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Abstract. We present the first Multi-Axis-(MAX-) DOAS
observations in India performed during April 2010 and Jan-
uary 2011 in Delhi and nearby regions. The MAX-DOAS
instrument was mounted on a car roof, which allowed us
to perform measurements along individual driving routes.
From car MAX-DOAS observations along closed circles
around Delhi, together with information on wind speed and
direction, the NOx emissions from the greater Delhi area
were determined: our estimate of 4.4× 1025 molecules s−1

is found to be slightly lower than the corresponding emission
estimates using the EDGAR emission inventory and sub-
stantially smaller compared to a recent study by Gurjar et
al. (2004). We also determined NOx emissions from Delhi
using OMI satellite observations on the same days. These
emissions are slightly smaller than those from the car MAX-
DOAS measurements. Finally the car MAX-DOAS observa-
tions were also used for the validation of simultaneous OMI
satellite measurements of the tropospheric NO2 VCD and
found a good agreement of the spatial patterns. Concern-
ing the absolute values, OMI data are, on average, higher
than the car MAX-DOAS observations close to strong emis-
sion sources, and vice versa over less polluted regions. Our
results indicate that OMI NO2 VCDs are biased low over
strongly polluted regions, probably caused by inadequate a-
priori profiles used in the OMI satellite retrieval.
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1 Introduction

Delhi, home of 19 million people, second largest metropoli-
tan city (http://www.indiaonlinepages.com/population/
delhi-population.html) is located in the Indo-Gangetic plains
in India. The growing population and human activities
increase the atmospheric pollution which is e.g. the cause
of the dense fog, smog and haze during winter season
(December and January) every year (Singh et al., 2004,
2005; Ramanathan and Ramana, 2005; Ramanathan et al.,
2005; Gautam et al., 2007). In the years 2005 and 2006,
about 4.8 million vehicles were in operation in Delhi.

In the last three decades the atmospheric trace gas and
aerosol loading has increased in the Indo-Gangetic plains due
to intense urbanization, anthropogenic activities, industrial
growth and energy demand. Especially in the northern part
of India, the pollutants swing in the Indo-Gangetic basin de-
pending upon the meteorological conditions. The sources of
atmospheric pollutants are localized and heterogeneous and
depended on season (Gurjar et al., 2004; Goyal et al., 2006;
Lal, 2007).

The measurements of atmospheric pollutants are impor-
tant for monitoring the air quality and for understanding the
radiative forcing and its impact on climate (Ravishankara et
al., 2004; Seinfeld and Pandis, 2006). Currently, still large
uncertainties exist with respect to the total emissions of pol-
lutants and their impact on local, regional, and possibly also
global scale. The corresponding uncertainties are especially
large for many megacities.

In this study, we present top-down emission estimates
for nitrogen oxides (NOx = NO + NO2) for Delhi from car
MAX-DOAS observations. Nitrogen oxides are formed in
combustion processes (e.g. from vehicles, and power plants);
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they are toxic (Elsayed, 1994; World Health Organization,
2003) and also involved in important photochemical pro-
cesses. Together with the emissions of volatile organic com-
pounds, they control tropospheric ozone chemistry and oxi-
dising capacity (Jacob, 1999; Seinfeld and Pandis, 2006).

We use Multi-Axis-Differential Optical Absorption Spec-
troscopy (MAX-DOAS) measurements (Hönninger et al.,
2002; Van Roozendael et al., 2003; Wittrock et al., 2004;
Wagner et al., 2004; Brinksma et al., 2008 and references
therein) to quantify the NOx emissions of Delhi. The MAX-
DOAS instrument was mounted on a car roof, and continu-
ous measurements were performed on closed driving routes
around the city center on three days during April 2010 and
one day in January 2011. In combination with wind data, the
total emissions from the encircled area can be determined
(Johansson et al., 2008, 2009; Rivera et al., 2009; Ibrahim et
al., 2010; Wagner et al., 2010).

In addition to the quantification of the NOx emissions,
the MAX-DOAS results are also used for the validation of
satellite observations of the tropospheric NO2 VCD. Car
MAX-DOAS observations yield valuable information about
the horizontal heterogeneity of the NO2 distribution, which
can not be resolved by the satellite observations, mak-
ing them advantageous compared to validation with MAX-
DOAS measurements at fixed locations.

The paper is organized as follows: in Sect. 2, we give de-
tails of the instrument, the measurement campaign and the
retrieval of the tropospheric NO2 VCD. Section 3 presents
the determination of the NOx emissions of Delhi and com-
parison with the EDGAR emission inventory. In Sect. 4, the
MAX-DOAS tropospheric NO2 VCDs are compared to si-
multaneous satellite observations from the Ozone Monitor-
ing Instrument (OMI).

2 MAX-DOAS observations and data analysis

2.1 Car MAX-DOAS instrument

The Mini-MAX-DOAS instrument is a fully automated, light
weighted spectrometer (13 cm×19 cm× 14 cm) designed for
the spectral analysis of scattered sunlight (Bobrowski et al.,
2003). It consists of a sealed aluminium box containing the
entrance optics, a fibre coupled spectrograph and the control-
ling electronics. A stepper motor mounted outside the box
rotates the whole instrument to control the elevation of the
viewing angle (angle between the horizontal and the view-
ing direction). The entrance optics consists of a quartz lens
of focal lengthf = 40 mm coupled to a quartz fibre bundle
which leads the collected light into the spectrograph (field of
view is ∼1.2◦). The light is dispersed by a crossed Czerny-
Turner spectrometer (USB2000+, Ocean Optics Inc.) with a
spectral resolution of 0.7 nm over a spectral range from 320–
460 nm. A one-dimensional CCD (Sony ILX511, 2048 in-
dividual pixels) is used as detector. The measurements were

controlled from a laptop using the DOASIS software (Kraus,
2006).

2.2 Overview on measurements around Delhi

For the mobile observations measurements around Delhi, the
Mini-MAX-DOAS instrument was mounted on the roof top
of a car with the telescope mounted parallel to the driving
direction, pointing backward (April 2010)/forward (January
2011). The measurements started from Greater Noida to
Delhi and around Delhi; the routes are shown in Fig. 1 for
all the four days (13, 14, and 15 April 2010 and 15 January
2011).

