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Abstract. This paper presents results from 240-member
ensemble simulations of aerosol indirect effects on tropi-
cal deep convection and its thermodynamic environment.
Simulations using a two-dimensional cloud-system resolv-
ing model are run with pristine, polluted, or highly polluted
aerosol conditions and large-scale forcing from a 6-day pe-
riod of active monsoon conditions during the 2006 Tropical
Warm Pool – International Cloud Experiment (TWP-ICE).
Domain-mean surface precipitation is insensitive to aerosols
primarily because the large-scale forcing is prescribed and
dominates the water and static energy budgets. The spread of
the top-of-atmosphere (TOA) shortwave and longwave radia-
tive fluxes among different ensemble members for the same
aerosol loading is surprisingly large, exceeding 25 W m−2

even when averaged over the 6-day period. This variabil-
ity is caused by random fluctuations in the strength and tim-
ing of individual deep convective events. The ensemble ap-
proach demonstrates a small weakening of convection aver-
aged over the 6-day period in the polluted simulations com-
pared to pristine. Despite this weakening, the cloud top
heights and anvil ice mixing ratios are higher in polluted
conditions. This occurs because of the larger concentra-
tions of cloud droplets that freeze, leading directly to higher
ice particle concentrations, smaller ice particle sizes, and
smaller fall velocities compared to simulations with pristine
aerosols. Weaker convection in polluted conditions is a direct
result of the changes in anvil ice characteristics and subse-
quent upper-tropospheric radiative heating and weaker tropo-
spheric destabilization. Such a conclusion offers a different
interpretation of recent satellite observations of tropical deep
convection in pristine and polluted environments compared
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to the hypothesis of aerosol-induced convective invigoration.
Sensitivity tests using the ensemble approach with modified
microphysical parameters or domain configuration (horizon-
tal gridlength, domain size) produce results that are similar
to baseline, although there are quantitative differences in es-
timates of aerosol impacts on TOA radiative fluxes.

1 Introduction

Anthropogenic change of Earth’s climate is one of the
biggest challenges facing humankind in the 21st century. The
last several decades have featured increasing awareness of
the growing levels of atmospheric carbon dioxide and other
greenhouse gases and their impact on climate (Solomon et
al., 2007). At the same time, other anthropogenic impacts
on the climate system have been identified, including direct,
semi-direct, and indirect effects of anthropogenic aerosols.
The direct impact is associated with changes in the trans-
fer of solar and longwave radiation due to scattering and
absorption by the aerosol particles. Semi-direct effects in-
volve changes in clouds resulting from the impact of aerosols
on atmospheric stratification through radiative heating (e.g.
Hansen et al., 1997; Ackerman et al., 2000). Indirect ef-
fects, on the other hand, are associated with modification of
atmospheric aerosols that serve as cloud condensation nu-
clei (CCN) or ice nuclei (IN). Changes in the concentra-
tions of CCN and IN affect cloud droplet and ice crystal
concentrations and sizes, impacting radiative properties (e.g.
Twomey, 1974, 1977) and development of precipitation via
the collision/coalescence mechanism (e.g. Warner, 1968; Al-
brecht, 1989; Rosenfeld, 2000). Direct and indirect impacts
of aerosols are thought to have a net cooling effect on the
climate and thus may offset some warming associated with
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increasing concentrations of greenhouse gases (Solomon et
al., 2007). However, there are currently large uncertainties in
the magnitude of these impacts (Solomon et al., 2007).

A critical aspect of aerosol-cloud interactions concerns
possible changes in cloud dynamics as the aerosols are mod-
ified, via impacts on atmospheric or surface radiative heating
associated with direct and semi-direct effects, or impacts on
cloud microphysics through indirect effects. Coupling with
the dynamics may be particularly important for deep convec-
tive clouds, where processes like latent heating and conden-
sate loading, which are strongly influenced by cloud micro-
physics, determine buoyancy and therefore directly drive the
convective motion field. Recent studies using cloud-system
resolving models (CSRMs) with a horizontal grid spacing of
order 1 km (e.g. Seifert and Beheng, 2006; van den Heever
et al., 2006; Phillips et al., 2007; van den Heever and Cotton,
2007; Fan et al., 2007; Lee et al., 2008; Khain, 2009; Fan
et al., 2009; Lebo and Seinfeld 2011; Ekman et al., 2011;
see review in Levin and Cotton, 2009) have suggested that
aerosols can either invigorate or weaken convective cloud
growth depending upon the particular model employed and a
number of other factors including environmental conditions.
A mechanism resulting in the invigoration of convection that
has been proposed involves the following links (Khain et al.,
2005; Koren et al., 2005; Rosenfeld et al., 2008): aerosol
loading reduces the collision-coalescence production of rain
drops, which in turn results in more cloud water ascending
above the freezing level. This water subsequently freezes
and releases latent heat. The delay in warm-rain formation
and subsequent enhanced ice formation increases the latent
heat release above the freezing level, invigorating the storm.
However, in weak convection the updrafts can become water
loaded before reaching the freezing level, while in intense
updrafts raindrops as well as cloud droplets may be lofted
above the freezing level and subsequently freeze. In these
cases, aerosol loading and increased CCN have little effect
or may even result in a weakening of the cloud dynamics
(Seifert and Beheng, 2006). Furthermore, once cold pools
form the response may be dominated by secondary convec-
tion initiated along the cold pool boundaries; model studies
have shown both a weakening of secondary convection with
aerosol loading (van den Heever and Cotton, 2007) as well
as strengthening (Khain et al., 2005; Lynn et al., 2005; Lee
et al., 2008). Studies have suggested that the response of
storm dynamics and precipitation depends in part on environ-
mental parameters like convective available potential energy
(CAPE), environmental RH, and vertical wind shear (e.g.
Khain, 2009; Fan et al., 2009).

While many studies have focused on the impact of changes
in CCN concentration, modification of IN may also impact
deep convective clouds. However, the relationship between
aerosol loading and IN remains highly uncertain (Cantrell
and Heysfield, 2005; Fridlind et al., 2007). Modeling studies
have shown a wide spread in the response of convective in-
tensity and surface precipitation to changes in IN concentra-

tion (e.g. van den Heever et al., 2006; Connolly et al., 2006;
Ekman et al., 2007; Fan et al., 2010). The response of deep
convection to aerosols is further complicated by modification
of CCN and hence the characteristics of cloud droplets, and
their subsequent freezing and impact on ice characteristics
(e.g. Ekman et al., 2011).

Observing aerosol impacts on clouds is difficult because of
issues related to correlation versus causation and confound-
ing meteorological factors (Stevens and Feingold, 2009). Re-
cent satellite studies have examined correlations between
cloud height, cloud fraction, and aerosols to infer that con-
vection is invigorated in polluted conditions (Devasthale et
al., 2005; Koren et al., 2005, 2008, 2010a, b; Meskhidze et
al., 2009). For example, Koren et al. (2010a) used MODIS
cloud top pressure and aerosol optical depth (AOD) data to
conclude that cloud tops increase by 400 m per 0.1 increase
in AOD (see their Fig. 9), and hypothesized that this was
the result of convective invigoration. We note, however, that
the majority of cloud tops sensed by MODIS (see Fig. 3 of
Koren et al., 2010a) are primarily located at altitudes be-
low 3 km, while the altitude of deep convective outflow is
typically above 10 km. The more recent study of Massie et
al. (2011) has suggested that while there is some evidence
of an increase in height of clouds associated with deep con-
vection (primarily anvils), the increase in cloud top height
per unit increase in AOD is 2 to 10 times smaller than those
calculated previously using MODIS data.

Single cloud or cloud-system simulations of the type dis-
cussed above are important for understanding interactions
between microphysics and cloud dynamics. However, as far
as the implications for climate are concerned, such simu-
lations are limited. This is because they neglect the feed-
back between convection and its environment, occurring
either through cloud dynamics or cloud microphysics (cf.
Grabowski, 2006). Such interactions often obscure the ef-
fects of cloud microphysics (Stevens and Feingold, 2009).
For example, if the latent heating profiles change with differ-
ent aerosol loadings, as suggested by these studies, this im-
plies a different convective response and hence change in the
large-scale temperature profile and environment conditions
in which subsequent clouds form. A similar argument can
be made for the impact on precipitation and hence the water
budget, where increased precipitation falling from the first
cloud affects the availability of moisture and development of
subsequent clouds.

