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Abstract. The influence of the properties of fine particles
on the formation of clouds and precipitation in the tropical
atmosphere is of primary importance to their impacts on ra-
diative forcing and the hydrological cycle. Measurements
of aerosol number size distribution, hygroscopicity in both
sub- and supersaturated regimes and composition were taken
between March and July 2008 in the tropical rainforest in
Borneo, Malaysia, marking the first study of this type in an
Asian tropical rainforest. Hygroscopic growth factors (GF)
at 90 % relative humidity (RH) for the dry diameter range
D0 = 32–258 nm, supersaturated water uptake behaviour for
the dry diameter rangeD0 = 45–300 nm and aerosol chemi-
cal composition were simultaneously measured using a Hy-
groscopicity Tandem Differential Mobility Analyser (HT-
DMA), a Droplet Measurement Technologies Cloud Con-
densation Nuclei counter (CCNc) and an Aerodyne Aerosol
Mass Spectrometer (AMS) respectively.

The hygroscopicity parameterκ was derived from both
CCNc and HTDMA measurements, with the resulting values
of κ ranging from 0.05–0.37, and 0.17–0.37, respectively.
Although the total range ofκ values is in good agreement,
there are inconsistencies between CCNc and HTDMA de-
rived κ values at different dry diameters. Results from a
study with similar methodology performed in the Amazon
rainforest report values forκ within a similar range to those
reported in this work, indicating that the aerosol as mea-
sured from both sites shows similar hygroscopic properties.
However, the derived number of cloud condensation nuclei
(NCCN) were much higher in the present experiment than the
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Amazon, resulting in part from the increased total particle
number concentrations observed in the Bornean rainforest.
This contrast between the two environments may be of sub-
stantial importance in describing the impacts of particles in
the tropical atmosphere.

1 Introduction

Of all the components of anthropogenic forcings, the com-
plex interactions between atmospheric aerosols and cloud
formation, properties and lifetime, collectively termed the
“aerosol indirect effects” have been identified as having the
greatest range of uncertainty (Forster et al., 2007). Cloud
condensation nuclei (CCN) are the subset of the atmospheric
aerosol which have the ability to nucleate cloud droplets in
the presence of a water supersaturated air mass. The num-
ber of CCN may indirectly influence the radiative balance of
the atmosphere by changing the number of cloud droplets, in
turn changing the albedo, longevity and precipitation patterns
of clouds (Twomey, 1977; Albrecht, 1989; Lohmann and Fe-
ichter, 2005andFeichter et al., 2004; Andreae and Rosen-
feld, 2008). A greater understanding of the CCN activation
behaviour of the ambient aerosol distribution will improve
predictions and further reduce this uncertainty.

The majority of land-based CCN studies report measure-
ments from both moderately polluted continental regions and
the marine environment, often in the mid-latitudes. The num-
ber of studies conducted in tropics is very low at present, with
most limited to Amazonia, whereRoberts et al.(2001, 2002,
2003); Andreae et al.(2004); Rissler et al.(2006); Vestin
et al. (2007); Freud et al.(2008); Gunthe et al.(2009) clas-
sified the Amazonian aerosol as almost “marine”; with CCN
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concentrations lower than would be expected for continen-
tal regimes. More recently,Chen et al.(2009) segregated
periods of measurement from within the Amazon rainfor-
est into in-Basin and out-of-Basin, where out-of-basin pe-
riods were characterised by aged organic material delivered
by long range transport.Roberts et al.(2001) show that
low CCN concentrations and high CCN to condensation nu-
clei (CN) ratios over the unpolluted Amazon Basin resemble
conditions previously reported from marine environments,
though it is noted that similar CCN and CN concentrations
prevail in both marine and continental regions in spite of the
differences in aerosol composition.

Ambient aerosol particles contain a vast number of
compounds, almost all in the organic fraction, many of
which are unknown (Goldstein and Galbally, 2007; Hallquist
et al., 2009). Natural volatile organic compounds (VOC)
such as isoprene, monoterpenes and sesquiterpenes as well
as anthropogenically-associated aromatic VOCs have been
found to be precursors to secondary organic aerosol (SOA),
which form when precursor species react with oxidants such
as hydroxyl radicals, ozone and nitrogen oxides (Kanaki-
dou et al., 2005). It has also been reported that in remote
forested locations biogenic secondary organic aerosol (SOA)
plays an important role in the growth of new particles (Allan
et al., 2006; Laaksonen et al., 2008; Tunved et al., 2006).
Claeys et al.(2004) and Henze and Seinfeld(2006) have
shown the formation of secondary organic aerosol through
photooxidation of isoprene in the ambient atmosphere, and
Robinson et al.(2011) found evidence for isoprene SOA
formation being important at this site. Isoprene is emitted
in high quantities in rainforests and represents 38 % of the
Earth’s Non-Methane Hydrocarbon (NMHC) budget (Hal-
lquist et al., 2009). SOA could potentially change the CCN
ability of particles through changes in overall bulk and/or
surface composition and water affinity (Facchini et al., 2000;
McFiggans et al., 2005, 2006).

Further to the aforementioned CCN studies, aerosol sub-
saturated water uptake has only been measured in the Ama-
zonian regions of the tropics, where data from hygroscopic-
ity tandem differential mobility analyser (HTDMA) experi-
ments were used to predict aerosol CCN activity under super-
saturated conditions (Zhou et al., 2002; Rissler et al., 2004,
2006; Vestin et al., 2007; Gunthe et al., 2009). Such reconcil-
iation studies allow for comparisons with similar marine and
continental reconciliation studies, probing our understand-
ing of particle water uptake for a variety of different aerosol
number-size distributions and compositions. Changes to a
particle’s physicochemical properties will change its propen-
sity to behave as a CCN, which is discussed in detail byMc-
Figgans et al.(2006). Organic molecules may influence both
the Raoult and Kelvin terms of the Köhler equation by their
effect on both water activity and surface tension respectively.
VanReken et al.(2005) found a decreasing hygroscopicity
in the supersaturated regime with aging time for SOA from
biogenic precursors, whereasDuplissy et al.(2008) found

