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Abstract. In this study, a parameterization methodology
based on MODIS (Moderate Resolution Imaging Spectro-
radiometer) and in situ data is proposed and tested for de-
riving the regional surface reflectance, surface temperature,
net radiation flux, soil heat flux, sensible heat flux and latent
heat flux over heterogeneous landscape. As a case study, the
methodology was applied to the Tibetan Plateau area. Four
images of MODIS data (30 January 2007, 15 April 2007, 1
August 2007 and 25 October 2007) were used in this study
for the comparison among winter, spring, summer and au-
tumn. The derived results were also validated by using the
“ground truth” measured in the stations of the Tibetan Ob-
servation and Research Platform (TORP). The results show
that the derived surface variables (surface reflectance and sur-
face temperature) and surface heat fluxes (net radiation flux,
soil heat flux, sensible heat flux and latent heat flux) in four
different seasons over the Tibetan Plateau area are in good
accordance with the land surface status. These parameters
show a wide range due to the strong contrast of surface fea-
tures over the Tibetan Plateau. Also, the estimated land sur-
face variables and surface heat fluxes are in good agreement
with the ground measurements, and all their absolute percent
difference (APD) is less than 10 % in the validation sites. It
is therefore concluded that the proposed methodology is suc-
cessful for the retrieval of land surface variables and surface
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heat fluxes using the MODIS and in situ data over the Ti-
betan Plateau area. The shortage and further improvement of
the methodology were also discussed.

1 Introduction

The Tibetan Plateau contains the world’s highest elevation
(average elevation about 4000 m) relief features, some reach-
ing into the mid-troposphere. It represents an extensive mass
extending from subtropical to middle latitudes and is span-
ning over 25 degrees of longitude. Figure 1 shows the ge-
ographic location and topographic characteristics of the TP.
Because of its topographic character, the plateau surface ab-
sorbs a large amount of solar radiation energy, and undergoes
dramatic seasonal changes of surface heat and water fluxes
(e.g., Ye and Gao, 1979; Ye, 1981; Yanai et al., 1992; Ye and
Wu, 1998; Ma et al., 2002a; Ma and Tsukamoto, 2002; Hsu
and Liu, 2003; Yang et al., 2004; Ma et al., 2006; Sato and
Kimura, 2007; Ma et al., 2008; Cui and Graf, 2009; Zhong
et al., 2010). In order to understand the effect of the Ti-
betan Plateau on the climatic change over China, east Asia
and even the global, one has to get the regional distribution
of surface heat fluxes over whole Tibetan Plateau.

Remote sensing from satellites however offers the possi-
bility to derive regional distribution of surface heat fluxes
over heterogeneous land surface of the Tibetan Plateau in
combination with sparse field experimental stations. The
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Fig.1 The location and landscape of the Tibetan Plateau. 
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Fig. 1. The location and landscape of the Tibetan Plateau.

regional distributions of surface heat flux(net radiation flux,
soil heat flux, sensible heat flux and latent heat flux) have
already been gotten by some researchers over the Tibetan
Plateau area, but the results were only in meso-scale area till
now (e.g. Ma et al., 2003, 2006, 2009). The objective of this
study is to explore the feasibility of up-scaling the point land
surface variables (surface reflectance and surface tempera-
ture) and surface heat fluxes to yield whole Plateau spatial
distributions with the aid of MODIS and in situ data.

2 Theory and scheme

The general concept of the methodology is shown in a di-
agram (Fig. 2). The surface reflectance for short-wave ra-
diation r0(x,y) is retrieved from MODIS data with the at-
mospheric correction, using land surface and aerological ob-
servation data (Zhong, 2007). The land surface temperature
Tsfc(x,y) is also derived from MODIS data, land surface and
aerological observation data (Zhong et al., 2010). The radia-
tive transfer model MODTRAN (Berk et al., 1989) compute
the downward short-wave and long-wave radiation at the sur-
face (Ma and Tsukamoto, 2002). With these results the re-
gional surface net radiation fluxRn(x,y) is determined. The
regional soil heat fluxG0(x,y) is estimated fromRn(x,y)

and field observations over the Tibetan Plateau. The regional
sensible heat fluxH(x,y) is estimated fromTsfc(x,y), sur-
face and aerological data with the aid of so-called “tile ap-
proach” (Ma et al., 2010), and the regional latent heat flux
λE(x,y) can be derived as the residual of the energy budget
theorem for land surface.