Grabowski (2006), Grabowski and Morrison (2011), and
van den Heever et al. (2011) examined such feedbacks with
the environment in the context of convective-radiative quasi-
equilibrium (CRE) using a CSRM, which is arguably the
simplest framework to examine these feedbacks. In CRE
with fixed surface conditions, changes in domain-mean pre-
cipitation induced by aerosols can only result from changes
in the atmospheric radiative cooling or Bowen ratio (ratio
of surface sensible and latent heat fluxes), which was found
to be negligible in the simulations of Grabowski (2006) and
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Grabowski and Morrison (2011). They found that changes in
droplet concentration and hence warm rain production were
compensated by other changes to the cloud and precipita-
tion characteristics to give nearly the same surface precipi-
tation rate as the aerosol loading was increased. There were
significant impacts of aerosols on top-of-atmosphere (TOA)
reflected shortwave (RSW) and outgoing longwave (OLR)
radiative fluxes (several W m−2), although the magnitude
was sensitive to representation of cloud microphysics, among
other factors. Van den Heever et al. (2011), using a domain
size several times larger than that used in Grabowski (2006)
and Grabowski and Morrison (2011), similarly found only a
very weak response of the domain-mean precipitation to in-
creased aerosol loading in the CRE simulations. However,
they also noted more significant but offsetting impacts when
partitioned into different convective modes (shallow, mid-
level, and deep).

In this study, we utilize a CSRM with periodic lateral
boundary conditions and fixed sea surface temperature (SST)
to investigate aerosol indirect effects on tropical deep con-
vection and outflow cirrus. In contrast to the CRE studies
of Grabowski (2006) and Grabowski and Morrison (2011),
the current study examines aerosol indirect effects using
large-scale, time-evolving forcing (i.e. potential tempera-
ture and water vapor advection/divergence) based on ob-
servations during the Tropical Warm Pool – International
Cloud Experiment (TWP-ICE; May et al., 2008). This ap-
proach, in the spirit of simulations reported in Grabowski
et al. (1999), is utilized as a way to investigate to aerosol-
induced changes in clouds and convection in a system that
includes feedback with the environment and realistic, time-
dependent forcing, but without complications arising from
feedbacks with larger scale dynamics. The simulated period
of TWP-ICE was dominated by deep convection and heavy
precipitation associated with the active monsoon. Given the
inherent randomness associated with individual deep con-
vective events, we use a large-member ensemble approach
to generate robust statistics. Ensemble-based approaches for
simulating the response of clouds and convection to different
CSRM configurations and parameter settings have been pre-
viously used by Grabowski et al. (1999) and Khairoutdinov
and Randall (2003). Here, simulations are run with quasi-
idealized representations of pristine, polluted, or highly pol-
luted aerosol conditions, and impacts of aerosols on the
clouds, precipitation, radiative fluxes, and cloud dynamics
are analyzed in detail. Finally, we test the sensitivity of these
impacts to the representation of various microphysical pro-
cesses as well as horizontal gridlength and domain size.

The paper is organized as follows. Section 2 gives the
model description and setup for this case. A brief descrip-
tion of the case study and experimental design is given in
Sect. 3. Baseline results with pristine aerosols are presented
in Sect. 4, and aerosol indirect effects are described in Sect. 5.
Sensitivity of aerosol indirect effects to representation of mi-
crophysics and domain configuration is described in Sect. 6.

Finally, Sect. 7 provides discussion and summary of the main
conclusions.

2 Model description and configuration

The dynamic model is the same as used in Grabowski (2006)
and Grabowski and Morrison (2011). It is a two-dimensional
(2-D) nonhydrostatic anelastic fluid flow model that was also
used as the “superparameterization” in simulations descried
in Grabowski and Smolarkiewicz (1999) and Grabowski
(2001, 2004) and in cloud simulations described in Morri-
son et al. (2008a) and Grabowski et al. (2010). In the base-
line configuration here, horizontal grid spacing is 1 km with a
horizontal domain extent of 200 km; sensitivity to horizontal
grid spacing and domain size is described in Sect. 6.2. The
model applies 97 vertical levels over a stretched grid, with a
model top at 25 km. The Monin-Obukhov surface similarity
is used to calculate surface fluxes and a nonlocal boundary
layer scheme (e.g. Troen and Mahrt, 1986) is applied to rep-
resent unresolved transport within the boundary layer.

The microphysics parameterization in the baseline con-
figuration is the same as used by Grabowski and Morri-
son (2011), with modification for the sensitivity tests de-
scribed in Sect. 6.1. The warm-rain scheme is the two-
moment bulk scheme of Morrison and Grabowski (2007,
2008a). Ice processes are represented using the two-moment,
three-variable scheme of Morrison and Grabowski (2008b).
In this approach, the ice particle mass-dimension and pro-
jected area-dimension relationships vary as a function of par-
ticle size and rime mass fraction. Rime mass fraction is de-
rived locally by separately predicting ice mixing ratios ac-
quired through riming and vapor deposition. The third vari-
able is the number concentration of ice particles. This ap-
proach allows for gradual transition of ice particles to graupel
and avoids unphysical and arbitrary thresholds for graupel
conversion that are used in most bulk and bin microphysics
schemes. This scheme has been previously applied to kine-
matic, specified flow simulations of organized deep convec-
tion (Slawinska et al., 2009) and shallow, precipitating cu-
mulus (Morrison et al., 2008b).

The radiative transfer model, the same as in
Grabowski (2006) and Grabowski and Morrison (2011),
comes from the National Center for Atmospheric Research
(NCAR)’s Community Climate System Model (Kiehl et
al., 1994). The effective radii of water droplets and ice
crystals for the radiative transfer are calculated following the
spectral characteristics and assumed mass-dimension and
project area-dimension relationships for ice (see Morrison
and Grabowski, 2008a, b). The effective radii predicted
by the two-moment scheme are additionally limited to be
between 4 and 20 µm for water droplets and 13 and 130 µm
for ice. Such limiting is required to avoid unphysical values
predicted by the two-moment in grid points with extremely
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small water or ice mixing ratios and problems when used to
calculate optical properties.

3 Case description and experimental design

TWP-ICE took place in the vicinity of Darwin, Australia
from 20 January to 13 February 2006 (May et al., 2008). This
experiment specifically focused on the properties of outflow
cirrus and their relationship to environmental conditions and
convective characteristics. The TWP-ICE domain consisted
of several ground sites that gathered precipitation, meteoro-
logical, and surface flux measurements, and was centered on
a heavily-instrumented site operated by the US Department
of Energy Atmospheric Radiation Measurement (ARM) Pro-
gram and Australian Bureau of Meteorology that included
cloud and scanning weather radars. The domain was sur-
rounded by an array of five 3-hourly soundings. TWP-ICE
was coordinated with the UK Aerosol and Chemical Trans-
port in tropical convection (ACTIVE) experiment (Vaughan
et al., 2008), which used two additional research aircraft to
gather in-situ measurements of clouds and aerosols during
the period November 2005 to February 2006 in the same re-
gion. Data used to compare with the model are based on
a combination of near-surface meterological, sounding, and
satellite measurements described by Xie et al. (2010).

The model setup is similar to that for the ARM/GCSS
cloud model intercomparison (Fridlind et al., 2010). Large-
scale horizontal and vertical advective forcings of water va-
por, q, and potential temperature,θ , are derived from ob-
servations (Xie et al., 2010). These forcings are modified
above 13 km to minimize drift in simulated profiles using an
approach similar to Fridlind et al. (2010). We emphasize
that the applied large-scale advective forcings are identical
in all simulations. Horizontal wind above 500 m is nudged
to observations with a 2-h timescale. Large-scale vertical ad-
vection of the prognostic cloud quantities is calculated using
the specified large-scale vertical velocity and modeled quan-
tities, while large-scale horizontal advection of cloud quanti-
ties is neglected. Initial conditions (horizontal wind,θ , q) are
derived from sounding observations (Xie et al., 2010). Ran-
dom perturbations with a maximum amplitude of±0.25 K
are applied to theθ field between heights of about 100 and
600 m every 30 min to represent under-resolved boundary
layer heterogeneity. The simulated period is from 00:00 UTC
18 January to 12:00 UTC 25 January. We consider the first
36 h as model spin-up and focus the analysis on the 6-day pe-
riod from 12:00 UTC 19 January to 12:00 UTC 25 January.

Aerosol conditions are given by a three-mode lognormal
aerosol size distribution. Size distribution parameters for the
modes of 0.03, 0.18, and 4.4 µm for the mean radius and stan-
dard deviations of 1.12, 1.45, and 1.8 are specified as typical
of active monsoon conditions based on Allen et al. (2008).
For the pristine simulations (hereafter “PRIS”), total aerosol
concentration is 354.4 cm−3, partitioned into the three modes

as 259, 95, and 0.4 cm−3 (from smallest to largest mode),
which is similar to relatively pristine conditions observed on
6 February (Allen et al., 2008). For the polluted simulations
(hereafter “POLL”), the concentration of the smallest mode
is increased by a factor of 10, giving a total concentration
of 2780.4 cm−3. This is similar to relatively polluted condi-
tions observed on 16 November. Highly polluted conditions
(SPOLL) are roughly based on typical urban aerosol condi-
tions (Pruppacher and Klett, 1997), with the number con-
centrations of the small and middle modes increased by fac-
tors of 20 and 10, respectively, to give a total concentration
of 6130.4 cm−3. Aerosol size distributions for PRIS, POLL,
and SPOLL are shown in Fig. 1. For simplicity, background
aerosols are assumed to be constant in time and space but
we limit droplet activation so that it does not increase the
concentration of newly activated plus existing cloud droplets
above the background CCN concentration. We also neglect
changes in concentrations of ice-forming nuclei (IN) with
aerosol loading, although ice number concentration is af-
fected by changes in droplet concentration and subsequent
freezing.

