Atmos. Chem. Phys., 11, 11351136Q 2011 iy —* -

www.atmos-chem-phys.net/11/11351/2011/ Atmospherlc
doi:10.5194/acp-11-11351-2011 Chemls_try
© Author(s) 2011. CC Attribution 3.0 License. and Phys|cs

Theory of isotopic fractionation on facetted ice crystals

J. Nelson
Laucks Foundation Inc. Suite 2100, PMB 174, 1700 Seventh Ave., Seattle, WA 98101, USA

Received: 8 May 2011 — Published in Atmos. Chem. Phys. Discuss.: 21 June 2011
Revised: 15 October 2011 — Accepted: 30 October 2011 — Published: 16 November 2011

Abstract. The currently used “kinetic-fractionation” (KF) causal relation between surface temperature and surface iso-
model of the differential incorporation of water-molecule topic content is complex (see e.g., Masson-Delmotte et al.,
isotopologues into vapor-grown ice omits surface processe2008; Sturm et al., 2010), as it depends on the isotopic con-
on crystal facets that may be important in temperature retent of the oceanic vapor source, the path of the prevailing
constructions. This article introduces the “surface-kinetic” weather system, and the conditions along this path that pro-
fractionation model, a model that includes such surface produce fractionation to precipitating crystals. As these factors
cesses, and shows that differences in deposition coefficientikely change during climate changes, the goal of improving
for water isotopologues can produce isotopic fractionationtemperature reconstructions from ice cores involves gaining
coefficients that significantly differ from those of KF theory. a better understanding of the relevant processes. Here the
For example, if the deposition coefficient oﬁﬂ) differs by  aim is to better understand how isotopic fractionation during
just 5% from that of ordinary water @§0), the resulting ~ vapor growth to precipitating ice crystals depends on temper-
fractionation coefficient at 20 % supersaturation may deviateature and supersaturation.

from the KF value by up to about17 %o, and even more The earliest fractionation theory, equilibrium fraction-
at greater supersaturation. As a result, the surface-kineti@tion, depended only on temperature. In this theory,
theory may significantly change how fractionation dependsthe isotopologue sublimates from the crystal at a slower
on supersaturation. Moreover, the model introduces possi{temperature-dependent) rate than ordinary water, enriching
ble new temperature dependencies from the deposition cathe crystal in the heavy isotope. Butin 1984, Jouzel and Mer-
efficients. These parameters need to be constrained by nelivat, hereafter “JM”, showed that this theory disagrees with
laboratory measurements. the measured isotope content in surface-snow in Antarctica.
By recognizing that growth was, by definition, nonequilib-
rium, they replaced the equilibrium fractionation coefficient
with a supersaturation-dependent, nonequilibrium kinetic-
fractionation (KF) coefficient. Then, by selecting the right

Ever since the late 1950s, the fractionation of isotopes duriniloud—supersaturatlon-temperature relation, their KF model
ould fit the surface-snow data.

the vapor deposition of ice has been used to make tempera- But the KE tcient | ; that
ture reconstructions from ice cores (see e.g., Langway Jr. ut the coetlicient Ignores surface processes that are
2008). Reconstructions are possible because surveys in pol Fumal to the growth of faggtteq crystals. Ar)d facetted crys-
regions have found empirical relations between the isotopicals are common. - Precipitating cr_ystals n _polar regions
9., Lawson et al., 2006), crystals in many cirrus and other

content in surface snow and the mean surface temperature éui h clouds, as well as surface hoar often consist of mainl
the region. With such a relation, the measured isotopic con-, 9 ’ ANty
acetted forms. Moreover, surface processes are crucial to

tent from ancient ice in cores extracted from the same regio ) o ) ! ) ;
e “surface-kinetic” model of isotopic fractionation for cal-

can be used to estimate trends in past surface tem eraturé )
P P ite growth from aqueous solution (DePaolo, 2011). If we

(e.g., Dansgaard et al., 1969). Fundamentally, however, th?nclude surface processes for facetted ice growth from the

vapor, how much might the fractionation coefficient change?
Correspondence tal. Nelson And could this change affect temperature reconstructions?
BY (jontne@gmail.com)
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This paper develops the surface-kinetic theory of isotopicdependence oas and Ts will depend on whether the crys-
fractionation for ice growth from the vapor. Due to the in- tal face is basal, prism, or some other orientation. Through
fluence of surface processes, the fractionation coeffitfent ~ Sect. 3, we assume all faces are identical and thus described
for isotope'®0 differs from the KF prediction by an amount by just ongg-function. Then we consider more realistic crys-
that may be as large als17 %.. As described in Sect. 5, this tals with two face types. But as the surface conditions are
difference could change the inferred cloud supersaturatiorunknown, we must writers and7s in terms of the far-field
by 20% or more, which could have a significant effect on (environmental) conditions ., andT.

temperature reconstructions. Thus, new experiment$on The surface supersaturation lies below the far-field value

andPu (for deuterium) for facetted ice crystals are greatly oo = (Noo — Ne@)/Neq, where Ny, is the far-field vapor

needed. density, by an amount that depends on how the surface and
surroundings impede growth. Specifically,