an increasing hygroscopicity with aging time in both sub-
and supersaturated regimes.Duplissy et al.(2008) went on
to further demonstrate how, within error, the aerosol growth
factor measurements and CCN activity of chamber-produced
SOA can be reconciled with the use of the hygroscopicity pa-
rameterκ from the semi-empiricalκ-Köhler theory ofPetters
and Kreidenweis(2007), althoughGood et al.(2010c), using
data from the same experiment, demonstrated that the ability
to reconcile the measurements depended on the instrument
used for the sub-saturated measurement. Previous reconcil-
iation studies have found that when the aerosols were not
strongly influenced by anthropogenic sources and contained
low organic content, better agreements between the predicted
and measured number of CCN (NCCN) were observed (Liu
et al., 1996; Chuang et al., 2000; Roberts et al., 2002; Snider
et al., 2003; Broekhuizen et al., 2006; Rissler et al., 2006;
Medina et al., 2007).

In order to better understand the role of particle size and
composition on particle water uptake ability and thus the
CCN potential, size-resolved ambient measurements are be-
coming increasingly common, though the relative impor-
tance of the aerosol number-size distribution and chemical
composition is a topic of much debate (e.g.,Wang et al.,
2008; Good et al., 2010b; Dusek et al., 2010; Ervens et al.,
2010; Juranyi et al., 2010; Rose et al., 2010, 2011; Wex
et al., 2010). During the “Oxidant and particle photochem-
ical processes above a South-East Asian tropical rainforest”
(OP3) project (Hewitt et al., 2010), size-resolved aerosol wa-
ter uptake in both the sub- (RH<100 %) and supersaturated
(RH>100 %) regimes were measured for the first time in the
Bornean rainforest. To link aerosol behaviour and air mass
origin, we use a classification based on air mass history dis-
cussed byRobinson et al.(2011), who used this approach to
show the influence of marine and terrestrial back trajectories
using a method consistent with the in- and out-of-basin Ama-
zonian study ofChen et al.(2009). The comparison of air
mass origin to the study of aerosol water uptake behaviour as
measured in this tropical rainforest is the first measurement
of this type, allowing aerosol cloud forming potential in this
region to be better quantified.

2 Methodology

2.1 Measurement location and sampling

The OP3 project was carried out during March through July
2008 at the Global Atmospheric Watch (GAW) station at
Bukit Atur in the Danum Valley Conservation Area (loca-
tion: 04◦58′53′′ N, 117◦50′37′′ E, elevation 426 m a.m.s.l.).
This study focuses on the measurement period OP3-III; 3
July through 20 July after setup and calibrations. For fur-
ther information regarding the duration, location, meteorol-
ogy, and weather of the project and for an overview of all
measurements, please seeHewitt et al.(2010).
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Instrumentation was located inside an air-conditioned
shipping container beneath the Global Atmospheric Watch
(GAW) station, at the top of the Bukit Atur ridge in a small
clearing above the forest canopy (with top of the canopy
reaching 30 m up the 100 m tall GAW tower). Air was sam-
pled from a common inlet system with an intake located at
30 m up the centre of the GAW tower. Air was drawn down a
solar insulated 28 m, 15 cm diameter plastic inlet stack with
a flow rate of 1500 litres per minute (LPM). At the bottom of
this pipe, air was isokinetically subsampled from the centre
of the flow at 35 l min−1 and this air was then dried using a
780 tube nafion drier operating with a dry air counterflow.
After the drier, the sample air was decelerated to obtain lam-
inar flow conditions and distributed to instrumentation in the
container using an isokinetic sub-sampling system.

2.2 CCN Measurements

CCN concentrations as a function of dry diameter (D0,
RH<20 %) and supersaturation were measured using the
continuous flow thermal-gradient Cloud Condensation Nu-
clei counter (DMT-CCN counter,Roberts and Nenes, 2005)
and were used to derive particle critical supersaturation,
Sc,D0, and threshold dry diameter for activation,D50,S. The
CCN counter was operated in parallel to a condensation
nucleus (CN) counter (TSI-3010) downstream of a scan-
ning mobility particle sizer (SMPS, TSI-3080, DMA column
3081). The TSI 3080 SMPS was operated as a differential
mobility particle sizer (DMPS), stepping discretely through
dry diameters from 20 nm to 300 nm. This allowed simul-
taneous measurement of CCN and CN number-size distribu-
tions whilst avoiding smearing of sizes whilst scanning the
voltage on the SMPS central rod. A settling time of 180 s be-
fore sizing allowed the stabilisation of temperatures within
the CCN counter, with the DMA voltage held constant for
periods of 12 s to increase data yield. The CCN counter
was stepped through five different column temperature gra-
dients (1T ) of 2.56, 3.62, 6.52, 8.24 and 12.2◦C, calibrated
to 0.11 %, 0.18 %, 0.37 %, 0.48 % and 0.73 % as described
below, repeatedly at 10 minute intervals. The first set point
of each S-step was duplicated at the beginning of the scan
to allow temperatures within the column to stabilise further,
giving a 1 hr time resolution for this measurement. The CCN
and CN number-size distributions were corrected for multi-
ple charge events using the probability coefficients specified
by Wiedensohler(1987). Both the CCNc and CN counter
were operated with a sample flow of 0.49±0.01 LPM (litre
per minute), with the DMA operated at a sheath to aerosol
ratio of 10:1.