The sequence of elevation angles was chosen to: 1× 90◦,
5× 22◦, 1× 45◦, 5× 22◦ and the duration of an individual
measurement was about 60 s. For the measurements on 15
January 2011, an elevation angle of 30◦ was set up instead
of 22◦ during April 2010. The temperature setpoint of the
mini MAX-DOAS was 15◦C in April and 5◦C in January.
A handy GPS was used to track the coordinates of the route
along which the observations were made.

All the three days in April 2010 were cloud-free, the
aerosol optical depth derived from MODIS satellite was
found in the range of 0.2–0.5 at 550 nm (data taken from
the AERONET data synergy tool,http://aeronet.gsfc.nasa.
gov/cgi-bin/bamgomasinteractive). On 15 January 2011,
the AOD was found to be only 0.1 in the afternoon. Dur-
ing the start of the measurements at 11 am the AOD may be
higher, but we do not have any estimate due to non availabil-
ity of MODIS aerosol data. The range of AOD is consis-
tent with those measured by AERONET in Delhi for January
and April 2009 (seehttp://aeronet.gsfc.nasa.gov/). They are
also consistent with those reported in the study of Satheesh
et al. (2011) for the city of Bangalore and of Rehman et
al. (2011) for the city of Kanpur. In April 2010 the wind di-
rection was mostly north-westerly, and the temperature was
found in the range 35–45◦C. On 15 January 2011 the wind
is found to be westerly and temperature to vary in the range
15–20◦C. The time to complete one full circle around the
route (Fig. 1) took about 3 to 5 h.

In contrast to MAX-DOAS observations at fixed locations,
during car MAX-DOAS observations we have used rather
high elevation angles to avoid shades from nearby obsta-
cles (e.g. buildings or trees). From such high elevation an-
gles usually no profile information can be retrieved, but we
can obtain the total tropospheric trace gas column density.
Measurements at high elevation angles are less affected by
aerosols than observations at more low elevation angles.

2.3 Spectral analysis

The measured spectra are analysed using the DOAS method
(Platt and Stutz, 2008). A wavelength range 435–456 nm was
selected for the analysis. Several trace gas absorption cross
sections (NO2 at 298 K (Vandaele et al., 1996), H2O at 298 K
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Fig. 1. Different driving routes around Delhi. The points A and B
indicate the locations of two power plants Rajghat Power Station
and Pragati Gas Power Station, respectively.

(Rothman et al., 2005), Glyoxal at 296 K (Volkamer et al.,
2005), O3 at 243 K (Bogumil et al., 2003), O4 at 296 K (Her-
mans et al., 1999), as well as a Fraunhofer reference spec-
trum, a Ring spectrum (calculated from the Fraunhofer spec-
trum) and a polynomial of third order) were included in the
spectral fitting process, using the WinDOAS software (Fayt
and van Roozendael, 2001). The wavelength calibration was
performed based on a high resolution solar spectrum (Kurucz
et al., 1984). A typical fit result is shown in Fig. 2. Note that
from all fitted trace gases, for the Delhi measurements only
the NO2 and H2O absorptions were above the detection limit
for most measurements.

The output of the spectral analysis is the slant column den-
sity (SCD), the integrated trace gas concentration along the
light path through the atmosphere. From the spectral analy-
sis, also the uncertainty of the retrieved SCD is determined;
for the NO2 analysis it is typically<15 %.

Since a measured spectrum is used as Fraunhofer ref-
erence, the retrieval result represents the difference of the
SCDs of the measurement at low elevation angleα and the
Fraunhofer reference spectrum taken at 90◦ elevation, the so
called differential SCD or DSCD:

DSCDα = SCDα −SCDFraunhofer (1)

We have considered elevation angles (α) of 22◦ for measure-
ments during April 2010 and of 30◦ during January 2011.
We considered DSCDαs with RMS of residuals smaller than
2.5× 10−3.

Fig. 2. Typical result of the DOAS fit. Shown are the NO2 cross-
section scaled by the respective absorption of the measured spec-
trum (black). The red curve shows in addition the fit residual.

2.4 Estimation of the tropospheric VCD

To determine the SCDα of a measurement, the SCDFraunhofer
(together with the change of the stratospheric SCD) has to
be added to the DSCDα as discussed earlier by Wagner et
al. (2010) and Ibrahim et al. (2010). The VCDtrop is obtained
from the SCDα by dividing by the air mass factor (AMF):

VCDtrop= SCDα/AMFα (2)

For many applications, the AMF is retrieved from radia-
tive transfer simulations (Solomon et al., 1987), but here the
so called geometric approximation (Brinksma et al., 2008,
A. Richter, personal communication, 2006) is used:

AMF(α) = 1/sin(α) (3)

Using Eq. (3), the tropospheric AMF were found to be 2.67
and 2 for elevation angles of 22◦ and 30◦, respectively. De-
pending on the aerosol load, cloud condition and vertical
trace gas profile, the true AMF can show substantial devi-
ations from the geometric approximation. However, NO2
is generally located near the surface; therefore the devia-
tions for our measurements are expected to be small (see next
section).
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2.5 Effect of aerosols on the measurements

The geometric approximation for the tropospheric AMF
(Eq. 3) is only valid if the light path through the trace gas
layer of interest can be well approximated by a simple geo-
metric path. This assumption is usually fulfilled for shallow
trace gas layers and low aerosol loads, since the observed
light is typically scattered from above the trace gas layer. But
in the presence of high aerosol extinction, a substantial frac-
tion of the observed light might be scattered from inside the
trace gas layer and the geometric approximation is not ap-
propriate for the complete trace gas layer.

Depending on the elevation angle and the amount and
properties of the aerosols, scattering inside the trace gas layer
may either increase (for high elevation angles) or decrease
(for lower elevation angles) the true AMF compared to the
geometric approximation (Wagner et al., 2004). Thus, the
true tropospheric trace gas VCD will be either over- or un-
derestimated.