2 Background og= —2 @)

" BlosT9Z’

where Z, a dimensionless number, is the total impedance
to growth discussed below (Kuroda, 1984; Yokoyama and

The surface of growing atmospheric ice crystals often Con_Evﬁgiia’thlegigﬁzisl(;l:ioinsdallssikﬁgl dligf)elaciei;%tznglslsu(:
sists of crystalline facets, sometimes wholly so, which in- heth(’ar HDO (i.e., HEPO) or HfO, except with diffeprentg '
dicates a reduction of growth rate from surface processe%f/values of the quér{t’itieE v N I—II\Z}EQ,ﬂ N P andZ. These
(Nelson and Baker, 1996). Briefly, the vapor density adja- i A A o

cent to a flat surface on a small particle cannot be uniformf]gf1 r;tltlf_'SDthS hi‘ge ?upﬁrlssglp\g\,/ which stands for either
(Frank, 1982), and the nonuniformity would produce nonuni- T'hgrtotal in?redan’cgre Sals. th:;?nwﬂgijf”t]rfgzv.a or dif-
form growth unless surface processes produce a compen&’:‘ttu—:sion im edaf’)]cez theqthermal im eda’nce a% the

ing nonuniformity in the molecular rejection rate. Moreover, surface ir[‘:\ edanceH' The vapor diffl?sion im ,edan’ce arises
without such surface processes, an initially spherical frozer}rom the vg or diﬁﬁsin throﬂ h air to the cFr) stal surface
droplet would remain spherical as the crystal grew until being rowth is fa?ster withou% air) ar?d increases iny roportion o
perturbed by a sufficiently large temperature or vapor-densit tge crystal size times/D (see Eq. Al Appendipr) pLarger

non-uniformity, after which rounded protrusions would de- .
y P crystals are surrounded by larger vapor-depleted regions and

velop (as occurs in melt-grown ice). What we instead ob-th < have areater impedance. As an example. at sea-level
serve is that initially spherical frozen droplets develop facets u Ve g imp : xample, v

. . ressure, a spherical crystal starting at 1-um radius and end-
and then grow into a great variety of facetted shapes. Thu - .
9 9 y P S‘lF?)1g at 500 pm would have 4y value increasing from 7.5 to

the existence of facets, however small, indicates the control- . .
§700. At lower pressuregy decreases in proportion to the

affect the incorporation of ordinary water into ice, they are pressure decrlease. The thermal impedance arises from .
temperature rise of the crystal, the temperature at which the

likely to also affect the incorporation of water isotopologues.I tent heating bal i | diffusion to th di

That is, surface processes should affect isotopic fractionaz o' "ealNg baiances thermal diiusion 1o e surrounding

tion air. Its magnitude decreases rapidly with decreasing temper-

' ature (in proportion tdVgg) and is less thaZy below about

2.2 Crystal growth with vapor and surface impedances ~ —2°C (Nelson and Baker, 1996). So to simplify the expres-
sions, we drofZy (though it can easily be added Xy ) and

The net vapor fluxF (# m=2 s!) of ordinary water ~assumes=T. _ N

molecules to an ice surface is (e.g., Nelson and Baker, 1996) The surface impedance equals the inverse of the deposition
coefficient:

F= zﬁ(as, Ts)(Ns— Neq) = zﬂ(as, Ts) Neqos, 1) 1

Zs(os,T) = ———
wherev is the mean vapor-molecule speég is the vapor plos.T)
number density at the surface (molecules’n Neg is the  (for brevity, we often drop the dependence @gandT).
equilibrium vapor number density (a function of the surface This impedance results from an increase in surface-mobile
temperaturds), o s is the surface supersaturation, g#d s, molecules that desorb from the surface. The number of such
Ts) is the deposition coefficient function, a measure of themolecules per area of surface exceeds the equilibrium value
probability that an incident molecule to the surface reachedecause the supersaturated vapor produces a greater-than-
and attaches to a growth site on a surface step. In generakquilibrium flux of molecules to the surface and some of
B is nearly O at the lowests because few steps are gener- the excess molecules do not reach (and incorporate into) a
ated, but rises to nearly 1 (assuming an efficient attachmengtrong-binding site on a surface step. That is, a molecule
process) as step generation increases at dighThe exact may fail to reach a step, or having reached a step, fail to

2.1 Facetted growth implies regulation by surface
processes

©)
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bind to the step. For surface processes to control growth, thevrote the equivalent expression ag - «s. (Fisher (1991)
fraction of the incident molecules that reach a step shoulddoes a more detailed analysis of the temperature difference
be significantly below unity, meaning that the average stepbetween crystal and air, but the result is nearly indistinguish-
spacing likely far exceeds the distance such a water moleculable from the KF result.) Finally, in the surface-kinetic limit

migrates before desorbing. (z.,/z> 1), writingx = 8//p andy =v/'v
. 14+ 00 9
3 Basic theory of surface-kinetic fractionation USK= %Jr%oyx’ ©)

Under constant conditions, the ratoof _the number of iso- showing that surface fractionation occurs whe 1has
topologue molecules to #0 molecules in the crystal equals 4,4 the results should deviate from the KF case wheh
the ratio of their respective net vapor fluxes to the surface.d/y' values of these quantities are in Table 1.

