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Abstract. We present an aerosol – cloud condensation nuclei
(CCN) closure study on summer high Arctic aerosol based
on measurements that were carried out in 2008 during the
Arctic Summer Cloud Ocean Study (ASCOS) on board the
Swedish ice breakerOden. The data presented here were
collected during a three-week time period in the pack ice
(> 85◦ N) when the icebreakerOdenwas moored to an ice
floe and drifted passively during the most biological active
period into autumn freeze up conditions.

CCN number concentrations were obtained using two
CCN counters measuring at different supersaturations. The
directly measured CCN number concentration was then com-
pared with a CCN number concentration calculated using
both bulk aerosol mass composition data from an aerosol
mass spectrometer (AMS) and aerosol number size distri-
butions obtained from a differential mobility particle sizer,
assumingκ-Köhler theory, surface tension of water and an
internally mixed aerosol. The last assumption was supported
by measurements made with a hygroscopic tandem differen-
tial mobility analyzer (HTDMA) for particles> 70 nm.

For the two highest measured supersaturations, 0.73 and
0.41 %, closure could not be achieved with the investigated
settings concerning hygroscopicity and density. The calcu-
lated CCN number concentration was always higher than the
measured one for those two supersaturations. This might be
caused by a relative larger insoluble organic mass fraction of
the smaller particles that activate at these supersaturations,
which are thus less good CCN than the larger particles. On
average, 36 % of the mass measured with the AMS was or-
ganic mass. At 0.20, 0.15 and 0.10 % supersaturation, clo-
sure could be achieved with different combinations of hygro-
scopic parameters and densities within the uncertainty range
of the fit. The best agreement of the calculated CCN num-
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ber concentration with the observed one was achieved when
the organic fraction of the aerosol was treated as nearly wa-
ter insoluble (κorg = 0.02), leading to a mean totalκ, κtot,
of 0.33±0.13. However, several settings led to closure and
κorg = 0.2 is found to be an upper limit at 0.1 % supersat-
uration. κorg ≤ 0.2 leads to aκtot range of 0.33± 013 to
0.50±0.11. Thus, the organic material ranges from being
sparingly soluble to effectively insoluble. These results sug-
gest that an increase in organic mass fraction in particles of
a certain size would lead to a suppression of the Arctic CCN
activity.

1 Introduction

Aerosol particles in the atmosphere can influence climate in
several ways. Firstly, they can directly scatter and absorb
radiation (direct aerosol effect). Secondly, they can act as
cloud condensation nuclei (CCN) or ice nuclei and change
the properties of clouds, which is called the indirect aerosol
effect (see e.g.Lohmann and Feichter, 2005). Both effects
are a matter of current research, as aerosol-cloud interaction
processes are generally not well understood, and the impact
of the various aerosol effects on climate and climate change
is still unknown (Denman et al., 2007).

Clouds themselves play a key role in our understanding of
the climate system. This is also true for Arctic low level
clouds (Walsh et al., 2002; Tjernstr̈om et al., 2008). The
high Arctic low-level clouds (north of 80◦ N) have a pro-
nounced influence on the surface energy budget (Sedlar et al.,
2010), and thus on the melting and freezing of the perennial
sea ice (Kay and Gettelman, 2009). During winter, model
experiments indicate that Arctic clouds are optically thicker
than elsewhere, predominantly because they tend to include
cloud liquid water at much lower temperatures than found
elsewhere (e.g.Intrieri et al., 2002; Tjernstr̈om et al., 2008).
On the opposite, during summer, the high Arctic low-level
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clouds are optically thin with fewer but larger droplets, which
make them reflect shortwave radiation less effectively than
clouds with numerous but smaller droplets (e.g.Twomey,
1977).

There is also another difference between summer and win-
ter clouds in the Arctic concerning particle sources. This
is caused by the geographical location of the Arctic, which
exposes it to an influx of polluted mid-latitude air during
November to April, reinforced by photochemical oxidation
at polar sunrise. In winter to early spring Arctic aerosol con-
centrations may reach up to 20 times the pre-industrial levels,
a phenomenon referred to as Arctic haze (Heintzenberg and
Leck, 1994; Shaw, 1995; Korhonen et al., 2008). In con-
trast to winter, summer conditions are much more pristine,
typically resulting in low and relatively stable aerosol con-
centrations of approximately 20–60 cm−3 in the accumula-
tion mode (Covert et al., 1996; Bigg et al, 1996; Heintzen-
berg et al., 2006) over the pack ice area north of 80◦ N. It
is possible that long-range transport of pollutants are also a
source then, but during the high Arctic summer: (1) it pre-
cipitates more, which lowers aerosol mass and number by
scavenging, specifically at the marginal ice zone (Nilsson
and Leck, 2002; Heintzenberg et al., 2006); (2) air masses
tend to be transported from cleaner regions (Stohl et al.,
2006); and (3) during a former campaign it was observed
that Aitken mode concentrations are higher than accumula-
tion mode concentrations, which is opposite to winter-time
observations (Heintzenberg et al., 2006). All of these find-
ings suggest that the major source of particles in summer is
different from that in winter.

Marine biology is proposed to be a source of Arctic sum-
mertime CCN (see e.g.Li and Barrie, 1993; Heintzenberg
and Leck, 1994; Leck and Persson, 1996; Quinn et al., 2002;
Leck and Bigg, 2005a). This source is expected to be more
active in summer, as ice melts and more solar radiation
reaches the ocean, which leads to increased biological ac-
tivity. Dimethyl sulphide (DMS), a gas produced by marine
organisms, is thought to be a good precursor for CCN (Charl-
son et al., 1987). It mainly oxidizes photochemically to sul-
fur dioxide (SO2), which reacts in the atmosphere and/or
within cloud droplets to form sulfuric acid (H2SO4). Gas-
phase H2SO4 is then the suggested precursor for aerosol nu-
cleation, but it also condenses on pre-existing particles. Al-
though the major source region of the aerosol precursor gas,
DMS, was confined to the biological open waters at the ice
edge, the at least 2–3 days residence time of DMS in air en-
abled it to be advected over the pack ice area and support
it with major CCN precursor-components through its photo-
chemical oxidation (Leck and Persson, 1996). Furthermore,
from research carried out during three ice-breaker expedi-
tions in the summers of 1991, 1996 and 2001 (Leck et al.,
1996, 2001, 2004) a new picture of aerosol properties with
implications for CCN activation has been suggested (Leck
and Bigg, 2005b): DMS concentration would determine the
mass of sulfate by producing material for growth of the par-

ticles, but would have only a minor influence on the number
of CCN forming the low-level clouds. Instead the number of
airborne microcolloids and their gels, called exopolymer se-
cretions (EPS) or microgels, emitted from the surface micro-
layer of the open leads through bubble bursting mechanisms
has been put forward for consideration to mainly contribute
to the number of cloud drops over the pack ice area. How-
ever, the hygroscopic properties, the cloud nucleating ability
of these high Arctic biogenic particles, and their source and
sink strengths are still not well understood. However, it has
been shown that for marine particles, samples with marine
organic matter were less CCN active than pure ammonium
sulfate particles (Moore et al., 2008). Furthermore, seawa-
ter enriched with organic matter was found to be less CCN
active than pure seawater (Fuentes et al., 2011).

