aerosol optical depth val-
ues closer to the values suggested by Smirnov et al. (2003a)
(see Fig. S2 in Supplement). Overall, this calculation shows
that increasingSa value for clean marine aerosol moves AOD
values predicted by current parameterization closer to those
previously reported. However, there is no clear consensus
that a lidar ratio of 34 may be applicable to the global re-
trieval of all marine aerosols of different size distributions
and chemical compositions. As large uncertainties remain in
the source function and chemical properties of sub-micron
sea spray aerosol, simultaneous optical and chemical mea-
surements of ambient and laboratory-generated particles at
multiple sites and over different seasons are needed to pro-
vide better estimates of clean marine aerosol lidar ratio(s).

Uncertainties in remotely sensed wind speed can also in-
fluence regression statistics derived in this study. For ex-
ample, satellites measure instantaneous area-averaged winds
that may not be a good indicator for columnar aerosol volume
concentration (Bates, 1998; Smirnov et al., 2003a). This may
be especially true in regions of rapidly varying wind speeds,
and under very low and very high wind conditions. Under
very low wind conditions when there is no active produc-
tion of marine aerosol by bubble bursting, the aerosol size
distribution is likely to be dominated by the aerosols result-
ing from transport and/or produced by gas to particle con-
version with the concentration footprint of tens of km up-
wind the measurement location (Ceburnis et al., 2008). At
stronger wind speeds there is an increased probability that
the CALIPSO lidar signal can be contaminated with multiple
scattering effects from whitecaps, the correction for which is
not included in current CALIPSO aerosol algorithm. Hu et
al. (2008) noticed significant improvements in relationship
between AMSR-E wind speed and CALIPSO lidar backscat-
ter when they applied whitecaps correction in their analysis
for higher wind speeds. Further evaluation of CALIPSO-
derived marine aerosol AOD behavior is required under very
low and very high wind conditions.

5 Summary and conclusion

Analysis of remotely sensed data for marine aerosol op-
tical depth and surface wind speed values has been con-
ducted over the global ocean covering wide range of wind
speed and AOD conditions. In order to exclude the contri-
bution from non-marine aerosol such as urban/industrial pol-
lution, desert dust and biomass burning, the marine aerosol
AOD532 was calculated using CALIPSO derived “clean ma-
rine” aerosol subtype. Daily surface wind speed data were
obtained from the AMSR-E. Detailed data analyses were

carried out over 15 regions selected to be representative
of different areas of the global oceans for the time pe-
riod from June 2006 to April 2011. A logistic relationship
between CALIPSO-retrieved AOD532 and AMSR-E wind
speed was derived using over half a million collocated data
points. The global mean single-layer AOD532 was found to
be 0.052± 0.038, consistent with the previous estimates of
baseline aerosol optical depth over the Pacific and Atlantic
Oceans. The mean layer integrated particulate depolarization
ratio of marine aerosols was found to be 0.02± 0.016. Inte-
grated attenuated backscatter and the color ratio of the ma-
rine aerosols at 532 nm were found to be 0.003± 0.002 sr−1

and 0.530± 0.149, respectively.
Derived logistic regression between CALIPSO-retrieved

AOD532 and AMSR-E wind speed indicates a weak relation-
ship at low wind speed values (U10≤ 4 m s−1). This result is
consistent with previous studies, suggesting that AOD532 at
surface wind speed≤4 m s−1 can be viewed to be representa-
tive of background marine aerosol with little dependence on
surface wind speed. Our data analysis shows that under such
low wind conditions CALIPSO-derived AOD532 is roughly
a factor of 2 lower compared to previously reported values
of total marine aerosol AOD, but consistent with its wind in-
duced component (Lehahn et al., 2010). We proposed that
such an inconsistency is likely to be caused by the potential
underestimation of sub-micron aerosol by CALIPSO and/or
contribution from terrestrial fine mode aerosols (e.g. pollu-
tion, smoke and dust) in previous works. Studies show that
ocean derived sulfate and organics can contribute consider-
ably to total aerosol budget, particularly under low wind con-
ditions when bursting of the entrained air bubbles is rather
ineffective mechanism for the production of sea salt.

At intermediate wind speed values (4< U10≤ 12 m s−1),
the logistic regression relationship derived in this study be-
tween clean marine aerosol and surface wind speed has a
constant slope of 0.006 s m−1. Our calculations suggest that
in this intermediate range, which represents the dominant
fraction of all available data, CALIPSO-derived AOD532 de-
pendence onU10 is consistent with previously reported re-
gression relationships.

At high wind speed values (U10> 12 m s−1) our logis-
tic regression predicts AOD532 values lower than ones de-
rived using linear, exponential, and power-law relationships.
Analysis of CALIPSO-retrieved AOD532 and AMSR-E wind
speed suggests that at very high wind speed values aerosol
effects on optical turbidity of atmosphere appear to level
off, asymptotically approaching value of 0.15. However,
such conclusions may also have been influenced by poten-
tial contamination of CALIPSO lidar signal by whitecaps.
Further studies with simultaneous optical and chemical mea-
surements of ambient and laboratory-generated particles are
required to better evaluate the marine aerosol AOD behavior
under low and high wind conditions and elucidate the poten-
tial inaccuracies in aerosol extinction profiles caused by the
constant lidar ratio assumption.
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