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Abstract. The currently used “kinetic-fractionation” (KF)
model of the differential incorporation of water-molecule
isotopologues into vapor-grown ice omits surface processes
on crystal facets that may be important in temperature re-
constructions. This article introduces the “surface-kinetic”
fractionation model, a model that includes such surface pro-
cesses, and shows that differences in deposition coefficients
for water isotopologues can produce isotopic fractionation
coefficients that significantly differ from those of KF theory.
For example, if the deposition coefficient of H18

2 O differs by
just 5 % from that of ordinary water (H16

2 O), the resulting
fractionation coefficient at 20 % supersaturation may deviate
from the KF value by up to about±17 ‰, and even more
at greater supersaturation. As a result, the surface-kinetic
theory may significantly change how fractionation depends
on supersaturation. Moreover, the model introduces possi-
ble new temperature dependencies from the deposition co-
efficients. These parameters need to be constrained by new
laboratory measurements.

1 Introduction

Ever since the late 1950s, the fractionation of isotopes during
the vapor deposition of ice has been used to make tempera-
ture reconstructions from ice cores (see e.g., Langway Jr.,
2008). Reconstructions are possible because surveys in polar
regions have found empirical relations between the isotopic
content in surface snow and the mean surface temperature of
the region. With such a relation, the measured isotopic con-
tent from ancient ice in cores extracted from the same region
can be used to estimate trends in past surface temperatures
(e.g., Dansgaard et al., 1969). Fundamentally, however, the
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causal relation between surface temperature and surface iso-
topic content is complex (see e.g., Masson-Delmotte et al.,
2008; Sturm et al., 2010), as it depends on the isotopic con-
tent of the oceanic vapor source, the path of the prevailing
weather system, and the conditions along this path that pro-
duce fractionation to precipitating crystals. As these factors
likely change during climate changes, the goal of improving
temperature reconstructions from ice cores involves gaining
a better understanding of the relevant processes. Here the
aim is to better understand how isotopic fractionation during
vapor growth to precipitating ice crystals depends on temper-
ature and supersaturation.

The earliest fractionation theory, equilibrium fraction-
ation, depended only on temperature. In this theory,
the isotopologue sublimates from the crystal at a slower
(temperature-dependent) rate than ordinary water, enriching
the crystal in the heavy isotope. But in 1984, Jouzel and Mer-
livat, hereafter “JM”, showed that this theory disagrees with
the measured isotope content in surface-snow in Antarctica.
By recognizing that growth was, by definition, nonequilib-
rium, they replaced the equilibrium fractionation coefficient
with a supersaturation-dependent, nonequilibrium kinetic-
fractionation (KF) coefficient. Then, by selecting the right
cloud-supersaturation-temperature relation, their KF model
could fit the surface-snow data.

But the KF coefficient ignores surface processes that are
crucial to the growth of facetted crystals. And facetted crys-
tals are common. Precipitating crystals in polar regions
(e.g., Lawson et al., 2006), crystals in many cirrus and other
high clouds, as well as surface hoar often consist of mainly
facetted forms. Moreover, surface processes are crucial to
the “surface-kinetic” model of isotopic fractionation for cal-
cite growth from aqueous solution (DePaolo, 2011). If we
include surface processes for facetted ice growth from the
vapor, how much might the fractionation coefficient change?
And could this change affect temperature reconstructions?
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This paper develops the surface-kinetic theory of isotopic
fractionation for ice growth from the vapor. Due to the in-
fluence of surface processes, the fractionation coefficient18α

for isotope18O differs from the KF prediction by an amount
that may be as large as±17 ‰. As described in Sect. 5, this
difference could change the inferred cloud supersaturation
by 20 % or more, which could have a significant effect on
temperature reconstructions. Thus, new experiments on18α

andDα (for deuterium) for facetted ice crystals are greatly
needed.

2 Background

2.1 Facetted growth implies regulation by surface
processes

The surface of growing atmospheric ice crystals often con-
sists of crystalline facets, sometimes wholly so, which in-
dicates a reduction of growth rate from surface processes
(Nelson and Baker, 1996). Briefly, the vapor density adja-
cent to a flat surface on a small particle cannot be uniform
(Frank, 1982), and the nonuniformity would produce nonuni-
form growth unless surface processes produce a compensat-
ing nonuniformity in the molecular rejection rate. Moreover,
without such surface processes, an initially spherical frozen
droplet would remain spherical as the crystal grew until being
perturbed by a sufficiently large temperature or vapor-density
non-uniformity, after which rounded protrusions would de-
velop (as occurs in melt-grown ice). What we instead ob-
serve is that initially spherical frozen droplets develop facets
and then grow into a great variety of facetted shapes. Thus,
the existence of facets, however small, indicates the control-
ling influence of surface processes. And if these processes
affect the incorporation of ordinary water into ice, they are
likely to also affect the incorporation of water isotopologues.
That is, surface processes should affect isotopic fractiona-
tion.