The CCN counter was calibrated using nebulised
monodisperse sodium chloride and ammonium sulphate (>

99.95% Sigma Aldrich) aerosol. The shape of the charge-
neutralized size distribution from the nebuliser is such that
multiple charging probabilities are extremely low, and as
consequence no charge correction was needed. The calibra-

tion aerosol was nebulised, dried, size selected using a DMA
and split between the CCN counter and CN counter. In to-
tal, 20 dry diameters were stepped through between 20 nm
and 220 nm, though complications due to software malfunc-
tion increased the lower limit to 45 nm. The fraction of
aerosol activated at a given supersaturation and dry diame-
ter, FA(S,D0), was measured as a function of the tempera-
ture gradient down the column at selected dry diameters. As-
suming the system to have a symmetrical transfer function,
the data were fitted with an error-weighted sigmoidal func-
tion and the temperature gradient at whichFA(S,D0) = 50 %
was determined, and interpreted as the critical supersatura-
tion if plotted against supersaturation setpoints (Sset) or as
the threshold dry diameter for activation,D50,S, if plotted
againstD0 (hereafter referred to as S-step and D-step analy-
sis respectively, explained in Sect. 1 of the Supplement). The
supersaturation was then calibrated to agree with the theoret-
ical critical supersaturation calculated using ADDEM (Top-
ping et al., 2005). The CCN counter was operated with an in-
let temperature of∼20◦C for the duration of the experiment.
This methodology of measurement is consistent with those
described byGood et al.(2010a) andIrwin et al. (2010), and
is summarised in the Supplement.

2.3 Hygroscopic growth factor measurements

Hygroscopic growth factor probability distributions,p(GF),
were measured as a function of six dry (RH<20 %) diameters
(D0 = 32 nm, 53 nm, 104 nm, 155 nm, 207 nm and 258 nm)
at 90 % relative humidity (RH) by a hygroscopicity tandem
differential mobility analyser (HTDMA) with 1 h time res-
olution. The HTDMA was operated with a sample aerosol
flow rate of 0.5±0.05 LPM. A dry aerosol mobility is se-
lected by the first DMA which is then humidified to 90 % RH
and sized again using a second DMA, which steps through
voltages, giving a size distribution of the humidified aerosol.
The growth factor is defined as the particle diameter at a
given RH,D, divided by its dry diameter,D0. The HTDMA
used in this study was the modified version shown byGood
et al. (2010a), which was principally described byCubison
et al.(2005). Following quality assurance, the HTDMA data
was inverted using the multi-triangle inversion described by
Gysel et al.(2009), resulting in the growth factor probabil-
ity distribution,p(GF). Instrumental errors (e.g. precision of
RH measurement) were propagated through to derived data
products (such as the single hygroscopicity parameterκ) as
described in the Supplement.

2.4 Measurements of aerosol composition

Non-refractory aerosol particle composition was measured
by a High-Resolution Time-of-Flight Aerosol Mass Spec-
trometer (HR-ToF-AMS, Aerodyne Research Inc,;DeCarlo
et al., 2006; Canagaratna et al., 2007). The instrument was
operated with a heater temperature of approximately 550◦C
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and is capable of measuring particles from 40 nm–700 nm
vacuum aerodynamic diameter (Jayne et al., 2000; Liu et al.,
1995a,b). The mass size distribution of the aerosol particles
was monitored by measuring the mass as a function of flight
time of the sampled particles in vacuum. Standard data anal-
ysis techniques were applied (Allan et al., 2003). The collec-
tion efficiency used for the OP3 data was 0.5, which is con-
sistent with results from the laboratory (Matthew et al., 2008)
and results in good agreement with the integrated submicron
volume time series from collocated DMPS dataRobinson
et al.(2011), assuming sphericity and the densities measured
by Cross et al.(2007).

Aerosol number-size distributions between 20 nm and
700 nm were measured by a differential mobility particle an-
alyzer (DMPS;Williams et al., 2007). A complete mobil-
ity scan was performed every 10 min. Aerosol optical ab-
sorption was measured with a Thermo Scientific model 5012
Multi Angle Absorption Photometer (MAAP;Petzold and
Scḧonlinner, 2004) which reports in black carbon equivalent
loading.

2.5 Air mass classification

Data from the final OP3 campaign, OP3-III which spanned
23 June–23 July, are presented as this period had the most
complete data coverage (for a list of the campaigns seeHe-
witt et al., 2010).

A backwards air mass trajectory analysis was performed
for the OP3 campaign, and is detailed byRobinson et al.
(2011). In this case, back trajectories were calculated from
ECMWF wind fields (BADC, 2009). One trajectory per hour
was generated for the whole of the OP3 project, with any tra-
jectories that impacted with the ground discarded. All analy-
sis in this paper is segregated using the back trajectory anal-
ysis performed with 950 hPa data. OP3 has been segregated
into five distinct periods of influence defined by different air
mass (Fig. S1 in the Supplement), defined by back-trajectory
cluster analysis and as such the nomenclature is a qualitative
guide, rather than assuring the certainty of air mass origin.

During OP3-III, 4 of the 5 air mass sectors were observed;
with the Marine and Terrestrial periods dominating the sec-
torisation (Fig.1a). The four day Terrestrial period is char-
acterised by a relatively high organic:sulphate ratio (Fig.1b)
when compared to the rest of OP3-III. In contrast, the ob-
served organic:sulphate ratio is much lower during the Ma-
rine period (<2:1). No hygroscopicity data were collected
during air masses designated to be of “coastal” origin during
OP3-III, and only around 24 h worth of data were attributed
to the Westerly and Northeasterly back trajectories respec-
tively (Fig. 1a).

3 Results

3.1 Aerosol composition and size distributions

The measurements were carried out during Borneo’s dry sea-
son (the Sabah region has a dry season from April to Oc-
tober), though year-round rainfall varies only slightly. The
number-size distribution for the campaign was characterised
by a broad monomodal Aitken mode peak between 40 nm
and 70 nm, with occasional high particle concentrations be-
low this diameter (Fig.1c). Whitehead et al.(2010) present
an overview of the aerosol dynamics and size distributions in
an Optical Particle Counter (OPC) study representing the ac-
cumulation mode. Briefly, from the above canopy measure-
ments it was found that the coarse mode aerosol did not con-
tribute to the number-size distribution, as the number con-
centrations were extremely low above diameters of 300 nm.
Particle number concentrations were typically higher across
the submicron size distribution overnight (18:00–06:00 LT,
as shown in Fig1d). Additionally, total particle number con-
centrations above 0.01 µm, as measured by a TSI 3010 CPC
at the top of the GAW tower, were also highest overnight, as
shown in Fig. 3 by (Whitehead et al., 2010).