So far, CCN measurements over the high Arctic pack ice
area in summer are few due to its remoteness.Bigg and
Leck (2001) report daily mean CCN number concentrations
of 15 to 50 cm−3 at 0.25 % supersaturation, with a variabil-
ity over three orders of magnitude within a day, although
concentrations were usually lower than 100 cm−3, occasion-
ally less than 1 cm−3 (e.g.Lannefors et al., 1983; Bigg et al.,
2001; Leck et al., 2002; Mauritsen et al., 2011). Mauritsen
et al.(2011) summarize frequency distributions of observed
CCN number concentrations from four high Arctic expedi-
tions (including the most recent data set collected during AS-
COS (Arctic Summer Cloud Ocean Study) in the summer of
2008) measured at different supersaturations (ranging from
0.1 to 0.8 %). All four populations showed an overall consis-
tent distribution with three quarters of the CCN number con-
centrations being greater than 10 cm−3 but less than about
100 cm−3, medians typically in the range of 15 to 50 cm−3.
Bigg and Leck(2001) performed a closure study by calcu-
lating a predicted CCN number concentration from size dis-
tribution data and assuming that the particles consist only of
ammonium sulfate. This gave them a good correlation with
the measured CCN data, but an overprediction (more CCN
were calculated than measured) of around 30 % was deter-
mined. To investigate the role of chemistry in more detail,
Zhou et al.(2001) performed a closure study using addi-
tional hygroscopic growth information and an indirect mea-
sure on chemistry, and assuming that the calculated CCN par-
ticles were composed of ammonium sulfate, a nearly insolu-
ble fraction and sodium chloride. These assumptions yielded
a similar overprediction as found byBigg and Leck(2001),
and the reason remained unclear. Furthermore,Leck et al.
(2002) used direct measure of chemical composition, state
of mixture and morphology to discuss sources and methods
of production of CCN. Measured CCN concentrations were
on average less than would have been expected from either
a sulfate or a sea-salt composition and the observed particle-
number size distribution. It was concluded that other compo-
nents, probably organics, depressed the nucleating ability of
the particles. However, on clear sky days, there were a ma-
jority of occasions on which CCN concentrations were more
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than predicted from a sulfate composition and the measured
number size distribution.

In this paper, we present an aerosol-CCN closure study on
data taken during a campaign in the high Arctic on board
the Swedish ice breakerOdenin summer 2008. The study
focuses on a three-week period, where the ship was drifting
passively moored to an ice floe at a latitude>87◦ N, thus
during the most biological active period into autumn freeze
up conditions. Closure was tested by comparing measured
CCN number concentrations with CCN number concentra-
tions calculated from combined mass spectrometer chemi-
cal mass and particle number size distribution data, usingκ-
Köhler theory (Petters and Kreidenweis, 2007). Conclusions
can then be drawn on the assumptions made (e.g. concern-
ing the hygroscopicity of the particles and their components)
based on the outcome of the closure.

2 Cruise details

The ASCOS campaign was carried out on the Swedish ice
breakerOden. The cruise started on 2 August 2008 (Day of
Year (DoY) 215) in Longyearbyen, Svalbard. Figure1 shows
the ship track of the cruise. First, the ship headed westwards
into the Greenland Sea Fram Strait area where it stopped for
an open water station on 3 August (DoY 216). After that,
the cruise was continued northwards through the marginal
ice zone, where measurements were taken from 4 August
(DoY 217) to 5 August (DoY 218). From there,Odenwent
north through the pack ice until it was docked on the ice floe
at around 87◦ N on 12 August (DoY 225), 12:00. Then the
ship drifted with the ice floe for three weeks until 2 Septem-
ber (DoY 246), 00:10, reaching a latitude of 87◦30′ N. From
there,Odenreturned to Longyearbyen on 9 September (DoY
254). On the way back, an additional marginal ice zone sta-
tion (6 September (DoY 251) to 7 September) and an open
water station (7 September (DoY 252)) were conducted. For
further cruise details seePaatero et al.(2009). The study pre-
sented here uses only data that were collected during the ice
drift period.

3 Instrumentation

3.1 Inlet system

All four expeditions mentioned in the introduction used the
same sampling manifold upstream of the aerosol measure-
ments.Leck et al.(2001) reported further details. In short,
the inlet system consisted of two masts which were equipped
with a horizontally oriented commercial PM1 and PM10-
inlet, respectively. The PM1-inlet mast was also used for the
gas-phase sampling lines. The inlets were located approx-
imately 25 m above sea level as on previous cruises. The
air was drawn in via pipes of the two-masted inlet system
that extended at an angle of 45◦ to about 3 m above the roof

of the container. All aerosol instruments used for this study
were located in the same container on the forth deck of the
ship and sampled from the same PM10 inlet through the main
pipe that had an inner diameter of 9 cm and was pumped with
a total flow of approx. 1140 l min−1. Only the CCN counter
measuring at a constant supersaturation (see below) sampled
from the PM1 inlet during selected time periods. The individ-
ual particle instruments were served by two distribution lines
of 3/8 inch stainless steel tubing that were branched off the
main pipe. Aerosol samples were taken isokinetically from
the main flow using forward pointing inlets located in the
center of the main pipe and connected to the two distribution
lines. For each of these inlets and distribution lines, a con-
stant volume flow was generated both from the instruments
and a variable back-up flow leading to a total of 16.7 l min−1.
With the inlets facing forward and by positioning the ship
facing into the wind, local ship pollution could be avoided
most of the time. Additionally, direct contamination from
the ship was excluded by using a pollution controller. When
either sudden high particle number concentrations were de-
tected by an ultrafine particle counter (UCPC; TSI model
3025; TSI Inc., MN, USA) located upstream of the flow splits
to the counters and/or the wind was outside±70◦ of the di-
rection of the bow and weaker than 2 m s−1, the main pumps
were turned off and pollution could not reach the sample in-
lets.

The CCN counters were also connected to the main pipe
via one of the distribution lines. The connection had a length
of 103 cm plus an additional 105 cm of conductive tubing
(6 mm outer diameter) that was branched off the steel tube
using a tee. The minor flow split was shared by the two CCN
counters and a Condensation Particle Counter (CPC). Each
of the CCN counters had a sample flow of 0.5 l min−1, and
the CPC had an additional flow of 0.9 l min−1. The RH of
the sample flow was assumed to be less than 40 % based on
the residence time of the air inside the flow system and the
temperature difference between ambient and laboratory tem-
perature and on measurements made close to the inlet inside
the container.

Diffusional losses of particles inside the tubing section
from the isokinetic inlet of the distribution line to the CCNCs
were calculated to be in the range of 5 % for a 30 nm diam-
eter particle. As diffusional losses decrease with increasing
particle size, these losses were neglected and not corrected
for herein.

Gravitational losses of particles> 1µm diameter have
been neglected in our considerations as particles of this size
have been barely observed during the cruise. Gravitational
settling of 1 µm diameter particles would account for approx.
1 % loss in a 90◦ bend section (assuming the flow conditions
for the distribution-lines described above), and for less than
1 % in the straight tube sections from the isokinetic sampling
manifold to the CCN-tee. The flow system included five 90◦

bend sections.
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Table 1. The different measured supersaturations throughout the study. For simplicity, the mean values from counter 1 are used in the
manuscript. All closure calculations were done using the respective mean supersaturation for each point in time.

Time Period SS1 [ %] SS2 [ %] SS3 [%] SS4 [%] SS5 [%]

Counter 1 07/08–10/08 0.089±0.006 0.161±0.009 0.233±0.013 0.521±0.045 0.952±0.094
10/08–12/08 0.082±0.006 0.126±0.007 0.171±0.009 0.347±0.026 0.613±0.056
12/08–21/08 0.102±0.007 0.146±0.008 0.189±0.010 0.362±0.028 0.622±0.058
21/08–08/09 0.106±0.007 0.158±0.009 0.210±0.010 0.416±0.034 0.725±0.069

mean values 0.10 0.15 0.20 0.41 0.73

Counter 2 04/08–15/08 0.170±0.010
15/08–08/09 0.219±0.009

3.2 CCN counters

The instrument used to measure the CCN number concen-
tration was a continuous-flow streamwise thermal gradient
CCN counter (CCNC). It is built and distributed by Droplet
Measurement Technologies (DMT, Boulder USA), and used
by several research groups worldwide. Its working principle
is described in full detail byRoberts and Nenes(2005).