2.2 Crystal growth with vapor and surface impedances

The net vapor fluxF (# m−2 s−1) of ordinary water
molecules to an ice surface is (e.g., Nelson and Baker, 1996)

F =
ν

4
β(σS,TS)(NS−NEQ) ≡

ν

4
β(σS,TS)NEQσS, (1)

wherev is the mean vapor-molecule speed,NS is the vapor
number density at the surface (molecules m−3), NEQ is the
equilibrium vapor number density (a function of the surface
temperatureTS), σS is the surface supersaturation, andβ(σS,
TS) is the deposition coefficient function, a measure of the
probability that an incident molecule to the surface reaches
and attaches to a growth site on a surface step. In general,
β is nearly 0 at the lowestσS because few steps are gener-
ated, but rises to nearly 1 (assuming an efficient attachment
process) as step generation increases at highσS. The exact

dependence onσS andTS will depend on whether the crys-
tal face is basal, prism, or some other orientation. Through
Sect. 3, we assume all faces are identical and thus described
by just oneβ-function. Then we consider more realistic crys-
tals with two face types. But as the surface conditions are
unknown, we must writeσS andTS in terms of the far-field
(environmental) conditionsσ∞ andT .

The surface supersaturation lies below the far-field value
σ∞ ≡ (N∞ −NEQ)/NEQ, whereN∞ is the far-field vapor
density, by an amount that depends on how the surface and
surroundings impede growth. Specifically,

σS=
σ∞

β(σS,TS)Z
, (2)

whereZ, a dimensionless number, is the total impedance
to growth discussed below (Kuroda, 1984; Yokoyama and
Kuroda, 1990; Nelson and Baker, 1996). Here and else-
where, the same relations also hold for each isotopologue,
whether HDO (i.e., HD16O) or H18

2 O, except with different
values of the quantitiesF , v, NS, NEQ, β, N∞, andZ. These
quantities thus have superscript “i”, which stands for either
“D”, for HDO or “18”, for H 18

2 O. We now turn toZ.
The total impedance equals the sum ofZV , the vapor dif-

fusion impedance,ZH, the thermal impedance, andZS, the
surface impedance. The vapor diffusion impedance arises
from the vapor diffusing through air to the crystal surface
(growth is faster without air) and increases in proportion to
the crystal size timesv/D (see Eq. A1, Appendix A). Larger
crystals are surrounded by larger vapor-depleted regions and
thus have greater impedance. As an example, at sea-level
pressure, a spherical crystal starting at 1-µm radius and end-
ing at 500 µm would have aZV value increasing from 7.5 to
3700. At lower pressures,ZV decreases in proportion to the
pressure decrease. The thermal impedance arises from the
temperature rise of the crystal, the temperature at which the
latent heating balances thermal diffusion to the surrounding
air. Its magnitude decreases rapidly with decreasing temper-
ature (in proportion toNEQ) and is less thanZV below about
−5◦C (Nelson and Baker, 1996). So to simplify the expres-
sions, we dropZH (though it can easily be added toZV) and
assumeTS= T .

The surface impedance equals the inverse of the deposition
coefficient:

ZS(σS,T ) ≡
1

β(σS,T )
(3)

(for brevity, we often drop the dependence onσS andT ).
This impedance results from an increase in surface-mobile
molecules that desorb from the surface. The number of such
molecules per area of surface exceeds the equilibrium value
because the supersaturated vapor produces a greater-than-
equilibrium flux of molecules to the surface and some of
the excess molecules do not reach (and incorporate into) a
strong-binding site on a surface step. That is, a molecule
may fail to reach a step, or having reached a step, fail to
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bind to the step. For surface processes to control growth, the
fraction of the incident molecules that reach a step should
be significantly below unity, meaning that the average step
spacing likely far exceeds the distance such a water molecule
migrates before desorbing.

3 Basic theory of surface-kinetic fractionation

Under constant conditions, the ratioχ of the number of iso-
topologue molecules to H2O molecules in the crystal equals
the ratio of their respective net vapor fluxes to the surface.
From Eqs. (1) and (2), this ratio equals

iχ =
(iN∞ −

i NEQ)

NEQσ∞
id

1+z

1+ iz
, (4)

wherez ≡ ZS/ZV andid ≡ D/iD, the ratio of the vapor dif-
fusion constants. (In general,χ will vary during growth as
conditions change.) But, by definition of the equilibrium
fractionation coefficientiαS (JM, Eq. 7), the corresponding
isotopic number ratio in the vapor differs from that in the
solid by the equilibrium fractionation ratio for ice:

iNEQ

NEQ
=

iχ

iαS
. (5)

(Formulas in Jouzel (1986) foriαS are ln18αS =

11.839/T −28.224×10−3 and lnDαS = 16 288/T 2
−9.34×

10−2, which are from the original experiments of Majoube
(1970) and Merlivat and Nief, 1967). We define the nonequi-
librium fractionation coefficientiα like that in Eq. (5) except
with the far-field, non-equilibrium, vapor density:

iN∞

N∞

=

iχ

iα
. (6)

Using Eqs. (4), (5), and (6) to eliminateiNEQ, iN∞, and
iχ , one gets

iα =
1+σ∞

1
iαS

+σ∞
id 1+iz

1+z

, (7)

which is our fundamental result. Hereafter, to reduce the
amount of notation, the superscript “i” will be removed un-
less needed (e.g., to distinguishz from iz andβ from iβ) or
if a result pertains only to one isotopologue.

