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Abstract. Individual particles that on a mass basis con-
sist dominantly of the components ammonium sulfate, oxy-
genated organic material, and water are a common class of
submicron particles found in today’s atmosphere. Here we
use (1) the organic-to-sulfate (org:sulf) mass ratio of the
overall particle and (2) the oxygen-to-carbon (O:C) elemen-
tal ratio of the organic component as input variables in pa-
rameterisations that predict the critical relative humidity of
several different types of particle phase transitions. Specif-
ically these variables were used to predict the critical rela-
tive humidity of liquid-liquid phase separation (SRH), ef-
florescence (ERH), and deliquescence (DRH). Experiments
were conducted by optical microscopy for 11 different oxy-
genated organic-ammonium sulfate systems covering the
range 0.1< org:sulf <12.8 and 0.29< O:C< 1.33. These
new data, in conjunction with other data already available
in the literature, were used to develop the parameterisations
SRH(org:sulf, O:C), ERH(org:sulf, O:C), and DRH(org:sulf,
O:C). The parameterisations correctly predicted SRH within
15 % RH for 88 % of the measurements, ERH within 5 % for
84 % of the measurements, and DRH within 5 % for 94 % of
the measurements. The applicability of the derived param-
eterisations beyond the training data set was tested against
observations for organic-sulfate particles produced in an en-
vironmental chamber. The organic component consisted of
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secondary organic material produced by the oxidation of iso-
prene,α-pinene, andβ-caryophyllene. The predictions of
the parameterisations were also tested against data from the
Southern Great Plains, Oklahoma, USA. The observed ERH
and DRH values for both the chamber and field data agreed
within 5 % RH with the values predicted by the parameterisa-
tions using the measured org:sulf and O:C ratios as the input
variables.

1 Introduction

Atmospheric aerosol particles have many important roles in
the Earth system. Examples include their feedback mecha-
nisms to climate change, their links to the biogeochemical
cycles of many elements, and their effects on regional vis-
ibility and human health (Finlayson-Pitts and Pitts, 1997;
Ravishankara, 1997; Martin et al., 2004; Pope and Dock-
ery, 2006; Seinfeld and Pandis, 2006; Forster et al., 2007).
In the atmosphere, single particles having both organic and
sulfate species are abundant (Murphy et al., 1998; Buzorius
et al., 2002; Murphy et al., 2006; Pratt and Prather, 2010).
Since the sulfate fraction is often partially or fully neutralised
by ammonium (Dibb et al., 1996; Huebert et al., 1998; Tal-
bot et al., 1998; Dibb et al., 2000; Lee et al., 2003), mixed
organic-ammonium sulfate particles constitute an important
class of atmospheric aerosol particles.
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Fig. 1. (a) Some possible phase transitions of mixed organic-
ammonium sulfate particles. These transitions can occur as atmo-
spheric relative humidity fluctuates between high and low values.
Aqua, green, and red respectively represent an aqueous phase, a liq-
uid phase of organic material, and a solid phase of crystalline am-
monium sulfate ((NH4)2SO4). (b) Optical microscope images of a
single particle consisting of 1,2,6-trihydroxyhexane and ammonium
sulfate (org:sulf= 2.1) showing the sequence from right-to-left of
an internally mixed liquid phase, two phase-separated liquids, and
a core-shell arrangement of a solid-liquid particle. Images were
recorded using 500× magnification as the relative humidity was de-
creased while the temperature was held constant at 291± 1 K.

Individual organic-ammonium sulfate particles can un-
dergo liquid-liquid phase separation, efflorescence, and
deliquescence as the relative humidity (RH) cycles between
low and high values during air parcel motion and tempera-
ture oscillations in the atmosphere (e.g.,Martin, 2000; Clegg
et al., 2001; Brooks et al., 2002; Pankow, 2003; Parsons
et al., 2004; Erdakos et al., 2006; Marcolli and Krieger, 2006;
Anttila et al., 2007; Ciobanu et al., 2009; Prisle et al., 2010;
Zuend et al., 2010; Smith et al., 2011). These phase transi-
tions are illustrated in Fig. 1a. In the past, researchers try-
ing to determine the phase transitions of organic-ammonium
sulfate particles focused mainly on the individual organic
molecules that have been identified in the atmosphere (e.g.,
Brooks et al., 2002; Wise et al., 2003; Braban and Abbatt,
2004; Parsons et al., 2006). In the atmosphere, however, the
organic fraction in these mixed particles consists of 1000s of
different molecules, with only about 10 % molecularly iden-
tified (Hallquist et al., 2009). Because only a small frac-
tion of the organic material of atmospheric particles have
been identified, liquid-liquid phase separation, efflorescence,
and deliquescence of mixed organic-ammonium sulfate par-
ticles have been difficult to anticipate. Herein, given the
intractability of characterising and studying 1000s of indi-
vidual organic molecules, we explore a different approach
by focusing on the organic-to-sulfate (org:sulf) mass ratio of

