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Abstract. The transformation process that a carbon back-
bone undergoes in the atmosphere is complex and dynamic.
Understanding all these changes for all the species in detail
is impractical; however, choosing different molecules that re-
semble progressively higher stages of oxidation or aging and
studying them can give us an insight into general characteris-
tics and mechanisms. Here we determine secondary organic
aerosol (SOA) mass yields of two sequences of molecules
reacting with the OH radical at high NOx. Each sequence
consists of species with similar vapor pressures, but a suc-
cession of oxidation states. The first sequence consists of
n-pentadecane,n-tridecanal, 2-, 7-tridecanone, and pinon-
aldehyde. The second sequence consists ofn-nonadecane,
n-heptadecanal andcis-pinonic acid. Oxidized molecules
tend to have lower relative SOA mass yields; however, ox-
idation state alone was not enough to predict how efficiently
a molecule forms SOA. Certain functionalities are able to
fragment more easily than others, and even the position of
these functionalities on a molecule can have an effect.n-
Alkanes tend to have the highest yields, andn-aldehydes the
lowest. n-Ketones have slightly higher yields when the ke-
tone moiety is located on the side of the molecule and not
in the center. In general, oxidation products remain efficient
SOA sources, though fragmentation makes them less effec-
tive than comparable alkanes.
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1 Introduction

Organic oxidation mechanisms in the atmosphere are very
complex and dynamic. After a molecule is emitted, it is
transformed via reaction with the OH radical, ozone, NO3
radical, and photolysis, etc. forming a rich array of products.
The number of product molecules increases with increasing
carbon number in the precursor-molecule as well as with the
extent of oxidation (Goldstein and Galbally, 2007; Kroll and
Seinfeld, 2008). Consequently, mechanisms associated with
organic aerosol, which generally involve higher than average
carbon numbers and significant oxidation (Hallquist et al.,
2009), are especially complex. Smog-chamber experiments
have constrained parts of many reaction mechanisms; for ex-
ample the first-generation products ofn-alkanes with the OH
radical have been identified in detail (Atkinson et al., 2008;
Lim and Ziemann, 2005; Atkinson and Arey, 2003), but in
most cases only the first hours of reaction are well under-
stood. A typical aerosol particle resides in the atmosphere
between one to two weeks (Balkanski et al., 1993; Kanaki-
dou et al., 2005) before removal. This time scale is signifi-
cantly longer than most smog-chamber experiments. There
is thus a critical need to understand later-generation chem-
istry of the oxygenated compounds likely to be involved in
the full life cycle of organics, and especially organic aerosol,
in the atmosphere.

Studying the transformation of chemical species for weeks
in smog-chamber experiments under ambient conditions is
not possible; hence some studies have increased the oxidant
concentration (e.g. OH radical) to simulate multiple days of
oxidation (Kroll et al., 2009; Smith et al., 2009; George et
al., 2007). These studies, done in flow tubes, have started
to yield insight into chemical aging. However, there is lim-
ited research on this topic, and the very high oxidant expo-
sures may skew the oxidation mechanisms. Understanding
the details of how molecules age in the atmosphere is crucial
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for models that predict secondary organic aerosol (SOA) for-
mation (Kanakidou et al., 2005) as well as subsequent trans-
formation (Rudich et al., 2007). One way to elucidate this
multiple-generation chemistry is to follow it one generation
at a time. The idea is to carefully select compounds that
are either themselves important intermediates, or that repre-
sent important classes of compounds with similar properties.
Here we take this approach.

Efforts are underway to try to classify atmospherically rel-
evant organic material in terms of properties important to the
condensed phase. The most important property is volatil-
ity – it determines whether a compound is in the condensed
phase at all (Donahue et al., 2006). Oxygenation has been
proposed as a second important property because it progres-
sively increases during oxidation chemistry and also appears
to correlate well with water solubility, another key property
(Jimenez et al., 2009). We can describe volatility in terms of
the saturation concentration,C◦ (Donahue et al., 2006; Don-
ahue et al., 2011a, b), which is operationally defined as the
organic aerosol concentration (COA) at which half of a given
compound will be found in the condensed phase (Donahue et
al., 2006). For oxygenation we employ the oxygen-to-carbon
ratio O:C (Jimenez et al., 2009; Donahue et al., 2011a).

It is useful to break reaction mechanisms into a succession
of steps connecting one stable molecule to another. We can
classify these steps as functionalization, fragmentation and
accretion (Kroll and Seinfeld, 2008; Rudich et al., 2007) ac-
cording to the effect on the product carbon number. These
three processes are illustrated in Fig. 1. Functionalization
involves the addition of oxygenated functional groups (thus
an increase in O:C) to a molecule with no change in carbon
number, decreasing its vapor pressure in most cases and mak-
ing it more likely to partition into the aerosol phase. Frag-
mentation refers to carbon-carbon bond cleavage resulting
in at least two separate organic products (i.e. a reduction in
carbon number). In some cases, this path creates higher va-
por pressure species, and in others, the vapor pressure de-
creases because the products are typically also functional-
ized. A good example is the ozonolysis reaction of monoter-
penes. While the double bond is broken, at least two oxygens
are added, often significantly decreasing the vapor pressure
of the products compared to the parent-molecule. Finally,
accretion, also named oligomerization, refers to association
reactions (typically in the condensed phase) resulting in an
increase in carbon number (with no change in O:C) and a
dramatic reduction in vapor pressure (Kalberer et al., 2004,
2006). While not all accretion reactions lead to lower va-
por pressure species (for example esterification), often the
increase in carbon number outweighs any reduction in polar-
ity.