2.1 Net radiation flux

The regional net radiation flux can be derived from

Rn(x,y) = (1−r0(x,y)) ·K↓(x,y)+L↓(x,y)−ε0(x,y)σT 4
sfc(x,y) (1)

wherer0(x,y) andTsfc(x,y) are surface reflectance and sur-
face temperature respectively. They can be derived from
MODIS data with the atmospheric correction, using land sur-
face and aerological observation data (Zhong, 2007; Zhong
et al., 2010). Surface emissivity ofε0(x,y) in Eq. (1) is a
function of the vegetation coveragePv(x,y). It can be de-
rived from the model of Valor and Caselles (1996) i.e.

ε0(x,y) = εv(x,y)Pv(x,y)+εg(x,y)(1−Pv(x,y))+4

< dε > (1−Pv(x,y))Pv(x,y) (2)

where εv(x,y) = 0.985 (±0.007) andεg(x,y) = 0.960
(±0.010) are surface emissivity for full vegetation and bare
soil respectively,< dε > = 0.015(±0.008) is the error, and
vegetation coverage (Carlson and Ripley, 1997)

Pv(x,y) =

[
NDVI(x,y)−NDVImin

NDVImax−NDVImin

]2

(3)

where NDVImin and NDVImax are the NDVI values for bare
soil and full vegetation, respectively.

The incoming long-wave radiation fluxL↓(x,y) and in-
coming short-wave radiation fluxK↓(x,y) in Eq. (1) can
be calculated from radiative transfer model MODTRAN di-
rectly (Ma and Tsukamoto, 2002).

2.2 Soil heat flux

The regional surface soil heat fluxG0(x,y) can be deter-
mined by (Choudhury and Monteith, 1988)

G0(x,y) = ρscs[(Tsfc(x,y)−Ts(x,y)]/rsh(x,y) (4)

whereρs is soil dry bulk density,cs is soil specific heat,
Ts(x,y) stands for soil temperature at a determined depth,
rsh(x,y) represents soil heat transfer resistance.

G0(x,y)can not directly be mapped from satellite mea-
surements through Eq. (4). The difficulty is to deriversh(x,y)

andTs(x,y) (Bastiaanssen, 1995; Wang et al., 1995; Ma and
Tsukamoto, 2002; Ma et al., 2002b; Ma et al., 2003; Ma et
al., 2006; Ma et al., 2007; Gao et al., 2010). To calculate the
values ofG0(x,y) solely from remote sensed data requires
that it is to be made proportional to another term in the en-
ergy balance equation. A good candidate isRn(x,y) (Jackson
et al., 1985; Choudhury et al., 1987; Kustas and Daughtry,
1990; Bastiaanssen, 1995; Ma and Tsukamoto, 2002; Ma et
al., 2003, 2006; Gao et al., 2010). Based on the in situ data
observed in the TP area, Ma et al. (2002b) proposed an equa-
tion to derive regional soil heat fluxG0(x,y) from regional
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Fig.2. The diagram of parameterization procedure to determine surface reflectance, surface 

temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux by 

combining MODIS data with field observations. 

 

Fig. 2. The diagram of parameterization procedure to determine
surface reflectance, surface temperature, net radiation flux, soil heat
flux, sensible heat flux and latent heat flux by combining MODIS
data with field observations.

net radiation fluxRn(x,y)based the in situ data over the Ti-
betan Plateau. It is

G0(x,y) = 0.35462(±0.00235)Rn(x,y)−47.79008(±0.70005) (5)

Eq. (5) will be used to determine the regional distribution of
soil heat flux in the TP area in this study.

2.3 Sensible heat flux

The sensible heat fluxH can be estimated with a bulk trans-
fer equation written in the form (Montheith, 1973)

H = ρ cp
T0−Ta

rah
(6)

whererah is aerodynamic resistance for heat transfer between
land surface and reference height,T0 is the surface tempera-
ture,Ta is the air temperature at the reference height,ρ is the
air density, andcp is the air specific heat at constant pressure.