the mixed particles and the oxygen-to-carbon (O:C) elemen-
tal ratio of the organic component as possible predictors of
phase transitions. The practical advantage of using these ra-
tios is that they are measured by instrumentation that has al-
ready been deployed at measurement sites worldwide (Jayne
et al., 2000; Zhang et al., 2007; Aiken et al., 2008; Jimenez
et al., 2009; Ng et al., 2010).

This presentation of the current study is structured, as
follows. In Sect. 2, laboratory measurements of deliques-
cence, efflorescence, and liquid-liquid phase separation are
described for particles containing one oxygenated organic
molecule plus ammonium sulfate and water (i.e., three-
component particles). Oxygenated organic molecules are a
major fraction of the total organic particle mass concentra-
tion in the atmosphere, and they dominate relative to non-
oxygenated organic molecules on a global-average mass ba-
sis (Kanakidou et al., 2005; Zhang et al., 2007; Hallquist
et al., 2009). Each studied system consisted of one type of
oxygenated organic molecule, plus ammonium sulfate and
water (Tables S1–S3). Functional groups included esters, al-
cohols, carboxylic acids, ethers, and aromatics. This selec-
tion covers many of the functional groups found in the at-
mosphere (Finlayson-Pitts and Pitts, 1997; Seinfeld and Pan-
dis, 2006; Day et al., 2009; Liu et al., 2009; Russell et al.,
2011). In Sect. 3, the new laboratory results as well as other
laboratory results reported in the literature are summarised
and discussed, and the parameterisations of the laboratory
results are presented. In Sect. 4, we apply the parameteri-
sations to two case studies: an environmental chamber study
and a field study. Section 5 presents conclusions and outlook.

2 Experimental

The relative humidity at which liquid-liquid phase separation
(SRH), efflorescence (ERH), and deliquescence (DRH) oc-
curred in 11 different oxygenated organic-ammonium sulfate
systems was studied with an optical microscope coupled to a
temperature controlled flow-cell (Pant et al., 2006; Ciobanu
et al., 2009; Bodsworth et al., 2010). The bottom surface of
the flow cell was a hydrophobic glass slide upon which the
particles were deposited and observed. A solution of ammo-
nium sulfate and an organic molecule was prepared in high-
purity water or, in the case of low water-solubility organic
molecules, in a mixture of water and methanol. The solution
was then passed through a nebulizer to produce submicron
droplets. These droplets were directed toward the hydropho-
bic glass slide, upon which they deposited and coagulated
into supermicron droplets. The water or the water/methanol
mixture was then evaporated to generate organic-ammonium
sulfate particles with lateral dimensions ranging from 10 to
30 µm.

At the beginning of an experiment the RH in the flow cell
was first set to nearly 100 %. Relative humidity was con-
trolled by a continuous flow of a mixture of humid and dry

Atmos. Chem. Phys., 11, 10995–11006, 2011 www.atmos-chem-phys.net/11/10995/2011/



A. K. Bertram et al.: Predictions of phase transitions 10997

organic:sulfate mass ratio
0.1 1 10

organic:sulfate mass ratio
0.1 1 10

organic:sulfate mass ratio
0.1 1 10

organic:sulfate mass ratio
0.1 1 10

DRH and ERH for O:C < 0.7(c)

SRH O:C < 0.7(a) SRH O:C > 0.7(b)

10
0

30
20

50
40

70
60

80

100
90

RH
 (%

)

10
0

30
20

50
40

70
60

80

100
90

RH
 (%

)

10
0

30
20

50
40

70
60

80

100
90

SR
H 

(%
)

10
0

30
20

50
40

70
60

80

100
90

SR
H 

(%
)

DRH and ERH for O:C > 0.7(d)

0.29

0.40
0.34

0.51
0.45

0.56

0.67
0.62

O:C

0.29

0.40
0.34

0.51
0.45

0.56

0.67
0.62

O:C

0.87

1.00
0.93

1.13
1.07

1.20

1.33
1.26

0.80

0.87

1.00
0.93

1.13
1.07

1.20

1.33
1.26

0.80

O:C

O:C

DRH

ERH

DRH

ERH

Fig. 2. Measurements of separation relative humidity (SRH), efflorescence relative humidity (ERH), and deliquescence relative humidity
(DRH). Axes denote the observed relative humidity (RH) of a transition and the organic-to-sulfate mass ratio of a studied mixed system.
Data are segregated between the left and right sets of panels for low (<0.7) and high (>0.7) oxygen-to-carbon (O:C) elemental ratios of
the organic material. Open symbols indicate that no phase transition was observed. In some cases SRH was not probed below 35–40 % RH
because ammonium sulfate or the organic material crystallised. Phase transitions for temperatures ranging from 290 to 298 K.