We have quantified these deviations from the geomet-
ric approximation using the Monte Carlo radiative transfer
model McARTIM (Deutschmann et al., 2011) for various
aerosol scenarios and NO2 layer heights (see Fig. 3). For
these sensitivity studies the aerosol optical parameters were
chosen as follows: single scattering albedo: 0.95 and asym-
metry parameter: 0.68 (see Dubovik et al., 2002). To investi-
gate the effect of different aerosol optical properties we per-
formed similar sensitivity studies as in Fig. 3, but for differ-
ent values of the single scattering albedo and the asymmetry
parameter (see Appendix A). The differences to the results in
Fig. 3 are small compared to the effects of the aerosol opti-
cal depth and the NO2 and aerosol layer heights. The most
important result of these simulation studies is that for NO2
layer heights≤500 m and for moderate aerosol optical depth
(about<1), the deviations from the geometric approximation
are found to be in the order of up to±20 % (see results for
elevation angle of 22◦ in Fig. 3). For measurements at an
elevation angle of 30◦ (15 January 2011) similar results are
found (not shown). Here it is important to note that recent
MAX-DOAS measurements indicated that the height of the
NO2 layer is typically systematically lower than the mixing
layer height. For example, MAX-DOAS observations in Mi-
lan in September 2003 (Wagner et al., 2011) show rather low
NO2 layer heights typically<500 m. Interestingly, for these
measurements the layer heights for HCHO and aerosols were
found to be systematically higher. These findings can be un-
derstood by (a) the rather short lifetime of NOx compared
to aerosols and (b) the fact that HCHO and aerosols might
even be formed when air masses are lifted up, while NOx
is gradually destroyed. Even for measurements downwind
of strong NOx emission sources like at Cabauw, The Nether-
lands, NO2 layer heights of the order of 500 m or below were
often found (Piters et al., 2011). These findings indicate that
usually the NO2 profile is systematically lower than the mix-
ing layer height.

Fig. 3. Relative deviation of the true tropospheric VCDs (derived
from radiative transfer simulations) from the geometric VCD for
different trace gas layer heights, aerosol optical depth, aerosol layer
heights and relative azimuth angles (i.e. the difference of the az-
imuth angles of the sun and the viewing direction at the telescope).
Calculations are performed for an elevation angle of 22◦; the results
for an elevation angle of 30◦ (not shown) are similar.

As shown in Fig. 3 and in the appendix, the relative az-
imuth angle between the viewing direction and the sun po-
sition has a systematic effect on the sensitivity of the MAX-
DOAS measurements. In general, measurements with rela-
tive azimuth angles close to zero tend to underestimate the
true NO2 VCD, while measurements at larger relative az-
imuth angles tend to overestimate the true NO2 VCDs. This
systematic dependence on the relative azimuth angle is found
for all combinations of NO2 layer heights and aerosol prop-
erties (although with different amplitudes). Future studies
might explicitly consider this azimuth dependence if tropo-
spheric trace gas VCDs are retrieved from MAX-DOAS ob-
servations using high elevation angles. For simplicity, in
this study, we only applied an azimuth dependent correction
for measurements with strongly enhanced NO2 VCDs (see
Fig. 4), because they have the strongest influence on the de-
rived emission estimate. For this correction we assumed a
NO2 layer height of 500 m and an aerosol layer height of
2000 m. With this simple correction we took already into
account part of the variability shown in Fig. 3. Remaining
error due to the dependence of the AMF on the NO2 pro-
file, aerosol layer height and aerosol optical properties is es-
timated to about 20 %. Here it is interesting to note that the
possible presence of uplifted aerosol layers (e.g. Babu et al.,
2011) has only negligible influence on the NO2 AMF (see
Appendix A).

The error in the spectral retrieval is of the order of 15 %
(see Sect. 2.3). Thus, we estimate the total error in the esti-
mation of retrieved tropospheric NO2 VCD to be about 25 %.
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Fig. 4. Tropospheric NO2 VCDs derived from car MAX-DOAS observations around Delhi on different days. The arrows indicate the average
wind direction.

3 Estimation of NOx emissions

3.1 Emissions from the encircled area

The total NO2 emissions from the encircled area are deter-
mined from the following equation (Ibrahim et al., 2010):

FNO2 =

∮
S

VCDNO2(s) · w̄ · n̄ ·ds (4)

Heren̄(s) indicates the normal vector parallel to the Earth’s
surface and orthogonal to the driving direction at the position
s of the driving route;w̄ is the average wind vector within
the trace gas layer. The integral of Eq. (4) is evaluated for
the MAX-DOAS measurements around Delhi. Because of
the finite integration time of individual spectra, the integral
is approximated by a sum of the individual polygonal lines.

FNO2 =

∑
i

VCDNO2(si) · w̄ · n̄ ·1si

=

∑
i

V CDNO2(si) ·w ·sin(βi) ·1si (5)

The location, length and direction of each segment is taken
from GPS data, which were stored at each second using a
GPS-Logger (HOLUX, m.247). The distance between two
measurements1si is taken as the geometric difference be-
tween the locations at the beginning of two successive mea-
surements. From the same segment, the angleβi between the
driving route and the wind direction is calculated.

Wind fields are taken from analyses of the European
Centre for Medium-Range Weather Forecasts (ECMWF,
full scientific and technical documentations are found from
the websitehttp://www.ecmwf.int/research/ifsdocs/CY33r1/
index.html). We considered wind speeds up to 1000 m and
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weighted them by an assumed exponentially decreasing NOx
profile with a scale height of 500 m. Since the strongest
changes in wind speed and direction occur below about
200 m altitude, the exact scale height of the assumed NOx
profile has only little influence on derived effective wind
speed and direction. The wind data are linearly interpolated
in time for the average MAX-DOAS time.

We estimate the uncertainty of the flux estimation due to
the choice of wind fields by (a) varying the scale height of the
assumed NOx profile by±200 m (causing variations within
12 %), and (b) taking the closest ECMWF output times at
06:00 and 12:00 UTC instead of interpolating (causing vari-
ations within 10 % except for January 15, where the wind
fields at 12 UTC have changed significantly, whereas the
measurements were taken close to 06:00 UTC). Overall, we
estimate the error due to wind fields as 15 %.

The measured NO2 VCDs together with the wind fields for
the four measurement days are shown in Fig. 4. In general,
the highest values of NO2 VCDs are found at the lee side of
the city, as expected.