From Egs. (1) and (2), this ratio equals Thus, fractionation depends on four factass;, d, y, and

i ((Noo—' Ngo) 1+2 x. Physically,as arises from different isotopic rates of des-

= Negosid 1412’ (4) orption of an equilibrium distribution of water species on the

ice surface. But under supersaturated conditions, vapor flows

wherez = Zg/Zy andid = D/ D, the ratio of the vapor dif-  to the ice surface, producing additional fractionation due to
fusion constants. (In generat, will vary during growth as  different isotopic rates of vapor diffusiod, molecular im-
conditions change.) But, by definition of the equilibrium pingement to the surface), and desorption from the surface
fractionation coefficientas (JM, Eq. 7), the corresponding (x). The isotopic desorption rates change because the surface
isotopic number ratio in the vapor differs from that in the has a greater-than-equilibrium concentration of mobile water
solid by the equilibrium fractionation ratio for ice: species; the species with a lower deposition coefficient will
; ; have a greater increase in mobile molecules on the surface,
'Neq X (5) and thus a corresponding increase in desorption rate. Finally,
Neq ‘'as of these factors, the first three are nearly unity (Table 1) and
independent of supersaturation. Howewemay vary with
supersaturation and temperature, but is presently unknown.
Here, we assume a range aBG x < 1.2 as described in
Appendix B.

For surface-kinetic fractionation to be significant, the sur-
face impedance must roughly equal or exceed the vapor
impedance. To determine the surface impedance, we must

(Formulas in Jouzel (1986) fofas are In8ag =
11.839/T —28.224x 1072 and IrPag = 16 28812 — 9.34 x
102, which are from the original experiments of Majoube
(1970) and Merlivat and Nief, 1967). We define the nonequi-
librium fractionation coefficiento like that in Eq. (5) except
with the far-field, non-equilibrium, vapor density:

iNeo iy estimateg, which depends oas and7T. We can approxi-
No iy (6) mate various functional forms using two parametersand

o

n as

Using Egs. (4), (5), and (6) to eliminat&/eq, ' No, and

Ix,one gets Blos,T) = (—=—yT), (10)
o1(T)
i l+ow . . .
O=— @) wheren > 0 ando is a characteristic supersaturation that
Tos +oc'd T depends on temperature and surface properties of the crystal

_ facet. (We do not use an analogous equation fopecause
which is our fundamental result._ .I'-|e_reafter, to reduce theEq. (10) reflects the generation of growth steps, which is con-
amount of notation, thg gupe_rscnpt Wwill be removed un- trolled by ordinary water, the dominant molecular species.
!ess needed (e:g., to d|st|ngw§ifrom 'z andp from'f) or ForiB, we assume a fixed as discussed in Appendix B.)
i a}rLesultlpe.rtalnfSé)nly ;0 one Sotopolﬁgue. ilibri limit Equation (10) is a simplification of that introduced in Nelson
h K:ST. 'T'ts ?jthq. ( ])c Sta?(. O?t' I't ‘.i ecé{w > numllrgl_, and Baker (1996), but shows the same basic features]
DgPaoI(I)r’gl ('Z%nl 1) tgfﬁ;i:;eéy'; elr:Ctr:rglfi.ré;t E?Iorlnev?/he_n "N describes growth via a single screw-dislocation when the air-
he KE limit the.surface im édan(?es vanish pressure is low, and large describes growth by layer nu-
Uo‘l? — 0. In t € ' P cleation. For example, in a study of critical supersaturations
(.'z—0) giving for layer-nucleation growthg 1 varied between 0.0015 and

14+05 0.025 for the basal face as the temperature decreased between
OKF = 154 8  _1and-16°C (Nelson and Knight, 1998). The value may
s be higher at lower temperatures. (Nelson and Baker (1996)
which shows that KF fractionation occurs whenevieg included a second factor in Eq. (10), but its omission has neg-

lles. Equation (8) agrees with JM's result, though they ligible effect in atmospherically relevant calculations.) For a

www.atmos-chem-phys.net/11/11351/2011/ Atmos. Chem. Phys., 11, 1MB%3-2011
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Table 1. Fractionation factors in Egs. (8) and (9).

agt (0°C) agl(-20°C) »* d*  (yag)~1(-20°C) d/y

H%so 0.985 0.982 1.054 1.029 0.932 0.976

HDO 0.883 0.852 1.028 1.025 0.829 0.997

* Calculated using « 1//mass.
** From Merlivat (1978). Newer values are 1.032 and 1.016 (Cappa et al., 2003).

specific set of conditions, the values pfando s are deter- 0.8 Size (um) o 500
mined by combining Eqg. (10) with Egs. (2) and (3). When — T
n equals 1 or 2, one can solve f8ranalytically and deduce [ Surface impedance influence

os, but cases with larget (e.g., layer-nucleated steps) re-
quires a numerical method. Numerical results are describec

in Appendix C and used in the calculationzdfor Fig. 1. We 10 E
now show the results. -
Of the two variable factors that affeet, the surface B
VW

impedance ratiq can vary the most. As shown in Fig. 1, £
z decreases with increasing crystal size (becadgein-
creases), and by comparing curves, note ila$o decreases 1k
wheno  increases (withr ; fixed). Conversely; increases :
with an increase in either; or n (becaus€Zs increases)z

also increases with elevation due to the air-pressure depen
dence of the diffusion constant.