In order to determine the regional distribution of sensi-
ble heat fluxH(x,y) over the Tibetan Plateau, the Tile ap-
proach (Ma et al., 2010) will be used here. In the Tile
approach, the reference heightzref is taken within Surface
Layer (SL). Then, using the satellite measurements at the
surface and the SL observations on a “tile” at and below the
reference height (e.g. 20 m), the heat fluxes over a heteroge-
neous landscape can be estimated. Firstly, surface reflectance
r0, surface temperatureTsfc vegetation coveragePv and sur-
face emissivityε0 etc. at the surface are derived from satellite

measurements. Secondly, SL observations on atile: wind
speedu, air temperatureTa and specific humidityq at the
reference height are carried out. Zero-plane displacement
d0, aerodynamic roughness lengthz0m and thermodynamic
roughness lengthz0h, the excess resistance for heat trans-
portationkB−1 and the like in SL below the reference height
over thei−tile are used to estimate the sensible heat fluxH

(Fig. 2).
Hence, in mathematical terms:

H1(x,y) = ρcp

[T0(x,y)−Ta1]

rah1
,

H2(x,y) = ρcp

[T0(x,y)−Ta2]

rah2
, (7)

. . . . . .

Hn(x,y) = ρcp

[T0(x,y)−Tan]

rahn

Therefore,H over whole Tibetan Plateau area can be derived
from:

H(x,y) =

n∑
i=1

a(i)Hi(x,y) (8)

wherea(i) is the fractional ratio of each “tile” for the Tibetan
Plateau, and it can be determined form the satellite images.
H1(x,y), H2(x,y) . . . , andHn(x,y) are sensible heat flux on
each “tile”, Ta1, Ta2. . . , andTa2 are air temperature at the
reference height on each “tile”,rah1,rah2 . . . , andrahn are
aerodynamic resistance for heat transfer between land sur-
face and reference height on each “tile”.rah1,rah2 . . . , and
rahn can be determined from the eddy diffusion coefficients
for heat transport between the land surface and the reference
height (Ma et al., 2010).

2.4 Latent heat flux

The regional latent heat fluxλE(x,y) can be derived as the
residual of the energy budget theorem for land surface based
on the condition of zero horizontal advection, i.e.,

λE(x,y) = Rn(x,y)−H(x,y)−G0(x,y) (9)

3 Cases study and validation

Four images of MODIS data (30 January 2007, 15 April
2007, 1 August 2007 and 25 October 2007) will be used in
this study for the comparison among winter, spring, summer
and autumn.

Figure 3 shows the distribution maps of surface reflectance
and surface temperature over the Tibetan Plateau area. Us-
ing Eqs. (1) and (9), the distributions of soil heat flux
and latent heat flux are shown in Fig. 4. The distribu-
tion maps of surface reflectance, surface temperature, soil
heat flux and latent heat flux are based on 2823× 1441
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Table 1. Comparison of the derived surface reflectance, surface temperature, net radiation flux and soil heat flux(Cal.) versus the values
measured (Meas.) at the Tibetan Plateau with absolute percent difference (APD).

January r0(−) Ts (◦C) Rn (Wm−2) G0(Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD

Haibei 0.21 0.22 4.5 % 20.0 19.0 5.3 % 347 331 4.8 % 64 59 8.5 %
Maqu 0.22 0.23 4.3 % 19.0 18.0 5.6 % 383 353 8.5 % 93 85 9.4 %
D105 0.26 0.25 4.0 % 11.0 10.0 10.0 % 351 321 9.3 % 99 91 8.8 %
Amdo 0.21 0.23 8.7 % 16.0 15.0 6.7 % 382 354 7.9 % 96 92 4.3 %
NPAM 0.18 0.19 5.3 % 15.0 14.0 7.1 % 404 413 2.2 % 68 62 9.7 %
BJ 0.25 0.27 7.4 % 2.0 2.0 0.0 % 311 285 9.1 % 94 87 8.0 %
NAMOR 0.43 0.41 4.9 % −2.0 −2.0 0.0 % 358 343 4.4 % 72 66 9.1 %
QOMS 0.28 0.29 3.4 % 6.0 6.0 0.0 % 367 337 8.9v% 103 94 9.6 %
SETS 0.18 0.19 5.3 % 18.0 19.0 5.3 % 436 457 4.6 % 54 50 8.0 %

April r0(−) Ts (◦C) Rn (Wm−2) G0(Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD

Haibei 0.24 0.22 9.1 % 14.0 15.0 6.7 % 603 621 2.9 % 86 79 8.9 %
Maqu 0.24 0.23 4.3 % 21.0 23.0 8.7 % 449 431 4.2 % 90 82 9.7 %
D105 0.25 0.24 4.2 % 13.0 12.0 8.3 % 352 323 9.0 % 86 80 7.5 %
Amdo 0.23 0.21 9.5 % 29.0 27.0 7.4 % 410 388 5.7 % 89 83 7.2 %
NPAM 0.19 0.18 5.6 % 35.0 34.0 2.9 % 606 644 5.9 % 91 85 7.1 %
BJ 0.23 0.22 4.5 % 29.0 27.0 7.4 % 441 432 2.1 % 108 101 6.9 %
NAMOR 0.22 0.21 4.8 % 17.0 16.0 6.3 % 522 515 1.4 % 96 92 4.3 %
QOMS 0.27 0.26 3.8 % 20.0 21.0 4.8 % 475 466 1.9 % 139 133 4.5 %
SETS 0.19 0.20 5.0% 29.0 32.0 9.4 % 611 648 5.7 % 94 87 8.0 %

August r0(−) Ts (◦C) Rn (Wm−2) G0(Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD

Haibei 0.23 0.22 4.5 % 21.0 22.0 4.5 % 358 350 2.3 % 88 82 7.3 %
Maqu 0.18 0.19 5.3 % 24.0 25.0 4.0 % 694 639 8.6 % 138 126 9.5 %
D105 0.22 – – 19.0 – – 633 – – 110 101 8.9 %
Amdo 0.19 – – 20.0 – – 686 – – 126 – –
NPAM 0.14 0.13 7.7 % 20.0 19.0 5.3 % 737 780 5.5 % 115 108 6.5 %
BJ 0.15 0.16 6.3 % 24.0 23.0 4.3 % 702 665 5.6 % 142 135 5.1 %
NAMOR 0.18 0.19 5.3 % 27.0 29.0 6.9 % 715 656 9.0 % 148 139 6.5 %
QOMS 0.18 0.17 5.9 % 21.0 20.0 5.0 % 700 678 3.2 % 180 169 6.5 %
SETS 0.18 0.17 5.9 % 25.0 27.0 7.4 % 751 724 3.7 % 92 87 5.7 %

October r0(−) Ts (◦C) Rn (Wm−2) G0(Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD

Haibei 0.16 0.17 5.9 % 3.0 3.0 0.0 % 478 456 4.8 % 82 77 6.5 %
Maqu 0.18 0.19 5.3 % 24.0 26.0 7.7 % 476 434 9.7 % 93 86 8.1 %
D105 0.23 0.21 9.5 % 15.0 16.0 6.3 % 465 432 7.6 % 100 91 9.9 %
Amdo 0.21 – – 19.0 21.0 9.5 % 475 – – 107 116 7.8 %
NPAM 0.17 0.16 6.3 % 14.0 13.0 7.7 % 516 527 2.1 % 73 67 9.0 %
BJ 0.21 0.20 5.0 % 20.0 21.0 4.8 % 443 406 9.1 % 126 117 7.7 %
NAMOR 0.33 – – −1.0 −1.0 0.0 % 479 – – 93 85 9.4 %
QOMS 0.23 0.25 8.0 % 17.0 16.0 6.3 % 448 424 4.7 % 132 136 2.9 %
SETS 0.16 0.17 5.9 % 22.0 24.0 8.3 % 472 – – 83 76 9.2 %
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Table 2. Comparison of the derived sensible heat flux and latent heat flux (Cal.) versus the values measured (Meas.) at the Tibetan Plateau
with absolute percent difference (APD).

January:H(Wm−2) λE(Wm−2) April: H(Wm−2) λE (Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD
Haibei 197 211 6.6 % 138 146 5.5 % 400 381 5.0 % 264 268 1.5 %
Maqu 155 142 9.2 % 36 33 9.1 % 286 296 3.4 % 156 143 9.1 %
D105 281 267 5.2 % 20 19 5.3 % 283 289 2.1 % 153 148 3.4 %
Amdo 267 275 2.9 % 16 15 6.7 % 298 307 3.0 % 142 135 5.2 %
NPAM 281 264 6.4 % 28 30 6.7 % 378 395 4.3 % 124 114 8.8 %
BJ 176 192 8.3 % 12 11 9.1 % 342 355 3.7 % 119 127 6.3 %
NAMOR 267 270 1.1 % 17 16 6.3 % 172 169 1.8 % 176 181 2.8 %
QOMS 225 244 7.8 % 46 42 9.5 % 142 148 4.1 % 37 40 7.5 %
SETS 267 252 6.0 % 19 18 5.6 % 139 144 3.5 % 145 141 2.8 %