Three limits of Eq. (7) stand out: the equilibrium limit,
the KF limit, and the surface-kinetic limit. (Regimes 1–3 in
DePaolo’s (2011) terminology.) In the first,α → αS when
σ∞ → 0. In the KF limit, the surface impedances vanish
(z,i z → 0) giving

αKF =
1+σ∞

1
αS

+σ∞d
, (8)

which shows that KF fractionation occurs wheneverd 6=

1/αS. Equation (8) agrees with JM’s result, though they

wrote the equivalent expression asαK · αS. (Fisher (1991)
does a more detailed analysis of the temperature difference
between crystal and air, but the result is nearly indistinguish-
able from the KF result.) Finally, in the surface-kinetic limit
(z,i z � 1), writing x ≡ β/iβ andy ≡ v/iv

αSK =
1+σ∞

1
αS

+σ∞yx
, (9)

showing that surface fractionation occurs whenx 6= 1/yαS
and the results should deviate from the KF case whenx 6=

d/y. Values of these quantities are in Table 1.
Thus, fractionation depends on four factors:αS, d, y, and

x. Physically,αS arises from different isotopic rates of des-
orption of an equilibrium distribution of water species on the
ice surface. But under supersaturated conditions, vapor flows
to the ice surface, producing additional fractionation due to
different isotopic rates of vapor diffusion (d), molecular im-
pingement to the surface (y), and desorption from the surface
(x). The isotopic desorption rates change because the surface
has a greater-than-equilibrium concentration of mobile water
species; the species with a lower deposition coefficient will
have a greater increase in mobile molecules on the surface,
and thus a corresponding increase in desorption rate. Finally,
of these factors, the first three are nearly unity (Table 1) and
independent of supersaturation. However,x may vary with
supersaturation and temperature, but is presently unknown.
Here, we assume a range of 0.8 ≤ x ≤ 1.2 as described in
Appendix B.

For surface-kinetic fractionation to be significant, the sur-
face impedance must roughly equal or exceed the vapor
impedance. To determine the surface impedance, we must
estimateβ, which depends onσS andT . We can approxi-
mate various functional forms using two parametersσ 1 and
n as

β(σS,T )= (
σS

σ1(T )
)n(T ), (10)

wheren > 0 andσ 1 is a characteristic supersaturation that
depends on temperature and surface properties of the crystal
facet. (We do not use an analogous equation foriβ because
Eq. (10) reflects the generation of growth steps, which is con-
trolled by ordinary water, the dominant molecular species.
For iβ, we assume a fixedx as discussed in Appendix B.)
Equation (10) is a simplification of that introduced in Nelson
and Baker (1996), but shows the same basic features;n = 1
describes growth via a single screw-dislocation when the air-
pressure is low, and largen describes growth by layer nu-
cleation. For example, in a study of critical supersaturations
for layer-nucleation growth,σ 1 varied between 0.0015 and
0.025 for the basal face as the temperature decreased between
−1 and−16◦C (Nelson and Knight, 1998). The value may
be higher at lower temperatures. (Nelson and Baker (1996)
included a second factor in Eq. (10), but its omission has neg-
ligible effect in atmospherically relevant calculations.) For a
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Table 1. Fractionation factors in Eqs. (8) and (9).

α−1
S (0◦C) α−1

S (−20◦C) y∗ d∗∗ (yαS)−1 (−20◦C) d/y

H18
2 O 0.985 0.982 1.054 1.029 0.932 0.976

HDO 0.883 0.852 1.028 1.025 0.829 0.997

∗ Calculated usingv ∝ 1/
√

mass.
∗∗ From Merlivat (1978). Newer values are 1.032 and 1.016 (Cappa et al., 2003).

specific set of conditions, the values ofβ andσS are deter-
mined by combining Eq. (10) with Eqs. (2) and (3). When
n equals 1 or 2, one can solve forβ analytically and deduce
σS, but cases with largern (e.g., layer-nucleated steps) re-
quires a numerical method. Numerical results are described
in Appendix C and used in the calculation ofz for Fig. 1. We
now show the results.

Of the two variable factors that affectα, the surface
impedance ratioz can vary the most. As shown in Fig. 1,
z decreases with increasing crystal size (becauseZV in-
creases), and by comparing curves, note thatz also decreases
whenσ∞ increases (withσ 1 fixed). Conversely,z increases
with an increase in eitherσ 1 or n (becauseZS increases).z
also increases with elevation due to the air-pressure depen-
dence of the diffusion constant.