The high organic:sulphate ratio seen during 4 to 5 July
of the Terrestrial period (Fig.1b), is characterised by rela-
tively low number concentrations at all sizes. From the latter
half of 5 July through 7 July, the organic:sulphate ratio is
seen to decrease and the particle number concentration be-
tween 20 nm and 100 nm increase, after which the period is
attributed to the Unclassified sector, before switching to Ma-
rine. The BC equivalent loading as measured by the MAAP
shows BC levels to be relatively low in contrast to the in-
creased organic loading reported by the HR-AMS for this
period. The Marine period has a relatively low and stable
organic:sulphate ratio ranging from 0.25–2, though the par-
ticle concentration is seen to vary quite dramatically across
the number-size distribution. Most notably, the first half of
the Marine period (8 July through 12 July) is characterised
by an overall low particle concentration above 70 nm, with a
peak in the number-size distribution around 40 nm. 10 July
is characterised by a higher than average organic:sulphate ra-
tio, which peaks at midday, followed by very high particle
concentrations<40 nm. The latter half of 12 July is charac-
terised by very high particle concentrations between 20 nm
and 110 nm. Similar behaviour is exhibited on the evening of
12 July and less so on the afternoon of 13 July, though for a
much shorter period of time in each case. 14 July is shown
to have much lower particle concentrations across the size
range. The Marine period from midday on 17 July through
19 July is characterised by a slightly higher organic:sulphate
ratio than the earlier Marine period (from 0.44–2.2), an in-
crease in BC loading, and number concentrations are much
higher at sizes>40 nm.

Figure1d shows the substantial diurnal variability in par-
ticle concentrations as a function of size. Typically, higher
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Fig. 1. (a) the sectorisation of the OP3-III campaign, for the time series of the aerosol instrumentation used in this paper.(b) the total
organic:sulphate ratio, constituent organic mass as measured by the HR-AMS and BC as measured by MAAP.(c) the DMPS number-size
distribution for the measurement period. The periods are defined as 0 Unclassified, 1 Westerly, 2 Coastal, 3 Marine, 4 Northeasterly and 5
Terrestrial.(d) Day and Night averages and(e)Sectorised averages of the DMPS data.

particle number between 25 nm and 200 nm was observed
during the night throughout the campaign. Figure1e shows a
marked difference in the average size distribution between
day and night for the marine and terrestrial periods, with
the night time terrestrial number-size distribution exhibiting
a departure from the overall trend with a much higher particle
number concentration below 70 nm.

Figure 2 shows the Fraction Activated,FA(S,D0), of
aerosol at each CCNc calibrated supersaturation setting,Sset,

as a function of particle dry diameter,D0. The open cir-
cles represent the averageFA(S,D0) during the day (06:00–
18:00 LT) and the solid circles the night-time average show-
ing no significant difference in activation behaviour; the
solid line represents the averageFA(S,D0) for the entire
measurement period at each supersaturation, with the error
bars showing the standard deviation. There is an appar-
ent departure from the monotonic trend in the fraction ac-
tivated for the three highest supersaturations with particles
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Fig. 2. The aerosol fraction activatedFA(S,D0) against dry diameter, for eachSsetused in OP3-III. The campaign mean is shown as a solid
black line, with error bars illustrating the standard deviation. The data was segregated into day and night, denoted by hollow and solid circles
respectively.

below 100 nm appearing to activate more readily than those
just above 100 nm. Owing to low mass loadings, there are
no size-resolved composition data from the AMS available,
though the aerosol growth factor and mixing state (shown by
HTDMA measurements) will allow for an interpretation of
aerosol composition at each size (see Sect.3.4for the results
of HTDMA measurements).

3.2 Activable fraction of particles

The particle activation data were further split into the Ter-
restrial and Marine periods; the temporal resolution of the
other periods was too low to sectorise effectively. As for the
entire dataset, day and night activation behaviour for both
Marine and Terrestrial did not differ significantly. As the
HTDMA and CCNc data cannot be compared on a diameter-
for-diameter basis, the CCNc data were binned into 5 discrete
bins (with [D0.D1] and [D1.D2] for the lower and upper bins
respectively). In order to probe the effects of aerosol par-
ticle composition on hygroscopicity, the data was screened
for external mixing (which we attributed to data where the
mean growth factor deviated by more than 5 % from the peak
growth factor bin). Figure3 shows the fraction of aerosol

activated as a function of particle dry diameter. The grey
dashed lines indicate the averageFA(S,D0) of the Marine
and Terrestrial clusters, with the coloured lines indicating
theFA(S,D0) during periods where the mean growth factor
was within 5 % deviation of the peak growth factor, for each
Sset. Both clusters exhibit similar trends; particle activation
increasing with an increase in supersaturation. Though the
external mixture screened data shows some small differences
to each sector’s meanFA(S,D0), as Fig.2 has shown, this is
well within measurement variability. The previously noted
departure from monotonic trend across the size range is con-
sistent in each case; at supersaturations above 0.37 % (Sset2),
which has the smallest overall standard error, see Fig. S2 in
the Supplement, particles of 80 to 90 nm diameter activate
more readily than particles of 100 to 120 nm in both clusters,
indicating more soluble material at the smaller sizes, with the
deviation from monotonic behaviour more pronounced in the
marine cluster. Overall, particles from the Terrestrial sector
activate less readily than those from the Marine sector.
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3.3 Particle critical supersaturation

The particle critical supersaturation (the supersaturation
above which a particle of dry diameterD0 will experience
runaway growth into a cloud droplet, denotedSc,D0) has
been derived for the ambient dry particle size range 65 nm<

D0 < 210 nm. Data outside this range were dominated by
large uncertainty, since particles with critical supersaturation
close to the CCNc maximum and minimumSset will be con-
straining the sigmoidal fit with few data on one side or the
other ofFA(S,D0) = 50 %, increasing the uncertainty of the
fit. Such data are removed during the quality assurance pro-
cess. This does not substantially limit the data analysis since
it is the size range that will almost certainly span the thresh-
old dry diameter for droplet activation at reasonable atmo-
spheric updraught speeds and ambient supersaturations (e.g.
Smax <≈ 0.2% for a more hygroscopic aerosol, where the
Amazonian study ofReutter et al.(2009) found the variabil-
ity of initial cloud droplet number concentration in convec-
tive clouds to be mostly dominated by the variability of up-
draft velocity and aerosol particle number concentration in
the accumulation mode).