4 Baseline results

Overall cloud and radiative characteristics are strongly driven
by the imposed large-scale forcing. In all simulations, moist
deep convection begins within the first few hours of inte-
gration, after which there are intermittent periods of intense
deep convective motion and heavy precipitation, culminat-
ing with a peak domain-mean precipitation rate of about
11 mm h−1 on 23 January associated with passage of a vig-
orous mesoscale convective system. Convective towers at
various stages in their lifecycle, including vigorous convec-
tion overshooting the tropopause and reaching heights of
∼19.5 km, are interspersed throughout the model domain at
any given time. Deep convective towers are more numer-
ous during periods with heavier domain-mean precipitation.
The convection also appears somewhat more organized dur-
ing the period of intense precipitation on 23 January, with a
region of multiple deep convective towers and heavy precip-
itation surrounded by lighter stratiform precipitation falling
from mid- and upper-level clouds predominately composed
of ice. Outflow clouds associated with these convective
towers are prevalent across the upper-troposphere, with a
time- and domain-mean hydrometeor fraction of about 95 %
near the tropopause (hydrometeor fraction is defined using a
threshold hydrometeor mixing ratio larger than 10−4 g kg−1).
These anvil clouds contain large amounts of ice water, espe-
cially during the period of intense convection and precipita-
tion on 23 January. There is also a distinct mode of shallow
convective clouds throughout most of the period.

As a first step to test robustness of these results, we exam-
ined sensitivity to initial conditions and large-scale forcing
for PRIS. Tiny perturbations to these specifications resulted
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Fig. 1. Specified background aerosol size distributions for the pris-
tine (PRIS), polluted (POLL), and highly polluted (SPOLL) simu-
lations.

in surprisingly large changes in TOA radiative fluxes, even
when averaged over the six day focus period. These tests
demonstrate large variability resulting from different real-
izations. Fundamentally, this variability and low level of
predictability is associated with inherent randomness in the
timing, location, and intensity of individual deep convec-
tive events. Issues related to the predictability of moist deep
convection in a cloud-system scale (convection permitting)
model have been previously explored by Zhang et al. (2007),
and predictability and solution drift among different realiza-
tions using models with parameterized convection has been
described by Hack and Pedretti (2000) and Tan et al. (2004).

To more systematically analyze this variability, we ran a
large member ensemble (240) using pristine aerosol condi-
tions. Different members were generated using a different
seed to initiate the small random perturbations applied to
the low-levelθ (see Sect. 3). Timeseries of TOA outgoing
longwave radiation (OLR) and reflected shortwave radiation
(RSW) for the three ensemble members with the largest time-
mean OLR and three with the smallest time-mean OLR are
shown in Fig. 2 to illustrate the overall ensemble spread;
time-mean OLR and RSW for these six runs are shown in
Table 1. In general, simulations with larger OLR tend to
have smaller RSW, which is expected given the approximate
cancellation of longwave and shortwave cloud forcing for
deep clouds. While there are large differences in time-mean
OLR and RSW, most of these differences occur after about
16:00 UTC 23 January. This time corresponds with the most
intense convection and hence lowest OLR.

To better understand differences between realizations, we
analyze budgets of water vapor mixing ratio,q, dry static en-
ergy,s = cpT +φ (T is temperature,cp is specific heat of air
at constant pressure, andφ is geopotential), and moist static
energy,h = s +Lvq(Lv is the latent heat of vaporization).

Fig. 2. Timeseries of horizontally-averaged TOA(a) outgoing long-
wave radiation (OLR) and(b) reflected shortwave radiation (RSW)
for the three low-OLR (blue) and three high-OLR (red) realiza-
tions. Observations are indicated by the solid black lines, and the
ensemble-mean OLR and RSW are indicated by the dotted black
lines.

Conservation equations for horizontally-averagedq, s, andh

are given by

∂q

∂t
+∇ ·(q̄V̄ )+

∂(q̄ω̄)

∂p
+

∂(q ′ω′)

∂p
= Sq (1)

∂s

∂t
+∇ ·(s̄V̄ )+

∂(s̄ω̄)

∂p
+

∂(s′ω′)

∂p
= Ss (2)

∂h

∂t
+∇ ·(h̄V̄ )+

∂(h̄ω̄)

∂p
+

∂(h′ω′)

∂p
= Sh (3)

wheret is time,ω is the vertical pressure velocity, the sec-
ond terms on the left-hand-side (l.h.s.) of Eqs. (1–3) are the
specified large-scale horizontal advection, the third terms on
the l.h.s. are the specified large-scale vertical advection, the
fourth terms on the l.h.s. are the resolved and subgrid-scale
vertical flux divergence, and the terms on the right-hand-
side (r.h.s.) are the sources and sinks due to microphysical
processes, latent heating, and/or radiative flux convergence.
Overbars denote horizontal average and primes denote devi-
ation from the horizontal-average. Hereafter, quantities are
horizontally-averaged unless stated otherwise, and overbars
will be omitted. Note that for the model prognostic variables,
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Table 1. OLR, RSW, and terms in the vertically-integrateds, q, andh budgets from Eqs. (4–6) for the three low-OLR (L1, L2, L3) and three
high-OLR (H1, H2, H3) ensemble members with pristine aerosols. Presented quantities are averaged between 12:00 UTC 19 January and
12:00 UTC 25 January. DIV (s), DIV (Lvq), and DIV (h) are the vertically-integrated imposed large-scale 3-D advection ofs, Lvq, andh,
and are identical in all simulations. Units are W m−2.

Run OLR RSW FL FS FR FP
∂〈s〉
∂t

∂〈Lvq〉

∂t
∂〈h〉

∂t
DIV (s) DIV (Lvq) DIV (h)

L1 160.8 212.6 177.1 10.5 −29.6 805.5 11.0 −24.5 −13.5 780.9 −599.3 181.6
L2 161.1 203.3 177.2 10.7 −28.7 814.5 17.5 −30.3 −12.7 ” ” ”
L3 161.7 201.2 179.5 10.8 −29.6 814.2 13.5 −24.8 −11.2 ” ” ”
H1 188.4 183.6 171.5 9.5 −53.5 802.4 −17.1 −25.4 −42.6 ” ” ”
H2 187.3 179.3 173.3 10.2 −51.7 803.6 −6.1 −32.6 −38.9 ” ” ”
H3 186.8 180.5 187.8 11.8 −52.6 804.8 −10.6 −13.1 −23.7 ” ” ”

both large-scale horizontal and vertical advective forcings
of θ andq are specified (see Sect. 3). Nonzero large-scale
vertical velocity (and thus vertical advection) is inconsistent
with periodic lateral boundary conditions (see discussion in
Grabowski et al., 1996), but is applied here since it represents
a key component of the large-scale forcing.

Assuming thatω = ω′
= 0 at the surface and top of the

troposphere, Eqs. (1–3) may be vertically-integrated over the
depth of the troposphere to give

∂〈Lvq〉

∂t
+〈∇ ·(LvqV )〉 ≈FL −FP (4)

∂〈s〉

∂t
+〈∇ ·(sV )〉 ≈FS+FP+FR (5)

∂〈h〉

∂t
+〈∇ ·(hV )〉 ≈FL +FS+FR (6)

where the operator〈 〉 indicates density-weighted verti-
cal integration over the depth of the troposphere (i.e.〈x〉 =
ps∫
pt

xdp/g, whereps andpt are surface and tropopause pres-

sures andg is gravitational acceleration) andFP, FL , andFS
are the surface fluxes of precipitation (in energy units), latent
heat, and sensible heat, andFR is the radiative flux conver-
gence of the troposphere (i.e. net surface flux minus net flux
at TOA, which is assumed to be equal to the net flux at the
tropopause). Positive values indicate a net flux into the tropo-
sphere. Note that Eqs. (4–6) are only approximate since they
assume that net condensation in the column (total condensa-
tion minus evaporation) is instantly removed as surface pre-
cipitation; this assumption is reasonable for the 6-day period
analyzed here. For simplicity we neglect the energy associ-
ated with phase transformations involving ice since precipi-
tation at the surface is almost entirely liquid. Thus, the ice
phase redistributes static energy in the vertical but does not
impact column-integrated and time-averaged budgets, except
for ice condensate that remains in the atmosphere at the end
of the simulations (which again has minimal contributions to
the energy budgets over the 6-day period analyzed).