Large z values produceα values that deviate from the
KF prediction. For example, at relatively high surface
impedance, as in the upper “beaded” curve in Fig. 2 (z > 3
over the entire supersaturation range), the fractionation lies
above the KF value becausex = 0.95, which is less than
d = 1.03. But, asx is not below 1/αS, the fractionation
does not exceed the equilibrium value, instead lying roughly
halfway between the KF and equilibrium values. In general,
when x < 1, the deposition coefficient of the isotopologue
exceeds that of regular water, making the ice richer in isotope
by an amount that depends onz. Similarly, whenx > d, the
surface fractionation acts in the same direction as KF, driving
the degree of fractionation even lower. For example, whenx

is instead 1.05, the fractionation lies distinctly below the KF
curve (Fig. 2, lower beaded curve). In this case, the fraction-
ation fromy acts together with that fromx, increasing the
effect.

If x deviates further from unity,z need not be large for
surface fractionation to have a large effect. For example,
with middling values ofz, the fractionation exceedsαS when
x = 0.8 (Fig. 2, top curve). And whenx = 1.2, the sur-
face fractionation may lie below the KF value by an amount
nearly double the amount KF lies below the equilibrium
value (Fig. 2, bottom curve). In contrast, at low surface
impedance, the fractionation remains close to the KF value
even when thex value deviates 20 % from unity.

Fig. 1. Relative influence of the surface impedance for a range of
vapor impedances (from Eqs. C1, C2). Each curve represents a
crystal with the labeled surface parameters. Crystals in the grey
zone (z ≥ 1) likely have fractionation values significantly affected
by surface processes, whereas those in the white zone (z ≤ 0.1) will
likely not be affected. The case for the hatched region depends on
the ratiox. Crystal diameter values on the top scale assume the
equation forZV of a sphere at 1000 mbar (see Appendix A).

4 Surface-kinetic fractionation to realistic crystals

4.1 Cylindrical crystals

We now make the model more realistic by considering crys-
tals shaped as tabular or columnar cylinders. In addition to
introducing the variable height/width ratio (aspect ratio), the
cylinder case has two distinct faces, with the top/bottom, or
“basal” face having fractionation valueαB, and the side or
“prism” face having valueαP.

The formulas forαB andαP follow from Eq. (7) with the
appropriate substitution; for example, forαB, we substitute
zB for z and izB for iz. ConcerningzB andzP, the surface
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Fig. 2. Calculated H18
2 O fractionation coefficients18α for com-

pletely facetted ice growing from the vapor at−20◦C, a fixed crys-
tal size, and a range of supersaturationsσ∞. Dotted and dashed
lines show equilibrium and KF fractionation values. Deviations
from the KF prediction depend onx =β/iβ, which is assumed con-
stant, andz = ZS/ZV , which decreases with increasingσ∞. Light,
beaded curves have the highestz values considered here, exceed-
ing 3.1 at allσ∞ (ZV = 100, σ1 = 0.5, n = 10). The two “low
z” curves havez values below 0.1 whenσ∞ ≥ 0.05 (ZV = 1000,
σ1 = 0.2, n = 1). The uppermost and lowermost curves have mid-
dling z values, exceeding 1 whenσ∞ ≤ 0.2 (ZV = 1000,σ1 = 0.4,

n = 5).

impedances equal the reciprocals ofβB and βP, just as in
the sphere case, but the vapor impedances are more complex,
depending not only on crystal size, but also on shape and rate
of shape change as discussed in Appendix A.

To determine values forαB,P, one must know the depo-
sition coefficients, which means determiningσS. But with
a nonspherical crystal such as the cylinder,σS varies along
the surface, so whichσS value determinesβ? The appro-
priateσS value forβ (in Eq. 10) is the point of highestσS
because this point determines the growth rate (e.g., Wood et
al., 2001). This point is usually the edge of the facet (unless
some face has essentially stopped growing, Nelson, 2001).
Here, we assume this is the case for both the basal and prism
facets. As a result, theσS value solves

σS=
σ∞

1+βB(σS,T )ZVB
=

σ∞

1+βP(σS,T )ZVP
, (11)

which is similar to Eq. (2).
To get the mass-averagedα, one multiplies each coeffi-

cient by the mass-uptake (flux times facet area) on the corre-
sponding facets:

α = αB
γ

γ +20
+αP

20

γ +20
, (12)

whereγ ≡ βB/βP is the growth-rate ratio (Nelson and Baker,
1996). For example, in steady-state,γ = 0, and thus 2/3 of
the mass enters via the prism faces. But in general, a range of
fractionation values can occur, depending on the crystal as-
pect ratio, the growth-rate ratio, and the fractionation to each
face. The last factor depends on the ratios of the deposition
coefficient functionsxB ≡ βB/iβB andxP≡ βP/iβP.

