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Abstract. In this work we propose an approach to solving
a source estimation problem based on representation of car-
bon dioxide surface emissions as a linear combination of a fi-
nite number of pre-computed empirical orthogonal functions
(EOFs). We used National Institute for Environmental Stud-
ies (NIES) transport model for computing response functions
and Kalman filter for estimating carbon dioxide emissions.
Our approach produces results similar to these of other mod-
els participating in the TransCom3 experiment.

Using the EOFs we can estimate surface fluxes at higher
spatial resolution, while keeping the dimensionality of the
problem comparable with that in the regions approach. This
also allows us to avoid potentially artificial sharp gradients
in the fluxes in between pre-defined regions. EOF results
generally match observations more closely given the same
error structure as the traditional method.

Additionally, the proposed approach does not require addi-
tional effort of defining independent self-contained emission
regions.

1 Introduction

It is well known that greenhouse gases and, in particu-
lar, greenhouse gases of anthropogenic origin, influence the
Earth climate to a great extend. Accurate estimates of
strengths, and spatial and temporal variability of the surface
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sources and sinks of greenhouse gases are thus of great inter-
est to both the scientific community and the policy makers.
Carbon dioxide, (CO2), is the most important greenhouse
gas of anthropogenic origin that affects radiative balance of
the atmosphere and, eventually, the climate. Observations of
CO2 concentrations in the atmosphere demonstrated short-
time variability and spatial patterns reflecting influence of
time-variable strengths of regional surface sources and sinks
of carbon dioxide.

The objective of this research is to study advantages and
shortcomings of traditional methods of solving the inverse
problem of estimating spatial and temporal variability of sur-
face fluxes and compare them with the EOF approach. While
we do not wish to position our approach as superior, we
would like to propose it as an alternative that seems to be
worth exploring further. Traditional approaches to solving
inverse flux estimation problem include dividing the Earth’s
surface by a number of non-overlapping regions and estimat-
ing the strengths of sources and sinks for each one of them.
One of the most well-known and successful experiments fol-
lowing this approach was TransCom 3 (T3, Gurney et al.,
2000), which used 22 distinct regions; 11 for land surface
and 11 for ocean surface. Advantage of this technique is that
the problem is mathematically over-determined because the
number of unknowns is much less than number of available
observations. In subsequent work of Patra et al. (2005a, b,
2006), the number of the regions has been increased to 64.
In both cases, monthly mean CO2 surface emissions have
been successfully estimated using monthly averaged ground
based observations of carbon dioxide concentrations.
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Recently, (Feng et al., 2009), 144 distinct regions have
been used and the time scale of carbon dioxide variability
was reduced to 8 days using satellite observations of CO2.
In each region, distribution of CO2 emission is forced to be
smooth, so the resulting emission fields will be piecewise-
smooth because of regions were demarcated by hard bound-
aries. Refining the results would necessitate increasing the
number of regions, and thus increasing computational re-
quirements, which might prove to be impractical. Also,
lumping small basis regions into larger combined regions
may lead to aggregation errors, because observed CO2 fields
are sensitive to the distribution of sources and sinks within
large basis regions (Kaminski et al., 2001).

Additionally, it is reasonable to assume that at least in
some cases there is a correlation in emission strengths be-
tween the regions. It is usually proposed that such correla-
tion is negligible and grid-points within regions are perfectly
correlated in space, but in reality this might not be accurate.

Another computational approach relies on the adjoint of
the forward transport model (Kaminski et al., 1999). They
estimated a coarse grid of fluxes at 8◦ latitude and 10◦ lon-
gitude in monthly time scales. The problem was under-
determined and a solution was found by gathering a priori in-
formation on surface fluxes. In this case, influence from each
grid box could be estimated, but it could be computationally
expensive due to increasing the number of unknowns, and
creating adjoint versions of forward models is not straight-
forward. In addition, the correlation between neighboring
cells is still unknown, and the results are likely to be in-
fluenced by misspecifications of such correlations. Roden-
beck (2003) performed a grid-scale inversion assuming dif-
ferent de-correlation length over the land and the ocean us-
ing the same spatial resolution as Kaminski (1999). For this
approach reality lies somewhere between the two extremes:
perfectly correlated or completely uncorrelated fluxes at a
grid scale.