On some days, due to instrument problems, gaps along the
driving route occurred; this was mainly due to disturbances
caused by uneven road conditions. Due to such problems,
NO2 data are missing at some locations, which has con-
tributed to the larger uncertainties in the estimation of the
total emissions. We estimate these uncertainties in a sim-
ple way: in a first calculation, we determine the total emis-
sions clockwise, in a second calculation counter-clockwise.
In both cases, the NO2 VCD from the last measurements at
the beginning of the gap is considered as the true value for
the whole gap. From both calculations, we determine the
average emissions and the corresponding uncertainties.

In the next step, correction factors accounting for the parti-
tioning between NO and NO2 (cL) and for the finite lifetime
of NOx (cτ ) are applied (see Ibrahim et al., 2010) to derive
the complete NOx emissions from the encircled areas:

FNOx = cL ·cτ ·FNO2 (6)

HerecL is simply the ratio of NOx and NO2 in the polluted
layer; in urban pollution conditions during daytime we have
considered its value to be about 1.32 (Seinfeld and Pandis,
2006) with an uncertainty of about 10 %.cτ describes the
ratio of the measured NOx and the originally emitted NOx;
it can be estimated from the NOx lifetime τ , the wind speed
w and the distance of the emission source from the measure-
ments:

cτ = e
t
τ = e

r
/w
τ (7)

Heret is the ratio of the radius (r) of the circle and the wind
speed (w). Assuming a typical urban plume daytime NOx
lifetime of 5 h (Spicer, 1982) and taking into account the
wind speed of the individual days, using Eq. (7), we found
cτ in the range of 1.09–1.18 with uncertainties of about±0.1

(assuming uncertainties of the lifetime of±2 h). As men-
tioned in the previous section corrections for the azimuth de-
pendence of the AMF were applied for the measurements
with the highest NO2 VCDs along the driving routes. These
correction factors were calculated for the exact solar zenith
angle, solar azimuth angle and viewing direction under the
assumption of a NO2 layer height of 500 m and an aerosol
layer height of 2000 m (see Sect. 2.5). The respective correc-
tion factors are: 13 April 2010: 0.84; 14 April 2010: 0.90;
15 April 2010: 0.90; 15 April 2011: 0.84.

The total NOx emissions from within the circles on the
different days are shown in Fig. 5. Here the error bars show
uncertainties due to missing data at some locations (green)
or total uncertainties (black). The total NOx emissions are
found to be similar for the different days within the range of
uncertainties between 1.3–1.9× 1025 molecules per second.

It should be noted that especially close to strong emission
sources, part of the emitted NO might not be quickly con-
verted to NO2 if the NO mixing ratios locally exceed those
of O3. In such cases complete establishment of the NO2/NO
steady state will eventually take place only after ambient air
has mixed with the emitted plume (see also Ibrahim et al.,
2010). However, for our study such effects can be neglected:
First, according to the study of Gurjar et al. (2004) the rela-
tive contributions from power plants to the total NOx emis-
sions is small (below 10 %). Thus even if the emissions from
power plants were systematically underestimated, the effects
on the total emissions would be small.

In addition we estimated the plume extension and the re-
spective NOx mixing ratios at the location of the car MAX-
DOAS measurements according to the atmospheric stability
(see Appendix B). We considered the actual wind direction
and speed and the distance between the car MAX-DOAS
measurements and power plants (see Fig. 1) for the differ-
ent days. On 13 and 14 April the dilution of the plumes was
very effective and NOx mixing ratios at the location of the
car MAX-DOAS measurements were below the O3 mixing
ratios of the ambient air. On 15 April, the NOx mixing ra-
tios at the location of the car MAX-DOAS measurements are
similar to the O3 mixing ratios of the ambient air and conver-
sion of part of the emitted NOx might be hindered. However,
on that day the determined emissions are even larger than on
the two previous days. On 15 January 2011 the driving route
did not surround the power plants. From the overall good
consistency of the results for the different days we conclude
that the possible limited conversion efficiency of NOx to NO2
close to strong emission sources does not play an important
role for our study.

3.2 Up-scaling of emissions for Delhi

The NOx emissions for the different days (Fig. 5) only re-
flect the emissions from the encircled areas. In order to
make these results comparable within each other and to ex-
isting emission inventories, the results have to be up-scaled
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Fig. 5. NOx emissions obtained from the car MAX-DOAS mea-
surements for the surrounded areas. The green error bars indicate
the uncertainties related to the gaps in the measurements; the black
error bars represent the total uncertainty.

to the greater Delhi area (bounded in the region indicated in
Fig. 1, latitude 28.5◦ N to 28.77◦ N and longitude 77.0◦ E to
77.4◦ E).

For the up-scaling, we used different proxies for the spa-
tial distribution of the NOx emissions across the consid-
ered area. First, we use the EDGAR emission inventory
(version 4.1 for 2005, see Olivier et al., 1998; European
commission, 2010), but the spatial resolution of this data
set is rather coarse (0.1◦). Second, we use data on the
population density (obtained from CIESIN, GWPv3, 2010,
http://sedac.ciesin.columbia.edu/gpw/global.jsp) with a spa-
tial resolution of 2.5 arc min. Third, we apply the distri-
bution of night-time lights measured from satellite during
night (NOAA, National geophysical Data Center, 2006,http:
//www.ngdc.noaa.gov/dmsp/downloadradcal.html, Ziskin et
al., 2010) with a spatial resolution of 0.5 arc min. The respec-
tive maps of the different proxies, together with the driving
routes of the different days are shown in Fig. 6. For all se-
lected proxies the encircled areas include a substantial frac-
tion of the total Delhi emissions (between 30 and 50 %), but
a slightly larger fraction lies still outside of these circles (see
Table 1).