The results show that the crystal shape affects fraction-
ation at highz, but mostly through the parametersxB and
xP. For example, whenz > 2.5 (all solid curves in Fig. 3),
yet both facets have the samex ratio of 1.05, the fraction-
ation coefficient is only slightly less than the sphere result
– the sphere and cylinder results are nearly identical. This
is shown by curve 1 in which0 =γ = 10. At larger0, the
fractionation coefficient decreases further, though the effect
remains relatively small. Larger influences onα can occur
whenxB 6= xP. In particular, for steady-state growth (γ =0)
with 0 = 10, fractionation decreases whenxP> xB (curve 2),
even though their average still equals 1.05 because in steady-
state, most mass enters through the prism face, which has an
xP value of 1.1.

However, growth is rarely steady. Instead,0 deviates fur-
ther and further from unity during growth (Takahashi et al.,
1991), meaningγ ≥ 0 for columns andγ ≤ 0 for plates.
In the non-steady-state case of curve 3, most mass enters
through the basal face, which hasxB = 1.1, bringing the
curve lower. Similarly, when most of the mass enters through
the prism face andxP = 1.1, as in the tabular-crystal case in
curve 4, then the fractionation coefficient is significantly be-
low that of the sphere. These cases (2–4) show deviations in
α below that of an equivalent sphere ofx = 1.05 because the
face with most of the mass uptake hadx > 1.05. If instead
they hadx < 1.05, then the resultingα value would be above
that of a sphere.

These cylinder results emphasize what we found with
the sphere: when the surface impedance dominates, small
changes inx can introduce relatively large variations in frac-
tionation coefficient. For the cylinder, this applies to small
changes inx on the facets that dominate growth. As the crys-
tal shape itself has little influence on fractionation, this result
should apply to polycrystals and any other crystal bound by
facets.

4.2 Incompletely facetted crystals

Stellar and hollowed crystals are incompletely facetted,
meaning that some of the mass uptake comes from non-
facetted (NF) regions. For this case, we need an extra term
in Eq. (12):

α = αBMB +αPMP+αNFMNF, (13)
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Fig. 3. Fractionation coefficient18α for fully facetted cylindrical
crystals atT = −20◦C. All cases had the same averagex, the same
volume (givingZV = 300 for the equivalent sphere) and growth pa-
rametersσ1 = 0.5 andn = 10 on the fastest-growing face (same as
beaded curves in Fig. 2). Cases 1–3 are columnar crystals with0

= 10, whereas case 4 is a tabular crystal with0 = 0.1. Crystals in
cases 1 & 2 grow under steady-state growth, whereas 3 & 4 grow
with increasing shape anisotropy. For cases 2–4, switching values
of xB andxP would yield curves above that shown for the sphere.

whereMj stands for the fraction of mass uptake that occurs
through face type “j ” andαNF equals the fractionation coef-
ficient for non-facetted regions. The latter coefficient should
equalα in the limit β → 1, and thus nearly equalαKF.

For stellar or dendritic crystals, it is hard to accurately es-
timateMP andMNF without newer, more careful measure-
ments. I attempted such an estimate in Nelson (2005), us-
ing the measurements of Takahashi et al. (1991), and found
thatMNF varied between 0.77 and 0.87 for crystals between
−13.3 and−16.8◦C. Thus, most of the mass uptake on such
crystals occurs on the non-facet regions.

A similar difficulty occurs with hollowed columns, except
the problem instead lies in estimatingMB andMNF. How-
ever, if we assume that the hollowed regions are cylindrical
cones extending to the crystal center, and if the volume of the
hollows remain a fixed fractionK of the volume of the equiv-
alent non-hollowed crystal, then the resulting mass-uptake
fractions can be shown to equal

MB =
γ

γ +20

1−3K

1−K
,

MP=
20

γ +20

1

1−K
,

MNF =
2K

γ +20

γ −0

1−K
. (14)

When the hollow extends across the entire basal face,K has
its maximum value of 1/3. In this case,MB = 0 and the frac-
tion of mass uptake by the non-facet regionMNF has its max-
imum value, a value that depends onγ /0 . Using the mea-
surements for hollow columns at−5.3◦C from Takahashi et
al., 1991,γ /0 = 5.4, givingMNF = 0.6. As the hollows did
not appear to extend across the basal faces, this value may be
an overestimate. Nevertheless, significant amounts of uptake
likely occur in the non-facet regions of hollow columns.

5 Discussion

5.1 Is surface-kinetic fractionation consistent with
Antarctic snow composition?

We typically measure the isotopic content byδ, the rela-
tive deviation of the fractional amount of isotope in ice from
the SMOW (standard mean ocean water) standard (i.e.,δX

≡ (Xr −Xr-SMOW)/Xr-SMOW), whereXr is the ratio of iso-
topologue to ordinary water). Many measurements ofδ18O
have been made at the snow surface in Antarctica over re-
gions spanning a wide range of average annual tempera-
ture. According to the recent review of Masson-Delmotte
et al. (2008), coastal regions, with a mean ground-surface
temperatureTg of about−10◦C, have a meanδ18O level of
about−15 ‰, whereas inland plateau regions, with a mean
temperature near−60◦C, haveδ18O near−55 ‰. The best-
fit relation is

δ18O[‰] = 0.8Tg−8.11, (15)

with individual data points varying from the relation by about
±7 ‰. (Other regions have a different relation. See e.g.,
Johnsen et al., 1989.) We now ask if the new surface-kinetic
α is consistent with the above relation.