The main idea of our approach is to use empirical or-
thogonal functions (EOFs) in place of distinct geographi-
cal regions. Use of the EOFs as a tool to reduce degrees
of freedom in inverse modeling has become a widespread
practice in geophysics (e.g. Wikle and Cressie, 1999). It is
also mentioned (Desbiens et al., 2007) that use of EOF in
inversion is similar to truncated SVD technique by Hansen
(1987, 1998). We propose representing geographic distribu-
tion of surface emissions of carbon dioxide as a linear com-
bination of a number of pre-computed empirical orthogonal
functions. This combination contains information about cli-
matological spatial variability of the emissions as well as sta-
tistical correlations between different grid-points. This ap-
proach would yield smooth surface fluxes on a global scale
and it does not require additional research for defining in-
dependent self-contained emission regions. Since, as shown
later in this manuscript, a relatively small number of EOFs
is needed to accurately represent the CO2 surface emissions
for a number of sources, the estimation problem becomes

fairly inexpensive computationally. Practical applications of
the derived EOFs can also be envisioned in a framework of
the geostatistical inverse modeling (Michalak et al., 2004),
which requires a set of the global flux patterns to approxi-
mate optimal flux field.

2 Methodology

While solving the inverse problem we utilize the traditional
Bayesian approach. We attempt to optimize the cost function
consisting a sum of the two parts: a disagreement between
the desired solution and the priori estimation, and a disagree-
ment between the desired solution and the observations. For-
mally, the cost function is given by the following expression:

F(x) =
1

2
(y −Hx)T R−1(y −Hx)+

1

2
(x −xp)

T B−1(x −xp) (1)

herey – is a vector of observations of sizen, xp – is an priori
estimate for the surface fluxes of sizem, x is a vector of un-
known parameters (to be estimated) of sizem, H – is a model
operator (a matrix of dimensionsn×m) transforming vector
x to observationsy, R – is a representativeness error ma-
trix of sizen×n andB – is the background error covariance
matrix of sizem×m.

As mentioned above, the main idea of our approach is to
use empirical orthogonal functions as the basis of decompo-
sition for the emission sources. This would hopefully result
in a more accurate representation of the spatial distribution
of the emission sources while minimizing the computational
requirements on the inverse problem solution. Formally for
each kind of sources we have:

f luxres= f luxpr+

N∑
i=1

αiEOF i (2)

wheref luxres– is a result field of flux in units g m−2 day−1,
f luxpr – is a pre-set “presubtracted” fields (Fig. 1), used in
the experiment T3 in units g m−2 day−1, EOF i – empirical
orthogonal functions,αi – are the corresponding basis expan-
sion coefficients, andN – is the number of the EOFs. The
inverse problem task essentially involves to a determination
of the corresponding weights for each of the basis function
(EOFs).

An advantage of our approach is that we are implicitly
using information about correlation between different grid-
points that could emit or absorb a trace gas in questions, and
do so for each emission type. This information is embedded
in the computed spatial distribution of the EOFs. No poten-
tially subjective a priori data (for example regarding correla-
tion lengths in land and ocean fluxes) is being used in the cal-
culations, which may or may not be advantageous. Clearly,
if external information of good quality regarding correla-
tions of emission between different grid-ponts is available, it
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Fig. 1. A fixed “presubtracted” average emission fields in units of g m−2 day−1 from T3 experiment for three different emission sources:
fossil fuel (top figures, year data), biosphere exchange (middle figures, monthly data), ocean exchange (bottom figures, monthly data).

would be advantageous to use it in solving the inverse prob-
lem. Yet such data could be difficult to obtain, and would
likely not be of similar quality for different regions of the
world, thus introducing an additional bias to the solution.

In this investigation we attempt to show that using a rather
limited set of parameters (basis coefficients of EOF expan-
sion), it is possible to quantify different surface sources and
sinks of CO2, at a fairly high spatial resolution and without
the use of the regional source approach.

2.1 Determination of EOF

As in the T3 experiment we consider separately three kinds
of surface CO2 sources: burning fossil fuel, biosphere ex-
changes and ocean exchanges. Therefore it is necessary to

compute EOFs for each of them, except the fossil fuel emis-
sions (which are fixed in TransCom3 experiment).