Large z values producex values that deviate from the
KF prediction. For example, at relatively high surface
impedance, as in the upper “beaded” curve in Figz 2 @
over the entire supersaturation range), the fractionation lies AT .
above the KF value because= 0.95, which is less than 10 7 100 1000
d =1.03. But, asx is not below 14s, the fractionation A
does not exceed the equilibrium value, instead lying roughly

halfway between the KF and equilibrium values. In general, .

o - . vapor impedances (from Egs. C1, C2). Each curve represents a
whenx <1, the deposition Coefflc_lent of_the_lsoto_po_logue crystal with the labeled surface parameters. Crystals in the grey
exceeds that of regular water, making the ice richer in iSotopg,gne ¢ > 1) likely have fractionation values significantly affected
by an amount that depends onSimilarly, whenx > d, the  py surface processes, whereas those in the white zon®.0) will
surface fractionation acts in the same direction as KF, drivinglikely not be affected. The case for the hatched region depends on
the degree of fractionation even lower. For example, when the ratiox. Crystal diameter values on the top scale assume the
is instead 1.05, the fractionation lies distinctly below the KF equation forZy of a sphere at 1000 mbar (see Appendix A).
curve (Fig. 2, lower beaded curve). In this case, the fraction-
ation fromy acts together with that from, increasing the
effect. 4 Surface-kinetic fractionation to realistic crystals

If x deviates further from unity; need not be large for
surface fractionation to have a large effect. For example4.1 Cylindrical crystals
with middling values ot, the fractionation exceeds; when
x =0.8 (Fig. 2, top curve). And whem = 1.2, the sur- We now make the model more realistic by considering crys-
face fractionation may lie below the KF value by an amounttals shaped as tabular or columnar cylinders. In addition to
nearly double the amount KF lies below the equilibrium introducing the variable height/width ratio (aspect ratio), the
value (Fig. 2, bottom curve). In contrast, at low surface cylinder case has two distinct faces, with the top/bottom, or
impedance, the fractionation remains close to the KF valuebasal” face having fractionation values, and the side or

even when the value deviates 20 % from unity. “prism” face having valuerp.
The formulas forwg andap follow from Eq. (7) with the

appropriate substitution; for example, f@g, we substitute
zp for z and’zg for 'z. Concerningzg andzp, the surface

e,

Fig. 1. Relative influence of the surface impedance for a range of

Atmos. Chem. Phys., 11, 11351136Q 2011 www.atmos-chem-phys.net/11/11351/2011/
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Fractionation: sphere

2r
a=ap 4 +o

: 12
y+a2r Py er (12)

1.02

wherey = Bg/Bp is the growth-rate ratio (Nelson and Baker,
1996). For example, in steady-state=TI", and thus 2/3 of
the mass enters via the prism faces. But in general, a range of
fractionation values can occur, depending on the crystal as-
pect ratio, the growth-rate ratio, and the fractionation to each
face. The last factor depends on the ratios of the deposition
coefficient functionsg = B/’ Bg andxp = Bp/’ Bp.
The results show that the crystal shape affects fraction-
ation at highz, but mostly through the parameterg and
xp. For example, when > 2.5 (all solid curves in Fig. 3),
yet both facets have the sameatio of 1.05, the fraction-
ation coefficient is only slightly less than the sphere result
0.98 . ! ! — the sphere and cylinder results are nearly identical. This
0.0 0.2 O 0.4 is shown by curve 1 in whiclir =y =10. At largerT", the
fractionation coefficient decreases further, though the effect
remains relatively small. Larger influences @rcan occur
whenxg # xp. In particular, for steady-state growth €T")
with I = 10, fractionation decreases whesn> xg (curve 2),

Q;

1.00

Fig. 2. Calculated B8O fractionation coefficientd® for com-
pletely facetted ice growing from the vapor-a20°C, a fixed crys-

tal size, and a range of supersaturations. Dotted and dashed . . .
lines show equilibrium and KF fractionation values. Deviations even though their average still equals 1.05 because in steady-

from the KF prediction depend on= /! 8, which is assumed con- state, most mass enters through the prism face, which has an

stant, and; = Zg/Zy, which decreases with increasing,. Light, xp value of 1.1.

beaded curves have the highestalues considered here, exceed- However, growth is rarely steady. Instedtdeviates fur-

ing 3.1 at alloo (Zy =100,01 =0.5, n=10). The two “low  ther and further from unity during growth (Takahashi et al.,

7" curves havez values below 0.1 when , > 0.05 (Zy = 1000, 1991), meaningy >T for columns andy <T" for plates.