Timeseries of the〈Lvq〉, 〈s〉, and 〈h〉 budget terms in
Eqs. (4–6) for the three low-OLR and three high-OLR runs
are shown in Figs. 3–5, with time-averaged values shown in
Table 1. There is reasonable agreement between the model
and observations for most quantities (Fig. 5), especiallyFP
which is highly constrained by the specified large-scale forc-
ing as described below. Differences between the simulated
and observedFS andFL likely reflect the assumption of an
ocean surface in the model, while the observations are based
on a combination of land and ocean sites (Xie et al., 2010).
Differences between the modeled and observed surface heat
fluxes have a limited impact on the timing and amplitude of
FP, given its constraint by the applied large-scale forcing of
s and q. Similarly, differences inFR, and the bias in the
longwave component ofFr in particular, likely result from
the assumption of an ocean surface with fixed SST in the
model while observations are derived from satellite which in-
cludes areas over both land and ocean. Simulated OLR and
RSW, which are somewhat less dependent than the longwave
and shortwave components ofFR on surface conditions, are
fairly close to observations (Fig. 2). These results indicate
general realism of the simulations; a more detailed compari-
son of model results with observations including microphys-
ical quantities is provided by Fridlind et al. (2011). Detailed
comparison of model simulations and observations using a
radar simulator for TWP-ICE will also be the focus of a fu-
ture paper.

The radiative flux convergence,FR, is somewhat larger in
the low-OLR than high-OLR ensemble members, consistent
with enhanced upper-tropospheric radiative heating associ-
ated with thicker and higher anvil cirrus as described be-
low. However, these differences are small compared with the
magnitude of other budget terms such as surface latent heat
flux, FL , and surface precipitation,FP. There are no con-
sistent differences inFL and surface sensible heat flux,FH,
among ensemble members (Fig. 5a, b), which is consistent
with little difference in time-mean low-levelT and relative
humidity, RH, (Fig. 6), or the low-level wind field (which is
nudged to observations, see Sect. 3). Ensemble distributions
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Fig. 3. As in Fig. 2, except timeseries of horizontally-averaged
vertically-integrated time tendencies:(a) ∂〈s〉

∂t
, (b) ∂〈Lvq〉

∂t
, and(c)

∂〈h〉

∂t
.

of the time-mean quantities shown in Figs. 2, 3, and 5 are
fairly unskewed and reasonably approximated as Gaussian
(not shown).

While there is noisiness and occasionally large values of
∂〈s〉
∂t

and ∂〈Lvq〉

∂t
as seen in Fig. 3, which corresponds with

the timing of individual deep convective events, temporal
averaging over periods of 6–12 h or longer eliminates most
noise. At a given time there is substantial ensemble variabil-
ity of ∂〈s〉

∂t
and ∂〈Lvq〉

∂t
, but these differences are also greatly

reduced with temporal averaging. Limited time-averaged en-
semble variability of∂〈s〉

∂t
, ∂〈Lvq〉

∂t
, and other terms in Eqs. (4–

6) is consistent with previous 2-D CSRM studies (Grabowski
et al., 1999; Khairoutdinov and Randall, 2003). Noisiness
is largely absent in the timeseries of∂〈h〉

∂t
(Fig. 3c) sinceh

is approximately conserved during moist convection. The
large-scale divergence〈∇ · (sV )〉 is mostly positive (Fig. 4a)
and largely balances diabatic heating, while〈∇ · (LvqV )〉

is mostly negative (Fig. 4b) and balances surface precipita-
tion. Large-scale advection/divergence ofq ands are gener-
ally opposite in sign; thus, they largely cancel and as a re-
sult 〈∇ · (hV )〉 is fairly small (Fig. 4c). A relatively constant
〈s〉 maintained by large-scale forcing, despite large diabatic
heating rates, is analogous to the weak temperature gradient
(WTG) assumption (e.g. Raymond, 2000; Sobel and Brether-
ton, 2000). This is a good approximation in equatorial re-
gions given rapid dispersal of buoyancy anomalies by gravity
waves in the absence of a significant Coriolis acceleration.

Fig. 4. Timeseries of the specified vertically-integrated large-scale
3D advection:(a) 〈∇ ·(sV )〉, (b) 〈∇ ·(LvqV )〉, and(c) 〈∇ ·(hV )〉.

The tendency of the tropical atmosphere to precipitate is
strongly linked to the column saturation fraction,S =

〈q〉

〈qs 〉

whereqs is the saturation mixing ratio. Several observational
and modeling studies have shown that as values ofS increase
above∼0.75, precipitation rapidly increases (e.g. Raymond,
2000; Bretherton et al., 2004; Back and Bretherton, 2005;
Peters and Neelin, 2006; Raymond et al., 2007). In conjunc-
tion with relatively constant column dry static energy〈s〉, any
additional vapor convergence due to large-scale forcing or
FL is rapidly removed as precipitation for values ofS ∼ 0.8
to 0.9, without further increasingS. Timeseries ofS for the
three high-OLR and three low-OLR runs indeed show rela-
tively constant values ofS between 0.8 and 0.9 despite large
moistening rates from the applied large-scale vapor conver-
gence, except for slight drying on 25 January (Fig. 7). This
limit provides a “stiff” constraint on bothS and surface pre-
cipitation (Raymond et al., 2009). This picture is consistent
with a〈Lvq〉 budget that mostly represents a balance between
〈∇ · (LvqV )〉 andFP, with a smaller contribution fromFL
(Figs. 3d, 4b, Table 1). As a result of this constraint, surface
precipitation varies little among the ensemble members, and,
as shown in Sect. 5, also exhibits little sensitivity to aerosols.

Vertical profiles of horizontally-averaged updraft mass
flux, Mu, also vary little between ensemble members
(Fig. 8a). There are no consistent differences in updraft
mass flux conditionally-averaged over areas with convective
updrafts, Mc, between the low-OLR and high-OLR runs
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Fig. 5. As in Fig. 2, except timeseries of horizontally-averaged(a)
surface latent heat flux,FL , (b) surface sensible heat flux,FS, (c)
atmospheric radiative flux convergence,FR, and(d) surface precip-
itation,FP. Observed values are indicated by black lines.

(Fig. 8c), although the fractional area of updrafts,Fc, tends
to be somewhat larger in the low-OLR runs, especially near
200 hPa (Fig. 8b) (here convective updrafts are defined using
a threshold vertical velocity,w, of 1 m s−1). This implies that
in the low-OLR runs, somewhat more total updraft mass flux
is carried by convective drafts withw > 1 m s−1 compared to
the high-OLR runs.

Unlike surface precipitation, OLR and RSW are not sub-
ject to stiff constraints related toS or other quantities. Low
values of OLR in the three runs with smallest time-mean
OLR are clearly associated with greater anvil height and ice
mixing ratio,qi , as indicated by time- and domain-mean ver-
tical profiles of cloud microphysical quantities (Fig. 9). Val-
ues ofqi and ice number concentration,Ni , are much larger
above 200 hPa in the low-OLR compared to the high-OLR
ensemble members, resulting in greater emissivity and opti-
cal depth. Other microphysical quantities (cloud water mix-
ing ratio and number concentration,qc andNc, respectively,

Fig. 6. Horizontally-averaged profiles of(a) temperature and(b)
RH for the three low-OLR realizations (blue) and the three high-
OLR realizations (red) averaged between 12;00 UTC 19 January to
12:00 UTC 25 January. Observations are shown by the black line.

Fig. 7. As in Fig. 2, except for timeseries of the horizontally-
average column saturation fraction.

and rain mixing ratio and number concentration,qr andNr,
respectively) are nearly identical between ensemble mem-
bers.

What drives large differences in upper tropospheric ice in
different realizations? Although there is overall similarity in
the convective characteristics between the ensemble mem-
bers, there is somewhat larger convective updraft fraction,
Fc, and mean convective updraft mass flux,FcMc, near the
200 hPa level in the low-OLR compared to the high-OLR
runs (Fig. 8b, c). LargerFc at this level leads to a larger up-
ward flux of Nc; these droplets subsequently freeze rapidly
when exposed to colder conditions. This contributes to larger
Ni , smaller particle size, and reduced ice sedimentation flux
in the anvil; in conjunction with greater detrainment of con-
densate this leads to greaterqi near the tropopause. Larger
Ni also leads to smaller values of ice effective radius,rei
(not shown), which is broadly consistent with satellite re-
trievals suggesting a decrease ofrei with increasing convec-
tive strength (Sherwood et al., 2002). Time-averaged tem-
peratures near the tropopause are 1–2 K lower in the low-
OLR runs (Fig. 6a), despite having radiative heating rates
that are up to 7.5 K day−1 larger compared to the high-OLR
runs (Fig. 8d).
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Table 2. Ensemble means of OLR, RSW, and terms in the vertically-integrateds, q, andh budgets for PRIS, POLL, and SPOLL. Ensemble
standard deviations are shown in parentheses. Presented quantities are averaged from 12:00 UTC 19 January to 12:00 UTC 25 January. Units
are W m−2.