The relative effects of these three pathways on organic-
aerosol levels and properties remain uncertain. Thermo-
dynamics demands that complete fragmentation (formation
of CO2) would be the outcome if oxidation continued far
enough (Kroll et al., 2011), but most carbon emissions re-
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Figure 1. Major mechanisms in gas and aerosol-phase oxidation.  The three major chemical mechanisms 4 
that a carbon backbone undergoes in the atmosphere are represented along with their interaction with aerosols.  5 
They are described and revised in Kroll and Seinfeld (2008) and Rudich et al. (2007).  Both, functionalization and 6 
accretion tend to decrease the vapor pressure of species by either adding polarity to the molecule or by accreting 7 
with other molecules.  Fragmentation cleaves carbon-carbon bonds of molecules, generally increasing the vapor 8 
pressure of products; however, a good exception is the ozonolysis of monoterpenes, where both fragmentation 9 
and functionalization happen simultaneously, adding polarity and decreasing the overall vapor pressure of the 10 
products.  The competition of these three mechanisms define the fate of molecules in the atmosphere, but it is not 11 
clear how this competition plays out while molecules and particles age.   12 
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Fig. 1. Major mechanisms in gas and aerosol-phase oxidation. The
three major chemical mechanisms that a carbon backbone under-
goes in the atmosphere are represented along with their interac-
tion with aerosols. They are described and revised in Kroll and
Seinfeld (2008) and Rudich et al. (2007). Both, functionaliza-
tion and accretion tend to decrease the vapor pressure of species
by either adding polarity to the molecule or by accreting with
other molecules. Fragmentation cleaves carbon-carbon bonds of
molecules, generally increasing the vapor pressure of products;
however, a good exception is the ozonolysis of monoterpenes,
where both fragmentation and functionalization happen simultane-
ously, adding polarity and decreasing the overall vapor pressure of
the products. The competition of these three mechanisms define
the fate of molecules in the atmosphere, but it is not clear how this
competition plays out while molecules and particles age.

turn to the surface before complete oxidation (Goldstein and
Galbally, 2007). Ambient organic aerosol is highly oxidized
(Ng et al., 2010) (with average oxygen to carbon ratios for
aerosols varying from 0.5 to 0.9, Ng et al., 2010; Aiken et al.,
2008), with significant carboxylic acid functionality (Rudich
et al., 2007), but this does not directly indicate how much of
a role fragmentation or accretion plays.

Another issue is the phase in which the chemistry occurs.
The primary focus here is on gas-phase chemistry, where
both functionalization and fragmentation reactions can oc-
cur readily. Heterogeneous uptake of oxidants (i.e. OH) can
have similar effects (Kroll et al., 2009). Accretion reactions
occur in the condensed phase, either in a primarily organic
phase or in the aqueous phase. For the experiments reported
here the relative humidity was kept low (RH< 10 %), and
so any condensed phase chemistry occurred in the organic
phase. It is also possible that reactive uptake of organic
peroxyl radicals (RO2) could influence the organic oxida-
tion mechanism and also SOA formation. However, all ex-
periments described here were performed under high-NOx
conditions. The timescale for collisions with aerosols (the
condensational sink) was significantly longer than the fast
RO2 + NO reaction (Atkinson et al., 1987; Arey et al., 2001),
so peroxyl uptake was not significant for the experiments pre-
sented here.
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While organic aerosol ages in the atmosphere, its oxygena-
tion (indicated by the oxygen to carbon ratio, O:C) tends to
increase, changing its properties with time (Ng et al., 2010).
We would therefore like to examine the fragmentation sus-
ceptibility and SOA formation of individual molecules ver-
sus oxygenation. In order to do this, we selected two dif-
ferent sequences of molecules, each sequence consisting of
atmospherically relevant vapor pressures (Fig. 2). Specif-
ically, we work with molecules that have saturation con-
centrations (vapor pressures in mass concentration units) of
∼105 and ∼103 µg m−3. For each sequence, we concen-
trate on molecules that have a different O:C, and that are
atmospherically relevant. The highest O:C we have worked
with so far is∼0.3: atmospherically relevant molecules with
higher O:C are more difficult to synthesize, separate or ob-
tain commercially. In this manner we are systematically con-
structing a sequence of oxidation steps, using model com-
pounds to represent both locations in the 2-D space as well
as successive generations of oxidation. Since vapor pressure
data are not available for all of the species we worked with,
we used the SIMPOL model from Pankow and Asher (2008)
and fits from Donahue et al. (2011a) to estimate them. The
major characteristic encountered is that a molecule withn

carbons has a similar vapor pressure to a molecule withn-
2 carbons and 1 oxygen (with carbonyl functionality). This
characteristic is used only as a guide.