The main part of the instrument is a cylindrical, upright
standing column. An inside temperature gradient is estab-
lished, with the lowest temperature at the top. The walls
of this column are wetted with water. Thus, heat and wa-
ter vapor are transported towards the center of the column by
diffusion. As heat diffuses more slowly than water in air in
the temperature range used, a constant supersaturation (SS) is
established in the center of the column. This supersaturation
can be adjusted by changing the temperature gradient of the
column.

Aerosol particles enter the instrument through an inlet at
the top and pass through the column where they can activate
and grow to droplet size. At the outlet of the column the ac-
tivated particles are counted with an optical particle counter
(OPC) and collected in different size bins. All particles larger
than 1 µm in diameter are considered as cloud condensation
nuclei. The CCNC undercounts particles, if they have not
grown larger than 1 µm by the time they reach the OPC. How-
ever, in the study presented here, most particles were found
in size bins larger than 1 µm, and were thus counted correctly
as CCN.

The temperature determining the supersaturation of the in-
strument was calibrated several times during the cruise for
both counters using monodisperse ammonium sulfate parti-
cles, which have a known activation curve. The particles are
first size-selected using a differential mobility analyzer, and
then passed through the DMT CCNC. As the particle size in-
creases, the activated fraction increases. From a certain size
onwards, all particles activate. The dry activation diameter
(Dd) is defined as the size at which 50 % of the particles ac-
tivate, and can be determined by fitting the activated fraction
versus the dry particle size. The critical supersaturationScrit
can then be calculated using Köhler theory. It is used as a

calibration value for the measuredSS. A detailed description
on calibrating the DMT CCNC can be found inRose et al.
(2008).

During this study, two CCN counters were operated in par-
allel. The first counter (counter 1) scanned five differentSS
with a measurement period of 30 min each. The settings of
this counter were adjusted after each calibration, i.e. several
times during the cruise. Thus, the supersaturations at which
CCN properties are presented herein varies for different time
periods. Difficulties in calibrating the CCN counters were
encountered on board the ship that led to a relatively large
uncertainty in the supersaturations of 6–10 %. The difficul-
ties were mainly due to problems with the particle generation
system. Furthermore, the flow ratio of the sheath to the sam-
ple flow was around 13:1 instead of the ideal 10:1 because
of problems caused by the flow measurement. The second
CCN counter (counter 2) was set to a constant supersatura-
tion, which was slightly increased once for better compar-
ison with CCN data collected during three former expedi-
tions. The values of the supersaturations of both counters are
summarized in Table1. The two counters compare very well,
although their exact supersaturations differs. This is shown
in more detail in Sect.5. The instruments were deployed
in parallel with a Condensation Particle Counter (CPC 3785,
TSI Inc., MN, USA), which measured the total number of
aerosol particles larger than 5 nm in diameter.

3.3 Aerosol mass spectrometer

A unit-mass resolution time-of-flight (C-ToF) aerosol mass
spectrometer (AMS, Aerodyne Research Incorporated, Bil-
lerica, USA) sampled ambient particles from 100 nm to
500 nm vacuum aerodynamic diameter with near 100 %
transmission efficiency. The lower end of the vacuum aero-
dynamic diameters, 100 nm, converts to a geometric diame-
ter of 67 nm when assuming that the particles have a density
of 1.5 g cm−3. Particles were vaporized and ionized (70 eV)
in a vacuum chamber and the resulting species were detected
with a time-of-flight mass spectrometer. The detected sig-
nal was attributed to sulphate, nitrate, organics and methane
sulphonate that was non-refractory at 10−7 torr and 873 K, in
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Fig. 1. The cruise route ofOden, enlarged is the time of the drift
with the ice floe.

order to determine the particle chemical composition. This
study makes use of the bulk aerosol chemical composition
which was averaged over a sampling time of 5 min. Further
details on the instrument’s general operation can be found
in the literature (Canagaratna et al., 2007; Drewnick et al.,
2005; Jimenez et al., 2003), and the specific details for this
study can be found inChang et al.(2010). Although cas-
cade impactor measurements with 6–24 h time resolution on
aerosol chemical composition resolved over size were also
available, the AMS data were chosen for this analysis due to
its relatively higher time resolution.

3.4 Twin differential mobility particle sizer

To measure the particle number size distribution one large
and one small Hauke-type differential mobility analyzer were
run in parallel (TDMPS) to cover the mobility size range 3–
800 nm in diameter. The small DMA was set to a sample
to sheath air flow ratio of 2:20, the large DMA to a ratio of
1:5, with a total flow rate of 3 l min−1. Three mobility chan-
nels overlapped between the two DMAs to give a continuous
number size distribution (Birmili et al., 1999).

The CPC on the same flow split as the CCN counters mea-
sured on average 20 % less than the TDMPS system, when
integrating the TDMPS data from the cut-off of the CCNC-
CPC. One part of this difference can be explained by particle
losses due to diffusion as the CPC was located further down
the line than the TDMPS. These losses accounted for≈ 5%
(calculated for 30 nm diameter particles), but cannot explain
the difference of 20 %. As the cut-off of the CCNC-CPC
was not calibrated and the CPC also had some instrumen-

tal issues, the integrated number concentration of the quality
assured TDMPS system was finally used for the data and er-
ror analysis presented herein. The TDMPS measurements
agreed well with parallel measurements with another DMPS
system and a UCPC which were performed during the cruise
in the same laboratory.

3.5 Hygroscopic tandem differential mobility analyzer

The hygroscopic properties at subsaturated conditions were
measured with a hygroscopic tandem differential mobility
analyzer (HTDMA) constructed at Lund University which
was specifically constructed for long term measurements, in
accordance with the design and operation criteria decided
within the EU FP6 Infrastructure Project EUSAAR. The
aerosol was charged with an85Kr diffusion charger before it
entered the first DMA (DMA1), a Vienna type, 28 cm long,
which was housed in an insulated box at a well defined tem-
perature, typically 25◦C.

The RH upstream of DMA1 was always lower than 30 %.
In DMA1 a fixed voltage was applied, corresponding to a cer-
tain dry size, or more precisely to a certain electrical mobil-
ity. Downstream of DMA1, the aerosol was monodisperse,
meaning that it had a mobility distribution corresponding to
the transfer function of DMA1. The flow ratio between the
aerosol and the sheath flow was set to 1:10, to minimize
broadening of the spectrum. After DMA1, the aerosol passed
through GORE-TEX tubing, with temperature controlled wa-
ter flowing on the outside of the membrane in opposite direc-
tion. The water migration through the membrane was con-
trolled by the temperature of the water. After this condition-
ing unit, the aerosol sample flow was directed into a second
housing, with a temperature of several degrees lower than
the first. Since the saturation vapor pressure of the water de-
creases with temperature, the RH increased before it entered
the second DMA (DMA2). By using a closed loop for the
sheath and excess flow, the RH inside DMA2 asymptotically
approaches the RH of the aerosol entering the DMA.

By ensuring a well controlled temperature set at 16–
20◦C (changed at a few occasions during the campaign), the
DMA2 RH was kept at 90 % (accuracy±1.2 % RH). The res-
idence time after the humidifier was 1 secs, after which the
voltage in DMA2 was continuously scanned over sizes cor-
responding to diameter growth factors of 0.85–2.5, to ensure
that no particles were missed. The particles were detected
downstream DMA2 using a Condensation Particle Counter
(CPC) (TSI, USA). In this case the dry diameters selected
were 31, 50, 72, 108, 163 and 263 nm, with two scans of
300 s per size (one up- and one down scan), making the time
resolution of the measurements roughly one hour. For more
details see alsoFors et al.(2011) andGysel et al.(2009).
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3.6 Error analysis

The uncertainty of the CCNC measurements is mainly due
to the uncertainty of the set supersaturation, which was cal-
ibrated several times. These calibrations showed a uncer-
tainty of 5–10 % depending on the supersaturations (see Ta-
ble 1 for exact values). The calculated uncertainty of the
TDMPS system was based on taking Poisson statistics for
the measured number concentrations. Uncertainties in the
measured AMS mass at each mass-to-charge ratio were esti-
mated from the electronic noise and Poisson statistics for the
ion signal. The uncertainty for each species was then deter-
mined by adding in quadrature the uncertainty in its compo-
nent mass-to-charge ratios.