OLR RSW FL FS FR FP
∂〈s〉
∂t

∂〈Lvq〉

∂t
∂〈h〉

∂t

PRIS 177.3 (4.9) 189.2 (4.3) 176.3 (5.2) 10.4 (0.7)−43.7 (4.4) 807.2 (7.8) 1.4 (7.8) −29.9 (6.6) −28.4 (6.9)
POLL 166.7 (7.0) 199.9 (6.6) 174.6 (5.6) 9.9 (0.7)−34.6 (6.4) 804.0 (8.2) 5.5 (8.2) −26.9 (6.5) −21.3 (8.2)
SPOLL 163.9 (6.4) 208.2 (7.7) 174.3 (5.2) 9.6 (0.7)−32.2 (5.8) 803.5 (8.8) 6.1 (8.8) −25.8 (6.3) −19.6 (8.0)

Fig. 8. As in Fig. 6, except for vertical profiles of(a) updraft mass
flux, (b) fraction of the domain containing convective updrafts,(c)
convective updraft mass flux averaged over cells containing convec-
tive updrafts, and(d) temperature tendency due to radiative heating.

Note that there is a negative feedback on the strength of
convection because enhanced tropopause ice in the runs with
largerFc near 200 hPa leads to greater radiative heating in

upper troposphere (Fig. 8d) and hence stabilization of the
troposphere, which one might expect would lead to a de-
crease in convective strength (Fowler and Randall, 1994;
Stephens et al., 2008). For the ensemble means with dif-
ferent aerosol loadings, there is indeed a close relationship
between increased upper-tropospheric radiative heating and
weaker convection (see Sect. 5). However, for a given re-
alization, random fluctuations in the strength of convection
can lead to stronger convection when averaged in time de-
spite increased upper-tropospheric radiative heating and tro-
pospheric stabilization. This randomness gets averaged out
when analyzing the ensemble means.

5 Comparison of pristine and polluted simulations

Given the large variability of OLR and RSW for different
realizations using the same aerosol conditions, we use the
ensemble approach (240 members each) for PRIS, POLL,
and SPOLL in order to determine a statistically significant
aerosol indirect effect. For an ensemble standard deviation
of 6 W m−2 for OLR and RSW, which is a typical value for
the different model configurations and aerosol conditions as
shown later, this ensemble size provides statistical signifi-
cance at the 95 % confidence level for an aerosol indirect ef-
fect as small as∼1 W m−2, based on Student’s t test. For
actual significance testing described herein we employ the
Welch-Satterthwaite approach (Satterthwaite, 1946; Welch,
1947) to account for possible differences in variance between
ensembles. Hereafter statistical significance will refer to sig-
nificance at the 95 % confidence level.

Not surprisingly, timeseries of ensemble-mean∂〈s〉
∂t

,
∂〈Lvq〉

∂t
, and ∂〈h〉

∂t
for PRIS, POLL, and SPOLL (Fig. 10) are

much less noisy than in any single realization (cf. Fig. 3).
Differences in these quantities between PRIS, POLL, and
SPOLL are small (Fig. 10, Table 2). Differences in thes,
q, and h forcing terms on the r.h.s. of Eqs. (4–6) for the
ensemble-mean PRIS, POLL, and SPOLL are also gener-
ally small (Fig. 11, Table 2). However, there is a signifi-
cant increase inFR due to larger upper-tropospheric radiative
heating rates in POLL and SPOLL. There is a statistically-
significant decrease of precipitation with increased aerosol,
but differences in the ensemble-meanFP between PRIS,
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Fig. 9. As in Fig. 6, except for profiles of horizontally-averaged(a) cloud water mixing ratio,qc, (b) rain mixing ratio,qr, (c) ice mixing
ratio,qi , (d) cloud droplet concentration,Nc, (e) rain number concentration,Nr, and(f) ice number concentration,Ni . Presented results are
averaged between 12:00 UTC 19 January to 12:00 UTC 25 January. Number concentrations are averaged over grid cells with mixing ratio
greater than 0.001 g kg−1 for the given hydrometeor species.

POLL, and SPOLL are very small (<0.5 %). Thus, aerosols
have little impact on time- and domain-mean surface precip-
itation in these simulations, which is consistent with the stiff
constraint on precipitation discussed in Sect. 4. There is also
a statistically-significant decrease in ensemble-meanFL , but
the differences are also very small (<1.1 %).

There are much larger (statistically-significant) differences
in OLR and RSW with increased aerosol loading compared
to surface precipitation and the other budget terms in Eqs. (4–
6) (Fig. 12, Table 2). Increased aerosol loading in POLL and
SPOLL leads to consistently larger ensemble-mean RSW
and smaller OLR, especially during and after the period of
intense convection and heavy precipitation on 23 and 24 Jan-
uary (Fig. 12). In terms of time-mean values, the differences
in ensemble-mean OLR are +10.6 (POLL minus PRIS) and
+13.4 (SPOLL minus PRIS) W m−2. For RSW, the differ-
ences are−10.7 and−19.0 W m−2, respectively. The aerosol
impacts on OLR and RSW largely cancel for POLL minus
PRIS, while for SPOLL minus PRIS there is a somewhat
larger shortwave effect that results in a net change in the TOA
energy balance of−5.6 W m−2.

The impact of aerosols on time-mean and ensemble-mean
microphysical profiles is shown in Fig. 13. Results are
largely as expected. With increased aerosol loading in POLL
and SPOLL, there is a large increase inNc and subsequent
increase inqc of roughly 30 % due to reduced collision-
coalescence. Note that the decrease ofNc with height seen in
Fig. 13d is likely due to the impact of mixing and dilution in
weak updrafts;Nc is relatively constant with height when
averaged only in convective updrafts (w > 1 m s−1) (not
shown). In convective updrafts, the averageNc are roughly
2 and 5 times greater in POLL and SPOLL than PRIS, re-
spectively, but with a lower activated fraction (i.e. ratio of
cloud droplet and total background aerosol concentrations).
The increase ofNc above 400 hPa in Fig. 13d is because
liquid water tends to occur only in strong updrafts at these
levels, resulting in greaterNc when conditionally-averaged
over locations containing liquid water (qc > 0.001 gkg−1).
With reduced collision-coalescence there is also a decrease
in qr and especiallyNr in POLL and SPOLL. However,
values ofqr and Nr near the surface are almost identical,
which is consistent with the insensitivity of surface precip-
itation to aerosols. This result reflects the compensation of
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Fig. 10. Timeseries of ensemble- and horizontally-averaged and
vertically-integrated time tendencies:(a) ∂〈s〉

∂t
, (b) ∂〈Lvq〉

∂t
, and(c)

∂〈h〉

∂t
for PRIS (blue), POLL (green), and SPOLL (red).

microphysical processes (for example, there is decreased rain
evaporation with a reduction ofqr and Nr) similar to the
findings of Grabowski (2006), Slawinska et al. (2009), and
Grabowski and Morrison (2011).

Ice microphysical quantities are also impacted by aerosols,
primarily above 300 hPa. There is an increase ofNi in POLL
and SPOLL at most levels (Fig. 13f), and a large increase
in qi above 150 hPa but a small reduction below this level
(resulting in a higher cloud top) (Fig. 13c). These differences
explain almost all of the decrease in ensemble-mean OLR
with aerosol loading; differences in RSW are mostly due to
changes in the liquid microphysics alone as discussed further
below.