Each sequence contains species with similar vapor pres-
sures because comparison of their SOA mass yields reflects
the competition between fragmentation, functionalization
and possibly accretion if important. If two different chem-
ical species with identical vapor pressures had very similar
chemical oxidation paths (e.g. competition of functionaliza-
tion, fragmentation and accretion) their SOA mass yields are
expected to be similar as well. That is because with every
generation of products formed, their overall vapor pressures
increase or decrease by a similar amount. If the SOA mass
yields are very different, then the different classes of reac-
tion pathways (fragmentation, functionalization and accre-
tion) contribute differently to the oxidation mechanism. This
approach is similar to that employed by Ziemann and co-
workers to explore the effects of branching, unsaturation and
cyclization on hydrocarbon SOA formation (Lim and Zie-
mann, 2009a, b), but our focus is on the effects of oxygenated
functionality as a model for later-generation chemistry.

The 105 µg m−3 sequence isn-pentadecane,n-tridecanal,
pinonaldehyde, 2-tridecanone, and 7-tridecanone.n-
Pentadecane is the “anchor” species in the sequence, defining
the nominal SOA mass yields we expect from a∼105 µg m−3

species. Bothn-pentadecane andn-tridecanal (Schauer et al.,
1999a, b) are good models of important anthropogenic emis-
sions with respect to chemical and structural characteristics
(e.g. vapor pressure, oxidation state, etc.). Pinonaldehyde
is a major product of the oxidation ofα-pinene (Schradera
et al., 2005; Glasius et al., 1997); multiple studies indi-
cate that the molar yield formation of pinonaldehyde from

both α-pinene ozonolysis and OH radical reaction can ap-
proach 50 % (Hatakeyama et al., 1989, 1991), making it a
good model-molecule of the first-generation products from
the oxidation of monoterpenes. Finally, 2-tridecanone and
7-tridecanone allow us to explore the relationship between
the position of carbonyl functionality in the molecule and its
ability to fragment.

The 103 sequence isn-nonadecane,n-heptadecanal and
cis-pinonic acid. Bothn-nonadecane andn-heptadecanal are
chosen as homologous ton-pentadecane andn-tridecanal.
cis-Pinonic acid is similar to pinonaldehyde and it is also a
first-generation product ofα-pinene oxidation (Hatakeyama
et al., 1991).

Our hypothesis is that there is a relationship between
the oxidation state of a molecule and its ability to form
SOA. More oxidized molecules can fragment more eas-
ily, as shown by Kroll et al. (2009), reducing their ability
to form organic aerosol when reacting with the OH radi-
cal. Chacon-Madrid et al. (2010) showed thatn-aldehydes
fragment significantly more thann-alkanes with similar va-
por pressures, thus forming less SOA. When examining the
gas-phase chemistry of different volatile organic compounds
(VOCs) with the OH radical in the presence of NOx (Atkin-
son and Arey, 2003; Atkinson, 2000, 2007), it is clear the
alkoxy radical is the leading intermediate that fragments
molecules, especially when other functionalities are already
present (Atkinson, 2007; Kwok et al., 1996).

Our objectives are to (a) understand the relationship be-
tween the oxidation state of a molecule and its ability to form
organic aerosol, (b) realize how important fragmentation vs.
functionalization paths are while a molecule ages in the at-
mosphere and (c) report SOA mass yields of atmospherically
relevant species for which there is limited or no information
in the literature. Our model-system does not present highly
oxidized precursors as seen in Fig. 2, limiting our conclu-
sions to precursors similar to those found in the early steps
of OH radical oxidation sequences. This limitation has to
do with the difficulty of synthesizing, separating or obtaining
commercially material that resembles low volatility-oxidized
organic aerosol (LV-OOA) (Ng et al., 2010).

2 Experimental

We conducted experiments in the Carnegie Mellon Uni-
versity smog chamber. Many details of our experimen-
tal procedures are described elsewhere (Hildebrandt et al.,
2009). The FEP Teflon (Welch Fluorocarbon) chamber has
a maximum volume capacity of 12 m−3. The bag is sus-
pended inside a temperature-controlled room, which was
held at 295 K for these experiments. All the experiments
were conducted under high-NOx conditions (maximum of
4 ppbC ppb−1-NOx). Table A in the Supplement lists the
specific concentrations and important concentration ratios
for all the experiments. Particle number-size distributions
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n-Pentadecane n-Tridecanal Pinonaldehyde 