N2. The relative humidity of the gas was determined using
a chilled mirror sensor (General Eastern). The uncertainty in
measuring the relative humidity of the carrier gas was 0.3 %,
and the uncertainty in the reported SRH, ERH and DRH-
values were 2.5 %, 2.8 %, and 2.5 %, respectively, based on
the reproducibility of the data. Typical flow rates were ap-
proximately 1.5 L min−1. After initialisation at nearly 100 %
RH, the RH over the particles was then ramped down at a rate
of 0.4–0.6 % per minute, and images of the particles were
captured every approximately 20 s. The RH was decreased
to approximately 25 % if efflorescence was observed and to
as low as 2 % if no efflorescence was observed. After efflo-
rescence was observed or the particles had been held at<2 %
RH for some time, the RH was increased at the same rate to
observe deliquescence of the particles. Calibration of the ab-
solute RH readings was done using the DRH values for pure
ammonium sulfate particles. All experiments were carried
out at a temperature of 290± 1 K, except for experiments
with 1,2,6-trihydroxyhexane. The results reported for 1,2,6-
trihydroxyhexane were carried out at 273± 1 K though sev-
eral experiments were also conducted at 290± 1 K and con-

firmed that within experimental uncertainty the DRH, ERH,
and SRH were the same at both temperatures.

The spatial distribution of the organic and sulfate ma-
terial after liquid-liquid phase separation was probed with
Raman microscopy at approximately 293 K. Raman spectra
of a pure ammonium sulfate particle, a pure 4-dihydroxy-
3-methoxybenzeneacetic acid particle, and a mixed 4-
dihydroxy-3-methoxybenzeneacetic acid-ammonium sulfate
particle (org:sulf of 3.1) were collected. Spectra were ac-
quired on particles deposited on a hydrophobic glass slide
in the same manner as for the optical microscope experi-
ments. The spectra were collected using a Renishaw inVia
Raman microscope with excitation using an argon ion laser
at 514 nm and a power of 200 mW. All Raman spectra were
collected at room temperature. For the Raman experiments
the particles were exposed to room air, and hence, the RH
was not controlled.
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Fig. 3. Raman spectra of(a) a pure ammonium sulfate parti-
cle, (b) a pure 4-dihydroxy-3-methoxybenzeneacetic acid particle,
(c) the core of a mixed 4-dihydroxy-3-methoxybenzeneacetic acid-
ammonium sulfate particle after phase separation, and(d) the shell
of a mixed 4-dihydroxy-3-methoxybenzeneacetic acid-ammonium
sulfate particle after phase separation. The mixed particle used for
Raman analysis (organic-to-sulfate = 1.44) is shown to the right.
All Raman spectra were collected at approximately 293 K. In ad-
dition, during Raman measurements the particles were exposed to
room air, and hence, the RH was not controlled.

3 Laboratory results and discussion

Shown in Fig. 1b are examples of images recorded during
a typical experiment in which liquid-liquid phase separa-
tion and efflorescence were observed (cf. Movie S1). The
new data are plotted in Fig. 2 as a function of org:sulf and
O:C, together with previous measurements of oxygenated
organic-ammonium sulfate systems (Table 1 and references
therein). Figure 2, as well as Figs. S1–S2, reveal that a di-
viding line emerges from the data, specifically for O:C< 0.7
compared to O:C> 0.7. For O:C< 0.7, the particles regu-
larly undergo liquid-liquid phase separation, followed by ef-
florescence of the core with decreasing RH.