Surprisingly, the calculated fractions using the different
proxies are found to be quite similar, that gives us confidence
of our up-scaling procedure to determine the total emissions
of the selected area. Figure 7 summarises the total NOx emis-
sions using the different proxies; it also includes the corre-
sponding NOx emissions from the EDGAR data base and a
study by Gurjar et al. (2004). Compared to these emission
estimates, our results are found to be mostly lower indicat-
ing that the existing emission inventories might overestimate
the true emissions. However, it should be taken into account

Table 1. Fraction of the EDGAR NOx emissions, population, and
light within the surrounded areas for the different days.

day fraction based fraction based fraction based
on EDGAR emission on population on night-time

density density lights

13 April 2010 43 % 45 % 42 %
14 April 2010 49 % 42 % 43 %
15 April 2010 42 % 35 % 35 %
15 January 2011 36 % 29 % 33 %

that our results represent only the conditions during a few
measurements, while the other inventories are annual aver-
ages. Unfortunately, it seems that currently no information
on the seasonality (and on the diurnal variation) of the NOx
emissions is available, which could be used to upscale our
emission estimates to the annual average. Unfortunately, ex-
isting time series of the NOx mixing rations at the surface
(e.g. Guttikunda, 2009) can not be directly used for this pur-
pose, because they not only represent the NOx emissions but
also variations of the mixing layer height and NOx lifetime,
which also vary with season. In Fig. 7 also the NOx emission
estimates from OMI satellite observations are included (see
Sect. 4.1), which are mostly slightly lower than those from
the car MAX-DOAS measurements.

Table 2 lists the different errors of the derived NOx emis-
sions. If we assume these errors to be independent, we ob-
tain total uncertainties of about 40 % (see also Ibrahim et al.,
2010).

4 Comparison with OMI satellite data

In this section we compare the results from the car MAX-
DOAS measurements to OMI satellite observations in two
ways. First, we determine emission estimates for Delhi from
the satellite observations and compare them to the respective
emissions derived from the car MAX-DOAS observations.
Second we compare the NO2 VCDs derived from car MAX-
DOAS directly to the satellite observations. We use the
DOMINO product, v1.02,http://www.temis.nl/airpollution/
no2.html, see Boersma et al. (2007).

4.1 Estimation of NOx emissions from satellite
observations

Satellite observations can be directly used to estimate emis-
sion (e.g. Leue et al., 2001; Martin et al., 2003; Beirle et al.,
2011). By integration of the tropospheric NO2 VCD from
satellite observations across a selected area, the total number
of NO2 molecules in the volume above that area can be de-
termined. With the knowledge of the mean NOx lifetime the
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Table 2. Uncertainties of the different steps of the emission estimate.

Error of due to see Sect. 13 April 2010 14 April 2010 15 April 2010 15 January 2011

SCD Spectral analysis 2.3 15 %
VCD Geometric Approx. 2.5 20 %
NO2 flux Wind fields 3.1 15 %

Measurement gaps 3.1 21 % 8 % 9 % 1 %
NOx flux cL 3.1 10 %

cτ 3.1 10 %
New Delhi emissions Upscaling 3.2 10 %

Total Squareroot of quadratic sum 3.2 40 % 35 % 35 % 34 %

Fig. 6. Spatial distribution of the NOx emissions from the EDGAR data base (left), of the population density (center), and the night-time
lights (right) for the selected Delhi area (see Fig. 1). Also shown are the driving routes for the different days.

Fig. 7. Comparison of the up-scaled NOx emissions from the car
MAX-DOAS measurements (using different proxies) and existing
emission estimates. The cyan points show the mean emission es-
timate for each day with the respective total error, as explained in
Table 2. The brown columns show emission estimates derived from
OMI observations (Sect. 4.1).

corresponding emissions can then be simply derived by the
following formula:

FNOx = cL ·

∫
VCDNO2 ·dA

τ
(8)

The area over which the satellite measurements are inte-
grated have to be chosen carefully. First, it should include
the emission source of interest. Second, it should not be sig-
nificantly influenced by other strong sources from outside or
inside the selected area. Third, it should be large enough to
contain most of the emitted NOx, which is advected from the
source. In practice this means that the distance between the
emission source and the borders of the selected area should
be larger than the product of the wind speed and the NOx life-
time. Like for the determination of the NOx emissions from
the car MAX-DOAS observations (Sect. 3.1) we assume the
NOx lifetime to about 5 h. According to wind speeds on the
selected days between 3 and 9 m s−1 this results in a mini-
mum distance between 50 km and 160 km.

It is interesting to note that in contrast to the car MAX-
DOAS measurements the uncertainty of the derived NOx
emissions using equation 8 is directly proportional to the un-
certainty of the assumed NOx lifetime. While an uncertainty
of ±2 h leads to an uncertainty of about±10 % for the NOx
emission estimate from car MAX-DOAS measurements, it
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Fig. 8. Tropospheric NO2 VCD measured by OMI around Delhi for the four days, for which the NOx emissions were obtained from the car
MAX-DOAS measurements. The outflow from the city is clearly visible and follows the wind patterns (see Fig. 4). For the determination of
the NOx emissions the satellite observations inside the red rectangle were considered. Note the different colour scales.

leads to±40 % for the NOx emission estimate from satellite
observations.

In Fig. 8 the spatial distributions of the tropospheric NO2
VCDs observed by OMI around Delhi are shown for the four
days on which the NOx emissions were determined from car
MAX-DOAS measurements. Also shown is the area (red
rectangle) over which the satellite NO2 VCDs are integrated.
Since the wind was blowing from mainly westerly directions
(see Fig. 4), we chose the area to include large parts of the
downwind plume in easterly and southerly directions. On all
days the pollution outflow from Delhi is clearly visible in the
satellite images.

The next step is to estimate the “background” NO2 VCDs
at the side of the inflow into the city. This “background” NO2
VCD is then subtracted from the tropospheric NO2 VCDs
before Eq. (8) is applied. We determined the “background”
NO2 VCD from the closest OMI measurements at the inflow
side, which were not yet affected by the emissions from the
city.

The NOx emissions from Delhi derived with this method
are also shown in Fig. 7. They are typically slightly lower
than those derived from the car MAX-DOAS measurements

for the same days. However, the uncertainties of this method
are rather large (about 70 %). Several sources contribute to
the total uncertainty: the exact choice of the area over which
the satellite measurements are integrated leads to uncertain-
ties of about 40 %. We determined this uncertainty by sensi-
tivity studies varying the selected area. In a similar way we
determined the uncertainties related to the determination of
the “background” NO2 VCD to about 15 %. The uncertain-
ties of the satellite VCDs are about 35 %. Finally, the errors
caused by the uncertainties of the assumed NOx lifetime are
about 40 %.