Here we follow the procedure in JM and show thatα

can be made consistent with Eq. (15) by finding a reason-
able supersaturation-temperature curve. As in JM, assume a
Rayleigh process in which ice crystals grow solely by vapor
deposition. Specifically, as a parcel of air with vapor mixing
ratio mv and temperatureT cools and precipitates, the iso-
topic content of the new precipitate changes as (see e.g., JM,
Salamantin et al., 2004)

dδ

dT
≈ (1+δ)(α−1)

d ln[mv]

dT
, (16)

where a much smaller term (∝ dα/dT ) has been dropped.
To determine aδ18O-T relation, one must integrate Eq. (16)
along the condensation path from an initial temperature
to a colder, final temperature, specifying the temperature-
dependence of the supersaturation and air pressure. As in
JM, we will assume the air parcel travels along a temperature
inversion, beginning at−10◦C, gaining elevation and cool-
ing as it moves inland such thatP [mb] = 1095+19.14T +

0.1857T 2. At the inversion, the temperature relates to the
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ground temperature asT [◦C] = 0.67Tg−1.2. With this rela-
tion, one can convert the integratedδ18O-T curve to aδ18O-
Tg curve to compare with Eq. (15). By following this proce-
dure, and adjusting the supersaturation-temperature relation,
I fit the data in Eq. (15).

The general trend in the resulting supersaturation can be
readily estimated. For the above trajectory, the rightmost
factor in Eq. (16) ranges from approximately 0.07◦C−1 at
−10◦C to 0.12◦C−1 at −50◦C, being nearly independent
of supersaturation. Given that 1+ δ ≈ 1, this means that, to
give the slope of 0.8 ‰◦C−1 in Eq. (15),α−1 must decrease
from about 0.017 to about 0.010 over the same temperature
change. This decrease inα means that the supersaturation
should increase, but at a rate that depends on the slope of
α(σ∞).

For the three cases considered, the fitted supersaturation
curves lie below the liquid-water saturation value for all but
the lowest temperatures (Fig. 4). Such supersaturations rep-
resent averages over the growth of a crystal, and thus would
occur when the crystals are initially surrounded by many
droplets that later evaporate. Conversely, the supersatura-
tion may be steady, yet contain little-to-no liquid water. With
the KF kinetic-fractionation coefficient, the supersaturation
curve in the figure is roughly one-half of the liquid-water
value, which is consistent with the analysis in JM. But with
the surface-kinetic fractionation curve forx = 0.95, theα

value at a givenσ∞ is larger (see Fig. 2), which means that
to have the sameα value, the supersaturation value must be
larger. Thus the curve for this case is higher. For the same
reason, the supersaturation curve forx = 1.05 lies below that
of the KF case.

These surface-kinetic examplesα(σ∞) represent idealiza-
tions; in general, the value ofα will also vary depending on
the degree of faceting, the crystal size, and any explicit tem-
perature or supersaturation dependences of the surface pa-
rameters. Still, the examples help constrain the likely range
of x. For example, of the two cases,x = 1.05 appears more
consistent with observations thanx = 0.95 for two reasons:
(i) the large value ofz, which was assumed, is unlikely at
the high supersaturation needed in thex = 0.95 case (Fig. 1
showsz to decrease whenσ∞ increases), and (ii) the cloud
supersaturation cannot exceed liquid-water saturation, as it
does for thex = 0.95 case (and below the homogeneous
freezing point at−40◦C, it must lie below liquid water sat-
uration). Moreover, at Dome Fuji, where the mean annual
temperature is about−55◦C, about 53 % of the precipita-
tion is from diamond dust (Fujita and Abe, 2006), which
likely grew at relatively low supersaturations. And the low
supersaturations are consistent with thex = 1.05 case. Fi-
nally, the average supersaturation slope of thex = 1.05 case
equals 0.0028◦C−1, which is close to the slopes of 0.0038
and 0.0020◦C−1 that Masson-Delmotte et al. (2008) used to
fit surface data. Therefore, surface-kinetic fractionation is
consistent with measuredδ18O trends, and the analysis sug-
gests thatx ≥ 1.

Fig. 4. Inferred supersaturation dependence to fit surface measure-
ments ofδ18O (Eq. 15). The three lower curves, when used in the
integration of Eq. (16) with theα functions of Fig. 2 of the same la-
bel, result inδ18O values equal to those in Eq. (15). The top curve
is the supersaturation of a cloud of water droplets.