In terms of intercomparison and the total CCN number
concentration there is also an error due to diffusion losses
in the inlet tubing of the instruments. The three instruments
were located at different spots in the aerosol container con-
nected to the main inlet using different tubing diameters and
lengths. Therefore, this error is size-dependent. It was de-
termined to be≈5 % for 30 nm diameter particles from the
main inlet to the CCN counters. The error decreases with
increasing size, as diffusion losses become smaller.

4 Analysis

4.1 Theory

Köhler theory describes the relationship between chemical
composition, size and supersaturation present at the surface
of the droplet in thermodynamic equilibrium. The theory
takes into consideration different fundamental properties of
a particle, such as surface tension and density. Using this
theory, the droplet size of a growing CCN particle can be
calculated at a certainSSassuming thermodynamic equilib-
rium with the environment of the droplet. Köhler theory also
provides the critical supersaturation (Scrit) that must be over-
come before a particle of a certain dry size can activate (e.g.
Seinfeld and Pandis, 1998). When keeping all other param-
eters constant, the larger the particle diameter is, the lower
critical supersaturation is required for activation.

The supersaturation (SS) can be written, depending on the
water activityaw, as follows:

SS= awexp

(
4σs/aMw

RTρwD

)
, (1)

whereσs/a is the surface tension between the solution and
air, ρw the density of water,Mw its molecular weight,R the
universal gas constant,T the absolute temperature,D the
diameter of the droplet at the supersaturationSS, andaw the
activity of water.

This formula can be reformulated using the hygroscopicity
parameterκ, as defined byPetters and Kreidenweis(2007),
leading to:

SS=
D3

−D3
d

D3−D3
d(1−κ)

exp

(
4σs/aMw

RTρwD

)
, (2)

whereDd is the volume equivalent diameter of the dry parti-
cle. κ depends on the water activity of the particle and the
volumes of the dry particle and of the aerosol. It ranges
between 0 for insoluble particles, and values> 1 for some
salts (1.28 for NaCl).κ of a particle is defined as the sum
of the products of theκ values of all single solute compo-
nentsi in the particle and their corresponding volume frac-
tionsεi =

Vi

Vtot
:

κtot =
∑

i

εiκi . (3)

4.2 Estimation of CCN number concentrations/
closure study

To predict the number of CCN, firstκtot (Eq. 3) needs to be
calculated. Therefore,κ values and densities for the separate
mass components measured by the AMS have to be assumed.
As organic and sulfate were the two most abundant con-
stituents measured by the AMS (on average 36 % and 52 %
of the total mass, respectively), only those two were consid-
ered for this closure analysis. For each mass component one
κ value and one density was chosen. As the AMS measures
the bulk chemical composition, all particles are assumed to
be internally mixed. The hygroscopic measurements from
the HTDMA support the assumptions of an internal mixture
over the size range investigated with a slightly decreasing
hygroscopicity with decreasing size. Furthermore,Kammer-
mann et al.(2010) showed in a study from the sub-Arctic
region that their CCN predictions were not weakened by as-
suming an internally mixed aerosol compared to an external
mixture.

Next, the supersaturation set in the CCNCs at a given time
is taken as the critical supersaturationScrit. With these two
parameters, the K̈ohler equation can be solved analytically
for the dry activation diameterDd.

The number of predicted CCN, CCNpred, can now be cal-
culated from the TDMPS size distribution data, assuming
that all particles with a diameter larger thanDd act as CCN.
In an ideal case, i.e. if the assumptions concerning hygro-
scopicity, density and the internal mixture of the aerosol are
correct, CCNpred should be equal to the measured number of
CCN, CCNmeas.

For eachSS, the parametersκorg, κsulf, ρorg with the ad-
dition of an assumed insoluble fraction of the organic com-
pound (see Table2) were permuted for sensitivity tests and
a more statistical approach. This led to a total set of 90 cal-
culations per supersaturation, thus 450 settings in total for
counter 1. For each set, CCNpred was calculated and the
slope of the fit of CCNpredvs. CCNmeaswas determined.κorg
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Table 2. Table with the different parameter values for the performed
closure studies. For a detailed listing of the different permutations,
see TableA1.

Parameter Unit investigated values

κorg 0,0.1,0.2,0.3,0.4
κsulf 0.61,0.65,0.7
ρorg [g cm−3] 1,1.2,1.6
insoluble organic fraction 0 %, 20 %
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Fig. 2. Sample result of the closure study for permutation 62 (κorg=

0.3, κsulf = 0.65,ρorg= 1 g cm−3, no insoluble organic fraction as-
sumed). The closure is overpredicted for all five supersaturations.

was varied assuming organic substances with very different
hygroscopicities. We usedκorg = 0 for completely insolu-
ble organic compounds,κorg= 0.1 and 0.2 (κorg assumed for
most lab-produced secondary organic aerosol (Andreae and
Rosenfeld, 2008, and references therein)) andκorg= 0.3 and
0.4 for even more hygroscopic organic fractions. Addition-
ally, the density of the organic substances,ρorg, was varied
between 1 g cm−3, 1.2 g cm−3 and 1.6 g cm−3. κsulf for the
sulfate particles was changed between 0.7, 0.65 and 0.61,
which are values for different typical sulfate compounds.
Petters and Kreidenweis(2007) list as CCN derivedκsulf =

0.61 for (NH4)2SO4, κsulf = 0.65 for (NH4)3H(SO4)2, and
κsulf = 0.7 was taken as a mean value for H2SO4. Moreover,
it was assumed that 0 % or 20 % of the organic substance
is insoluble with a densityρins of 1 g cm−3. All permuta-
tions are listed in the Appendix in TableA1. Surface tension
of water (0.072 N m−1 at the given temperature in the lab-
oratory) was assumed for all calculations. Marine organics
have been shown before to have only low surfactant proper-
ties (Fuentes et al., 2011), which supports this assumption.
Furthermore, lowering the surface tension would lead to an
even higher overprediction than already found in this study
when using the surface tension of water and thus is unlikely.

For the closure study presented herein, CCNC, TDMPS
and AMS data are averaged over 10 min. Data points were
only considered, when there was full coverage over 10 min
for all three instruments.

5 Results and discussion

Figure2 shows the results of an closure calculation for CCN
counter 1 (scanning through five supersaturations). This fig-
ure is shown as an example to illustrate how closure was cal-
culated. Herein, we assumed aκorg value of 0.3, a density of
the organic compound ofρorg= 1 g cm−3, κsulf of 0.65, and a
density ofρsulf = 1.77 g cm−3. No insoluble organic fraction
was assumed. For this setting, the calculated CCN number
concentration is overpredicted (higher number concentration
than the measured one) for all five supersaturations, mostly
for the two highest supersaturations of 0.41 % and 0.73 %.

In the whole study, fitting of CCNpred vs CCNmeas was
done using a least trimmed squares (LTS) fit, introduced by
Rousseeuw(1984). This is a robust fitting method using a
least square method, which minimizes the number of h small-
est residuals, where h is a subset of the total number of points
n (here,h = 0.75n) (for more details seeRousseeuw and van
Driessen, 2006andMuhlbauer et al., 2009). The LTS fit was
chosen as it gives more robust results as a simple linear fit.
This method also identifies outliers, which are excluded from
the fit and thus cannot influence the slope of the fit. These
outliers can then be investigated and interpreted separately.
In the closure shown above, the slope andR2 of the LTS fit
for 0.1 %SSwas 1.29 and 0.98, respectively, and for 0.7 %
SSit was 1.51 and 0.99, respectively.