For computing the EOFs we need spatial and time vari-
able statistics of the surface emissions. This dataset has been
obtained from the CarbonTracker web site (http://www.esrl.
noaa.gov/gmd/ccgg/carbontracker/). While this data set is al-
ready a result of numerical inversion, yet in the absence of
a desirable quantity of observations falling back on a vari-
ability of a set of well-established inversion results, using it
seems to be a reasonable approach. CarbonTracker dataset
(release 2009) provides global surface fluxes from 2000 to
2008 at 3-hour time intervals for four kinds of surface emis-
sions: burning fossil fuels, biosphere exchanges, ocean ex-
changes and fires. Due to the spin-up effect we removed year
2000 from our analysis. The spatial resolution of these fields
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Fig. 2. Error of decomposition (y-axis) between original emission
fields and those restored depends on number of most significant
EOFs (x-axis).

is one by one degree; hence the resolution of the EOFs will
be the same.

Since the transport model (as is described in Sect. 2.2) has
spatial resolution of 2.5 degrees, we should be estimating the
fluxes at similar resolution. Therefore, all fields should be
interpolated to a 2.5 degree grid.

Since in our investigation we are interested in monthly
emissions, (as in experiment T3), we need to average the 3-
hour fields to make them comparable with the monthly-mean
emissions. Therefore, we get a set of 96 monthly-mean fields
(8 years times 12 months) for each emission type. Note,
that we are not attempting to optimize the anthropogenic
emissions, as they are considered fixed in the T3 experiment
setup.

Similarly to T3 experiment, prior to computing the EOFs
mean T3 emission fields were subtracted from the Carbon-
Tracker time-dependent monthly emission fields. In our
present setup, due to using T3 mean fluxes we likely have
bias as part of EOF set. But we cannot predict if we have a
negative effect on the following optimization. The 2-D fields
of deviations of surface emissions from the mean are avail-
able at monthly intervals.

After that, each 2-D field is re-shaped as a vector of size
144×72 = 10 368 (2.5×2.5 degree) and is added as column
vector to the matrix representing the surface sources/sinks.

We apply SVD decomposition to the matrix (size 10 368
rows per 96 columns) and obtain the resulting 96 empirical
orthogonal functions. We use a standard procedure from [9].

For the next step it is desirable to determine the minimum
number of EOFs needed to reasonably accurately represent
CO2 surface emissions for each source in order to reduce the
dimensionality of the inverse problem. In order to do so,
we compute relative error of the EOF-restored fluxes with

respect to original fluxes at 2.5 degree resolution as follows:

error =

∣∣f luxorig−f luxEOF

∣∣∣∣f luxorig

∣∣ ·100% (3)

heref luxorig – original emission fields from CarbonTracker,
f luxEOF – emission fields reconstructed from the EOFs.
Afterwards the obtained error fields are averaged in space
and time. Figure 2 shows averaged relative error be-
tween monthly averaged emission fields from CarbonTracker
project and fields obtained after decomposing on EOFs. It
appears that in order to be able to represent emission sources
about 5 % accuracy one needs to use 30 EOFs for the bio-
spheric sources and 40 EOFs for the ocean sources (more de-
tails on the ability of the EOF decomposition to capture spa-
tial and temporal variability of the underlying fields are given
in Appendix A). Thus the highest possible dimensionality of
the inversion problem for one year is (30 + 40)·12 + 4 = 844.
In these calculation 4 accounts for the a priori fixed average
emission fields: two for the anthropogenic emissions, one for
the biosphere and one for the ocean. Since the EOFs them-
selves are obtained the re-analysis data, it is reasonable to as-
sume that the number of the EOFs needed to adequately rep-
resent the emission fields will be similar to the number of the
degrees of freedom used in the CarbonTracker framework.
CarbonTracker uses 30 regions for the ocean, which compa-
rable to the number in our simulations. For the biosphere,
CarbonTracker employs surface emission regions similar to
those utilized in the T3 experiment, yet introduces 19 addi-
tional ecosystems, but not in all geographical regions. As a
result they have about 125 degrees of freedom in their covari-
ance matrix. It means that CarbonTracker would be “over-
solving” system, due to, as we suppose, spatial correlations
between some of these regions and ecosystems.