The surface-kinetic aspects of fractionation can add, or
subtract, to the sensitivity thatδ-values in precipitation have
to supersaturation. To address how a variation in average
supersaturation could, through the change inα during frac-
tionation, produce scatter from the curve given by Eq. (15),
notice that the predicted change will equal the change in tem-
perature1Tg times the change in slope (1dδ/dT ) caused by
the supersaturation change (neglecting other factors that may
changeα). Using Eq. (16) and setting 1+δ to 1, this is

1δ[‰] ≈ 1000·0.671Tg1σ
dα

dσ

d ln[mv]

dT
, (17)

where the factor of 1000 arises from the conversion to ‰
units and the 0.67 from the conversion to ground tempera-
ture. The next factors1Tg1σ represent the average varia-
tion in supersaturation for precipitation that fell to the ground
over a distance that spans a ground-temperature change1Tg.
As theδ18O data comes from snow that fell over a season or
more,1σ should be much less than liquid-water saturation
(the maximum variation possible), and moreover should be
smaller for larger1Tg. Reasonable values are1Tg = 10◦C
and1σ = 0.1. The last two factors in Eq. (17) depend on
the α(σ∞) curve: forx = 0.95, the product is 0.0016; for
x = 1.05, the product is larger, at 0.0092; and for the KF
curve, the value lies between the two surface-kinetic cases,
at 0.0035. The resulting product gives variations inδ18O that
range from 1.1 to 6.2 ‰, which are less than the observed
variation (∼7 ‰). These observed variations inδ18O likely
arise from a range of sources, not only supersaturation varia-
tions, so the analysis shows that surface-kinetic fractionation
predicts scatter in ground-levelδ18O that is consistent with
observations.

Finally, the two surface-kinetic examples here are based
on the assumption thatz is large, which is unlikely to hold
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over wide temperature-supersaturation regimes. Thus, unless
the value ofx is either larger than 1.05 or less than 0.95, the
effects of surface-kinetic fractionation will deviate from the
KF standard less than those analyzed here. So, within the
current uncertainties of ice-crystal growth and the value of
x, the predicted trends from surface-kinetic fractionation are
consistent with observations of Antarctic snow composition.

5.2 The need for new measurements

As the previous section showed, having a surface-kineticα

value that differs from the presently usedαKF means that
the inferred cloud supersaturationsσ∞(T ) (e.g., curve “KF”
in Fig. 4) must be recalculated, but the empirical relation
(Eq. 15) remains unchanged. Thus, if the empirical relation
is used for a simple temperature reconstruction, then surface-
kinetic fractionation changes nothing. However, a more reli-
able approach to past climate reconstruction involves numer-
ous modeling considerations (see e.g., Sturm et al., 2010),
including estimating how the season, the climate, and the at-
mospheric circulation pattern would change theσ∞(T ) re-
lation. As the surface-kinetic theory requires a change to
the inferred supersaturations that may reach 20 % or more
(Fig. 4), such changes to the modeledσ∞(T ) relation would
affect climate reconstructions with surface-kinetic fractiona-
tion. Thus, implications of the newα values on past climate
reconstructions are potentially significant, but presently hard
to judge.

But existing measurements ofα are inconclusive. Pre-
vious vapor-to-ice fractionation experiments are limited to
measurements ofα on largely non-facetted crystals. Specif-
ically, Jouzel and Merlivat (1984) exposed a−20◦C surface
to water vapor at 20◦C, conditions that produce highly den-
dritic frost crystal forms. Later, Uemura et al. (2005) ana-
lyzed similarly dendritic frost forms. Thus, although those
experiments were appropriate for testing the KF model, they
cannot be used to understand surface-kinetic fractionation on
largely facetted crystals. Instead, to test this model, we need
new experiments on completely facetted crystals.

Moreover, becauseα depends on bothT andσ∞, if we
measure the dependence for both HDO and H18

2 O, one could
then, in principle, use observedδ18O andδD values to infer
both the deposition temperature and supersaturation of an ice
sample.

6 Conclusions

Unlike the kinetic-fractionation (KF) theory, the surface-
kinetic theory includes potentially important surface pro-
cesses on facetted ice crystals. When the surface impedance
to growth is low, both the kinetic and surface-kinetic mod-
els give similar predictions, showing significant deviations
to equilibrium fractionation at moderate-to-high supersatu-
rations. In contrast, when the surface impedance is compa-

rable to the vapor impedance, the fractionation coefficient
depends sensitively on the ratio of the deposition coefficient
functions for the ordinary and isotopologue water molecules,
giving results that deviate sharply from kinetic fractionation
results. Such conditions should hold during the growth of
facetted crystals, and since facetted crystals are common in
the atmosphere, the new theory should apply to some cases
in which the KF theory has previously been used. However,
before the new theory can be applied to the atmosphere, we
need to either measure the effect directly or experimentally
determine the relevant deposition coefficient functions over
a range of temperatures and supersaturations.