The key question, then, is what drives higher cloud (anvil)
top and greaterqi near the tropopause in polluted condi-
tions? One might guess that this result is due to invigora-
tion of convection as suggested by Rosenfeld et al. (2008)
and others, especially since largerFc appeared to be respon-
sible for greater anvil height andqi in the low-OLR com-
pared to high-OLR realizations using pristine aerosol (see
Sect. 4). However, it is clear from time- and ensemble-mean
profiles ofMu, Fc, andMc that convection is actually slightly
weakerin the polluted ensembles, especially above 500 hPa
(Fig. 14). There is slightly reducedMu in POLL and SPOLL
compared to PRIS (Fig. 14a), but a much larger relative re-

Fig. 11.Timeseries of ensemble- and horizontally-averaged(a) sur-
face latent heat flux,FL , (b) surface sensible heat flux,FS, (c) at-
mospheric radiative flux convergence,FR, and(d) surface precipi-
tation,FP, for PRIS (blue), POLL (green), and SPOLL (red).

duction inFc (Fig. 14b). Histograms of vertical velocity at
various heights (not shown) also indicate a lower frequency
of occurrence over a range of convective vertical velocities
(1< w < 10 m s−1) in polluted compared to pristine condi-
tions, especially in the mid- and upper-troposphere; thus, the
reduced convective fraction in POLL and SPOLL is not de-
pendent on the particular choice of thresholdw to define con-
vective updrafts. Weaker convection in POLL and SPOLL
is attributed to stabilization of the troposphere caused by an
increase in upper-tropospheric radiative heating (Fig. 14d),
which is a direct result of the higher anvil top and greaterqi .
Greater radiative heating rates contribute to ensemble-mean
upper-tropospheric temperatures that are up to 4 K higher in
POLL and SPOLL compared to PRIS (Fig. 15a).
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Fig. 12. Timeseries of ensemble- and horizontally-averaged TOA
(a) outgoing longwave radiation (OLR) and(b) reflected shortwave
radiation (RSW), for PRIS (blue), POLL (green), and SPOLL (red).

These results contrast with our analysis of individual re-
alizations in Sect. 4, which were dominated by random fluc-
tuations associated with individual convective events. Thus,
for a single realization there is less constraint on the con-
vective characteristics and there can be stronger convection
even with an increase in tropopause heating and subsequent
stabilization of the upper troposphere. Ensemble averaging
minimizes the impact of random fluctuations, so that con-
vective strength is more constrained by the overall rates of
tropospheric destabilization.

An additional set of 240-member ensembles were run with
either pristine or super-polluted aerosol conditions, but with
the increase ofNi due to heterogeneous and homogeneous
freezing of cloud droplets and rain turned off. Thus,Ni is
not influenced at all by droplet freezing in these simulations,
although changes inqi due to freezing ofqc andqr are un-
modified. These runs definitively show that the increased
upper troposphericqi andNi and hence decreased OLR and
weaker convection in polluted conditions are the direct result
of freezing of larger number of cloud droplets. In these runs,
the time- and ensemble-mean profiles ofqi andNi are nearly
identical between PRIS and SPOLL, and consequently ra-
diative heating, OLR, and convective strength are also prac-
tically the same (not shown). There is still an increase in
time-mean RSW of 12.3 W m−2 with increased aerosol load-

ing due to the impact on cloud water and rain, which is only
slightly smaller than the change in RSW in the baseline PRIS
and SPOLL runs. These tests therefore suggest that much of
the impact of aerosols on RSW is due to changes in liquid
microphysics alone. Another interesting result from these
simulations is that ensemble variability of OLR and RSW
is greatly reduced (ensemble spread of time-mean OLR and
RSW is less than 10 W m−2, while it exceeds 25 W m−2 in
the baseline configuration). Thus, changes inNi resulting
from the freezing ofNc in different realizations (for given
aerosol), which are associated with changes in convective
updraft mass flux near the 200 hPa level due to random fluc-
tuations in convective strength (see Sect. 4), are a primary
cause of the large ensemble variability of OLR and RSW in
the baseline simulations.

To briefly summarize, the decrease in ensemble-mean
OLR in polluted compared to pristine conditions is mostly
due to changes in ice microphysics. These changes are a di-
rect result of the freezing of larger numbers of cloud droplets
in the polluted runs. Increases in anvil height,qi , andNi in
polluted conditions arenot a result of convective invigora-
tion; convection is actually slightly weaker in the polluted
runs because of the impact of changes in anvil characteristics
on upper-tropospheric radiative heating. LargerNi in turn
results in smallerrei (Fig. 16a) and increased anvil emis-
sivity, as well as a reduced mean mass-weighted fallspeed
(Fig. 16b). A reduced ice sedimentation flux is consistent
with increasedqi near cloud top and reducedqi at lower lev-
els (Fig. 13c). A small increase in RH between about 150
and 300 hPa (Fig. 15b) is consistent with moistening associ-
ated with the decreased ice sedimentation flux.

6 Sensitivity tests

In this section we explore how different model configura-
tions impact aerosol effects on clouds and radiation. Given
large variability we again use the ensemble approach with
240 members each for PRIS and POLL and for each config-
uration for the sensitivity tests. The focus here is mainly on
the impact of aerosols on OLR and RSW, since the impact
on surface precipitation and other terms in the〈s〉, 〈q〉, and
〈h〉 budgets is minimal for the same reasons discussed in pre-
vious sections. First, we discuss various tests with modified
microphysical parameter settings, followed by discussion of
tests using modified domain configurations (domain size and
horizontal gridlength). A list of all sensitivity runs described
in this section is given in Table 3.

6.1 Microphysical parameter tests

Several studies have highlighted sensitivity of CSRM simula-
tions of deep convection to microphysics parameter settings
(e.g. Lord et al., 1984; Fovell and Ogura, 1988; McCumber
et al., 1991; Ferrier et al., 1995; Liu et al., 1997; Gilmore
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Fig. 13. Profiles of ensemble- and horizontally-averaged(a) cloud water mixing ratio,qc, (b) rain mixing ratio,qr, (c) ice mixing ratio,qi ,
(d) cloud droplet concentration,Nc, (e) rain number concentration,Nr, and(f) ice number concentration,Ni , for PRIS (blue), POLL (green),
and SPOLL (red). Presented results are averaged between 12:00 UTC 19 January to 12:00 UTC 25 January. Number concentrations are
averaged over grid cells with mixing ratio greater than 0.001 g kg−1 for the given hydrometeor species.

Table 3. List of the ensemble sensitivity tests described in Sect. 6.

Name Description

BASE Baseline model configuration (horizontal grid spacing of 1 km; horizontal domain length of 200 km)

GRPL Graupel density of Locatelli and Hobbs (1974) replaced by Heymsfield and Kajikawa (1987)

HET Heterogeneous cloud droplet and rain drop freezing rain of Bigg (1953) replaced by Barklie and
Gokhale (1959)

HAB Mass-dimension relation for unrimed crystals corresponding to aggregates of side planes, bullets, and
columns (Mitchell et al., 1990) in BASE is replaced by that from Brown and Francis (1995).

4 km Horizontal grid length increased to 4 km

2 km Horizontal grid length increased to 2 km

0.5 km Horizontal grid length decreased to 0.5 km

LDOM Horizontal domain length increased to 600 km
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Fig. 14. As in Fig. 13, except for ensemble-average profiles of(a)
updraft mass flux,(b) fraction of the domain containing convec-
tive updrafts,(c) convective updraft mass flux averaged over cells
containing convective updrafts, and d) temperature tendency due to
radiative heating, for PRIS (blue), POLL (green), and SPOLL (red).
Also shown in(a) and(c) are differences between POLL and PRIS
(green dotted line) and SPOLL and PRIS (red dotted line), with val-
ues shown on the axis at the top of the plots.

et al., 2004; Morrison et al., 2009; Morrison and Milbrandt,
2011). However, relatively few studies have focused on the
impact of such parameter settings on aerosol effects on deep
convective clouds and precipitation. Based on the results de-
scribed in Sect. 5, we expect parameters that impact ice par-
ticle size, number concentration, and fallspeed to be partic-
ularly important. Thus, we test three different microphysi-
cal configurations that are key in determining ice character-
istics: (1) heterogeneous droplet freezing (HET), (2) grau-
pel density expressed by the mass-dimension (m−D) rela-
tion (GRPL), and (3) ice particle habit, as expressed through

Fig. 15. As in Fig. 13, except for ensemble-average profiles of
(a) temperature and(b) relative humidity, for PRIS (blue), POLL
(green), and SPOLL (red). Also shown are differences between
POLL and PRIS (green dotted line) and SPOLL and PRIS (red dot-
ted line), with values shown on the axis at the top of the plots.

Fig. 16. Vertical profiles of ensemble- and horizontally-averaged
mass-weighted(a) ice effective radius,rei, and (b) ice particle
fallspeed,Vm, for PRIS (blue), POLL (green), and SPOLL (red).
Presented results are averaged between 12:00 UTC 19 January and
12:00 UTC 25 January.

them−D relation for unrimed and partially-rimed ice crys-
tals (HAB). In HET, the parameterization of droplet freez-
ing of Bigg (1953) in BASE is replaced by Barklie and
Gokhale (1959), which reduces the freezing rate by roughly
one to two orders of magnitude. In GRPL, them−D relation
for graupel following Locatelli and Hobbs (1974) in BASE
is replaced by Heysmfield and Kajikawa (1987), resulting in
roughly a factor of 3 decrease in particle density. Finally, in
HAB the m−D relation for unrimed crystals corresponding
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to aggregates of side planes, bullets, and columns (Mitchell
et al., 1990) in BASE is replaced by that of Brown and
Francis (1995). Note that thism−D relation also affects
partially-rimed crystals in the scheme (see Morrison and
Grabowski, 2008b, for details). Changes in them−D re-
lations for the both the GRPL and HAB tests impact several
ice microphysical processes, including fallspeed and rates of
diffusional growth and riming.