01=0.2,n=1). The uppermost and lowermost curves have mid- |n the non-steady-state case of curve 3, most mass enters

dling z values, exceeding 1 wheny, < 0.2 (Zy =1000,01 =04, through the basal face, which hag = 1.1, bringing the

n=5). curve lower. Similarly, when most of the mass enters through

the prism face andp = 1.1, as in the tabular-crystal case in

. . . . curve 4, then the fractionation coefficient is significantly be-

impedances equal the reciprocalsgy¥ and Bp, just as in L :

the sphere case, but the vapor impedances are more complel>(<)yv that of the sphere._ These cases (2-4) show deviations in
a below that of an equivalent spherexof 1.05 because the

depending not only on crystal size, but also on shape and ratf?,che with most of the mass uptake hac 1.05. If instead
of shape change as discussed in Appendix A. o

To determine values fagg p, one must know the depo- they hadr < 1.05, then the resulting value would be above

sition coefficients, which means determiniag. But with that of a sphere.

a nonspherical crystal such as the cylindet,varies along These CY"”der results emph_asme what we _found with
X . the sphere: when the surface impedance dominates, small
the surface, so which s value determineg? The appro- . . . L .

) . ) : . changes inx can introduce relatively large variations in frac-
priate o s value for 8 (in Eq. 10) is the point of highests ! . - ) . .
because this point determines the growth rate (e.g., Wood et{onauon coefficient. For the cylinder, this applies to small

b 9 9. changes inr on the facets that dominate growth. As the crys-

al,, 2001). This point is usually the edge of the facet (unless al shape itself has little influence on fractionation, this result

some face has essentially stopped growing, Nelson, 2001).
Here, we assume this is the case for both the basal and pris%h coeli!sd apply to polycrystals and any other crystal bound by

facets. As a result, thes value solves

Os0 Ooo (11) 4.2 Incompletely facetted crystals

os= = ,
1+ Bg(os,T)Zvg 1+ Bp(os,T)Zyp

Stellar and hollowed crystals are incompletely facetted,

which is similar to Eg. (2). meaning that some of the mass uptake comes from non-

) To get the mass-averaged one multiplies each coeffi- 5 etteq (NF) regions. For this case, we need an extra term
cient by the mass-uptake (flux times facet area) on the correy, Eq. (12):

sponding facets:
o =a Mg+ apMp+anFMNF, (13)

www.atmos-chem-phys.net/11/11351/2011/ Atmos. Chem. Phys., 11, 1MB%3-2011
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: : When the hollow extends across the entire basal fkceas
Fractionation: cylinder its maximum value of 1/3. In this cas&lg = 0 and the frac-

tion of mass uptake by the non-facet regidnr has its max-

i, imum value, a value that depends ppI" . Using the mea-
1028 2 < surements for hollow columns at5.3°C from Takahashi et

al., 1991,y /I' =5.4, givingMnr = 0.6. As the hollows did

not appear to extend across the basal faces, this value may be
an overestimate. Nevertheless, significant amounts of uptake
likely occur in the non-facet regions of hollow columns.

1.00 . .
5 Discussion

5.1 Is surface-kinetic fractionation consistent with
Antarctic snow composition?

We typically measure the isotopic content Bythe rela-

0.98 tive deviation of the fractional amount of isotope in ice from
0.0 . . the SMOW (standard mean ocean water) standard §ie.,

= (X; — Xr-smow)/ Xr-smow), WhereX, is the ratio of iso-

topologue to ordinary water). Many measurements'80

have been made at the snow surface in Antarctica over re-

volume (givingZy = 300 for the equivalent sphere) and growth pa- ?IOHS 2pannd|_ng Etl V\t”hde rang? of _averafg,(\a/l annua:Dtelmpt(-ira-
rametersr 1 = 0.5 andn = 10 on the fastest-growing face (same as ure. According fo the recent review of Masson-Deimotie

beaded curves in Fig. 2). Cases 1-3 are columnar crystalsiwith ©t @l- (2008), coastal regions, with a meanlground-surface
= 10, whereas case 4 is a tabular crystal With-0.1. Crystalsin ~ t@mperaturéy of about—10°C, have a meas™°O level of
cases 1 & 2 grow under steady-state growth, whereas 3 & 4 grow@bout—15 %o, whereas inland plateau regions, with a mean
with increasing shape anisotropy. For cases 2—4, switching valuetemperature near60°C, haves'80 near—55 %.. The best-

of xg andxp would yield curves above that shown for the sphere. fit relation is

Fig. 3. Fractionation coefficient8x for fully facetted cylindrical
crystals afl’ = —20°C. All cases had the same averag¢he same

5180[%0] = 0.8Ty — 8.11, (15)
whereM; stands for the fraction of mass uptake that occurs =~ . ) .
through face type j and ane equals the fractionation coef- with individual datg points varying from the relgt|on by about
ficient for non-facetted regions. The latter coefficient should 7 %o. (Other regions have a different relation. See e.g.,
equala in the limit 8 — 1, and thus nearly equakg. Jo_hnsen et al., 1989.) We now ask_ if the new surface-kinetic