n-Nonadecane n-Heptadecanal cis-Pinonic Acid 

—         ̴105  µg m-3 

—         ̴103  µg m-3 

Fig. 2. Two sequences of molecules with progressively increasing oxidation state but similar vapor pressures (∼105 and∼103 µg m−3),
shown in a two-dimensional volatility-oxidation state space. The 105 µg m−3 sequence is:n-pentadecane,n-tridecanal, pinonaldehyde,
and 2- and 7-tridecanone (co-located withn-tridecanal). The 103 µg m−3 sequence is:n-nonadecane,n-heptadecanal andcis-pinonic acid.
The species lie in the intermediate volatile organic carbon (IVOC) range occupied by many first-generation oxidation products associated
with secondary organic aerosol (SOA) formation. Pinonaldehyde andcis-pinonic acid are first-generation products ofα-pinene oxidation.
Ambient oxidized organic aerosol (OOA) lies in the ranges indicated, with SV-OOA being fresher, less oxidized and more volatile and
LV-OOA being more aged and less volatile.

were monitored using a scanning mobility particle sizer op-
erating in recirculating mode (SMPS, TSI classifier model
3080, CPC model 3772 or 3010, 15–700 nmDp). The con-
centrations of the different organic species were monitored
with a unit mass-resolution proton transfer reaction-mass
spectrometer (PTR-MS, Ionicon GmbH). For each experi-
ment, HONO photolysis was used to create OH radicals.
Additional nitric oxide (NO) was added to achieve the de-
sired VOC:NOx ratio. Ammonium sulfate particles (Sigma
Aldrich, 99.99 %) were used as inert seeds for condensa-
tion. These were formed from an aqueous solution with
a nebulizer (TSI 3075), then dried and neutralized. We
used seed concentrations of∼104 particles cm−3 or ∼10 to
15 µg m−3. The organic species used weren-tridecanal (Alfa
Aesar, 94 %), pinonaldehyde (synthesized in Carnegie Mel-
lon Laboratory,∼85 %), 2-tridecanone (MP Biomedicals), 7-
tridecanone (MP Biomedicals),n-nonadecane (Ultra, 99 %),
n-heptadecanal (synthesized in Carnegie Mellon Labora-
tory, ∼85 %) andcis-pinonic acid (98 %, Aldrich). These
molecules were all used without further purification. UV
lights (General Electric 10526 black lights) with aJNO2 =

0.06 min−1 were used to initiate photo-oxidation after all the
components were mixed in the chamber.

2.1 Injection of molecules into the chamber

Molecules in the 105 µg m−3 sequence were injected directly
into the chamber via a septum. Molecules in the 103 µg m−3

sequence (Fig. 2) were injected into the chamber using a
resistively heated vaporizer. This vaporizer has a resistive
graphite tip where the material of interest is placed, which
is suspended directly in the chamber. This vaporizer heats
up to about 200◦C in about two minutes. A steel tube is
used to allow a flow of air to dissipate the material from the
tip into the chamber. Some graphite is ejected from the tip
while heated, but the concentrations are significantly lower
than the organic precursors. Based on PTR-MS mass spectra
of the injection products, there was no evidence of precursor
decomposition during vaporization.

2.2 SOA mass yield and wall loss calculations

The SOA mass yield from a reaction is defined as the mass
of organic aerosol formed divided by the mass of precursor
consumed (Odum et al., 1996),

Y =
COA

1Cprecursor
(1)

where COA is the mass of organic aerosol created, and
1Cprecursoris the mass of the precursor organic species con-
sumed to form the organic aerosol (COA) and other products.
We determined SOA mass yields for the different organic
species based on volume growth on the inorganic seeds, mea-
sured with the SMPS.

Total SOA production (COA) is determined by using
the ratio of suspended organic aerosol (Csus

OA) to suspended
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ammonium sulfate (Cseed
sus ) and the initial concentration

of ammonium sulfateCseed
sus (t = 0), as described by

Hildebrandt et al. (2009):

COA(t) =
Csus

OA(t)

Cseed
sus (t)

Cseed
sus (t = 0) (2)

Cseed
sus (t) is obtained by fitting an exponential decay to the

ammonium sulfate volume concentration (measured with the
SMPS and verified with an Aerosol Mass Spectrometer) over
the interval between seed injection (and mixing) in the cham-
ber and the onset of photo-oxidation. Extrapolation of this
signal after the photo-oxidation process starts defines the
seed mass concentration as a function of time.

At time 0 (onset of photo-oxidation) and later, the dif-
ference between the total aerosol mass concentration in
the chamber (measured with an SMPS) and the extrapo-
lated ammonium-sulfate mass concentration is considered
theCsus

OA(t). To obtain the totalCOA(t) from the suspended
mass concentration we correct for wall losses, assuming that
organic particles lost to the wall are in equilibrium with the
suspended particles and vapor-phase species, and also that
the organic to seed mass ratio remains the same for sus-
pended and deposited particles. This is the upper-limit es-
timate for SOA production. There is approximately a 10 %
difference in SOA mass yields for each species studied when
assuming particles lost to the walls are in equilibrium with
the suspended particles (upper limit) versus assuming that
no further condensation occurs once particles have deposited
(lower limit). This percentage has been observed in current
and past experiments (Chacon-Madrid et al., 2010).