The magnitude of aerosol effects on OLR and RSW vary
considerably between the different microphysical configura-
tions, although all settings produce a statistically-significant
decrease in time- and ensemble-mean OLR and increase in
RSW in polluted compared to pristine conditions (Table 4).
In GRPL, the reduction of graupel density leads to lower fall-
speed of rimed ice, which accentuates differences in upper-
tropospheric ice characteristics between PRIS and POLL.
The opposite occurs in HET and HAB with decreased droplet
freezing rate and changes inm−D relationship for pristine
ice, respectively. In particular, HET highlights the important
role of heterogeneous droplet freezing in explaining the large
decrease of OLR in polluted conditions in BASE. With the
large reduction of heterogeneous freezing rates in HET, mean
Ni is reduced by a factor of roughly 2–4 relative to BASE in
polluted conditions and differences inNi between PRIS and
POLL are smaller. However, the significance of this result
is unclear since differences inNi and OLR between HET
and BASE are much smaller for super polluted conditions.
Smaller aerosol effects on the TOA radiative fluxes in HET
and HAB also result in reduced impacts onFR. The impact of
aerosols on the other forcing terms in thes, q, andh budgets
with increased aerosol loading are very small and generally
not statistically significant (see Table 4).

6.2 Domain configuration tests

Numerous studies have investigated sensitivity of CSRM
simulations to domain size and horizontal gridlength,1x

(e.g. Grabowski et al., 1998; Adlerman and Droegemeier,
2002; Petch and Gray, 2001; Bryan et al., 2003; Dawson
et al., 2010; Bryan and Morrison, 2011). As is the case for
microphysical parameter sensitivity, there has relatively lit-
tle testing of the impact of domain size and1x on indirect
aerosol effects. Four sensitivity pairs of ensembles are run
for these tests: (1)1x= 4 km (4 km), (2)1x= 2 km (2 km),
(3) 1x= 0.5 km (0.5 km), and (4) horizontal domain length
increased from 200 to 600 km (using1x= 1 km as in base-
line) (LDOM).

Ensemble-mean differences in OLR and RSW between
POLL and PRIS in these tests are similar to BASE, although
the magnitude of aerosol effects is about half as large in 4 km
and 2 km compared to BASE and 0.5 km (Table 4). Specific
reasons for this difference are unclear, but may be related
to the marginal ability of models with1x of a few km or
greater to resolve deep convective motion, attributable to re-
duced intensity of nonhydrostatic processes associated with

larger cell size (cf. Weisman et al., 1997; Bryan et al., 2003).
There is little difference in simulations with a decrease of1x
from 1 km (BASE) to 0.5 km, or with the increase in domain
size (LDOM). Aerosols have little impact on other forcing
terms in thes, q, andh budgets with changes in1x or do-
main size. There is a general decrease in ensemble standard
deviation in LDOM compared to BASE owing to the larger
sampling space, although the differences are fairly small. For
example, ensemble standard-deviation of time-mean OLR is
roughly 30 % smaller in LDOM than BASE, while it is re-
duced by roughly 15 % for RSW. Ensemble standard devia-
tion is similar to BASE for the sensitivity tests with differ-
ent horizontal grid spacing. Time- and ensemble-mean OLR
and RSW for all sensitivity configurations, including changes
to microphysics, are within the ensemble spread for BASE.
This result highlights the importance of considering ensem-
ble variability when testing model sensitivity to various pa-
rameter settings.

7 Discussion and conclusions

In this study we examined the impact of aerosols on deep
convection and anvil cirrus in CSRM simulations of a six-day
period of active monsoon conditions during TWP-ICE. The
baseline configuration for the model used a 200× 24 km 2-D
domain and 1 km horizontal grid spacing. The two-moment
bulk scheme of Morrison and Grabowski (2007, 2008a, b)
was used as the microphysics parameterization.

A key finding is that different realizations (generated by
different initial seeds for small, random perturbations applied
to the low-levelθ field) produced large differences (exceed-
ing 25 W m−2) in the domain-averaged OLR and RSW even
when averaged over the six-day analysis period. This re-
sult was attributed to random fluctuations and inherent low
level of predictability in the strength of deep convection that
resulted in somewhat greater convective mass flux near the
200 hPa level in the low-OLR (high-RSW) compared to high-
OLR (low-RSW) realizations, and subsequently to greater
anvil height,qi , andNi . Ensemble averaging minimizes the
impact of these random fluctuations, so that ensemble-mean
convective strength was more constrained by the overall ther-
modynamic characteristics and rate of tropospheric destabi-
lization. Ensemble variability is likely to be reduced using
a three-dimensional (3-D) model given the larger sampling
space compared to 2-D (Donner et al., 1999; Grabowski et
al., 1999). However, spatial correlation of quantities in the
third dimension would limit the effective sampling space in
3-D, especially if the domain is small as in “bowling-alley”
simulations (e.g. Tompkins, 2001). Other factors such as
type of convective organization are likely to play a role; fur-
ther work is needed to quantify this variability for different
cases and domain configurations.

Differences in other terms in thes, q, and h budgets
between realizations were small, especially when averaged
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Table 4. Results of ensemble tests described in Table 3. Presented quantities are differences in ensemble means between polluted and pristine
conditions (POLL minus PRIS) averaged from 12:00 UTC 19 January to 12:00 UTC 25 January. Values in parentheses indicate an average
of the ensemble standard deviation for the pristine and polluted ensembles. Statistically-significant differences (95 % confidence level) are
shown in bold. Units are W m−2.

Run OLR RSW FL FS FR FP

BASE −10.6(6.0) 10.7(5.5) −1.7 (5.4) −0.5 (0.7) 8.9 (5.4) −2.8 (8.0)
GRPL −14.1(3.6) 16.2(5.9) −0.8 (4.8) −0.3 (0.6) 12.6(3.1) −6.1 (7.4)
HET −2.5 (5.0) 5.7 (4.1) 0.1 (5.5) −0.2 (0.7) 2.2 (4.4) −0.5 (8.7)
HAB −3.7 (5.3) 7.6 (8.5) −0.2 (4.7) −0.3 (0.5) 3.3 (4.5) −0.1 (8.1)
4 km −5.3 (5.5) 8.5 (6.7) −0.5 (5.3) −0.4 (0.5) 4.5 (5.0) −0.4 (8.6)
2 km −5.0 (5.6) 6.6 (5.0) −0.6 (5.2) −0.4 (0.6) 4.4 (5.0) −0.6 (8.5)
0.5 km −10.3(5.2) 11.2(5.3) −2.3 (6.1) −0.4 (0.8) 8.6 (4.7) −3.8 (8.3)
LDOM −12.7(4.1) 11.3(4.8) −2.7 (5.2) −0.5 (0.5) 8.9 (3.7) −4.9 (7.6)

over periods longer than 6–12 h. Fairly constant profiles of
s in time and large column saturation fractions meant that
there was a strong constraint on surface precipitation. Thus,
theq budget was mostly a balance between moistening from
the applied large-scale forcing and drying from precipitation,
with little change in atmospheric storage. Similarly, thes

budget was mostly a balance between cooling from large-
scale forcing and diabatic heating. This stiff constraint on
precipitation also meant that there was little sensitivity to
aerosols, with precipitation almost entirely controlled by the
applied large-scale forcing and, to a lesser extent, the surface
latent heat fluxes (which in turn were strongly constrained by
the constant SST and nudging of horizontal wind).

The large spread in OLR and RSW due to random fluctua-
tions of convective strength among realizations meant that
a statistically-significant aerosol indirect effect could only
be determined using large-member ensembles. To address
this issue, we ran 240-member ensembles each for pristine,
polluted, and highly polluted aerosol conditions. There was
a statistically-significant aerosol indirect effect on OLR and
RSW; ensemble- and time-mean OLR decreased 13.4 W m−2

and RSW increased 19.0 W m−2 in highly polluted compared
to pristine conditions. Changes in OLR and RSW approxi-
mately canceled for polluted compared to pristine, with a net
energy flux change at the TOA of−5.6 W m−2 for highly
polluted compared to pristine. Changes in RSW were driven
mostly by changes in liquid microphysics alone, while in-
creased OLR was due to greater height, ice mixing ratio, and
ice number concentration of anvil cirrus in polluted condi-
tions.