August:H(Wm−2) λE(Wm−2) October:H(Wm−2) λE (Wm−2)

Sites Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD Cal. Meas. APD
Haibei 120 111 8.1 %- 279 264 5.7 % 235 253 7.1 % 97 93 4.3 %
Maqu 158 – – 560 – – 95 101 5.9 % 101 92 9.8 %
D105 174 – – 349 – – 342 347 1.4 % 82 78 5.1 %
Amdo 162 – – 398 – – 137 131 4.6 % 90 86 4.4 %
NPAM 160 176 9.1 % 575 603 4.6 % 398 420 5.5 % 170 158 7.6 %
BJ 159 173 8.8 % 411 398 3.3 % 275 294 6.5 % 42 39 7.7 %
NAMOR 129 141 8.5 % 468 506 7.5 % 102 96 6.3 % 57 54 5.6 %
QOMS 77 82 6.1 % 220 201 9.5 % 137 140 2.1 % 26 24 8.3 %
SETS 106 112 5.4 % 469 482 2.7 % 132 136 2.9 % 151 141 7.1 %

pixels with a size of 1× 1 km2.The derived surface re-
flectance, surface temperature, net radiation flux, soil heat
flux, sensible heat flux and latent heat flux can be vali-
dated by the field measurements. In situ data observed
in nine stations of Haibei (37.62◦ N, 101.30◦ E; elevation:
3220 m; land-cover: grassy marshland), Maqu (33.89◦ N,
102.14◦ E; elevation: 3423 m; land-cover: grassy marsh-
land), D105 (33.06◦ N, 91.94◦ E; elevation: 5039 m; land-
cover: sparseness meadow), Amdo (32.14◦ N, 91.37◦ E; el-
evation: 4695 m; land-cover: grassy marshland), NPAM
(31.93◦ N, 91.71◦ E; elevation: 4620 m; land-cover: grassy
marshland), BJ (31.37◦ N, 91.90◦ E; elevation: 4509 m; land-
cover: sparseness meadow), NAMOR(Nam Co Station for
Multisphere Observation and Research, Chinese Academy of
Sciences; 30.46◦ N, 90.59◦ E; elevation: 4730 m; land-cover:
grassy marshland), QOMS(Qomolangma Station for Atmo-
spheric and Environmental Observation and Research, Chi-
nese Academy of Sciences; 28.21◦ N, 86.56◦ E; elevation:
4276 m; land-cover: sparse grass-Gobi) and SETS(Southeast
Tibet Station for Alpine Environment Observation and Re-
search, Chinese Academy of Sciences; 29.77◦ N, 94.73◦ E;
elevation: 3326 m; land-cover: grass land) in the Tibetan
Observation and Research Platform ( TORP, Ma et al., 2008)
are used for the validation. In Tables 1, 2 and Fig. 5, the
derived results are validated against the measured values in
the stations. Since it is a little difficult to determine the loca-

tions of the four stations, the values of 5× 5 pixel rectangle,
surrounding the determined Universal Transfer Macerator
(UTM) coordinate, are compared with the in situ data. The
absolute percent difference (APD) was quantitatively mea-
sures the difference between the derived results (Hderived(i))

and measured value (Hmeasured(i)) here, and

APD=

∣∣Hderived(i) − Hmeasured(i)
∣∣

Hmeasured(i)
(10)

The results show that: (1) The derived surface reflectance
(r0), surface temperature (Tsfc), net radiation heat flux (Rn),
soil heat flux (G0 ), sensible heat flux (H) and latent heat
flux (λE) for the Tibetan Plateau area are in good accordance
with the land surface status, and they show a wide range due
to the strong contrast of surface features over there (Figs. 1,
3 and 4). Surface reflectance is from 0.00 to 0.50 in January
(some of the surface reflectance with value large than 0.50
indicating cloud-covering), it is from 0.00 to 0.45 in April
(some of the surface reflectance with value large than 0.45
indicating cloud-covering), it is from 0.00 to 0.45 in August
(some of the surface reflectance with value large than 0.45
indicating cloud-covering), it is from 0.00 to 0.50 in Octo-
ber (some of the surface reflectance with value large than
0.50 indicating cloud-covering) (Fig. 3); Surface tempera-
ture range from−30◦C to 20◦C in January, it range from
−40◦C to 36◦C in April, it is from −20◦C to 55◦C in Au-
gust, and it is from−30◦C to 30◦C in October (the blue parts

www.atmos-chem-phys.net/11/10461/2011/ Atmos. Chem. Phys., 11, 10461–10469, 2011
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Fig.3. The distribution maps of surface reflectance and surface temperature over the Tibetan 
Plateau area. 