To constrain the best estimate for the four investigated pa-
rameters for all five supersaturations, permutation runs as
described in Sect. 4.2 were performed. In Fig.3, the re-
sults are shown for each individual supersaturation with the
different assumptions listed in Table2. The number of pre-
dicted CCN increases mainly with increasingκorg, as it has
the largest range of the four varied parameters. As the crite-
rion for achieving closure we took the slope being 1 within
the error bars. The latter were derived from error propagation
from the uncertainties described in Sect.3.6 and then fitting
CCNpredvs. CCNmeasby adding and subtracting the absolute
errors from the found values. The largest variation from the
fit without errors was taken as the uncertainty.R2 was al-
ways> 0.97 for all runs and thus not very variable. Based
on the above mentioned criterion, closure could be achieved
for different settings assumingκorg = 0, 0.1 or 0.2 for some
calculations at 0.10 %SS(namely settings 1–6, 9–12, 15–18,
19–23, 25–37, 39, 43–45, 47, 49–53; which are defined in
TableA1). For 0.15 % and 0.20 %SS, closure could only be
achieved withκorg= 0 with settings 13 and 14.

The number of outliers given by the LTS fit can also indi-
cate the quality of the fit. At 0.1 %SS, the number of outliers
is smallest for the lowest run numbers, thus also suggesting
a low κorg, while for the higher supersaturations, it does not
change significantly between the permutations. The fewest
outliers for 0.1 %SSwere found for permutation 6 (κorg= 0,
ρorg= 1.6gcm−3, κsulf = 0.7).

For the two highest measured supersaturations, 0.41 % and
0.73 %SS, calculations overpredicted the CCN number for
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Fig. 3. The fitted slope of CCNpredvs. CCNmeasfor the different permuted assumptions and each supersaturation.

Fig. 4. Average probability density functions for the hygroscopic
growth factor (GF, at 90 % relative humidity) during the pack ice
drift period. Dry particle diameters investigated are indicated in
legend.

all applied permutations. This might be explained by the fact
that the lower cut-off of the AMS measurements is 70 nm,
but smaller particles can still act as CCN at these supersat-
urations. This induces an uncertainty associated with the
actual mass concentrations used to calculateκ, as the ratio
of the masses might be different for smaller sizes. As clo-
sure cannot be achieved with any of the permutations (even
when a 20 % insoluble organic fraction is assumed), these re-
sults suggest that the chemical composition was different for
smaller particles. They need to have a larger organic fraction
to achieve closure. To account for the case in which a non-
hygroscopic component of the aerosol was present but not
measured by the AMS, further testing was done by adding
a non-hygroscopic organic mass with a density of 1 g cm−3

to the total mass. However, closure could only be achieved
for 0.71 % SSwhen this insoluble mass was 4 to 5 times

higher than the actual measured organic mass. Based on
comparisons of mass measured by the AMS and TDMPS,
it is unlikely that there was this much mass not measured
by the AMS for particles> 100nm in diameter. However,
for Aitken mode particles or smaller, this would be possi-
ble within the measurement uncertainties. It should also be
mentioned that at smaller sizes the systematic errors increase
(e.g. the AMS composition accuracy, more particle losses),
thus, these results at the two highestSScan also be caused –
at least partly – by these errors.

The HTDMA data (from the Lund University unit) is
shown in Fig. 4. In general a mono-modal growth factor dis-
tribution was observed. The growth factor for accumulation
mode particles was measured to 1.6 with data corrected to
90.0 % RH. The RH accuracy is±1.2 % RH at this RH. The
hygroscopicity of pure ammonium sulphate is 1.69 at this RH
(at 20◦C) and for dry diameter 100 nm. The measured hy-
groscopicity decreased with decreasing size, and an average
growth factor of 1.4 was measured for dry particle diameter
31 nm, indicating an increasing fraction of less hygroscopic
material. The average growth factor distributions do not rep-
resent the mixing state at a certain time; in general an internal
mixture was observed. The external mix seen in Fig. 4, with a
less hygroscopic mode at GF 1.0, originates mainly from the
time period DoY 243.5–246. The two modes were equally
important, i.e. an important amount of non-hygroscopic par-
ticles, for all sizes, was present during this time period.

The best result for the three lowest supersaturations
(0.10 %, 0.15 %, and 0.20 %), when taking the smallest
summed difference from each fitted slope to 1 as criteria,
was achieved for setting 13 withκorg = 0,κsulf = 0.61, and
ρorg = 1g cm−3. Thus, aκorg of 0 has to be assumed. The
fractions of outliers with these settings were between 13 %
to 21 % for the different supersaturations. To investigate the
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Fig. 5. The slope of CCNpredvs. CCNmeasfor permutation 13 (κsulf = 0.61,ρorg= 1 g cm−3), varyingκorg between 0 and 0.1.

value ofκorg further, more sensitivity tests with the same val-
ues forκsulf andρorg were conducted only varyingκorg be-
tween 0 and 0.1 in steps of 0.01. The results are shown in
Fig. 5. For the two lowest supersaturations, closure can be
achieved within the uncertainties for variousκorg values be-
tween 0 and 0.1. However, taking the smallest difference as
described before leads to a best fit forκorg = 0.02, a slightly
more hygroscopic value than assumed before.

For the lowest three supersaturations, the results suggest
that the measured organic compounds were not or only spar-
ingly soluble and that the ability of the particles to activate
as CCN is dominated by the sulphate part of the particles.
This might also be interpreted as such particles analyzed by
Leck and Bigg(2005a), which consisted of small insoluble
organic particles coming from the surface microlayer, with
sulfur-containing gases condensed onto them. The insoluble
organic particles were mostly chains or aggregated balls.

These results contradict the findings ofLohmann and Leck
(2005), who modeled CCN concentrations that were mea-
sured on a former ship cruise (AOE-96) in the high Arc-
tic. For measurements during about 6 days in the pack ice,
they needed to assume particles that are as surface active
as nonanoic acid to be able to model the measured con-
centrations. They therefore assumed an external mixture of
nonanoic acid and soluble adipic acid or an internal mixture
of the measured substances and nonanoic acid, which was
mainly at the surface of the particles. Days with about sim-
ilar meteorological conditions were encountered at the last
days of the ASCOS study on the ice floe.

Consistent aerosol properties with our findings have been
reported from the North Atlantic (Facchini et al., 2008).
They found that the organic matter of submicron particles
was almost entirely water insoluble and that the organic mat-
ter content increased with decreasing diameter of the parti-

cles. Furthermore,Ceburnis et al.(2008) presented a study
of clean marine air at Mace Head, Ireland, where water in-
soluble organic carbon showed a net production at the sur-
face in clean marine air, pointing to a primary origin. This
is consistent with our findings that theκ of the organic com-
ponent is close to zero. However, one must keep in mind
that these measurements were made over open ocean and
are thus not directly comparable to our measurements. Flux
measurements at an open lead carried out during the ASCOS
campaign showed that particles coming from the sea surface
cannot account for the total observed particle number vari-
ation in the surface mixing layer at the position of the ice-
breaker (Held et al., 2010). Hence, one might speculate that,
as particles sources over the pack ice area seem to be weak,
the measured slightly hygroscopic particles are transported
from the open ocean water south of and along the ice edge.
Note that the data from the open lead represent point mea-
surements whereas the sampling at the ship is an integrated
measurement from all contributing sources.