The Terrestrial cluster has a slightly higher activated frac-
tion at the highest supersaturation (0.73 %) between 80 to
90 nm than at the larger dry diameters of 100 to 120 nm as
shown in Fig.3. However, as the activated fraction increases

at lower supersaturations for the same diameters the derived
critical supersaturation will increase, though the error asso-
ciated with the sigmoid fit will be larger. Similarly for the
Marine sector,FA(S,D0) data at 0.48 % and 0.73 % both de-
crease between 80 to 110 nm which have a greater influence
over the sigmoidal function and do in fact decrease the criti-
cal supersaturation. The critical supersaturation data are pre-
sented in Table1 for both sectors for the measured size dis-
tribution.

Figure4 shows how the peaks in the organic:sulphate ratio
(see Fig.1) are tracked well by the particle critical supersat-
uration, and the reduced relative organic content seen during
the Marine period is characterised by a reduction in the criti-
cal supersaturation (this may be expected if the particles can
indeed be attributed to be of marine origin with higher rela-
tive sulphate or sea salt content).

The Sc,D0 data was sectorised for Marine and Terrestrial
back trajectories, the results of which are shown in Ta-
ble 1. There is less variability inSc,D0 during the Terres-
trial period (denoted byσ ), and there is an overall higher
organic:sulphate ratio during this period (Figs.1 and4). The
particles attributed to the Marine sector are easier to acti-
vate, requiring a lower supersaturation at all sizes until al-
most all particles are activated overD0 = 200 nm, though
this similarity may partially be attributed to instrument limi-
tations, as the lowest supersaturation setting was 0.11 %, and
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Fig. 5. The HTDMA growth factor probability distribution,p(GF), and RH-corrected mean growth factor,GFD0,90%,c at 90 %, for 6 dry
diameters as measured by the HTDMA.

so only critical supersaturations above this value may be de-
rived (see Fig. S2 in the Supplement).

3.4 Aerosol sub-saturated water uptake

Aerosol water uptake at 90 % relative humidity, RH, was
measured using an HTDMA. The instrument ran well for the
majority of OP3-III, with little deviation from the target RH.
The growth factor probability distribution,p(GF), is highly
variable (Fig.5), with the same trends being followed at all
sizes. Compared to other projects using the same measure-

ment (such as that shown byIrwin et al., 2010), the growth
factor probability distribution for a single scan is typically
quite broad; clearly indicating a range of compositions at
any given size, exhibiting a broad continuum of growth fac-
tors rather than falling into multiple externally mixed classes.
The extent of this external mixing becomes increasingly dis-
tinct when the less hygroscopic mode with a growth factor
of ∼1.1 separates from the more hygroscopic mode particles
with their higher growth factors typically increasing with in-
creasing dry diameter (Fig.5 and averagep(GF) shown in
Fig. S4 in the Supplement). The more hygroscopic mode
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Table 1. A table of mean critical supersaturation,Sc,D0, for each
measured dry diameter,D0, for the Marine and Terrestrial periods
of OP3-III, with standard deviation,σ .

Marine Terrestrial
D0 Sc,D0(%) σ Sc,D0(%) σ

65 nm 0.482 0.086 0.630 0.037
74 nm 0.428 0.079 0.560 0.044
84 nm 0.391 0.070 0.512 0.041
96 nm 0.388 0.060 0.477 0.030
110 nm 0.394 0.058 0.465 0.042
129 nm 0.361 0.052 0.431 0.060
148 nm 0.209 0.058 0.257 0.054
171 nm 0.202 0.047 0.246 0.054
199 nm 0.182 0.051 0.184 0.052
224 nm 0.183 0.074 0.182 0.053

shown at the larger diameters appears to be an internal mix-
ture, with a narrow distribution of growth factor values. The
departure from monotonic trend for particles of dry diame-
ters 32 nm and 53 nm (shown in Fig.3) cannot be solely at-
tributed to external mixing, as the variation in the activated
fraction data is greater than the difference in this variation
between internally mixed and externally mixed data.

An aerosol humidogram was performed between 5 and 6
July (Fig. 6); a terrestrial period with higher variability in
the DMPS number-size distribution for the duration of the
humidogram (see Fig. 6 inset). It should be noted that no
measurements were possible below 45 % RH. The majority
of the data from the humidogram corresponds to the morn-
ing and early afternoon of 6 July, which is characterised by
low particle concentrations above 60 nm, but high concen-
trations between 20 nm and 60 nm in the late morning. The
humidogram was started at 90 % RH and brought down to
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45 % RH, whence the RH was increased again up to 85 %.
Contrasting the efflorescence and deliquescence branches of
the humidogram (denoted by solid and dashed lines respec-
tively), reveals the late-afternoon/evening aerosol particles
below 258 nm to be more hygroscopic at the same RH, than
particles of the same dry diameter the following morning.
This could be due to the increasing ambient RH as the bound-
ary layer (and moisture) lifts up the side of the valley, scav-
enging the most hygroscopic particles. The lack of a well-
defined deliquescence point is consistent with aerosol com-
prising multiple components able to attract liquid water to
the particles below the deliquescence point of commonly ex-
pected inorganic salts (Marcolli et al., 2004). The two small-
est sizes (32 nm and 53 nm) do not achieve the same high
growth factor of 1.4–1.5 seen by the larger particles; consis-
tent with activation data (Figs.2 and3).

3.5 Hygroscopicity

Fig. S5a in the Supplement shows the average of the RH-
corrected mean growth factor at 90 % RH for the Terrestrial
sector plotted against that of the Marine sector, coloured as
a function of particle dry diameter. The Marine sector shows
an overall higher growth factor at each size than for the Ter-
restrial sector, with particles ofD0 = 32 nm showing the clos-
est overall agreement in growth factor between the two sec-
tors.