2.2 Transport model

The transport model used in this work has been developed at
the National Institute for Environmental Studies (Maksyutov
et. al., 2008). The model effectively converts CO2 surface
emissions (a derivable parameter) to the volume concentra-
tions of CO2 (an observable parameter).

We use pressure level ECMWF operational analyses at 12-
hour time step and 2.5 degrees horizontal resolution in model
simulations (ECMWF, 1999; Courtier et al., 1998). While
the same horizontal resolution is used in the model, the grid
layout is different from meteorological dataset.

The model is designed to handle constant surface emission
fields and seasonally changing emissions in the form of 12
monthly average fields per year. The monthly average emis-
sions are interpolated linearly to daily values, so that on the
15th of each month the emission rate is equal to the monthly
average for that month as provided by emission inventory
files. The emission inventory fields have higher resolution
(1×1 degree) than the model grid (2.5×2.5 degrees), so the
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Fig. 3. Results of simulation experiment for biosphere.(a) pseudotruth,(b) recovered fluxes,(c) difference in percentage between truth and
recovered fluxes.

input dataset is mapped to a model grid by computing the
overlap area of each input data cell to all model grid data cell.
This assures that the global total emission flux is conserved
during interpolation.

In the described work, the model was run on a grid
of 2.5×2.5 degrees, with 15 vertical levels using a semi-
Lagrangian transport scheme. As such, we can reasonable
constrain surface fluxes only for that model resolution, in-
stead of 1×1 degree. In this case the maximum dimensional-
ity of the state vector for the grid-scale inversion would have
been (144·72)·12 = 124 416 (for one year). It is clear that us-
ing the given number of observations, the grid-scale inverse
problem would have been significantly under-determined.
But this problem can be solved by introduction some addi-
tional information (e.g. correlation length) and proper first
guess. In case of EOF approach as described in Sect. 2.1 for
the same spatial resolution we have the dimensionality of the
state vector only (30 + 40)·12 = 840. That means reduction of
the under-determined degree, and in case of a large number
of observations per month it could be over-determined.

2.3 Inversion method

In our approach all non-observed parameters are estimated
simultaneously at each solution step using all available ob-
servations. This technique is known as a “batch mode” in-
version. In order to minimize the cost function (Eq. 1) we

utilize Kalman filter (KF) (Eqs. (4), (5) and (6)):

x = xp+K(y −H[xp]) (4)

K = BHT (HBHT
+R)−1 (5)

A = (I −KH )B (6)

herex is the posteriori vector of EOF expansion coefficients;
xp is a priori vector of EOF expansion coefficients;y is ob-
servation vector;H is observation operator that describes the
relationship between the state vector and the observations;K
is the Kalman gain matrix that determines the adjustment to
the a priori based on the difference between model and ob-
servations and their uncertainties.R is the observation error
covariance matrix, andB andA are the a priori and poste-
riori error covariance matrices for state vector.I is identity
matrix.

KF allow us to estimate coefficients of the EOF expan-
sion and errors of the resulting emissions using ground-
based observations of CO2 concentrations. This technique
is a powerful and widespread method for inverse problem.
Kalman filter applications for trace gases have been de-
scribed in detail in Verlaan and Heemink (1995, 1996), Cohn
and Todling (1995), Pham (1998), Zhang et al. (1999), Hanea
et al. (2004). We would like to point out that in our case we
describe Kalman Filter in conjunction with EOF approach.
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Fig. 4. Results of simulation experiment for ocean.(a) pseudotruth,(b) recovered fluxes,(c) difference in percentage between truth and
recovered fluxes.

2.4 Simulation experiment

In order to verify the proper functionality of our inverse sys-
tem, we performed experiments with simulated data sets.

First, we selected a limited number of EOFs (correspond-
ing to the Sect. 2.1) and reasonable a priori set of EOF ex-
pansion coefficients as the state vector which is to be re-
trieved. Monthly-mean surface sources of CO2 for 2 types
of emissions (biosphere and ocean) obtained from Carbon-
Tracker 2001–2008 data have been de-composed using the
set of EOF. As a priori values for the expansion coefficients
we use monthly averages. We added 30 % Gaussian noise
to the simulated data for January for the biosphere sources
and 15 % to the ocean sources for the “true” values. The for-
ward model has been run for a period of one year using these
sources. Monthly mean simulated data have been computed
at the locations of the 75 stations used in the T3 experiment
(described in Sect. 3.5) for a total of 900 simulated observa-
tions.