Appendix A

The vapor impedances

The vapor impedance depends on the crystal shape. For a
spherical crystal

ZV ≡
rν

4D
, (A1)

wherer is the radius of the crystal. For a cylindrical crystal

ZVB = rBhBE+rPhPE
βP

βB
(A2a)

and

ZVP = rBhBE
βB

βP
+rPhPE, (A2b)

whererB, rP, hBE, hPE are from Nelson, 2001, with the fol-
lowing slight changes. HererB = ZV(2/30)1/3/21/2 andrP=

ZV(2/30)1/301/2 are normalized sizes of the top-bottom
(basal) and side (prism) faces, with0 the column length di-
vided by its diameter. Physically,rB is the radius of a sphere
having the same area as the basal faces of the cylinder, scaled
by the distance 4D/v. For easier comparison to the spherical
case, it is written in terms ofZV for a sphere of the same
volume. Similarly,rP is the scaled radius of the sphere with
the same area as the prism faces of the cylinder. The twoh

functions fit

hBE(0) (A3a)

=
√

2×10−0.1315Tanh[0.8060{Log(0)+0.1854}−0.0639Log2(0)]−0.3314

and

hPE(0) (A3b)

= 0.6902·0−0.5+1/[1.932+0.4976Log(0)+0.1058Log2(0)].

(In Nelson, 2001, theh values are half the above, but the
productrh is unchanged). Wood et al. (2001) showed that
the above basis functionsh are very nearly the same as the
corresponding basis functions for a hexagonal column of the
same aspect ratio.
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Appendix B

Estimated range ofx

Due to the complexity and unknown nature of the ice surface,
one can make only crude estimates of the possible range of
the deposition-coefficient ratiox. Now, each deposition co-
efficient β is a product of two factors: the probability that
a water molecule (or water isotopologue) reaches a growth
step after landing on the surface and the probability of in-
corporating into the crystal after reaching the step. Thus, as
x is a ratio of theβs, we can considerx as the product of
two ratio factors: one, the ratio of probabilities of reaching a
growth step and two, the ratio of incorporation probabilities.

Assuming, as is expected, that the deposition coefficients
are much less than unity, we can equate the first factor to the
ratio of surface migration distances (see e.g., Yokoyama and
Kuroda, 1990). The surface migration distance equals the
square root of the surface diffusion constant times the mean
surface residence time (Burton et al., 1951). This diffusion
constant should be inversely related to the molecular mass, as
it is for gas-phase diffusion (e.g., Cappa et al., 2003). Indeed,
Livingston et al. (1997) found that the square root of the ratio
of bulk diffusion constants of HDO and H18

2 O into ordinary
ice at 163 K equaled 1.3. Thus, if this surface-diffusion ratio
dominatedx, then we would expectx > 1. However, surface
diffusion differs from bulk diffusion and the mean residence
time could instead makex < 1 if the heavier molecule had
the greater residence time.

In addition, this first factor could be highly temperature
dependent. For example, measurements of the migration dis-
tance of ordinary water on the basal face of ice (Mason et
al., 1963) indicated that it varied rapidly with temperature,
decreasing by a factor of five when temperature decreased
from −2 to −6◦C, and then increasing again by the same
factor from−6 to−12◦C. If the corresponding curve for the
isotopologue on regular ice is similar in shape, but shifted to
higher temperature in accordance to the higher melting tem-
perature of isotopic ice, then this factor could be as small as
0.2 or as large as 5.0. Such large deviations from unity, how-
ever, may be unlikely, and may apply only to the basal face
– we have yet no corresponding measurements for the prism
face of ice.

In contrast, given that the isotopologue differs from reg-
ular water, and that foreign molecules do not readily incor-
porate into bulk ice, we expect the second factor to produce
x > 1, though the effect may be very small. Thus, the first
factor probably dominates the behavior ofx, and it may be ei-
ther less than or greater than unity, but probably not by much.
Here, we consider only the possible range 0.8≤ x ≤ 1.2.

Appendix C

Analytic fit for surface impedance

According to Eqs. (3) and (10),ZS depends directly onσS,
a quantity we can know only indirectly. To estimateσS,
and thusZS, we can apply root-finding methods to Eq. (2).
The result will depend on the other variables in the equa-
tion, namely the directly measurable quantitiesσ∞, T , and
r, as well as surface parametersn andσ 1. By using such a
method, I found an approximate formula forZS/ZV in terms
of these other variables. Specifically, if we use the derived
parameter

8 ≡ (
σ∞

σ1
)Z

1
n

V , (C1)

then the resulting fitted function is

ZS

ZV

≡ z(8,n) = 1.5n
8−n/(n+1)+1/4

Log(1+1.5n8n2/(n+1)+1/4)
. (C2)

Equations (C1) and (C2) estimate 1+z within 5 % of the
exact value for the range of atmospherically possible values
of n and8, (i.e., 1≤ n ≤ 50, 10−1

≤ 8 ≤ 105), but it ap-
plies only to crystal shapes approximated by a sphere (i.e.,
equiaxial, facetted crystals). The equations show that when
σ 1 > σ∞ and n is large, z → (σ∞/σ 1)

−nZ−1
V , which be-

comes large. In contrast,z decreases asσ∞ increases. Fig-
ure 1 shows both of these trends. Moreover, asZV increases
during growth,z will decrease. Finally, using Eq. (10), one
can show that the reduction in supersaturationσS/σ∞ de-
pends only onn and8.
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