2.3 Measurement of reactants

The concentrations of reactants were monitored with a unit
mass-resolution proton transfer reaction-mass spectrometer
(PTR-MS). The fragments used to track concentrations are
those of the MW + 1 forn-tridecanal, pinonaldehyde, 2- and
7-tridecanone. The PTR-MS sensitivity at these fragment
masses was previously calibrated with those species. A key
assumption is that interferences from other species were min-
imal. An exception to this wasn-tridecanal, discussed in
Chacon-Madrid et al. (2010), where aCn−1 dicarbonyl is
formed due to isomerization.

We usedm/z43 and 57 to follow the concentrations and re-
spective consumption ofn-heptadecanal andn-nonadecane.
The signal corresponding to their MW + 1 was too low, thus
a higher-intensity but less selective fragment was used. The
specifics of usingm/z43 and 57 with a PTR-MS are de-
scribed in Jobson et al. (2005) and are also applied in Presto
et al. (2010). The difficulty with using eitherm/z43 and 57 as
a proxy of reactant concentration is that with time, the signal
does not decay as quickly as the precursor is consumed. This
is because first- and second-generation products contribute
to m/z43 and 57 as well. In some cases this interference is
reduced because the products partition into the aerosol phase

and do not produce a PTR-MS signal. We also use methanol
as a radical tracer in all experiments. We measured it with a
PTR-MS (specificallym/z33) to determine the concentration
of OH radicals during the experiments. OH concentrations
and kinetic rate constants allow us to predict concentrations
of the different precursors and compare with the initial decay
of m/z43 and 57. Methanol concentrations in all the exper-
iments conducted were lower than the precursor-molecules
themselves. This is done to minimize the effect of methanol
on the radical balance. Also, the relatively low rate constant
of methanol + OH radical minimizes its effect on the overall
chemistry.

2.4 Synthesis of organic species

We synthesizedn-heptadecanal and pinonaldehyde follow-
ing McMurry et al. (1987), as they are not commercially
available. Products were formed via ozonolysis in solu-
tion, as shown in Fig. A in the Supplement. 1-Octadecene
(Acros Organics, 90 %) andα-pinene (Aldrich, 99 %) were
used as reactants forn-heptadecanal and pinonaldehyde, re-
spectively. The synthesis started with formation of the sec-
ondary ozonide, which was kept stable by maintaining a tem-
perature of−78◦C with a dry-ice ethanol slurry. After the
ozonide was formed, dimethyl sulfide (DMS) was added to
reduce the ozonide to the respective carbonyls. After adding
DMS, the products were held at room temperature for about
three hours, after which they were extracted with water to
remove water-soluble contaminants. Finally, a simple dis-
tillation procedure vaporized solvents and other volatile im-
purities. We used Nuclear Magnetic Resonance (H1 NMR,
HSQC and Tocsy) to determine products and yields from the
synthesis. The spectra are shown in the Supplement in Fig. B
through E.

3 Results

SOA mass yields for the 105 µg m−3 sequence (n-tridecanal,
pinonaldehyde, 2- and 7-tridecanone, andn-pentadecane)
are presented in Figs. 3 and 4. All of these species were
exposed to similar OH and NOx concentrations, and none
of the reagents showed significant losses to the walls be-
fore the OH-radical source was turned on, indicating that
wall losses such as those reported by Matsunaga and Zie-
mann (2010), were not a problem.n-Pentadecane SOA
mass yields are shown as a function reproducing data from
Presto et al. (2010) andn-tridecanal yields are from Chacon-
Madrid et al. (2010). We shall use then-pentadecane
mass yield curve for reference throughout this discussion.
n-Pentadecane oxidation produces significantly more SOA
than either pinonaldehyde orn-tridecanal, but within un-
certainty, yields for those two aldehydes are identical, as
shown in Fig. 3. The 2- and 7-tridecanone SOA mass yields
are presented in Fig. 4. Bothn-ketones have significantly
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and pinonaldehyde vs. n-pentadecane are related to the tendency of the aldehydic moiety to fragment relatively 7 
quickly as detailed in Chacon-Madrid et al. (2010).  At this point, it is not clear how the ketone and cyclobutane 8 
moieties influence the SOA formation from pinonaldehyde, if at all. 9 
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Fig. 3. SOA mass yields of organic species with vapor pressures
of 105 µg m−3. n-Tridecanal, pinonaldehyde andn-pentadecane
SOA mass yields after the OH radical reaction at high NOx are
presented here.n-Pentadecane yields are a fit that comes from
Presto et al. (2010). The suppression of SOA yields forn-tridecanal
and pinonaldehyde vs.n-pentadecane are related to the tendency of
the aldehydic moiety to fragment relatively quickly as detailed in
Chacon-Madrid et al. (2010). At this point, it is not clear how the
ketone and cyclobutane moieties influence the SOA formation from
pinonaldehyde, if at all.

lower SOA mass yields than the referencen-alkane, and
the 7-tridecanone yields are identical ton-tridecanal yields,
within error. The 2-tridecanone mass yields are larger than
then-tridecanal yields in the 30 to 50 µg m−3 range of SOA
formed.