The spatial distribution of the organic and sulfate materi-
als after liquid-liquid phase separation in a particle is shown
in Fig. 3. The morphology is an organic coating surrounding
an aqueous ammonium sulfate core, with small amounts of
each in the other phase. For some systems we also observed
several sulfate rich inclusions with diameters on the order
of a few micrometers within an organic rich phase. These
results are consistent with the Raman spectra and optical im-
ages of poly(ethylene glycol)-ammonium sulfate particles af-
ter liquid-liquid phase separation (Ciobanu et al., 2009). In
our studies, as well as the previous studies with poly(ethylene
glycol)-ammonium sulfate particles, the hydrophobic glass
slide may influence the morphology. Studies with levitated

particles have reported an organic lens on aqueous droplets
and several small aqueous ammonium sulfate inclusions sus-
pended in an organic particle after liquid-liquid phase sepa-
ration (Buajarern et al., 2007; Kwamena et al., 2010). Re-
gardless of the morphology, the Raman spectra show that
the nucleation-disrupting organic molecules are largely ex-
cluded from the aqueous salt solution after phase separation.
This separation allows efflorescence to occur at an RH close
to that of pure aqueous ammonium sulfate (Ciobanu et al.,
2009; Smith et al., 2011).

The SRH value is independent of org:sulf in most cases,
as illustrated in Fig. 2a and b, but correlates to first degree
with O:C (R2

= 0.87 for O:C≤ 0.8; Fig. S2), at least for the
parameter space explored here (i.e., 0.1< org:sulf< 15 and
0.2< O:C< 1.4). For O:C< 0.7, Fig. 2c demonstrates that
as a first-order approximation ERH and DRH do not depend
on org:sulf. Within experimental uncertainty, they are the
same as those of pure ammonium sulfate. Conversely, for
O:C> 0.7 Fig. 2d shows that ERH and DRH decrease with
increasing values of org:sulf.

The correlation between SRH and O:C shown in Fig. 2
and Fig. S2 can be rationalised by the salting out effect and
the molar polarisation of the organic molecule. The decrease
in solubility of an organic molecule in an aqueous solution
due to the addition of a salt is known as the salting out ef-
fect. Salting out may be described by the Setchenov equation
(Lee, 1997):

ln
S

S0
= ksCs (1)

whereS is the solubility of the organic molecule in water in
the presence of the salt,S0 is the solubility in water with-
out the salt,Cs is the concentration of the salt, andks is the
Setchenov constant. Increasingly negative values ofks result
in a greater tendency of an aqueous organic-inorganic parti-
cle to liquid-liquid phase separate. According to electrostatic
theories,ks is related to the molar polarization (Pm) of the or-
ganic molecule (Desnoyers and Ichhaporia, 1969). SincePm
is related to the polarisability and the dipole moment and,
furthermore, since polarisability and dipole moment should
be roughly related to O:C, one would expect a correlation
betweenks and O:C and also a correlation between SRH and
O:C. This line of thinking is also consistent with a recent
modeling study using alcohols and salts that showed that hy-
drophilicity, which was reflected in O:C, is a key feature in
defining the region of a miscibility gap (Zuend et al., 2010).
The gap between 0.87 and unity for the correlation factor
of SRH with O:C (see Fig. S2) is plausibly explained by the
combination of several different classes of organic molecules
in our data set. A better correlation would be expected if a
homologous series of organic molecules were studied.

In regard to the trends in DRH and ERH shown in Fig. 2, if
a liquid-liquid phase separation occurs in a three-component
system, the DRH and ERH values are expected to be closer
to the binary system (inorganic and water) because in many
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Table 1. List of the data sets used for the parameterisations of SRH, ERH, and DRH in three-component systems (i.e. one organic plus
ammonium sulfate and water). Phase transitions were measured for temperatures ranging from 290 to 298 K. Over this temperature range
ERH and DRH does not strongly depend on temperature (Colberg et al., 2003; Bodsworth et al., 2010). Initial work with trihydroxyhexane
and ammonium sulfate mixtures also suggest that SRH does not strongly depend on temperature over this narrow temperature range. The
DRH values reported here corresponds to the total DRH, which indicates where ammonium sulfate completely dissolves. For DRH and
SRH we only included results from either bulk measurements or optical microscopy measurements because other techniques typically used
for exploring the hygroscopic properties of aerosol particles can miss total deliquescence. For ERH we focused exclusively on optical
microscopy measurements to be consistent with the new results reported in the current manuscript. Optical microscopy has been shown to
be in good agreement in most cases with other techniques used to measure ERH properties of particles (Parsons et al., 2004). We excluded
ERH results if the ERH data increased with an increase in the org:sulf ratio. In this case, efflorescence most likely was due to crystallization
of the organic material (a process that likely does not occur under most atmospheric conditions) (Marcolli et al., 2004). The complete data
set is plotted in Fig. S1 as colour maps to illustrate that the data covers a wide range of org:sulf and O:C values without any large gaps in this
phase space.