 
 
 
 
 

Fig. 3. The distribution maps of surface reflectance and surface temperature over the Tibetan Plateau area.
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Fig.4. The distribution maps of soil heat flux and latent heat flux over the Tibetan Plateau area. 
 
 
 

Fig. 4. The distribution maps of surface soil heat flux and latent heat flux over the Tibetan Plateau area.
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Fig.5. Comparison of derived results with field measurements for the surface reflectance, surface 
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Tibetan Plateau area, together with a 1:1 line. 

  

 

Fig. 5. Comparison of derived results with field measurements for the surface reflectance, surface temperature, net radiation flux, soil heat
flux, sensible heat flux and latent heat flux over the Tibetan Plateau area, together with a 1:1 line.

in the distribution maps indicating cloud-covering) (Fig. 3);
Rn change from 115 to 550 W m−2 in January, it varies from
170 to 700 W m−2 in April, it is from 200 to 920 W m−2 in
August, and varies from 100 to 700 W m−2 in October;G0
varies from 30 to 140 W m−2 in January, it changes from 50
to 220 W m−2 in April, it is from 80 to 275 W m−2 in Au-
gust, and varies from 80 to 260 W m−2 in October (Fig. 4);
H change from 0 to 280 W m−2 in January, it varies from
0 to 300 W m−2 in April, it is from 0 to 200 W m−2 in Au-
gust, and varies from 0 to 480 W m−2 in October;λE is from
40 to 250 W m−2 in January, it varies from 40 to 400 W m−2

in April, it change from 135 to 640 W m−2 in August, and
varies from 40 to 450 W m−2 in October (Fig. 4); (2) the
derived surface reflectance, surface temperature, net radia-
tion flux, soil heat flux, sensible heat flux and latent heat flux
over the Tibetan Plateau area are very close to the field mea-
surements. The difference between the derived results and
the field observation APD is less than 10 % (Tables 1, 2 and
Fig. 5). The reason is that accurate surface reflectance and
surface temperature were determined and the process of at-
mospheric boundary layer was considered in more detail in
the determination of sensible heat flux in the procedure; and
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(3) The mean net radiation flux over the TP area is increas-
ing from January to April and August, then decreasing from
October. They are 415 W m−2, 487 W m−2, 630 W m−2and
505 W m−2; The mean surface soil heat flux over the TP
area is increasing from January to April and August, then
decreasing from October. They are 99 W m−2, 125 W m−2,
175 W m−2and 131 W m−2; The mean sensible heat flux over
the TP area is decreasing from January to April and Au-
gust, then increasing from October. They are 190 W m−2,
142 W m−2, 114 W m−2and 192 W m−2; The mean latent
heat flux over the TP area is increasing from January to
April and August, then decreasing from October. They are
141 W m−2, 254 W m−2, 350 W m−2and 278 W m−2.

4 Concluding remarks

In this study, the regional distributions of surface reflectance,
surface temperature, net radiation flux, soil heat flux sensible
heat flux and latent heat flux over heterogeneous landscape
of the Tibetan Plateau are derived with the aid of MODIS
and the in situ data. Compared with the field measurements,
the proposed methodology has been proved to be a better ap-
proach to getting related land surface heat fluxes over het-
erogeneous landscape. It forms a sound basis to study the
exchange processes of heat and water on heterogeneous land
surface.

Regionalization the net radiation heat flux, soil heat flux,
sensible heat flux and latent heat flux over heterogeneous
landscape is not an easy issue. The parameterization method-
ology presented in this research is still in developing stage
due to only a single set of values at a specific time of specific
day are used in this research. To reach more accurate regional
land surface heat fluxes over the Tibetan Plateau area, more
field observations, more accurate radiation transfer models
to determine the surface reflectance and surface temperature,
and another satellites such as GMS (Geo-stationary Meteoro-
logical Satellite), ATSR (Along Track Scanning Radiometer)
and AVHRR (Advanced Very High-Resolution Radiometer)
have to be used. These research works will be done in the
next step.
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