SOA mass yields for the 103 µg m−3 sequence (n-
heptadecanal andn-nonadecane) are shown in Fig. 5. Be-
cause the vapor pressures of the precursors themselves are
quite low, we kept the injections and subsequent SOA forma-
tion to a relatively low (and atmospherically relevant) range
of < 10 µg m−3. We do not report yields forcis-pinonic
acid in Fig. 5 because we were not confident we could ac-
curately measure its vapor concentrations with the PTR-MS.
Nonetheless,cis-pinonic acid oxidation produced a signifi-
cant amount of SOA, with mass yields appearing to be larger
thann-heptadecanal but lower thann-nonadecane.

The precision of the experiments can be seen in Fig. 3. The
SOA mass yields ofn-tridecanal are composed of two differ-
ent experiments, one in the region of 0 to∼25 µg m−3, and
the other in the region of∼25 to∼400 µg m−3. The two ex-
periments form an overlapping yield curve. Pinonaldehyde
has a similar mechanism ton-tridecanal when reacting with
the OH radical and a similar vapor pressure. Figure 3 shows
that yields of pinonaldehyde match those ofn-tridecanal,
again demonstrating the good precision of the measurements.
All the experiments performed resulted in SOA mass yields
above blank experiments, including the aldehydes.

All the different experiments performed reached
equilibrium between the organic aerosol-phase and the
gas-phase within the experimental time frame. Particles
grew rapidly during the first hour of each experiment due
to the high OH radical concentration, but after the first
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Fig. 4. SOA mass yields of ketones with vapor pressures of
105 µg m−3. 2- and 7-tridecanone SOA mass yields are slightly
different. The lower efficiency of 7-tridecanone to form SOA might
be related to higher fragmentation paths when it reacts with the OH
radical as compared to 2-tridecanone. Additionally, splitting the
molecule in the middle might have bigger consequences on SOA
production versus splitting it on the side (e.g. 2-tridecanone). How-
ever, the differences in SOA yields are not as pronounced as the
mechanisms would suggest. Photolysis might play a more impor-
tant role on the oxidation products of 2-tridecanone.

to second hour of photo-oxidation, the particles stopped
growing. There was no evidence for any substantial delay
in condensational growth that would be associated with a
significant delay in equilibration. This is consistent with
other experiments performed in our laboratories (Pierce et
al., 2008; Presto et al., 2005). Consequently, we believe
that there were no substantial mass-transfer limitations
during these experiments that would affect our conclu-
sions regarding the competition between fragmentation,
functionalization and accretion effects on SOA formation.

4 Discussion

4.1 n-Tridecanal and pinonaldehyde vs.n-pentadecane

The aldehydic moiety appears to dominaten-tridecanal and
pinonaldehyde chemistry as compared withn-pentadecane.
This is responsible for the differences in SOA mass yields
seen in Fig. 3. Fragmentation overwhelms the first-
generation chemical mechanism of pinonaldehyde andn-
tridecanal as discussed in Chacon-Madrid et al. (2010). The
fragmentation path is important in the presence of NOx
(Atkinson and Arey, 2003). The chemical mechanism of a
generic aldehyde reacting with OH radical in the presence of
NOx is presented in the Supplement, Fig. F.

Fragmentation in the first generation of aldehyde oxida-
tion evidently only occurs when the OH radical attacks the
aldehydic moiety, which tends to be very reactive. For ex-
ample, according to structure activity relationships (SAR)
from Kwok and Atkinson (1995), the aldehydic moiety is
attacked∼54 % and∼79 % of the time (relative to other
sites in the molecule) forn-tridecanal and pinonaldehyde,
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NOx, while the n-nonadecane does not have relevant first-generation fragmentation paths. 8 
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Fig. 5. SOA mass yields of organic species with vapor pressure of
∼103 µg m−3. n-Pentadecane (from the 105 µg m−3 sequence) is
shown as a reference. The differences in SOA mass yields between
n-nonadecane andn-heptadecanal are not surprising. The aldehy-
dic moiety is very reactive and causes fragmentation at high NOx,
while then-nonadecane does not have relevant first-generation frag-
mentation paths.

respectively, when attacked by OH. Not every attack on the
aldehydic moiety ends in fragmentation, but the molecules
that do not fragment after aldehydic attack form peroxyacyl
nitrates (PANs) (Singh et al., 1986), which in this case are
too volatile to form SOA.

The fragmentation path is thought to be negligible for
n-pentadecane, at least in the first oxidation steps (Lim
and Ziemann, 2005; Atkinson et al., 2008). As shown in
Fig. 3, a higher SOA mass yield is the result of function-
alizing a molecule without significant fragmentation. Lin-
earn-alkanes are especially strong SOA precursors because
branched alkanes can fragment more easily, as shown by Lim
and Ziemann (2009a, b) and others (Aschmann et al., 2001).
While the first-generation oxidation products from pendate-
cane include carbonyls, they are larger and less volatile than
n-tridecanal or pinonaldehyde. Since the first oxidation steps
for n-pentadecane do not include fragmentation, its oxidized
products will have significantly lower vapor pressures, mak-
ing them more likely to partition into the aerosol phase
(Pankow, 1994; Donahue et al., 2006).