The error of observations was set to be 0.3 % for all sta-
tions. An a priori error for the coefficients of the EOF expan-
sion was set to be 30 % for the biosphere and 15 % for the
ocean. The inversion for all parameters and time points was
performed in one iteration of the Kalman filter.

2.5 Comparison with regional inversion (TransCom3
experiment level 2)

To compare our approach with regional methodology, we re-
peated the T3 experiment Level 2 (cyclo-stationary problem)
as described by Gurney et al. (2004) and obtained monthly
sources and sinks of CO2. In our project we used National
Institute for Environmental Studies Transport Model (NIES
TM, see Sect. 2.2). Although T3 experiment uses the av-
eraged observation for 1992–1996 period and the set of pre-
computed EOF belong to 2001–2008 period, we made the as-
sumption that since TransCom3 Level 2 is a cyclo-stationary
experiment, its results would adequately describe the main
degrees of variability (EOFs) that would be approximately
independent of temporal differences.

The seasonal inversion in T3 (cyclo-stationary problem)
framework consist of a 3-year forward simulation (365 days
per year) containing 4 “presubtracted” tracers: 2 fields for
fossil fuel, biosphere and ocean; and 22 CO2 tracers (11 ter-
restrial, 11 oceanic). For each month observation from 75
ground-based stations are used for inversion.

In accordance with T3 Level 2 protocol, we used NIES TM
model to compute response functions for each pre-computed
EOF representing CO2 emissions for each month at 3-year
intervals. Then all response functions were collected into
one model matrix for inversion. Observations of CO2 con-
centrations along with the covariance matrix were taken from
TransCom3 data set.

Atmos. Chem. Phys., 11, 10305–10315, 2011 www.atmos-chem-phys.net/11/10305/2011/
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Fig. 5. Mean annual fluxes for biosphere and ocean in units g m−2 day−1. Column 1 represents results for region approach, column 2
represents results for EOF approach.
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Fig. 6. Mean fluxes for T3 regions with uncertainties.(a) region 1,(b) region 6,(c) region 12,(d) region 20. Blue – prior for EOF, red –
estimated with EOF, green – estimated with regions (with NIES TM).

Fig. 7. Averaged error, RMS error, and systematic error between
observations and model simulations of CO2 distributions for differ-
ent transport models, and experiments with NIES model using EOF
approach (last case) described in the text.

Since all unknown parameter are estimated in one iter-
ation of our method, all observations (75 stations× 12
months = 900) represent one observational vector. Thus the
size of the observation error covariance matrix is 900×900.
Similarly, as in the T3 experiment, we estimate corrections
to only biospheric and oceanic fluxes.

Therefore, the state vector for each month consists of 70
EOFs (30 for the biosphere and 40 for the ocean). The fi-
nal size of the state vector is then 70×12 + 4 = 844, where
4 refers to the number of “presubtracted” fluxes. Thus the
size of the background error covariance matrix is 844×844.
Priori values for state vector is the same as described in

Sect. 2.4, and as the errors we used the standard deviations
for each coefficient.

3 Results

First we will present results of the simulation inversion ex-
periment described in Sect. 2.4.

Figures 3 and 4 display results of simulation experiment
for the biosphere and ocean emissions. Figures 3c and 4c
demonstrate the relative error between the “true” (simulated)
emission field and the restored emission field. As one can
conclude from examining these plots the error of the restored
emission strengths is about 5 %.

Figure 5 presents results of the inversion for the traditional
region-based approach for January and July as well as for
the results of the EOF approach described here. Clearly,
the overall distributions of the emission fields are similar in
shape, giving some confidence in the validity of the EOF ap-
proach, yet noticeable quantitative differences are present.

We will now describe the results of estimating regional
emission sources. After determining spatial distribution of
the global sources, we can attempt to estimate surface fluxes
using the regions defined in the T3 runs for comparison.

We obtained monthly-mean fluxes in Gt yr−1 for each of
the regions as defined in the T3 protocol.