For stellar or dendritic crystals, it is hard to accurately es-¢ iS consistent with the above relation.
timate Mp and Mr without newer, more careful measure- ~ Here we follow the procedure in JM and show that
ments. | attempted such an estimate in Nelson (2005), usc@n be made consistent with Eq. (15) by finding a reason-
ing the measurements of Takahashi et al. (1991), and foun@ble supersaturation-temperature curve. As in JM, assume a
that Myr varied between 0.77 and 0.87 for crystals betweenR@yleigh process in which ice crystals grow solely by vapor
—13.3 and-16.8°C. Thus, most of the mass uptake on such deposition. Specifically, as a parcel of air with vapor mixing
crystals occurs on the non-facet regions. ratio my and temperatur& cools and precipitates, the iso-

A similar difficulty occurs with hollowed columns, except {OPic content of the new precipitate changes as (see e.g., JM,
the problem instead lies in estimatingg and Mye. How- ~ Salamantin et al., 2004)
ever, if we assume that the hollowed regions are cylindrical ;5 dIn[my]
cones extending to the crystal center, and if the volume of the - ~ (1+8)(@—1) T
hollows remain a fixed fractioR of the volume of the equiv-

alent non-hollowed crystal, then the resulting mass-uptakevhere a much smaller termx(da/dT) has been dropped.
fractions can be shown to equal To determine &'80-T relation, one must integrate Eq. (16)

along the condensation path from an initial temperature

: (16)

Mg = Y ﬂ to a colder, final temperature, specifying the temperature-
y+2I' 1-K dependence of the supersaturation and air pressure. As in
Mp= 2r 1 JM, we will assume the air parcel travels along a temperature
y+2r1—-K’ inversion, beginning a+10°C, gaining elevation and cool-
2K y-T ing as it moves inland such th&t [mb] = 1095+ 19.14T +
MNE= R -k (14) 0185772 At the inversion, the temperature relates to the

Atmos. Chem. Phys., 11, 11351136Q 2011 www.atmos-chem-phys.net/11/11351/2011/
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ground temperature &[°C]=0.67Ty — 1.2. With this rela-
tion, one can convert the integraté®O-T" curve to a5180-

Ty curve to compare with Eq. (15). By following this proce-
dure, and adjusting the supersaturation-temperature relation
| fit the data in Eq. (15).

The general trend in the resulting supersaturation can be
readily estimated. For the above trajectory, the rightmost O |
factor in Eq. (16) ranges from approximately 0°@7 ! at
—10°C to 0.122C~1 at —50°C, being nearly independent 201
of supersaturation. Given thattls ~ 1, this means that, to

Inferred supersaturation curves

40%

give the slope of 0.8 %C~1in Eq. (15),0 — 1 must decrease ! -

from about 0.017 to about 0.010 over the same temperature o = — — —+ -
change. This decrease inmeans that the supersaturation T[C]

should increase, but at a rate that depends on the slope of

(0 x0)- Fig. 4. Inferred supersaturation dependence to fit surface measure-

For the three cases considered, the fitted supersaturationents 0fs180 (Eq. 15). The three lower curves, when used in the
curves lie below the liquid-water saturation value for all but integration of Eq. (16) with the functions of Fig. 2 of the same la-
the lowest temperatures (Fig. 4). Such supersaturations refel, result ins*80 values equal to those in Eq. (15). The top curve
resent averages over the growth of a crystal, and thus woulé the supersaturation of a cloud of water droplets.
occur when the crystals are initially surrounded by many
droplets that later evaporate. Conversely, the supersatura-
tion may be steady, yet contain little-to-no liquid water. With

the KF kinetic-fractionation coefficient, the supersaturation subtract, to the §ensitivity thatvalues in pregipi.tatiqn have
curve in the figure is roughly one-half of the liquid-water to supersaturation. To address how a variation in average

value, which is consistent with the analysis in JM. But with §uper§aturation could, through the changez_ iduring frac-

the surface-kinetic fractionation curve far=0.95, thea t|on_at|on, produce _scatter from th? curve given by Eq_. (15),
value at a givem o, is larger (see Fig. 2), which means that notice that the_ predicted chang_e will equal the change in tem-
to have the same value, the supersaturation value must be PEratureATg times the change in slopaé/dT) caused by
larger. Thus the curve for this case is higher. For the samd€ SuPersaturation change (neglecting other factors that may

reason, the supersaturation curveset 1.05 lies below that ~ c"angex). Using Eq. (16) and setting-5 to 1, this is
of the KF case. o _ _ da dIn[my]