Compound Formula Functional Groups O:C Data Available

diethyl decanedioate C14H26O4 esters 0.29 ERH∗, DRH∗, SRH∗

1,2-hexanediol C6H14O2 alcohols 0.33 DRH (Marcolli and Krieger, 2006), SRH
(Marcolli and Krieger, 2006)

monomethyl octane-1,8-dioate C9H16O4 carboxylic
acid-ester

0.44 ERH∗, SRH∗

1,4 butanediol C4H10O2 alcohols 0.50 DRH (Marcolli and Krieger, 2006), SRH
(Marcolli and Krieger, 2006)

1,2,6-hexane-triol C6H14O3 alcohols 0.50 ERH∗, DRH∗, SRH∗

4-dihydroxy-3-
methoxybenzeneacetic acid

C9H10O5 carboxylic
acid-alcohols-
ether-aromatic

0.56 ERH∗, DRH∗, SRH∗

polyethylene glycol-400 C2nH4n+2On+1,
n = 8.2 to 9.1

alcohols-ethers ~0.56 ERH (Ciobanu et al., 2009, 2010), DRH
(Marcolli and Krieger, 2006), SRH (Mar-
colli and Krieger, 2006; Ciobanu et al.,
2009)

2,5-dihydroxybenzoic acid C7H6O4 carboxylic
acid-alcohols

0.57 ERH∗, SRH∗

hexanedioic acid C6H10O4 carboxylic acids 0.67 DRH (Brooks et al., 2002; Wise et al.,
2003)

2,2-dimethylbutanedioic acid C6H10O4 carboxylic acids 0.67 ERH∗, SRH∗

pentanedioic acid C5H8O4 carboxylic acids 0.8 ERH (Pant et al., 2004), DRH (Brooks
et al., 2002; Wise et al., 2003; Pant et al.,
2004; Treuel et al., 2008, 2009), SRH∗

6,8-dioxabicyclo[3.2.1]octane-
2,3,4-triol

C6H10O5 ethers-alcohols 0.83 ERH (Parsons et al., 2004), DRH (Parsons
et al., 2004), SRH∗

propane-1,2,3-triol C3H8O3 alcohols 1.00 ERH (Parsons et al., 2004), DRH (Parsons
et al., 2004; Marcolli and Krieger, 2006),
SRH∗

L-hydroxybutanedioic acid C4H6O5 carboxylic acids 1.00 DRH (Brooks et al., 2002; Wise et al.,
2003)

butanedioic acid C4H6O4 carboxylic acids 1.00 DRH (Brooks et al., 2002; Wise et al.,
2003)

(Z)-butenedioic acid C4H4O4 carboxylic acids 1.00 DRH (Brooks et al., 2002; Wise et al.,
2003; Treuel et al., 2009)

2-hydroxypropane-1,2,3-
tricarboxylic acid

C6H8O7 carboxylic acids-
alcohol

1.17 ERH (Bodsworth et al., 2010), DRH
(Bodsworth et al., 2010), SRH∗

propanedioic acid C3H4O4 carboxylic acids 1.33 ERH (Parsons et al., 2004), DRH (Brooks
et al., 2002; Wise et al., 2003; Parsons
et al., 2004; Salcedo, 2006; Treuel et al.,
2008, 2009), SRH∗

∗ This study’s data.
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Table 2. Parameterisations of the SRH, ERH, and DRH data. In the parameterisations, terms includex = log10(org:sulf mass ratio) and
y = O:C atomic ratio. Data used to develop the parameterizations were recorded at temperatures ranging from 290 to 298 K. Over this
temperature range ERH and DRH do not strongly depend on temperature. Initial work with trihydroxyhexane and ammonium sulfate
mixtures also suggest that SRH does not strongly depend on temperature over this narrow range.