4.2 Validation of OMI measurements using car
MAX-DOAS measurements

Validation of tropospheric trace gas products from satellite
observations is a challenging task for several reasons. First,
since satellites measure the vertically integrated tropospheric
column density, observations of in-situ surface concentra-
tions can not be directly used for validation purposes. Even
if vertical profiles are available from aircraft measurements
(e.g. Heland et al., 2002) or balloon soundings (e.g. Sluis
et al., 2010), they are often not representative for the whole
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Fig. 9. Comparison of the tropospheric NO2 VCDs on 14 April
2010 measured from OMI and car MAX-DOAS. MAX-DOAS ob-
servations were carried out between 05:20 and 10:57 UT; OMI over-
pass was at 07:50 UT. The large circle indicates MAX-DOAS ob-
servations during the OMI overpass.

spatial extent of the satellite ground pixel, which is typically
of the order of several hundreds of km2 or more. Simi-
lar arguments hold for observations of the integrated tropo-
spheric column measurements e.g. from MAX-DOAS obser-
vations at fixed locations (e.g. Brinksma et al., 2008). Here
it is important to note that close to strong emission sources
like megacities, where the validation of tropospheric satellite
products is of highest importance, the largest variability and
strongest gradients are typically found (Chen et al., 2009).

Information about the spatial variability across a satellite
ground pixel can be obtained from mobile measurements like
car MAX-DOAS observations (e.g. Volkamer et al., 2006;
Wagner et al., 2010), thus we also use the tropospheric NO2
VCDs obtained during our measurement campaigns in Delhi
for the validation of the simultaneous observations of the tro-
pospheric NO2 VCDs from the OMI instrument. We selected
OMI satellite observations (Levelt et al., 2002), because the
ground pixel sizes are much smaller (∼13× 26 km2 in nadir
geometry) compared to observations from SCIAMACHY
and GOME-2. One important aspect of tropospheric satel-
lite observations is the use of a-priori information on the
(relative) trace gas profile. For the DOMINO tropospheric
NO2 product from OMI observations profile data from from
model simulations (TM4) are sued for that purpose. The spe-
cific choice of the NO2 profile has a strong effect on the re-
trieved NO2 VCD, since the sensitivity of the satellite obser-
vations strongly depend on altitude (Boersma et al., 2011).
One particular critical aspect of the use of model data is that
the spatial resolution of the model (2◦ latitude and 3◦ longi-
tude) is much coarser than the spatial scales of tropospheric
NO2 field close to strong emission sources (see Heckel et al.,
2011). Thus for model grid cells including strong emission
sources the average NO2 profile must necessarily be a com-
promise between those over the source regions and those of
the outflow regions.

Fig. 10. Comparison of the tropospheric NO2 VCDs on 15 April
2010 measured from OMI and car MAX-DOAS. MAX-DOAS ob-
servations were carried out between 05:05 and 10:06 UT; OMI over-
pass was at 08:33 UT. The large circle indicates MAX-DOAS ob-
servations during the OMI overpass.

Figure 9 shows the comparison of the tropospheric NO2
VCDs on 14 April 2010 from mobile MAX-DOAS and OMI
observations. On that day, OMI observes Delhi at relatively
slant viewing angles, and the ground pixel sizes are rather
large. Thus, the car MAX-DOAS observations cover only
relatively small fractions of the individual ground pixels.
Nevertheless, in both data sets the same general distribution
of NO2 is observed: highest values of NO2 are found in the
south east, which is consistent with the wind direction on that
day (north-westerly wind, see Fig. 4). The car MAX-DOAS
observations reveal much finer spatial patterns with stronger
spatial gradients, which are not resolved from the OMI data.

The comparison of the tropospheric NO2 VCDs for 15
April 2010 is shown in Fig. 10. On that day the OMI obser-
vations were made almost vertically (nadir geometry), and
the satellite pixels are much smaller compared to the obser-
vations made on 14 April 2010. Both satellite ground pixels
over Delhi are well covered by the car MAX-DOAS observa-
tions and similar spatial patterns were observed in both data
sets. Again, the car MAX-DOAS observations resolve de-
tails on a much finer scale.

Figure 11 shows another validation example from 16 Jan-
uary 2011, when MAX-DOAS observations were carried out
along a route from Delhi to Agra (about 225 km). Like in
the previous examples the general distribution of the tropo-
spheric NO2 VCD is found to be similar in both data sets with
the highest values at or close to Delhi. An interesting find-
ing is that OMI underestimates the high values over Delhi,
but overestimates the low values over rural regions along the
route Delhi to Agra.

Figure 12 shows a correlation analysis of all car MAX-
DOAS observations (during April 2010 and January 2011)
and the coincident OMI satellite data (blue points). Here,
all MAX-DOAS observations within an OMI ground pix-
els were averaged. The error bars indicate the OMI error
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Fig. 11. Comparison of the tropospheric NO2 VCDs on 16 Jan-
uary 2011 measured from OMI and car MAX-DOAS from New
Delhi to Agra (Taj Mahal). MAX-DOAS observations were car-
ried out between 04:33 and 09:05 UT; OMI overpass was at 08:06
UT. The large circle indicates MAX-DOAS observations during the
OMI overpass.

and the standard deviation of the MAX-DOAS observa-
tions, respectively. Using these errors, we performed
an orthogonal regression (Cantrell, 2008). A reason-
able correlation (coefficient of determinationr2

= 0.48) is
found, but the slope (0.38) deviates strongly from unity.
In contrast, the ratio of the average of all OMI VCDs
(5.7± 2.7× 1015 molec cm−2) to the average of the MAX-
DOAS observations (8.5± 4.4× 1015 molec cm−2) is 0.77,
and the average of the individual ratios is even 1.07.

In order to investigate the effect of limited spatial sam-
pling in the presence of strong gradients in more detail, a
second comparison was made including only observations,
for which the car MAX-DOAS observations cover large frac-
tions of the OMI pixels (at least 50 % in east-west direction
(defined by the most eastern and most western MAX-DOAS
observation within the OMI pixel) like e.g. shown in Fig. 10).
Only five measurements fulfilled this criterion. If only these
observations are considered, a better correlation (coefficient
of determinationr2

= 0.79) is obtained, but the results of the
orthogonal regression are almost unchanged.