These surface-kinetic exampleér »,) represent idealiza-  A8[%o] ~ 1000 0.67ATgAc Jo AT 17)
tions; in general, the value of will also vary depending on
the degree of faceting, the crystal size, and any explicit temwhere the factor of 1000 arises from the conversion to %o
perature or supersaturation dependences of the surface panits and the 0.67 from the conversion to ground tempera-
rameters. Still, the examples help constrain the likely rangeure. The next factor&TyAc represent the average varia-
of x. For example, of the two cases= 1.05 appears more tion in supersaturation for precipitation that fell to the ground
consistent with observations than=0.95 for two reasons: over a distance that spans a ground-temperature chisfige
(i) the large value of, which was assumed, is unlikely at As thes'80 data comes from snow that fell over a season or
the high supersaturation needed in the 0.95 case (Fig. 1 more, Ao should be much less than liquid-water saturation
showsz to decrease whem, increases), and (ii) the cloud (the maximum variation possible), and moreover should be
supersaturation cannot exceed liquid-water saturation, as gmaller for largerA7y. Reasonable values arely =10°C
does for thex = 0.95 case (and below the homogeneousand Ac =0.1. The last two factors in Eq. (17) depend on
freezing point at-40°C, it must lie below liquid water sat- the a(0) curve: forx =0.95, the product is 0.0016; for
uration). Moreover, at Dome Fuji, where the mean annualx = 1.05, the product is larger, at 0.0092; and for the KF
temperature is about55°C, about 53 % of the precipita- curve, the value lies between the two surface-kinetic cases,
tion is from diamond dust (Fuijita and Abe, 2006), which at 0.0035. The resulting product gives variations#0O that
likely grew at relatively low supersaturations. And the low range from 1.1 to 6.2 %o, which are less than the observed
supersaturations are consistent with ihe 1.05 case. Fi- variation (-7 %o). These observed variations dH€0 likely
nally, the average supersaturation slope ofitke1.05 case  arise from a range of sources, not only supersaturation varia-
equals 0.0028C~1, which is close to the slopes of 0.0038 tions, so the analysis shows that surface-kinetic fractionation
and 0.0020C~! that Masson-Delmotte et al. (2008) used to predicts scatter in ground-levét®O that is consistent with
fit surface data. Therefore, surface-kinetic fractionation isobservations.
consistent with measureéd®0 trends, and the analysis sug-  Finally, the two surface-kinetic examples here are based
gests thak > 1. on the assumption thatis large, which is unlikely to hold

The surface-kinetic aspects of fractionation can add, or
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over wide temperature-supersaturation regimes. Thus, unlegsble to the vapor impedance, the fractionation coefficient

the value ofx is either larger than 1.05 or less than 0.95, the depends sensitively on the ratio of the deposition coefficient

effects of surface-kinetic fractionation will deviate from the functions for the ordinary and isotopologue water molecules,

KF standard less than those analyzed here. So, within thgiving results that deviate sharply from kinetic fractionation

current uncertainties of ice-crystal growth and the value ofresults. Such conditions should hold during the growth of

x, the predicted trends from surface-kinetic fractionation arefacetted crystals, and since facetted crystals are common in

consistent with observations of Antarctic snow composition.the atmosphere, the new theory should apply to some cases
in which the KF theory has previously been used. However,

5.2 The need for new measurements before the new theory can be applied to the atmosphere, we
need to either measure the effect directly or experimentally

As the previous section showed, having a surface-kinetic determine the relevant deposition coefficient functions over

value that differs from the presently use@r means that arange of temperatures and supersaturations.

the inferred cloud supersaturations, (7') (e.g., curve “KF”

in Fig. 4) must be recalculated, but the empirical relation )

(Eq. 15) remains unchanged. Thus, if the empirical relationAPPendix A

is used for a simple temperature reconstruction, then surface-

kinetic fractionation changes nothing. However, a more reli- The vapor impedances

able approach to past climate reconstruction involves numer- )

ous modeling considerations (see e.g., Sturm et al., 2010)'!'he vapor impedance depends on the crystal shape. For a

including estimating how the season, the climate, and the at_sphencal crystal

mospheric circulation pattern would change thg(T) re- rv

lation. As the surface-kinetic theory requires a change 02V =2p’ (A1)

the inferred supersaturations that may reach 20% or more : ; P
. ; erer is the radius of the crystal. For a cylindrical crystal
(Fig. 4), such changes to the modeted (T') relation would " 4 y 4

affect climate reconstructions with surface-kinetic fractiona- Zve = rehse 4 roh @ (A2a)
tion. Thus, implications of the new values on past climate VB =/BABETP PEﬂB

reconstructions are potentially significant, but presently hard
to judge. and

_ But existing measurements of are !nconcluswe_. _Pre- va=rBhBEﬂ—B+rphpE, (A2b)
vious vapor-to-ice fractionation experiments are limited to Bp

measurements ef on largely non-facetted crystals. Specif-
ically, Jouzel and Merlivat (1984) exposed-20°C surface
to water vapor at 20C, conditions that produce highly den-

dritic frgst_ crystal forms. Later, Uemura et al. (2005) ana- (basal) and side (prism) faces, withthe column length di-
lyzed similarly dendritic frost forms. Thus, although those vided by its diameter. Physicallyg is the radius of a sphere

expen;nbents wdetre apgropi[natotla forftestn:(g tht? If(F T.Ode!{i theyhaving the same area as the basal faces of the cylinder, scaled
cannot be used fo undersiand surlace-kinec fractionation o y the distance B/v. For easier comparison to the spherical

largely facetted crystals. Instead, to test this model, we nee ase, it is written in terms ofy for a sphere of the same

new experiments on completely facetted crystals. volume. Similarly,rp is the scaled radius of the sphere with