Predictions Parameterisation Valid Range Reducedχ2

SRH(x,y) = 0 0.7< (O:C)< 1.4
and 0.1< (org:sulf)< 15

43.8

= 35.50+339.9y −471.8y2 0.2 < (O:C) < 0.7 and 0.1
< (org:sulf)< 15

ERH(x,y)∗ = 130.3+196.3x −189.9y +123.7x2
−

370.7xy +73.03y2
+23.18x3

−

214.4x2y +125.0xy2
+0.6104x4

−

33.19x3y +52.19x2y2

0.7 < (O:C) < 1.4 and 0.1
<(org:sulf)< 15

2.77

= 33.06−1.974x −0.0252y 0.2 < (O:C) < 0.7 and 0.1
< (org:sulf)< 15

DRH(x,y) = 107.0+102.7x −54.53y +98.79x2
−

202.8xy +22.79y2
+21.82x3

−

182.2x2y +80.75xy2
−1.328x4

−

33.99x3y +57.97x2y2

0.7 < (O:C) < 1.4 and 0.1
< (org:sulf)< 3

0.92

= 79.91−0.0618x +0.0910y 0.2 < (O:C) < 0.7 and 0.1
< (org:sulf)< 15

∗ Negative ERH values correspond to the absence of efflorescence (i.e., no efflorescence is predicted even at 0 % RH).
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Fig. 4. Contour plots of SRH, ERH, and DRH based on the presented parameterisations of the experimental data. The magenta boxes enclose
org:sulf and O:C values (campaign averages) measured in the pristine Amazon Basin (Chen et al., 2009) and many locations in the Northern
Hemisphere (Jimenez et al., 2009; Ng et al., 2010). The blue symbols in(b) and(c) correspond to field measurements of ERH and DRH that
were carried out at the Southern Great Plains (SGP), Oklahoma, USA (Martin et al., 2008). Since instruments commonly used to measure
phase transitions in the field are not capable of directly measuring liquid-liquid phase separations, there are no field observations included in
(a). Contours apply to temperatures ranging from 290 to 298 K.
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cases after phase separation the organic molecules are ex-
pected to partition mostly to the organic phase. This ex-
pectation is supported by thermodynamic calculations and
measurements (Clegg et al., 2001; Chang and Pankow, 2006;
Ciobanu et al., 2009; Zuend et al., 2010). If liquid-liquid
phase separation of a three-component system does not
occur, a decrease in the DRH and ERH values of ammonium
sulfate is expected with an increase in the org:sulf ratio, as
implied by the Gibbs-Duhem relation. The Gibbs-Duhem re-
lation states that an increase in the org:sulf ratio must corre-
spond to an increase in the chemical potential of the organic
material and a decrease in the chemical potential of ammo-
nium sulphate for the assumption that activity coefficients
do not behave atypically (Denbigh, 1981). The implication
based on this relation for an increase in the org:sulf ratio are
the following: a decrease in the solution saturation with re-
spect to ammonium sulfate for a constant RH; a decrease in
the DRH to maintain unity saturation; and a decrease in the
ERH to maintain critical supersaturation.

The laboratory data listed in Table 1 and presented in
Fig. 2 were parameterized as function of org:sulf and O:C.
For O:C< 0.7, we fit the ERH and DRH values to a first-
order polynomial in terms of both org:sulf and O:C. For
O:C> 0.7, higher-order polynomials were required because
ERH and DRH are stronger functions of these parameters
over this range. At an org:sulf value of 0.1, the DRH was
constrained to 80 % RH to be consistent with the thermody-
namic calculations for pure ammonium sulfate (Clegg et al.,
1998), and ERH was constrained to 35 % RH to be consis-
tent with ERH values for pure ammonium sulfate determined
with the optical microscope technique (Parsons et al., 2004).
For SRH, the data were parameterized using a second-order
polynomial in O:C only. Figure 2a–b show that SRH is rel-
atively insensitive to org:sulf. The parameterisations are in-
cluded in Table 2 and are plotted in Fig. 4.

To evaluate the goodness-of-fit of the parameterisations,
we calculated the reducedχ2 values (see Table 2) as well as
the residuals (Fig. 5). For ERH and DRH, the reducedχ2

values were 2.77 and 0.92, respectively. Values close to 1
are considered good fits. The residuals appeared randomly
distributed, as expected for good fits. For SRH, the reduced
χ2 values were larger (43.8), and the residuals were concen-
trated mainly for 0.5< O:C< 0.7 and org:sulf> 1. In the
region where the residuals were larger (O:C< 0.7), the re-
ducedχ2 value was 62.2. The parameterisations correctly
predict ERH and DRH within 5 % RH for 84 % and 94 % of
the ERH and DRH measurements, respectively. We conclude
that, to good approximation, trends in the ERH and DRH of
three-component particles (i.e., particles containing one or-
ganic plus ammonium sulfate and water) can be predicted
with the presented parameterisations. The SRH parameter-
isation is less accurate: this parameterisation correctly pre-
dicts SRH within 15 % RH for 88 % of the measurements
(Fig. 5). Nevertheless, the parameterisation does predict with
reasonable accuracy the org:sulf and O:C parameter space

where liquid-liquid phase separation is expected to occur.
For more accurate predictions of SRH, a need for additional
information (i.e., in addition to O:C) is indicated. Useful in-
formation would include organic functional groups and the
organic molecular weight. However, any additional accuracy
would come at the expense of added complexity in the pa-
rameterisation and may require chemical information that is
currently not routinely measured (unlike org:sulf and O:C).