A general finding of this comparison is that over polluted
sites the OMI tropospheric NO2 VCDs are systematically
smaller than those from the car MAX-DOAS measurements,
while for areas with low pollution levels the opposite be-
haviour is found.

Fig. 12.Correlation analysis of OMI and car MAX-DOAS observa-
tions of the tropospheric NO2 VCD during April 2010 and January
2011. Blue dots represent all coincident measurements; red dots
represent measurements where the OMI ground pixels were mostly
covered (at least 50 % in east-west dimension) by the car MAX-
DOAS measurements (like in Fig. 9).

The underestimation of high tropospheric NO2 VCDs by
OMI might be partly caused by the shielding of the surface-
near NO2 by aerosols. Here it should, however, be noted
that the (effective) cloud fractions for the OMI observations
used in our study are found to be very low: 2.3 % on average
for all observations;<1.2 % for the sub-set of OMI pixels,
which are well covered by the car MAX-DOAS observations.
Thus, effects of cloud shielding is considered to be negligible
here. Part of the underestimation might also be related to dif-
ferences between the true (relative) NO2 height profiles and
those assumed in the satellite retrieval. If e.g. the assumed
profiles contain a smaller fraction close to the surface com-
pared to the true profiles, the respective tropospheric AMFs
overestimate the true tropospheric AMFs, and consequently,
the retrieved tropospheric NO2 VCDs underestimate the true
tropospheric NO2 VCDs (Boersma et al., 2009). Of course
also the uncertainties of the car MAX-DOAS measurements
might contribute to the deviations, but especially for NO2
profiles with low layer heights, the uncertainties of the car
MAX-DOAS measurements are smaller than for the satellite
observations.

Different conclusions can be drawn for the less polluted ar-
eas. Here the OMI tropospheric NO2 VCDs probably overes-
timate the true NO2 VCDs, because the NO2 profile assumed
for the retrieval probably overestimates the NO2 concentra-
tions close to the surface. But for less polluted regions, also
the uncertainties of the car MAX-DOAS observations prob-
ably substantially contribute to the discrepancies between
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both data sets. Because of the larger fraction of the NO2
at higher altitudes the uncertainties of the car MAX-DOAS
observations become larger than for measurements close to
strong emission sources (see Fig. 3). Moreover, for the mea-
surements between Delhi and Agra on 15 January 2011 the
car MAX-DOAS observations might systematically underes-
timate the true tropospheric NO2 VCD, because the relative
azimuth angle is close to zero for large parts of the driving
route (Fig. 3 and Appendix A).

It should be noted that existing validation studies show
quite controversial results: studies based on in-situ obser-
vations (at the surface or from aircraft) and LIDAR obser-
vations indicate that the troposheric NO2 VCD (DOMINO,
v1.02) derived from OMI observations is biased high
(Boersma et al., 2011; Hains et al., 2010 and reference
therein). In contrast, studies based on MAX-DOAS obser-
vations (Brinksma et al., 2008; Celarier et al., 2008) indicate
that the troposheric NO2 VCD derived from OMI is biased
low. The latter results are in agreement with the findings of
our validation study.

5 Conclusions

Car MAX-DOAS observations were performed in the greater
Delhi area during April 2010 and January 2011. The aims
of the measurements were first the determination of the to-
tal NOx emissions of the greater Delhi area and second the
validation of satellite observations.

The total NOx emissions were derived from observations
along closed circles around the city. Since the MAX-DOAS
observations encircled only part of the entire Delhi area, we
had to up-scale our results. For that purpose we used three
different proxies: the spatial distribution of (a) the NOx emis-
sions from the EDGAR emission inventory, (b) the popula-
tion density, and (c) the light intensity observed from satel-
lite during night. Although the first two proxies have rather
coarse spatial resolution, the up-scaled results using the three
proxies agree well (within 20 %). Two additional corrections
were applied to account for the partitioning of NO and NO2
and for the limited lifetime of NOx (leading to destruction of
part of the emitted NOx between the locations of the emission
source and the observation). The overall uncertainty of our
emission estimate is about 40 %, taking into account mea-
surement uncertainties and uncertainties of the various as-
sumptions. From four measured circles around Delhi (three
during April 2010 and one in January 2011) an average NOx
emission of 4.4× 1025 molecules s−1 was derived. The re-
sults from the four days were found to agree within±40 %.

Our NOx emission estimate is slightly lower than
NOx emissions from the EDGAR data base (v4.1)
(4.94×1025 molec s−1) and substantially lower than from a
recent study by Gurjar et al. (2004) (6.42× 1025 molec s−1).
However, no exact agreement should be expected, because
our measurements represent short periods during two months

of two contrast seasons (winter and summer), whereas the
values from emission inventories are annual averages.

We also NOx emissions from Delhi using OMI satellite ob-
servations on the same days as for the car MAX-DOAS mea-
surements. These emissions are slightly smaller than those
from the car MAX-DOAS measurements.

The MAX-DOAS observations were also used for the val-
idation of tropospheric OMI NO2 VCDs. We chose OMI
observations because of its relatively small pixel sizes. In
general, similar spatial patterns are found in both data sets,
but with a much finer spatial resolution in the car MAX-
DOAS data. The comparison of absolute values show over-
all a fair agreement. However, over highly polluted regions
the OMI observations are systematically smaller than the car
MAX-DOAS measurements. Most probably, this difference
is caused by the a-priori vertical NO2 profile assumed in the
OMI retrieval. In less polluted regions, OMI tropospheric
NO2 VCDs are larger than those from car MAX-DOAS ob-
servations, but under such conditions large part of the differ-
ences might be also caused by the errors of the car MAX-
DOAS observations.