Consistent with these data, Fig. S5b in the Supplement
shows that the Terrestrial sector requires a consistently
higher supersaturation to activate the particles compared to
that of the Marine sector, which more readily activates at
each dry diameter. The critical supersaturation is most vari-
able for the smallest dry diameters, where a higher variability
in the mean hygroscopic growth factor could have introduced
higher variability in the activated fraction and subsequently
critical supersaturation, as at these dry diameters, the aerosol
is mostly internally mixed (or comprises external mixtures
of a narrow hygroscopic range). Figure S5b in fact shows
the same information as Fig.3, as Sc,D0 is derived from
FA(S,D0). The larger sizes show overall agreement for both
sectors, which was previously shown in Table1.

3.6 Reconciling sub- and supersaturated hygroscopicity

An aerosol particle’s ability to behave as a CCN is dependent
on both particle size and composition. The composition of a
solution determines its water activity (aw) and surface ten-
sion (σ ) for a given water content. The relationship between
a droplet’s size and saturation ratio (S) can be described us-
ing these parameters in the Köhler equation (Eq.1) (Köhler,
1936; McFiggans et al., 2006),

S = awexpKe (1)

whereKe is the Kelvin or surface tension term.
The κ-Köhler model ofPetters and Kreidenweis(2007),

defines a single hygroscopicity parameterκ to describe the
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particle activation behaviour, which can be derived from HT-
DMA and CCNc measurements:

S =
GF3

D0,RH−1

GFD0,RH
3
−(1−κ)

exp

(
4σwMw

RTρwD0GFD0,RH

)
(2)

where GFD0,RH is the growth factor at a given dry diame-
ter, D0, and relative humidity, RH. Equation (2) was used
to calculateκ for both HTDMA and CCNc measurements in
the same manner as shown byIrwin et al.(2010), with instru-
mental uncertainties arithmetically propagated through to the
final data products of critical supersaturation, threshold dry
diameter for activation and number of CCN.

Figure 7 directly compares HTDMA and CCNc derived
critical supersaturations. Critical supersaturation retrieved
from the S-step interpretated CCNc data (i.e. derivedSc,D0)
has been plotted against dry diameter as has the critical su-
persaturation calculated from Eq. (2) using HTDMA cor-
rected mean growth factor derivedκGF. Finally, using D-step
CCNc data analysis,D50,S has been plotted against the corre-
sponding corrected CCNc setpoint supersaturation. The pre-
dicted critical supersaturation from the HTDMA measure-
ments (shown in red) clearly shows a consistently more hy-
groscopic aerosol than that derived from either CCNc tech-
nique. The D-step analysis (the dry diameter for activation
at each supersaturation setting; of which there are 5) shows a
typically less hygroscopic aerosol than measured and derived
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by the HTDMA analysis. The CCNc S-step analysis shows
a larger variation in critical supersaturation as a function of
particle dry diameter than for either of the other two deriva-
tions, though there is good overlap between CCNc deriva-
tion techniques in the 70 nm-100 nm size range. The dis-
agreement betweenD50,S andSc,D0 is most prominent at the
edges of the dry diameter and/or supersaturation ranges. This
may be attributed to the limitations, and thus increased un-
certainty, of deriving these products in such close proximity
to the edges of the instrument range (see Figs. S2 and S3 in
Supplement). It should be noted that the overall standard er-
ror in D50,S is smaller over the CCNc measurement range
than forSc,D0.

The hygroscopicity parameterκ has been calculated for
both HTDMA and CCNc data using Eq. (2). As the SMPS
supplying the CCN did not measure at the same dry diam-
eters as the HTDMA, the CCNc dry diameters have been
binned around each HTDMA dry diameter, using

√
D0·D1

for the lower bin edge and
√

D1·D2 for the upper bin edge.
The mean and standard deviation ofκSc was calculated for
each size bin, and plotted against meanκGF, shown in Fig.8.
Values ofκGF tend to increase with particle size, whereas
conversely, values ofκSc tend to decrease with particle size.
Though there is a large standard deviation for the smallest
dry diameter bin (41 nm< D0 < 74 nm), there is reasonable
agreement seen between the instruments. The observed in-
crease in the difference between values ofκ with dry diame-
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Fig. 9. κ vs. dry diameter, for the CCNc (triangles) and HTDMA
(circles) measurements, both forTerrestrial (green) andMarine
(blue) sectors.

ter though non-intuitive could be due to differences in equi-
librium states in the two instruments (discussed below). For
example, larger particles could contain more semi-volatile
material than smaller particles, and should the equilibrium
conditions differ between instruments (which they will), the
final organic content may differ as constituents are preferen-
tially volatilised in different ratios in each instrument. Fur-
thermore, the non-idealality of the solution (i.e. activity co-
efficient) might change significantly between 90 % RH and
the point of activation, and the Kelvin term may not be ac-
curately represented assuming the surface tension is equal to
that of water.

κGF (circles) andκSc (triangles) were plotted for both Ma-
rine (blue) and Terrestrial (green) sectors against particle dry
diameter (Fig.9). The aerosol water uptake is typically eval-
uated to be lower when calculated from CCNc data than from
HTDMA measurements and the derivedκSc values are much
smaller than those ofκGF. The latter values are frequently
in the 0.2–0.3 range, and the majority of data are within the
range observed in previous studies of rainforest CCN (Gun-
the et al., 2009; range 0.05–0.45 using CCNc derived hygro-
scopicity).

A possible cause of the discrepancies between the val-
ues ofκSc andκGF could be due to instrumental differences
rather than a fault with the model. The size-selection pro-
cess involves drying the aerosol prior to entry into a DMA;
any differences in the initial drying of the aerosol prior to
size-selection will determine the water content in the parti-
cle and gaseous phase (air surrounding the particle) as the
particle airflow strives to reach equilibrium. Furthermore,
any volatile or semi-volatile compounds can start to evapo-
rate from the aqueous phase to the gaseous phase. Therefore,
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the resultant aerosol sample flow is a mix of relatively dry
particulate matter, water vapour and other semi-volatile com-
pounds (inorganic and organic). After some time (circa
1 h; and assuming the composition does not change with
time), this aerosol sample flow will reach equilibrium with
the sheath flow of the DMA, with similar amounts of com-
ponents in the gaseous phase. Differences in both aerosol
composition (from marine and terrestrial air masses) and
instrumental sampling (differing rates and degrees of dry-
ing/wetting) could increase this inconsistency.