4.2 n-Tridecanal vs. pinonaldehyde

The two important structural differences betweenn-
tridecanal and pinonaldehyde are the four-member cycle and
the ketone functionality present in pinonaldehyde but not in
n-tridecanal. Regardless, the aldehydic moiety is the most
reactive in both molecules. Since the aldehydic moiety leads
to a significant amount of fragmentation in the presence of
NOx, it is not a surprise to see similar SOA mass yields in
these aldehydes that are significantly lower than those ofn-
pentadecane.

The high fragmentation ofn-tridecanal products was dis-
cussed in Chacon-Madrid et al. (2010). Figure 6 presents
strong evidence of pinonaldehyde fragmentation to formnor-

25 
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Figure 6.  Pinonaldehyde + OH radical in the presence of NOx.  Consumption of m/z 169 (molecular weight 11 
of pinonaldehyde + 1 in a PTR-MS), and the formation of m/z 155 (molecular weight of nor-pinonaldehyde +1).  12 
nor-Pinonaldehyde molar yield from the OH radical oxidation of pinonaldehyde in the presence of NOx is about 13 
~50%.   14 
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Fig. 6. Pinonaldehyde + OH radical in the presence of NOx. Con-
sumption ofm/z169 (molecular weight of pinonaldehyde + 1 in a
PTR-MS), and the formation ofm/z155 (molecular weight ofnor-
pinonaldehyde + 1).nor-Pinonaldehyde molar yield from the OH
radical oxidation of pinonaldehyde in the presence of NOx is about
∼50 %.

pinonaldehyde. In the figure,t = 0 is the start of photo-
oxidation. The initial OH radical concentration (determined
by consumption of methanol) was∼107 molecule cm−3; the
OH concentration dropped by an order of magnitude after
the first hour. After about 1.5 h of photo-oxidation, thenor-
pinonaldehyde signal started to decline because the reaction
with OH exceeded its production due to declining pinonalde-
hyde levels. These data show thatnor-pinonaldehyde (with
9 carbons) forms with a∼50 % molar yield. This is much
larger than the∼4 % molar yield ofn-dodecanal formation
from n-tridecanal presented in Chacon-Madrid et al. (2010),
showing that theCn−1 alkoxy radical from pinonaldehyde,
with a stiff cyclic backbone, is not capable of isomerizing
(Fig. F in the Supplement).

n-Tridecanal and pinonaldehyde SOA mass yields are
identical within uncertainty (Fig. 3). Two factors may ex-
plain this similarity. First, the initial attack by OH onn-
tridecanal and pinonaldehyde happens overwhelmingly on
the aldehydic moiety, resulting in product-species with one
fewer carbon as their major products. Second, even though
the aldehydic moiety on pinonaldehyde may be slightly more
reactive thann-tridecanal (giving more fragmentation), the
attack on the rest of the molecule (mainly the four-member-
cycle) can be very efficient at adding polarity without causing
the molecule to split in two different products.

4.3 2-vs. 7-Tridecanone SOA mass yields

These two molecules are an ideal model system to explore
the importance of the position of the ketone functionality in
a molecule and its effect on SOA production. Broadly, if the
ketone functionality promotes fragmentation, 7-tridecanone
SOA yields could be very small (the molecule would split in
half), while 2-tridecanone SOA yields might be intermedi-
ate. A hotspot of first-generation reactivity of ketones with
the OH radical is theβ-hydrogens (Atkinson et al., 1982)
(Fig. 7). For 7-tridecanone, theβ-hydrogens are thought to
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Fig. 7. A partial high-NOx OH-radical oxidation mechanism of 7-tridecanone, emphasizing the OH radical attack of theβ-hydrogens.
Figure G in the Supplement shows evidence ofn-hexanal formation from the OH radical oxidation of 7-tridecanone at high NOx.

account for∼47 % of the first-generation reaction with the
OH radical (following Kwok and Atkinson, 1995).
For 2-tridecanone, attack onβ-hydrogens is only∼27 % be-
cause there is only oneβ-carbon. A partial mechanism for 7-
tridecanone is presented in Fig. 7, showing the attack on the
β-hydrogens that can lead to fragmentation. This fragmen-
tation path results in the formation ofn-hexanal, which we
observed by PTR-MS (Fig. G, Supplement). This particular
fragmentation path might not be important for 2-tridecanone
because of the low reactivity of the terminal CH3 – with the
β-alkoxy radical at the isomerization stage. Attack on theα-
hydrogens could also lead to fragmentation: this path could
lead to anα-alkoxy radical that would preferably fragment
(Kroll and Seinfeld, 2008). However, the reactivity of theα-

hydrogens by OH radical is thought to be slightly reduced be-
cause of the presence of the carbonyl (Atkinson et al., 1982),
making this a minor pathway.