The results are still ambiguous as the best values forκorg
andκsulf differ depending on the supersaturation. For 0.10 %
SS, closure could be achieved withκorg = 0,0.1, and 0.2. At
this SS, only the largest particles (> 100nm diameter) ac-
tivate, for which diffusion losses are smallest and also the
AMS measurements should be the most reliable. Therefore,
0.2 can be taken as an upper limit forκorg based on our data.
Assumingκorg≤ 0.2 and assuming the surface tension of wa-
ter, implies, that an increase in the organic fraction of the
particles leads to a suppression of CCN activity for a given
particle size. These results agree well with results byLeck
et al. (2002), who found for particles measured in the high
Arctic a depression in CCN activity compared to pure sulfate
or sea salt particles. They concluded that this was probably
caused by organics. Furthermore,Fuentes et al.(2011) found
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a depression in CCN activity of 5–24 % in seawater enriched
with marine organics compared with unenriched seawater.
When applying Koehler theory to measurements of purely
organic algal exudates,κ values between 0.06 and 0.16 were
found byFuentes et al.(2011), which fits well with our upper
value. Assuming thatκorg is in a range between 0 and 0.2 and
varying the other parameters as described in Table2 we find
thatκtot lies in a range between 0.33±0.13 and 0.50±0.11.

The same permutations have also been applied for the
analysis of the data from counter 2. The comparison of the
0.20 % SS-data from the first counter and 0.22 %SS-data
from the second counter shows good agreement within the
uncertainties (Fig.6). Note that the actual supersaturation of
counter 1 is not constant in time. The times at which the two
counters measured at the considered supersaturations were
also different, as counter 1 was changing its supersaturation
every 30 min and counter 2 started to measure at 0.22 %SS
only from 15 August onwards. However, the slope closest
to 1 was again achieved with the same parameter settings,
namely sensitivity permutation 13 (see TableA1).

As counter 2 was only measuring for four days on the ice
floe with a supersaturation of 0.17 %, the comparison with
the 0.15 %SSdata from counter 1 is less significant, however,
a linear fit from those data sets (counter 2 vs. counter 1) lead
to a slope of 0.99.

CCNpred/CCNmeasagainst the time on the ice floe from
the best fit (permutation 13) is shown in Fig.7. During a
rather long time period from DoY 233.9 to 238.1, many out-
liers are found at the two highest supersaturations. The cal-
culated CCN numbers are mainly underpredicted there, as-
suming that the particles should be considered to be more
hygroscopic to achieve closure. Theκ value varied between
0.1 and 0.4 over this time period. But again, since the AMS
only measures particles larger than 70 nm in diameter, the
small particles might have had a different composition then.
The HTDMA data show similar growth factors for this time
than during other times. Furthermore, the numerous outliers
found for the highest twoSSduring this time period point
to a larger uncertainty in the closure. The underprediction
might be caused by the pronounced Aitken mode that is then
seen in the size distribution data, if the measured chemistry
for particles> 70 nm is not appropriate for this Aitken mode.

The time series ofκtot from the best fit (permutation 13) is
shown in Fig.8. κtot exhibits a large variability, ranging from
0.09 to 0.61 (the latter value is reached when no organic mass
at all was measured). The mean value over the entire cam-
paign is 0.33 with a standard deviation (1-σ ) of ±0.13 which
corresponds to about 50 % of the mean value, making it not
very representative of the hygroscopic properties for the to-
tal investigated time period. In a recent paper,Pringle et al.
(2010) modeled theκ value globally and found an annual
mean for the Arctic region of between 0.4 and 0.5. They
used the ECHAM-MESSy Atmospheric Chemistry Model
(EMAC) with seven aerosol classes (sulfate, black carbon,
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organic carbon, nitrate, ammonium, dust, sea salt) in several
hydrophilic and hydrophobic modes and in the nucleation,
Aitken, accumulation and coarse size range. For the time pe-
riod whileOdenwas moored to the ice floe, this model gives
a meanκ value of 0.26±0.06, using the coordinates of the
ship route (K. Pringle, personal communication, 2010). This
is a lower value than our measured one, but within its stan-
dard deviation.

Mean measured CCN number concentrations and standard
deviations are shown in Table3. As one can see, the mean
concentrations are very low and also very variable. A more
detailed study of CCN concerning different meteorological
conditions will be carried out in a follow-up study. The im-
portance of size-resolved chemistry for the CCN activity will
be further studied by performing a CCN closure based on the
hygroscopic growth as measured by the HTDMA. Further-
more, size resolved impactor data are available, which can
be used to get further insights into aerosol chemistry.

6 Conclusions

An aerosol-cloud condensation nuclei (CCN) closure study
based on observed CCN number concentration and physical
and chemical submicrometer aerosol properties and concen-
trations was performed. The data shown here were collected
during an expedition into the summer high Arctic (about
87◦ N) onboard an icebreaker during a three-week time pe-
riod, when the ship was drifting passively moored to an ice
floe. Measured CCN number concentrations at different su-
persaturations from two CCN counters were compared with
predicted CCN number concentrations calculated from mass
concentration data from an aerosol mass spectrometer and
size distributions from a differential mobility particle sizer.

In general, closure was achieved within the measurement
uncertainties for 0.10 % supersaturation (SS), 0.15 % and
0.20 %SSfrom one counter, that scanned through five dif-
ferent supersaturations (counter 1), assuming an internally
mixed aerosol and an insoluble or only sparingly soluble or-
ganic volume fraction. For the two highest supersaturations,
0.41 %SSand 0.73 %SS, the predicted CCN numbers were
overpredicted for all tested settings, in which the hygroscop-
icity and the density of the organic fraction was varied, as
well as the hygroscopicity of the sulfuric component, and
0 % or 20 % insoluble organic fraction was assumed. One
way to explain this is by assuming that the smaller particles
have a different composition than the larger ones, presum-
ably a non- hygroscopic or only less hygroscopic organic
fraction. A different, less hygroscopic composition of the
smaller particles is supported by measurements in the sub-
saturated regime made with a hygroscopic tandem differen-
tial mobility analyzer (HTDMA).

Table 3. The mean CCN concentrations and standard deviations for
all five measured supersaturations of counter 1, averaged over the
time period of the ice drift.

Supersaturation mean CCN standard
(%) concentration deviation

(cm−3)

0.10 14.01 10.96
0.15 19.96 15.15
0.20 26.55 19.63
0.41 34.62 22.67
0.73 46.99 37.43

Results from counter 1 at 0.10 %SSgive an upper limit of
κorg= 0.2, since the assumption of an organic fraction with a
hygroscopic parameterκ > 0.2 results in overpredicted CCN
concentrations. This means that the organic fraction of the
aerosols was non- or less hygroscopic and does not contribute
significantly to droplet growth. The data from counter 1 at
0.20 %SScompared well with that of counter 2, which was
measuring at a constant supersaturation of 0.22 %.

The assumptions concerning density and hygroscopicity
could not be determined unambiguously, but the best con-
straints ofκorg = 0.02,κsulf = 0.65, andρorg = 1g cm−3 lead
to an overall meanκ value of 0.33±0.13, with the variability
in κ being rather large. When assuming thatκorg ≤ 0.2, κtot
falls in a range between 0.33±0.13 to 0.50±0.11. κ showed
a large variability throughout the experiment, suggesting that
the hygroscopic properties of the aerosol changed during the
campaign.

The investigated data represent a CCN-mass closure for
a time period of only three weeks, and as there are, to our
knowledge, no similar high time resolved measurements of
the high Arctic during its most biological active period into
autumn freeze up conditions except for the more primitive
CCN closures performed during previous Arctic expeditions,
our results can thus not be compared in detail with other data.