Figure 6(a–d) shows four regions, two for the land and
two for the ocean emissions. Each panel demonstrates a pri-
ori fluxes for EOF approach, inversion results using the EOF
approach, and inversion results using the regional approach
with the same NIES transport model for 22 regions.

Atmos. Chem. Phys., 11, 10305–10315, 2011 www.atmos-chem-phys.net/11/10305/2011/
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As one can see, the reduction of the uncertainties over the
surface is evident from the plots. Note that the dimensional-
ity of the problem is roughly the same or comparable in the
case of the EOF and the regional approach by order of magni-
tude. For the ocean regions, we can observe a slight decrease
in the estimation error. In all likelihood, this is related to
the relatively low number of over-the-ocean observations. In
summary, we conclude that our inversion results reproduce
the expected annual cycle.

As another control we have used averaged error, RMS er-
ror, and systematic error between observations and model
simulations of CO2 distributions for different transport mod-
els, and experiments with NIES model using regional and
EOF approaches. These results are presented in figure 7. Par-
ticularly interesting are results in the last two columns, as
they represent inversion errors for the same model but dif-
ferent inversion approaches. As one can see, our approach
indicates a smaller RMS error and a smaller systematic error
as compared with the regions approach.

4 Conclusions

We presented an alternative inversion method to the tradi-
tional approach that uses discrete geographical spatial re-
gions. We instead relied on a pre-computed set of the em-
pirical orthogonal functions that capture spatial variability
of the CO2 sources and performed the inversion with regard
to the EOF expansion coefficients. The procedure of com-
puting such EOFs has been described for the CarbonTracker
reanalysis data. We also described determination of the op-
timal number of the EOFs for more accurate determination
of the surface sources and sinks of CO2. A simulated ob-
servational system experiment has been performed to verify
that the proposed inversion system captures variability of the
derived parameters, as demonstrated by figures 3–4. We re-
peated TransCom3 Level 2 experiment. Our system demon-
strated successful retrieval of the spatial distribution of the
monthly mean sources similar to the regional approach of 22
regions. We also derived reasonable seasonal variability of
the sources as compared to the published T3 experiment re-
sults.

As next steps in developing our approach, we would like to
calculate EOFs using the global biosphere and ocean models
separately. That will be the simplification of these models
and its parameters. We also consider increasing the number
of observations using space-borne observations in addition
to the ground-based data, hopefully achieving a significantly
more advanced inversion accuracy and precision.

Fig. A1. Relative error in percent between RMS error for spatial
variability of original fields and RMS error for spatial variability
of fields restored with EOFs for two kinds of sources depends on
month.

Fig. A2. Relative error in percent between RMS error for temporal
variability of original fields and RMS error for temporal variabil-
ity of fields restored with EOFs for two kinds of sources. (top –
biosphere, bottom – ocean).
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Appendix A

Investigation of the ability of EOFs to capture time
and space variability of surface sources of CO2

Two numerical experiments have been performed in order
to assess how well EOF decomposition captures spatial and
temporal variability of the emission fields:
Experiment 1: Spatial variability

12 monthly mean original CarbonTracker emission fields for
the biosphere and oceans have been used to compute aver-
age root-mean-squared deviations for each monthRMSorig.
Similar procedure has been performed using fields obtained
from EOF expansion using 30 EOFs for biosphere and
40 EOFs for the oceans (RMSEOF). A relative error be-
tween the two has been computed as (RMSorig−RMSEOF)
·100 %/RMSorig. Results are shown in Fig. A1. As one can
see, EOF decomposed fields show degree of spatial variabil-
ity similar to that of the original fields.

Experiment 2: Temporal variability

Similar to Experiment 1 procedure has been followed in Ex-
periment 2, except that instead of computing spatial root-
mean-squared deviations for each month, we computed tem-
poral root-mean-squared deviations at each grid point. Thus
we obtained two 2-D fields of RMS deviations and the com-
puted relative difference between them. Results are shown in
Fig. A2, which demonstrates that temporal variability com-
puted from original fields and that computed from EOF-
restored fields are generally in agreement with the notable
exception of Sahara region for the biosphere. This is possi-
bly due to missing data in that region in the CarbonTracker
data.
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