Measurements of average org:sulf and O:C by advanced
on-line particle mass spectrometers have become available
in the past few years for the central Amazon Basin (Chen
et al., 2009) and for many locations in the Northern Hemi-
sphere (Jimenez et al., 2009; Ng et al., 2010). Factor anal-
ysis has been used to separate the organic mass spectrum
into hydrocarbon-like organic (HOA) and oxygenated or-
ganic (OOA) statistical components (Zhang et al., 2005,
2007; Jimenez et al., 2009). Since our parameterisations are
applicable to the oxygenated component, we filtered the mea-
surements (Chen et al., 2009; Jimenez et al., 2009; Ng et al.,
2010) to include only those regions and times that had high
OOA statistical scores compared to HOA scores. The con-
straint applied was OOA/(OOA+HOA)≥0.85. The HOA
component is believed to represented oily materials that
have limited chemical interaction with oxygenated organic-
sulfate-water components that are the focus of the present
study. The sampling locations after filtering were: River-
side, Zurich (summer), Zurich (winter), off New England
coast, Fukue, Okinawa, Cheju, Duke Forest, Pinnacle Park,
Cheboque Point, Jungfraujoch, Hyytiala, and central Ama-
zon Basin. For these locations, org:sulf and O:C campaign
averages ranged from 0.36 to 5.39 and 0.43 to 0.85 respec-
tively (Chen et al., 2009; Jimenez et al., 2009; Ng et al.,
2010). Magenta boxes in Fig. 4 enclose the org:sulf and O:C
range covered by these ambient measurements. Coincidence
is apparent between the locations of the magenta boxes rep-
resenting ambient measurements and the org:sulf and O:C
range covered by the introduced SRH, ERH, and DRH pa-
rameterisations.

4 Case studies

4.1 Environmental chamber studies

The applicability of the derived parameterisations for pre-
dicting the phase transitions of multi-component oxygenated
organic-sulfate mixtures was tested using secondary organic
material (SOM) that was mixed with sulfate and water in in-
dividual particles. The SOM was produced by the oxidation
of volatile organic compounds (VOCs) in an environmental
chamber in the presence of ammonium sulfate seed parti-
cles (Shilling et al., 2008; King et al., 2010; Li et al., 2011;
Smith et al., 2011). Some of the oxidation products had low
vapor pressures and consequently condensed onto the seed
particles. Particle-phase SOM produced in an environmental
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Fig. 6. Comparison between measured and predicted ERH and DRH for organic-sulfate particles. Panel(a) shows observations for organic
material produced by the ozonolysis ofα-pinene andβ-caryophyllene. Panel(b) shows observations for organic material produced by
isoprene photooxidation. The predictions shown in each panel represent the ERH and DRH parameterisations with input parameters of
the measured org:sulf and O:C, including a maximum 30 % uncertainty in the O:C measurements (Aiken et al., 2007). This uncertainty is
relatively less important for(a) (thus narrower bands) than(b) (wider bands) because of the different O:C values. The unsymmetrical error
bars for the deliquescence measurements in(b) are discussed in the supplementary material. The ERH parameterisations have been adjusted
by 4.2 % RH to take into account differences in particle size and observation time.

chamber contains 10s to 100s of oxygenated compounds and
as such represents a surrogate for atmospheric oxygenated
organic material. Up to 90 % of the particle-phase submi-
cron organic material in the atmosphere is SOM (Hallquist
et al., 2009). The ERH and DRH of the mixed SOM organic-
ammonium sulfate particles were measured using a tandem
differential mobility analyzer (cf. supplementary material
and referencesRosenoern et al., 2009; Smith et al., 2011).

The org:sulf and O:C ratios were measured using on-line
mass spectrometry (DeCarlo et al., 2006; Aiken et al., 2008;
Shilling et al., 2009), including recent updates for SOM wa-
ter peaks (Chen et al., 2011).

Particles probed by the 1× 3 TDMA were approximately
0.150 µm and the observation time was on the order of 1 s.
The ERH parameterisation was based on microscope mea-
surements of particles with diameters ranging from 10 to
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30 µm and observation times of 60 s at each RH. Since ERH
depends on the particle size and observation time (Martin,
2000; Gao et al., 2006), an adjustment was made when com-
paring the ERH parameterizations with the 1× 3 TDMA
ERH results. The ERH parameterization was adjusted by
4.2 % RH so that the 1× 3 TDMA ERH results for pure am-
monium sulfate was in agreement with microscope results
for the same particle composition.

Figure 6 shows both the ERH and DRH measurements
(points) as well as the predictions (lines) obtained using the
ERH and DRH parameterisations, with input parameters of
the measured org:sulf and O:C. The ERH parameterisation
has been adjusted by 4.2 % RH as discussed above. The de-
rived parameterisation tested against the independent ERH
and DRH measurements of the chamber particles was accu-
rate within 4.4 % RH for all observations.