For further investigations, the data will be compared with
hygroscopicity data measured in the subsaturated regime and
size resolved chemical data. Moreover, different time peri-
ods will be investigated in more detail by case studies, i.e.
taking meteorological conditions and time the air spent over
the pack ice region into consideration.
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Appendix A

Table A1. Table with the different parameter settings for the performed closure studies and the resulting slopes for the five super-
saturations. (Settings 1–2, 7–8, 13–14, 91–92, 97–98, 103–104, 181–182, 187–188, 193–194, 271–272, 277–278, 283–284, 361–362,
367–368 and 373–374 lead to the same tested parameters in each case.)

num- κorg κsulf ρorg ρins Slope Slope Slope Slope Slope
ber [g cm−3] [g cm−3] 0.10 %SS 0.15 %SS 0.20 %SS 0.41 %SS 0.73 %SS

1 0 0.7 1 1 0.94±0.15 1.12±0.08 1.14±0.04 1.33±0.01 1.37±0.08
2 0 0.7 1 0 0.94±0.15 1.12±0.08 1.14±0.04 1.33±0.01 1.37±0.08
3 0 0.7 1.2 1 0.98±0.15 1.16±0.10 1.17±0.06 1.33±0.01 1.39±0.07
4 0 0.7 1.2 0 1.00±0.16 1.17±0.08 1.18±0.07 1.34±0.01 1.40±0.08
5 0 0.7 1.6 1 1.06±0.17 1.21±0.05 1.22±0.07 1.36±0.03 1.43±0.06
6 0 0.7 1.6 0 1.11±0.18 1.24±0.04 1.23±0.08 1.36±0.02 1.44±0.06
7 0 0.65 1 1 0.89±0.11 1.08±0.06 1.10±0.06 1.30±0.03 1.34±0.10
8 0 0.65 1 0 0.89±0.11 1.08±0.06 1.10±0.06 1.30±0.03 1.34±0.10
9 0 0.65 1.2 1 0.94±0.16 1.11±0.09 1.14±0.04 1.32±0.01 1.36±0.09

10 0 0.65 1.2 0 0.95±0.15 1.12±0.09 1.15±0.04 1.33±0.00 1.38±0.08
11 0 0.65 1.6 1 1.00±0.17 1.16±0.09 1.18±0.07 1.33±0.02 1.40±0.08
12 0 0.65 1.6 0 1.03±0.18 1.19±0.07 1.20±0.08 1.35±0.02 1.42±0.07
13 0 0.61 1 1 0.85±0.10 1.04±0.08 1.07±0.08 1.29±0.01 1.33±0.09
14 0 0.61 1 0 0.85±0.10 1.04±0.08 1.07±0.08 1.29±0.01 1.33±0.09
15 0 0.61 1.2 1 0.89±0.13 1.08±0.07 1.10±0.05 1.31±0.02 1.34±0.10
16 0 0.61 1.2 0 0.90±0.14 1.09±0.07 1.11±0.05 1.30±0.03 1.35±0.09
17 0 0.61 1.6 1 0.96±0.15 1.13±0.09 1.15±0.05 1.32±0.01 1.38±0.08
18 0 0.61 1.6 0 0.99±0.16 1.15±0.08 1.17±0.06 1.35±0.03 1.39±0.07
19 0.1 0.7 1 1 1.02±0.19 1.18±0.08 1.19±0.07 1.36±0.04 1.41±0.07
20 0.1 0.7 1 0 1.04±0.21 1.20±0.06 1.21±0.07 1.35±0.02 1.42±0.06
21 0.1 0.7 1.2 1 1.05±0.19 1.21±0.07 1.22±0.08 1.36±0.02 1.43±0.07
22 0.1 0.7 1.2 0 1.09±0.22 1.24±0.05 1.24±0.07 1.38±0.02 1.44±0.07
23 0.1 0.7 1.6 1 1.11±0.23 1.26±0.02 1.26±0.08 1.38±0.01 1.46±0.05
24 0.1 0.7 1.6 0 1.22±0.16 1.31±0.00 1.30±0.04 1.38±0.06 1.48±0.04
25 0.1 0.65 1 1 0.98±0.16 1.14±0.10 1.16±0.07 1.34±0.04 1.38±0.08
26 0.1 0.65 1 0 0.99±0.16 1.16±0.09 1.17±0.07 1.35±0.04 1.39±0.07
27 0.1 0.65 1.2 1 1.01±0.17 1.17±0.08 1.18±0.08 1.34±0.02 1.40±0.07
28 0.1 0.65 1.2 0 1.04±0.21 1.20±0.07 1.21±0.07 1.36±0.02 1.42±0.07
29 0.1 0.65 1.6 1 1.06±0.18 1.21±0.06 1.22±0.07 1.36±0.02 1.42±0.07
30 0.1 0.65 1.6 0 1.14±0.19 1.26±0.02 1.26±0.07 1.36±0.02 1.45±0.05
31 0.1 0.61 1 1 0.94±0.16 1.11±0.09 1.13±0.04 1.33±0.01 1.37±0.07
32 0.1 0.61 1 0 0.97±0.13 1.12±0.10 1.15±0.05 1.33±0.01 1.38±0.08
33 0.1 0.61 1.2 1 0.98±0.15 1.14±0.10 1.15±0.06 1.33±0.02 1.38±0.07
34 0.1 0.61 1.2 0 1.01±0.15 1.16±0.09 1.18±0.07 1.35±0.03 1.40±0.06
35 0.1 0.61 1.6 1 1.02±0.18 1.17±0.08 1.19±0.08 1.35±0.03 1.40±0.06
36 0.1 0.61 1.6 0 1.08±0.21 1.22±0.06 1.22±0.08 1.36±0.02 1.43±0.07
37 0.2 0.7 1 1 1.11±0.23 1.25±0.07 1.25±0.06 1.37±0.00 1.45±0.05
38 0.2 0.7 1 0 1.19±0.17 1.29±0.01 1.28±0.06 1.38±0.04 1.47±0.08
39 0.2 0.7 1.2 1 1.17±0.18 1.28±0.01 1.27±0.06 1.38±0.02 1.46±0.08
40 0.2 0.7 1.2 0 1.27±0.14 1.32±0.01 1.30±0.05 1.40±0.05 1.50±0.06
41 0.2 0.7 1.6 1 1.25±0.14 1.32±0.00 1.30±0.05 1.39±0.05 1.49±0.05
42 0.2 0.7 1.6 0 1.34±0.18 1.37±0.05 1.35±0.06 1.42±0.05 1.51±0.03
43 0.2 0.65 1 1 1.07±0.21 1.21±0.08 1.22±0.07 1.37±0.01 1.42±0.07
44 0.2 0.65 1 0 1.14±0.18 1.25±0.04 1.25±0.07 1.36±0.00 1.45±0.06
45 0.2 0.65 1.2 1 1.10±0.21 1.23±0.08 1.24±0.06 1.36±0.00 1.43±0.07
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Table A1. Continued.