Greater optical thickness and height of polluted clouds
is qualitatively consistent with recent satellite observational
studies (e.g. Koren et al., 2008, 2010a, b; Massie et al.,
2011). Some studies hypothesized that these impacts were
driven by aerosol-induced convective invigoration (Koren et
al., 2005, 2008, 2010a, b; Rosenfeld et al., 2008). However,
changes in anvil characteristics occurred here as a direct re-
sult of freezing of larger number of cloud droplets in polluted

conditions that led to decreased ice effective radius, particle
fallspeed, and ice sedimentation flux,not as a result of con-
vective invigoration. Time- and ensemble-mean convective
mass fluxes were actually slightlyweakerabove 500 hPa in
polluted conditions because of upper-tropospheric radiative
heating and stabilization caused by the changes in anvil ice
characteristics. Thus, our results suggest a possible alterna-
tive interpretation of observations showing increases in anvil
height and optical thickness in polluted conditions. Here
we investigated the impact of aerosols on tropical convec-
tion over a large domain and multi-day period with several
cloud lifecycles, which is arguably more relevant to climate,
in contrast to previous studies that have mainly investigated
aerosol impacts on individual clouds or convective systems.
Our results should therefore be strictly interpreted in the con-
text of a system consisting of numerous convective clouds
that interact spatially and temporally, and do not necessarily
provide evidence that contradicts previous modeling studies
indicating aerosol-induced invigoration of individual convec-
tive systems when considered in isolation (e.g. Khain et al.,
2005; Lynn et al., 2005; Lee et al., 2008; Khain, 2009; Fan
et al., 2009).

Our results demonstrate the importance of feedbacks
between convection and the thermodynamic environment;
changes in convective dynamics or microphysics impact the
environment, which in turn feeds back to the clouds and con-
vection. Such feedbacks can exert a strong constraint on
quantities like surface precipitation, which is largely con-
trolled by forcing terms in thes, q, and h budgets. The
systems dynamics viewpoint, which includes various inter-
actions and feedbacks in the system, is consistent with CRE
simulations of Grabowski (2006) and Grabowski and Mor-
rison (2011). This viewpoint contrasts process-level reason-
ing that is more applicable to an individual cloud or cloud
system. Thus, we might expect that large forced changes in
convective strength (for example, from enhanced latent heat-
ing in updrafts following Rosenfeld et al., 2008) would be
reduced over time because of adjustment of the environment,
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so that the updraft mass flux would subsequently be con-
trolled by the rate of tropospheric destabilization through
surface fluxes and tropospheric radiative flux divergence as
in CRE, or by feedback with the larger-scale dynamics. We
are currently exploring this hypothesis and results will be re-
ported in a future publication.

To further test the robustness of these results, we used
the ensemble approach contrasting PRIS and POLL but
with different model configurations. Microphysical param-
eters that were varied included heterogeneous droplet freez-
ing rate, graupel density, andm − D relation for unrimed
crystals. Additional tests modified horizontal gridlength
(from 0.5 to 4 km) and horizontal domain length (200 to
600 km). Ensemble-mean differences in OLR and RSW be-
tween POLL and PRIS were qualitatively similar among the
different configurations, although there were quantitative dif-
ferences of several W m−2. In particular, much smaller dif-
ferences in OLR between POLL and PRIS when heteroge-
neous droplet freezing rates were reduced indicate the impor-
tance of ice nucleation and especially the parameterization of
heterogeneous droplet freezing. These results highlight the
need for improved estimates of microphysical parameter set-
tings to reduce uncertainty in simulations of aerosol indirect
effects. Surface fluxes and precipitation were insensitive to
aerosols in all the configurations that were tested because of
the constraints described above.

We emphasize that feedbacks between the convective-
scale and larger-scale dynamics were neglected in this study.
This approach allowed us to simulate the impact of aerosols
on clouds and convection in a framework that included realis-
tic time-dependent forcing and feedback with the thermody-
namic environment, but without complications arising from
feedbacks with larger scale dynamics. Although we expect
interactions between aerosols, microphysics, and convection
to be strongly constrained by feedback to the environment
as argued above, these interactions are expected to also be
modulated by feedbacks with larger scale dynamics. For ex-
ample, an initial invigoration of convection and increased di-
abatic heating induced by aerosols may lead to compensating
large-scale ascent and adiabatic cooling in the convectively-
active region, driving horizontal convergence ofq that could
help to sustain stronger convection and precipitation in the
area of active convection. Aerosol-induced changes in anvil
characteristics, as occurred here, may also be expected to
impact horizontal gradients of upper-tropospheric radiative
heating, which in turn could impact larger-scale circulations
and convective coupling (Bretherton et al., 2005; Stephens
et al., 2008). In reality, such feedbacks are likely to be
complicated by interactions with mesoscale organization and
convectively-coupled waves that dominate variability of the
tropical atmosphere (e.g. Wheeler and Kiladis, 1999). In fu-
ture work we plan to investigate the impact of feedbacks be-
tween convection and larger scales in the context of indirect
aerosol effects using both idealized and realistic model con-
figurations.

We also emphasize that these simulations utilized a fixed
SST. Changes in surface conditions provide another pathway
whereby aerosols could affect surface heat fluxes and hence
the water and static energy budgets and tropospheric desta-
bilization. We also neglected the direct impact of aerosols of
radiation through scattering or absorption, which can influ-
ence tropospheric destabilization and hence convective char-
acteristics (e.g. Hansen et al., 1997; Ackerman et al., 2000;
Koren et al., 2004).

Several simplifying assumptions were made with regard
to microphysics and cloud-aerosol interactions. The speci-
fied background aerosol was treated as constant in space and
time; thus, while aerosols impacted cloud microphysics there
was no feedback of clouds back on aerosols (aerosol concen-
tration was assumed to revert back to the background concen-
tration upon dissipation of the cloud). Removal of aerosols
by scavenging from cloud and precipitation particles may
be important for quantifying aerosol impacts on deep con-
vection (e.g. Lee and Feingold, 2010; Ekman et al., 2011).
Here we utilized a simplified approach given the large uncer-
tainty and difficulty in representing aerosol source and sink
terms (e.g. large-scale forcing, surface sources, etc.). Our re-
sults therefore represent an upper limit on the magnitude of
aerosol indirect effects if wet removal by scavenging is dom-
inant and reduces aerosol loading over time. This simplifica-
tion is not expected to alter our main conclusion that aerosols
do not invigorate convection when averaged over the six-day
period and have little impact on surface precipitation even in
highly polluted conditions in our modeling framework.

The treatment of ice nucleation was also simplified by ne-
glecting the impact of aerosol loading on concentrations of
homogeneous and heterogeneous IN, except indirectly via
cloud droplet and rain drop freezing. Aerosol loading could
impact homogeneous and heterogeneous ice nucleation, but
the relationship between aerosol characteristics and IN con-
centration remains highly uncertain (Cantrell and Heyms-
field, 2005; Fridlind et al., 2007). However, it seems likely
that changes in IN concentration with aerosol loading would
not alter our finding that ice number concentration,Ni , in-
creases with pollution. There is observational support for in-
creasedNi and/or decreased ice effective radius,rei, in pol-
luted conditions. Satellite retrievals have indicated smaller
rei for deep convective and anvil clouds in polluted condi-
tions (Sherwood et al., 2002; Jiang et al., 2011). Heyms-
field et al. (2009) analyzed aircraft observations in the eastern
tropical Atlantic and found substantial increases in droplet
and ice particle concentrations associated with aerosol in-
trusions at low- and mid-levels, with particles activating as
cloud droplets before freezing near the−40◦C level and pro-
ducing high concentrations of ice particles. Detailed com-
parison with observational analyses is needed to validate the
model and findings reported herein.

An important conclusion is that fairly small changes
in upper-tropospheric convective characteristics can have a
large impact on anvil ice properties. In particular, a small
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increase in the convective mass flux near the 200 hPa level in
some realizations led to large increases inNi andqi , in part
by impacting the upward mass flux of liquid water and num-
ber concentration of droplets that freeze. Previous studies
have indicated sensitivity of convective mass fluxes to dimen-
sionality (e.g. Phillips and Donner, 2006; Petch et al., 2008)
and horizontal grid spacing (Bryan et al., 2003; Bryan and
Morrison, 2011). For example, Bryan and Morrison (2011)
showed that decreasing the horizontal grid spacing from 1 km
to 250 m led to a decrease in anvil height andqi in simula-
tions of a mid-latitude squall line, mainly due to increased
entrainment and weakening of convective drafts with higher
resolution. In future work we plan to extend the study of
Bryan and Morrison (2011) by investigating the impact of
horizontal grid spacing on changes in entrainment for trop-
ical deep convection, with a focus on how this affects the
upward flux of liquid water near the homogeneous freezing
level and anvil ice characteristics in the context of aerosol
indirect effects.
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