4.2 Field studies

The parameterisations were also tested against measurements
that took place during June 2007 in the Southern Great Plains
(SGP), Oklahoma, USA (cf. supplementary material and ref-
erences (Sheridan et al., 2001; Martin et al., 2008)). For the
current analysis, we considered measurements for which the
cation mole fraction arising from NH+4 was greater than 0.75
and the anion mole fraction arising from SO2−

4 was greater
than 0.90. The use of this subset ensured that the inorganic
composition was close to ammonium sulfate and that any de-
viations in the ERH and DRH due to incomplete neutralisa-
tion or the presence of the nitrate anion were relatively small.
Both of these factors have been demonstrated in laboratory
studies to influence ERH and DRH (Martin et al., 2003). The
org:sulf and O:C ratios at which efflorescence and deliques-
cence occurred at SGP are plotted in Fig. 4b and c, alongside
the RH contours of the parameterisations. The parameteri-
sations predict that the DRH should lie within the ranges of
78–80 %, in reasonable agreement with the DRH observa-
tions at SGP, which ranged from 77–79 %. The parameter-
isations predict that the ERH should lie within the range of
26–31 % (after correcting for the difference in particle size
and observation time), in agreement with the ERH observa-
tions at SGP, which ranged from 26–29 %.

5 Conclusions and outlook

The relative humidity at which liquid-liquid phase separa-
tion, efflorescence, and deliquescence occurred in 11 dif-
ferent oxygenated organic-ammonium sulfate systems was
studied with an optical microscope. The new laboratory data
as well as data reported in the literature was used to de-
velop parameterisations in terms of O:C and org:sulf. The
parameterisations correctly predict ERH and DRH for three
component laboratory particles within 5 % RH for 84 % and
94 % of the measurements, respectively. The parameteri-
sations correctly predict SRH within 15 % RH for 88 % of

the measurements. Improvements in the predictions of SRH
will require additional chemical information which may not
be routinely measured. The applicability of the derived pa-
rameterisations for predicting the phase transitions of multi-
component organic-ammonium sulfate mixtures were tested
using environmental chamber data and field data from the
Southern Great Plains, Oklahoma. The environmental cham-
ber ERH and DRH data and field ERH and DRH data agreed
with the parameterisations within 4.4 % RH.

The parameterisations presented herein represent a con-
ceptual framework for the liquid-liquid phase separation, ef-
florescence, and deliquescence of a common class of at-
mospheric particles, specifically ammonium sulfate-organic-
water particles. In outlook, this framework can be gener-
alised to other particle types and conditions in the case that
additional data can be obtained. Priorities should include:
(1) environmental chamber and field studies with higher O:C
values than available in the present study; (2) environmental
chamber studies and field studies where predictions of DRH
and ERH are sensitive to specific O:C and org:sulf combi-
nations (i.e., 0.7< O:C< 1.4 and 0.5< org:sulf< 5); (3) di-
rect measurements of liquid-liquid phase separation in envi-
ronmental chamber studies and in the atmosphere; (4) lab-
oratory studies of organic-ammonium sulfate particles that
contain functional groups other than the ones used to de-
velop the parameterisations presented here; and (5) studies
using a broader range of composition, such as acidic par-
ticles or particles enriched in nitrate which are known to
decrease ERH and DRH (Martin et al., 2003). Finally, the
presented parameterisations were developed for oxygenated
organics, non-oxygenated organic molecules (i.e., oily hy-
drocarbons), which on a global basis are less important than
SOM, can still be important locally near or in urban centers
(Kanakidou et al., 2005; Zhang et al., 2007; Hallquist et al.,
2009). Studies of particles that have large concentrations
of both oxygenated organic material and oily hydrocarbons
are needed. The interesting story might develop further in
such cases in that an additional phase separation might occur
(i.e., three-phase liquid particles may form) (Knickerbocker
et al., 1982). As a practical matter, the computational bur-
den of the framework presented herein is low. Therefore, the
parameterisations are well suited for incorporation in com-
prehensive chemical transport models (CTMs) (Wang et al.,
2008). CTMs are used in large-scale predictions of atmo-
spheric chemistry and are coupled in advanced treatments to
global climate models. Future CTMs that incorporate predic-
tions of O:C ratios alongside existing capabilities for organic
and sulfate burdens may make use of these types of parame-
terisations for SRH, ERH, and DRH.
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acp-11-10995-2011-supplement.zip.
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