Moreover, because depends on botl ando ., if we the same area as the prism faces of the cylinder. Theitwo
measure the dependence for both HDO ag#dy one could functions fit

then, in principle, use observeéd®0O andsD values to infer
both the deposition temperature and supersaturation of an ickse(I") (A3a)
sample. — /2% 10~0-1315Tank0.806(Log(I")+0.1854—0.0639L od ()| -0.3314

whererg, rp, hgg, hpg are from Nelson, 2001, with the fol-
lowing slight changes. Herg = Zy (2/3)Y/3/2Y/2 andrp =
Zv(213M)Y31r1Y/2 are normalized sizes of the top-bottom

and
6 Conclusions

hpe(T") (A3b)
Unlike the kinetic-fractionation (KF) theory, the surface- — ( g902. [ —0-5+1/[1.932+0.4976LogI")+0.1058Log (I")]
kinetic theory includes potentially important surface pro-
cesses on facetted ice crystals. When the surface impedanét Nelson, 2001, thé: values are half the above, but the
to growth is low, both the kinetic and surface-kinetic mod- Productrh is unchanged). Wood et al. (2001) showed that
els give similar predictions, showing significant deviations the above basis functiorisare very nearly the same as the
to equilibrium fractionation at moderate-to-high supersatu-corresponding basis functions for a hexagonal column of the
rations. In contrast, when the surface impedance is compaSame aspect ratio.
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Appendix B Appendix C

Estimated range ofx Analytic fit for surface impedance

Due to the complexity and unknown nature of the ice surface According to Egs. (3) and (10¥ s depends directly on's,
one can make only crude estimates of the possible range & quantity we can know only indirectly. To estimaig,
the deposition-coefficient ratio. Now, each deposition co- and thusZs, we can apply root-finding methods to Eq. (2).
efficient 8 is a product of two factors: the probability that The result will depend on the other variables in the equa-
a water molecule (or water isotopologue) reaches a growthion, namely the directly measurable quantiteg, 7, and
step after landing on the surface and the probability of in-r, as well as surface parameterando ;. By using such a
corporating into the crystal after reaching the step. Thus, asnethod, | found an approximate formula f8g/Zy, in terms
x is a ratio of thegs, we can consider as the product of of these other variables. Specifically, if we use the derived
two ratio factors: one, the ratio of probabilities of reaching a parameter
growth step and two, the ratio of incorporation probabilities. 1
Assuming, as is expected, that the deposition coefficientsb = (—)Z;,, (C1)
are much less than unity, we can equate the first factor to the
ratio of surface migration distances (see e.g., Yokoyama anéfen the resulting fitted function is
Kuroda, 1990). The surface migration distance equals the, o—n/(n+D+1/4
square root of the surface diffusion constant times the meal S =2(®,n)=15n TN
surface residence time (Burton et al., 1951). This diffusion v Log(1+1.5n @™/ (r+h+1/%)
constant should be inversely related to the molecular mass, as Equations (C1) and (C2) estimate-% within 5% of the
itis for gas-phase diffusion (e.g., Cappa et al., 2003). Indeedgxact value for the range of atmospherically possible values
Livingston et al. (1997) found that the square root of the ratioof n and ®, (i.e., 1<n <50, 10~ < ® < 10°), but it ap-
of bulk diffusion constants of HDO and%!BD into ordinary  plies only to crystal shapes approximated by a sphere (i.e.,
ice at 163K equaled 1.3. Thus, if this surface-diffusion ratio equiaxial, facetted crystals). The equations show that when
dominatedr, then we would expeot > 1. However, surface 01> 0o andn is large,z — (0o0/o1)™"Zy%, which be-
diffusion differs from bulk diffusion and the mean residence comes large. In contrast,decreases as., increases. Fig-
time could instead make < 1 if the heavier molecule had ure 1 shows both of these trends. MoreoverZasncreases
the greater residence time. during growth,z will decrease. Finally, using Eq. (10), one
In addition, this first factor could be highly temperature can show that the reduction in supersaturatigyfo », de-
dependent. For example, measurements of the migration digpends only om and®.
tance of o.rdln_ary water (_)n th? basall face .Of ice (Mason GtAcknowledgements!.thank Marcia Baker and Brian Swanson for
al., 196:_3) indicated that it \_/ar|ed rapidly with temperature, their critical reading of the manuscript.
decreasing by a factor of five when temperature decreased
from —2 to —6°C, and then increasing again by the same ggited by: T. Rickmann
factor from—6 to —12°C. If the corresponding curve for the
isotopologue on regular ice is similar in shape, but shifted to
higher temperature in accordance to the higher melting temReferences
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