As neither drying system will dry to 0 % RH, the resul-
tant particle dry diameter will be larger than the completely
dry particle diameter and, for example, in terms of HTDMA
measurements, would result in a lower measured growth fac-
tor even if equilibrium is reached in the humidification sec-
tion (due to the small overestimation ofD0). This behaviour
has been shown previously by the multi-site study ofAklilu
et al.(2006), where data from one HTDMA was successfully
reconciled with the AMS (using the Zdanovskii, Stokes and
Robinson mixing rule;Stokes and Robinson, 1966), with all
components accounted for, whereas for the other HTDMA,
it was necessary to excluded nitrate in order to achieve rec-
onciliation. Furthermore,Gysel et al.(2007) reconciled HT-
DMA and AMS data using ZSR within uncertainty except
for times of elevated nitrate concentrations, andPrenni et al.
(2001) have shown similar behaviour for semi-volatile com-
pounds.Mikhailov et al.(2004) have also shown this evapo-
rative loss to occur as a function of RH giving rise to errors
in dry particle size on the order of several nanometers, and
so the potential differences in initial sizing between instru-
ments, though speculative, cannot be overlooked.

Further to size-selection, the relative amounts of gaseous
and aqueous compounds in the aerosol sample flow stream
will likely differ between different instrument sections, due
to changes in the kinetics and the resultant departure from
equilibrium. The CCNc has a scrubber which will remove
volatile and semi-volatile compounds from the sheath flow,
which is absent from the HTDMA’s recirculating sheath.
Therefore the relative amounts of liquid water and water
vapour, in addition to SVOC in both aqueous and gaseous
phases, will be different in the humidification sections of
both instruments.

3.7 Calculation of the number of Cloud Condensation
Nuclei

Using values ofκ, Eq. (2) can be used to calculate the
threshold dry diameter for activation (Dthres) for HTDMA
mean corrected growth factor data. Furthermore, the physi-
cal threshold dry diameter for activation can be directly de-
rived from the CCNc data via two additional pathways (by-
passing the need forκ); directly from D-step interpreted
data,D50,S, or by plotting Sc − Sset vs. D0 where the in-
tercept is interpreted as the physical threshold dry diameter
(as shown by Fig. S6 in the Supplement). In order to calcu-

lateNCCN, the DMPS number-size distribution is integrated
using the trapezium rule between the largest dry diameter
(∼700 nm) and the threshold dry diameter for activation from
each method. Figure10 shows the results of this analysis
from a variety of different methods. Figure10a showsNCCN
calculated from the threshold dry diameter as derived by the
κGF vs the threshold dry diameter for activation derived from
the critical supersaturation (bypassing kappa). Best agree-
ment is at 0.48 %, the errors in theSc,D0 derivedNCCN are
larger than that for the HTDMA, with noticeable disagree-
ment in the lowS, low N regime.

Figure10b showsNCCN calculated from S-step analysis
(withoutκ) vs.NCCN calculated from D-step analysis (again,
without κ). As expected, theres a smaller error associated
with NCCN derived using D-step interpreted data, compared
to that of S-step interpreted data; as fewer analysis steps have
been taken, and D-step analysis fits a sigmoidal function to
more x-axis data points (see the uncertainty associated with
each method in Figs. S2 and S3 in the Supplement). Again,
best agreement is observed at a supersaturation of 0.48 %, but
there is relatively good agreement throughout theS range.
The reason that the lower and upper supersaturations,Sset0
andSset4respectively, are not included is that this method of
calculatingNCCN (Sc,D0) uses the physical threshold dry di-
ameter of the aerosol as described by plottingSc−S vs.D0
where the intercept for a givenS is the threshold dry diam-
eter, and it is not possible to deriveSc,D0 outside of theS
range.

Figures10c and11 (and Fig. S7 in the Supplement) show
the comparison betweenNCCN derived from the HTDMA
(Dthres,κ,GF) and D-step analysis CCNc analysis (Dthres,D50).
The HTDMA data predicts higher numbers of CCN than data
from the CCNc would suggest. Previous studies using these
instruments (e.g.Irwin et al., 2010), have shown the con-
verse to be true (i.e. thatNCCN is underpredicted from HT-
DMA measurements). The largest difference between the
two results however, is in the lowN , low S regime. The HT-
DMA does consistently over predictNCCN when compared
to NCCN derived from D-step analysis, as a result of the HT-
DMA apparently measuring an aerosol with a higher water
affinity than as reported from the CCNc.

Data were fitted with an ODR line function, the results of
which are shown in Table2. Of the two differentNCCN com-
parisons between instruments, theDthres,κ,GF vs. Dthres,D50
method (shown in Fig.10c) shows considerably less devia-
tion from the 1:1 line, though with increased scatter (denoted
by R2), compared to data derived fromDthres,Sc.

In contrast to the data presented here, the measurements
performed in the Amazon described byRoberts et al.(2001),
reportNCCN concentrations between 33–320 cm−3 for the
range 0.15 %–1 % supersaturation, which is lower than any
of theNCCN predictions made with size-resolved aerosol wa-
ter uptake measurements in this study. Size-resolved water
uptake measurements from Amazonia as reported byGunthe
et al. (2009) predictNCCN to be between 10 and 500 cm−3
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Fig. 10. NCCN vs.NCCN for: (a) HTDMA vs. CCNc S-step analysis;(b) CCNc S-step analysis vs. CCNc D-step analysis;(c) HTDMA vs.
CCNc D-step analysis.

Table 2. A table of ODR slopes andR2 for straight line fits to
NCCN derived fromDthres,κ,GF vs. Dthres,Sc andDthres,κ,GF vs.
Dthres,D50.

GF vs.Sc GF vs.D50
Sset Slope R2 Sset Slope R2

0.11 0.11 1.2847 0.26
0.18 1.5163 0.35 0.18 1.1945 0.41
0.37 1.6752 0.38 0.37 1.3289 0.55
0.48 1.3437 0.65 0.48 1.2717 0.68
0.73 0.73 1.2884 0.69

for the supersaturation range 0.10 % to 0.82 %, indicating
differences in the aerosol over Bornean and the Amazonian
rainforests.