The consequence of having a ketone functional group in
the center versus the side can be seen in Fig. 4. Fragment-
ing a molecule in the center divides it into two higher vapor-
pressure product molecules, which suppresses SOA forma-
tion. It is clear in Fig. 4 that 2-tridecanone is more efficient
at forming SOA, as expected. However, it is somewhat sur-
prising that the 2-tridecanone SOA yields are as low as they
are. This could be due to photolysis of the oxidation prod-
ucts, given that Presto et al. (2005) has shown that UV lights
can have an important suppression effect on SOA formation,
but this requires further investigation.
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4.4 n-Nonadecane,n-heptadecanal andcis-pinonic acid

The less volatile sequence follows a similar pattern as
the more volatile sequence, as shown in Fig. 5.n-
Nonadecane has significantly higher SOA mass yields than
n-heptadecanal. The aldehyde again presents lower SOA
mass yields due to higher fragmentation. It is not obvious
that this should be so. As ann-aldehyde becomes as large as
n-heptadecane, its reactivity and SOA yields might resem-
ble that of ann-alkane of comparable volatility rather than
smaller aldehydes, simply because the long carbon back-
bone and not the aldehydic moiety would become the prin-
cipal site of OH attack (Chacon-Madrid et al., 2010). Fur-
thermore, a molecule as large asn-heptadecane might have
a slightly different oxidation mechanism than smallern-
aldehydes (<C11), even if the aldehydic moiety plays a role.
For example, alkoxy radicals formed on the carbon backbone
of n-heptadecanal are more likely to isomerize towards the
aldehydic functionality, promoting fragmentation. This path
was proposed by Jenkin et al. (2000), where an acyl-oxy rad-
ical formed from the ozonolysis ofα-pinene attacks an inter-
nal aldehydic moiety. However, we do not have direct evi-
dence to support this proposed pathway. Another reason for
the relatively low SOA yields fromn-heptadecanal could be
higher photolysis rates for the reaction products, compared
to n-nonadecane.

As mentioned before, we did not present SOA mass yields
for cis-pinonic acid in Fig. 5 because of difficulty measur-
ing thecis-pinonic acid concentration. Nonetheless, based
on injected quantities, yields appeared to be higher than the
similar vapor pressure aldehyde but lower than the respec-
tive n-alkane. The probable strength of the SOA yields
from cis-pinonic acid is related to its cyclic structure. The
first-generation OH radical attack favors two of the tertiary-
carbons and the secondary-carbon placed in the cycle. Even
if an intermediate alkoxy radical is able to create a carbon-
carbon scission, only one product is formed instead of two of
higher-volatility.

5 Environmental significance

Understanding how SOA formation capability evolves
through the full oxidation sequence of organics in the at-
mosphere is critical in order to improve predictions of am-
bient SOA formation and evolution. Most chemical trans-
port models (CTMs) under-predict the concentrations of or-
ganic aerosol (Appel et al., 2008; Zhang et al., 2009). This
may be due to the lack of multi-generation oxidation mech-
anisms in CTMs. In this paper, we have systematically ex-
plored the oxidation of different molecules that are proxies
for first-generation oxidation products. Fromn-pentadecane,
n-tridecanal, 2-, 7-tridecanone and pinonaldehyde ton-
nonadecane,n-heptadecanal andcis-pinonic acid, we noticed
a higher susceptibility for more oxidized molecules to frag-

ment more easily than less oxidized species of similar vapor
pressures, based on SOA mass yields. However, neither ox-
idation state nor O:C is enough to predict the ability of a
species to produce SOA. All oxidized organics produce less
SOA thann-alkanes of similar vapor pressures, but there are
specific moieties – such as aldehydes under high-NOx con-
ditions – that can fragment efficiently in the first generation
of the OH radical attack. The presence of these moieties,
rather than O:C in general, appears to be important to SOA
formation.

Our major conclusion is that even though carbon back-
bones become more susceptible to fragmentation as they age,
that aging can still add substantially to organic aerosol for-
mation. While more oxidized molecules are more likely to
fragment, they will also contribute significantly to organic
aerosol formation. For example, pinonaldehyde, a major
product ofα-pinene, has SOA yields very similar to those
of α-pinene itself (Presto and Donahue, 2006).cis-Pinonic
acid also has substantial yields. It is critical to understand
the contribution of SOA from aging mechanisms and im-
plement them in CTMs in order to better predict organic
aerosol levels and properties. This work represents the be-
ginning of that process – it does not include highly oxidized
species and makes no conclusions with regards to the het-
erogeneous oxidation of such species. Ultimately, we hope
to be able to select key model species throughout the 2-D
space shown in Fig. 2 in order to constrain the full kinetics
and mechanisms of organic-aerosol evolution caused by gas-
phase photo-oxidation.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/10553/2011/
acp-11-10553-2011-supplement.zip.
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