Appendix A

Investigating the effects of aerosols on the car
MAXDOAS measurements

As shown in the main text of the paper (Sects. 2.5 and Fig. 3),
aerosols cause modifications of the atmospheric radiation
field compared to clear sky. These modifications lead to devi-
ations from the assumptions of geometric light paths through
the trace gas layers of interest. In Fig. 3 of the main text the
relative differences to the so called geometric approximation
(Eq. 3) are shown for various NO2 and aerosol profiles and
aerosol optical properties. The differences become particu-
larly large for cases of strong aerosol optical depth and high
trace gas layer height. The results shown in Fig. 3 repre-
sent aerosols with asymmetry parameter of 0.68 and single
scattering albedo of 0.95 which are typical for polluted ur-
ban regions (see Dubovik et al., 2002). In this appendix we
explore the effects of variations of aerosol optical properties.
In addition, we also investigate the effects of elevated aerosol
layers.

In Fig. A1 the optical properties of the aerosol are
changed. The single scattering albedo is varied from 0.9 to
1.0, and the asymmetry parameter is varied from 0.6 to 0.75.
Both variations have additional systematic effects on the sen-
sitivity of the measurements but compared to the main ef-
fects (aerosol optical depth and trace gas layer height) these
changes are small.

In Fig. A2 we investigate the effect of elevated aerosol lay-
ers (between 2 and 3 km and between 8 and 9 km), which
were e.g. observed by Babu et al. (2011). We used the same
NO2 profiles as in Fig. 3 and Fig. A1. Compared to aerosol
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a) Asymmetry parameter: 0.6, Single scattering albdo: 0.95 
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b) Asymmetry parameter: 0.75, Single scattering albdo: 0.95 
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c) Asymmetry parameter: 0.68, Single scattering albdo: 0.9 
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Fig. A1 Relative deviation of the true tropospheric VCDs (derived from radiative transfer 
simulations) from the geometric VCD for different trace gas layer heights, aerosol optical 
depth, aerosol layer heights and relative azimuth angles. Panels a) to d) show the results for 
different aerosol optical properties.   
 
 

Fig. A1. Relative deviation of the true tropospheric VCDs (derived from radiative transfer simulations) from the geometric VCD for different
trace gas layer heights, aerosol optical depth, aerosol layer heights and relative azimuth angles. Panels(a) to (d) show the results for different
aerosol optical properties.

layers close to the surface, elevated aerosol layers lead only
to rather small deviations from the geometric approximation.
This finding indicates that elevated aerosols have only small
influence on the light paths in the line of sight of the instru-
ment close to the surface. We conclude that the possible pres-
ence of elevated aerosol layers can be neglected for the inter-
pretation of our measurements.

In Fig. A3 we present similar data as shown in Fig. 3, but
they are displayed now as function of the relative azimuth
angle or SZA. For small SZA, the geometric approximation
generally leads to an overestimation of the trace gas VCD,
while for large SZA also an underestimation is found. This
underestimation is especially strong for high trace gas layers,
relative azimuth angles and SZA around 50–60◦.

The azimuth dependence is shown in more detail in
Fig. A4. While for an aerosol-free atmosphere the azimuth
dependence is weak, it increases with aerosol optical depth
and aerosol layer height.

Fig. A2. Like Fig. A1a, but for elevated aerosol layers (2–3 km,
blue; 8–9 km, red).
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Fig. A3. Relative deviation of the true tropospheric VCDs (derived
from radiative transfer simulations) from the geometric VCD for
aerosol optical depth, aerosol layer heights and relative azimuth an-
gles as a function of the solar zenith angle. Panels(a) to (c) show
the results for different NO2 layer heights.

Appendix B

Potential effects of localised emissions on the NO
to NO2 ratio

In the main part of the paper it was mentioned that for
strong and localised NOx sources, like e.g. power plants, the
atmospheric NOx mixing ratios close to the source might
be higher than the O3 mixing ratios of the surrounding
air. Since the NO to NO2 ratio depends on the ozone
mixing ratio, in such cases less NOx will be converted to
NO2 which eventually can be detected by our measure-

Fig. A4. Relative deviation of the true tropospheric VCDs (derived
from radiative transfer simulations) from the geometric VCD for
aerosol optical depth, aerosol layer heights and relative azimuth an-
gles as a function of the relative azimuth angle. Panels(a) to (c)
show the results for different NO2 layer heights.

ments. Here we estimate the NOx mixing ratios in the
plumes from two fossil fuel power plants which are located
within the surrounded area: Rajghat Power Station and Pra-
gati Gas Power Station (see Fig. 1). The Rajghat Power
Station is fired by Sub-bituminous coal and has a capac-
ity of 135 MW. The Pragati Gas Power Station is fired by
gas and has a capacity of 330 MW (http://en.wikipedia.org/

Atmos. Chem. Phys., 11, 10871–10887, 2011 www.atmos-chem-phys.net/11/10871/2011/
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wiki/List of powerstationsin India). Using emission fac-
tors from the study by Gurjar et al. (2004), the NOx emis-
sions from the Rajghat Power Station are estimated to about
0.5× 1024 molec cm−2 s−1 and from the Pragati Gas Power
Station to about 1.2× 1024 molec cm−2 s−1.

On 13 and 14 April 2010 the distance from both power
plants to the car MAXDOAS measurements is about 10 km
and the wind speed is about 6 m s−1. On 15 April the dis-
tance from the power plants to the car MAXDOAS measure-
ments is about 3 km and the wind speed is about 3 m s−1. On
15 January 2011 both power stations are outside of the driv-
ing circle. According to the solar irradiation and the wind
speed the Pasquill-Turner stability classes (e.g. Seinfeld and
Pandis, 2006) are C (slightly unstable) for 13 and 14 April
2010 and B (unstable) for 15 April 2010. Thus the plumes
are strongly diluted before they were observed by the car
MAXDOAS measurements. On 13 and 14 April the aver-
age NOx mixing ratios in the plumes of both power plants
are reduced to values of about 20 ppb and 8 ppb, respectively.
On 15 April the average NOx mixing ratios in the plumes of
both power plants are reduced to values of about 40 ppb and
17 ppb, respectively.

During noon and afternoon O3 average mixing ratios in
Delhi are typically in the range of 45 ppb (Guttikunda, 2009).
Thus on 13 and 14 April most of the emitted NOx is already
converted to NO2 at the location of the car MAXDOAS mea-
surements. On 15 April the conversion might be slightly re-
duced for the emissions from the Pragati Gas Power Station,
because the NOx is of the same order as the O3 mixing ratios.
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