num- κorg κsulf ρorg ρins Slope Slope Slope Slope Slope
ber [g cm−3] [g cm−3] 0.10 %SS 0.15 %SS 0.20 %SS 0.41 %SS 0.73 %SS
46 0.2 0.65 1.2 0 1.19±0.17 1.29±0.00 1.28±0.08 1.38±0.03 1.47±0.07
47 0.2 0.65 1.6 1 1.16±0.20 1.26±0.03 1.27±0.07 1.37±0.02 1.46±0.05
48 0.2 0.65 1.6 0 1.28±0.17 1.33±0.00 1.31±0.06 1.40±0.06 1.50±0.08
49 0.2 0.61 1 1 1.04±0.18 1.17±0.09 1.19±0.08 1.36±0.02 1.41±0.06
50 0.2 0.61 1 0 1.09±0.19 1.21±0.09 1.23±0.07 1.37±0.00 1.43±0.06
51 0.2 0.61 1.2 1 1.06±0.21 1.20±0.09 1.21±0.07 1.36±0.01 1.41±0.07
52 0.2 0.61 1.2 0 1.14±0.19 1.25±0.04 1.25±0.06 1.37±0.00 1.45±0.06
53 0.2 0.61 1.6 1 1.10±0.21 1.22±0.06 1.24±0.05 1.36±0.01 1.42±0.07
54 0.2 0.61 1.6 0 1.22±0.15 1.30±0.01 1.29±0.05 1.38±0.05 1.48±0.08
55 0.3 0.7 1 1 1.27±0.14 1.33±0.01 1.31±0.04 1.40±0.07 1.50±0.05
56 0.3 0.7 1 0 1.33±0.15 1.37±0.06 1.34±0.06 1.42±0.06 1.52±0.03
57 0.3 0.7 1.2 1 1.29±0.14 1.35±0.01 1.32±0.05 1.41±0.06 1.50±0.05
58 0.3 0.7 1.2 0 1.37±0.17 1.39±0.10 1.37±0.05 1.43±0.05 1.54±0.01
59 0.3 0.7 1.6 1 1.32±0.17 1.36±0.05 1.34±0.06 1.41±0.05 1.51±0.05
60 0.3 0.7 1.6 0 1.43±0.17 1.43±0.08 1.39±0.09 1.44±0.06 1.54±0.03
61 0.3 0.65 1 1 1.21±0.14 1.29±0.00 1.28±0.06 1.38±0.04 1.48±0.05
62 0.3 0.65 1 0 1.29±0.12 1.34±0.00 1.32±0.05 1.40±0.08 1.51±0.07
63 0.3 0.65 1.2 1 1.24±0.13 1.31±0.02 1.29±0.04 1.39±0.06 1.49±0.06
64 0.3 0.65 1.2 0 1.32±0.15 1.37±0.05 1.33±0.05 1.42±0.08 1.52±0.04
65 0.3 0.65 1.6 1 1.27±0.14 1.33±0.00 1.31±0.06 1.40±0.05 1.49±0.07
66 0.3 0.65 1.6 0 1.37±0.16 1.39±0.09 1.36±0.05 1.43±0.07 1.55±0.03
67 0.3 0.61 1 1 1.16±0.16 1.26±0.02 1.26±0.06 1.37±0.02 1.46±0.04
68 0.3 0.61 1 0 1.26±0.10 1.32±0.04 1.30±0.05 1.40±0.07 1.50±0.06
69 0.3 0.61 1.2 1 1.20±0.14 1.28±0.02 1.27±0.06 1.38±0.00 1.46±0.06
70 0.3 0.61 1.2 0 1.27±0.11 1.34±0.02 1.32±0.04 1.41±0.08 1.50±0.06
71 0.3 0.61 1.6 1 1.21±0.16 1.29±0.02 1.28±0.07 1.38±0.04 1.49±0.05
72 0.3 0.61 1.6 0 1.33±0.14 1.38±0.06 1.34±0.05 1.42±0.08 1.53±0.03
73 0.4 0.7 1 1 1.36±0.15 1.38±0.06 1.36±0.06 1.43±0.06 1.53±0.01
74 0.4 0.7 1 0 1.44±0.17 1.44±0.08 1.40±0.07 1.43±0.06 1.54±0.05
75 0.4 0.7 1.2 1 1.37±0.18 1.39±0.07 1.37±0.06 1.43±0.05 1.54±0.01
76 0.4 0.7 1.2 0 1.46±0.20 1.44±0.09 1.41±0.05 1.47±0.06 1.58±0.09
77 0.4 0.7 1.6 1 1.38±0.17 1.40±0.10 1.38±0.05 1.44±0.05 1.55±0.04
78 0.4 0.7 1.6 0 1.49±0.20 1.47±0.10 1.43±0.06 1.44±0.08 1.58±0.10
79 0.4 0.65 1 1 1.31±0.11 1.36±0.02 1.33±0.04 1.42±0.07 1.53±0.05
80 0.4 0.65 1 0 1.40±0.16 1.41±0.07 1.38±0.09 1.44±0.07 1.55±0.06
81 0.4 0.65 1.2 1 1.32±0.13 1.37±0.05 1.33±0.05 1.42±0.07 1.52±0.04
82 0.4 0.65 1.2 0 1.43±0.17 1.43±0.07 1.39±0.07 1.45±0.06 1.56±0.06
83 0.4 0.65 1.6 1 1.34±0.14 1.37±0.06 1.35±0.05 1.42±0.06 1.52±0.04
84 0.4 0.65 1.6 0 1.46±0.18 1.44±0.08 1.41±0.06 1.44±0.07 1.57±0.09
85 0.4 0.61 1 1 1.28±0.09 1.34±0.04 1.31±0.04 1.40±0.09 1.49±0.05
86 0.4 0.61 1 0 1.36±0.15 1.39±0.07 1.36±0.06 1.44±0.07 1.51±0.05
87 0.4 0.61 1.2 1 1.28±0.10 1.34±0.03 1.32±0.04 1.40±0.08 1.50±0.06
88 0.4 0.61 1.2 0 1.39±0.14 1.41±0.06 1.36±0.06 1.43±0.07 1.53±0.04
89 0.4 0.61 1.6 1 1.29±0.12 1.36±0.02 1.32±0.04 1.40±0.08 1.51±0.07
90 0.4 0.61 1.6 0 1.42±0.15 1.43±0.02 1.38±0.08 1.43±0.10 1.56±0.09
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program on the Arctic Ocean Expedition 1996 (AOE-96): An
overview of scientific goals, experimental approach, and instru-
ments, J. Geophys. Res., 106, 32051–32067, 2001.

Leck, C., Norman, M., Bigg, E. K., and Hillamo, R.: Chem-
ical composition and sources of the high Arctic aerosol rel-
evant for fog and cloud formation, J. Geophys. Res., 107,
doi:10.1029/2001JD001463, 4135, 2002.

Leck, C., Tjernstr̈om, M., Matrai, P., Swietlicki, E., and Bigg, E. K.:
Can Marine Micro-organisms Influence Melting of the Arctic
Pack Ice?, Eos, 85, 3, 25–36, 2004.

Li, S. M. and Barrie, L. A.: Biogenic sulphur aerosol in the Arctic
troposphere: 1. Contributions to total sulfate, J. Geophys. Res.,
98, 20613–20622, 1993.

Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a re-
view, Atmos. Chem. Phys., 5, 715–737,doi:10.5194/acp-5-715-
2005, 2005.

Lohmann, U. and Leck, C.: Importance of submicron surface-active
organic aerosols for pristine Arctic clouds, Tellus B, 57, 261–
268, 2005.

Mauritsen, T., Sedlar, J., Tjernström, M., Leck, C., Martin, M.,
Shupe, M., Sjogren, S., Sierau, B., Persson, P. O. G., Brooks,

I. M., and Swietlicki, E.: An Arctic CCN-limited cloud-aerosol
regime, Atmos. Chem. Phys., 11, 165–173,doi:10.5194/acp-11-
165-2011, 2011.

Moore, R., Ingall, E., Sorooshian, A. and Nenes, A.: Molar mass,
surface tension, and droplet growth kinetics of marine organics
from measurements of CCN activity, Geophys. Res. Lett., 35,
L07801,doi:10.1029/2008GL033350, 2008.

Muhlbauer, A., Spichtinger, P., and Lohmann, U.: Application and
Comparison of Robust Linear Regression Methods for Trend Es-
timation, J. Appl. Meteor. Climatol., 48, 1961–1970, 2009.

Nilsson, E. D. and Leck, C.: A pseudo-Lagrangian study of the
arctic remote marine sulfur cycle, Tellus, 54B, 213–230, 2002.

Paatero, J., Vaattovaara, P., Vestenius, M., Meinander, O., Makko-
nen, U., Kivi, R., Hyv̈arinen, A., Asmi, E., Tjernström, M.,
and Leck, C.: Finnish contribution to the Arctic Summer Cloud
Ocean Study (ASCOS) expedition, Arctic Ocean 2008, Geo-
physica, 45, 119–146, 2009.

Petters, M. D. and Kreidenweis, S. M.: A single parameter repre-
sentation of hygroscopic growth and cloud condensation nucleus
activity, Atmos. Chem. Phys., 7, 1961–1971,doi:10.5194/acp-7-
1961-2007, 2007.

Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.:
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