4 Discussion

In this paper we present the first hygroscopicity study in an
Asian rainforest and attempt to reconcile the HTDMA/CCNc
data with the use of the popularκ-Köhler model. This pa-

per also marks the first size-resolved particle water uptake
measurements made in this region, with interpretation of the
data aided through the use of a back trajectory cluster analy-
sis. TheκSc range was typically 0.05–0.37 for the measured
dry diameter and supersaturation ranges of 50–210 nm and
0.11–0.73 % respectively. In comparison, theκGF range was
typically 0.17–0.37 for the dry diameter range 32–258 nm
measured at 90 % RH. This compares with theκ range of
0.05–0.45 for the dry diameter range 40–240 nm and super-
saturation range 0.10–0.82 % found in the Amazon (Gunthe
et al., 2009).

The aerosol number-size distributions are significantly dif-
ferent during the Terrestrial periods than the Marine, indi-
cating multimodal behaviour and hence also possible exter-
nal mixing. Sub-saturated water uptake measurements from
the HTDMA at 90 % showed the aerosol to comprise a va-
riety of growth factors at each size, with a less hygroscopic
mode around 1.1 inp(GF), becoming more prominent with
increasing aerosol size. Though the size-resolved aerosol
composition data as measured by the AMS could not provide
adequate information regarding the composition of particles
for a given dry diameter, periods of high organic content (at-
tributed to be that of Terrestrial origin by the back trajectory
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(b) derived from CCNc D-step analysis. The tables show the mean
NCCN concentrations at each supersaturation.

analysis) are characterised by a lower overall hygroscopicity
at all sizes, with the Marine sector accounting for the more
hygroscopic time periods.

Supersaturated measurements show a departure from the
typical monotonic trend typically shown by the fraction of
aerosol activated,FA(S,D0), most notably at the higher su-
persaturations (Sset> 0.37 % S) and smaller dry diameters
(D0 < 120 nm). The apparent complexity of the mixing state
as illustrated by HTDMA measurements, is likely to man-
ifest itself in the CCNc measurements as a source of un-
certainty, though screening the data for periods of external
mixing couldn’t explain the discrepancies as the variation in
activation data is much greater than the differences between
screened and unscreened data. The greatest level of uncer-
tainty from the CCNc measurements was attributed to the
S-step analysis, and as such the D-step analysis is the recom-
mended analysis pathway for this particular dataset.

Though near-identical calibrations were performed for
each instrument at each location, there are significant dif-
ferences between the all results shown by the two marine
campaigns presented byGood et al.(2010a,b). Good et al.
(2010a) present data from a marine location, where on av-
erage theκ values from the CCNc are higher than those de-
rived from the HTDMA, yet another marine study byGood
et al.(2010b) shows NCCN (andκ) derived from the CCNc
to be near-systematically underpredicted. The results can be
compared to similar measurements made during the Convec-
tive and Orographically-induced Precipitation Study (COPS;
Irwin et al., 2010) in Germany’s Blackforest, during the sum-

mer of 2007. Values ofκSc from moderately-polluted COPS
were between 0.4 and 0.1 and values ofκGF were between
0.2 and 0.08, the reverse of the results from this project;
where values for the HTDMA-derived hygroscopicity pa-
rameter were larger than when derived from CCNc measure-
ments. The consequence is that the results from COPS pre-
dictedNCCN from HTDMA measurements to be lower than
from CCNc measurements. The data from COPS typically
consisted ofNCCN slopes closer to the 1:1 line, and higher
R2 correlation. Furthermore, typical values ofNCCN during
COPS were 3–4 times those calculated during OP3, leading
to the conclusion that aerosol in the tropical region of Borneo
can be considered to be a synthesis of marine and continen-
tal aerosol traits, in a biogenically diverse setting. Due to
the climatic importance of the tropical regions, and the ap-
parent variability of various derived data products, such asκ,
between regions, any anthropogenic perturbations to aerosol
number and composition due to changes in land use in the
tropics highlight the importance of studies of this type.

5 Conclusions

Size-resolved HTDMA and CCNc measurement of atmo-
spheric aerosol in Borneo identified the aerosol to com-
prise a range of compositions over the measured size range
(D0 = 32− 258 nm), and for the aerosol hygroscopicity to
vary with changing air mass back trajectories, largely out-
side of uncertainty.

Reconciliations of the results from both instruments was
performed through to predictions ofNCCN, where good
agreement is seen between the HTDMA and CCN derived
products. The HTDMA typically sees a more hygroscopic
aerosol throughout the campaign than the CCNc (κGF =

0.17–0.37 compared toκSc =0.05–0.37), resulting in a higher
predicted number of CCN. However, both methods predict
the overall CCN number concentration to be modest, which
reinforces results from previous studies that suggest that rain-
forest aerosol may behave in a “marine” fashion (Roberts
et al., 2001; Gunthe et al., 2009), though the predictedNCCN
results from the Amazon are typically lower, with values of
NCCN at S = 0.73 % between 482 and 701 cm−3 for sub-
and supersaturated measurement predictions respectively, in
contrast to the much lower figures reported byGunthe et al.
(2009) (∼163 cm−3 atS = 0.82 %).

In order to combat the issues of mixing state in future mea-
surements of this type, the authors recommend a higher res-
olution set of CCNc measurements, at a higher number of
supersaturation setpoints. The increased number of diameter
measurements with allow for a better analysis of the aerosol
behaviour at each diameter, and a higher number of super-
saturations will reduce the uncertainty involved in fitting the
data forSc,D0 andD50,S. In addition, any improvements in
the measurement of aerosol size-resolved composition would
be welcomed greatly, as it would enable an in depth analysis
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of aerosol composition and its influence on hygroscopicity as
a function of particle dry diameter (the AMS was not suitable
on this occasion due to insufficient particle mass).

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/11/11157/2011/
acp-11-11157-2011-supplement.pdf.
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