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Abstract. The Advanced Regional Prediction System, a
mesoscale atmospheric model, is applied to simulate the
month of June 2006 with a focus on the near surface air tem-
peratures around Paris. To improve the simulated tempera-
tures which show errors up to 10 K during a day on which
a cold front passed Paris, a data assimilation procedure to
calculate 3-D analysis fields of specific cloud liquid and ice
water content is presented. The method is based on the as-
similation of observed cloud optical thickness fields into the
Advanced Regional Prediction System model and operates
on 1-D vertical columns, assuming that the horizontal back-
ground error covariance is infinite, i.e. an independent pixel
approximation. The rationale behind it is to find vertical pro-
files of cloud liquid and ice water content that yield the ob-
served cloud optical thickness values and are consistent with
the simulated profile. Afterwards, a latent heat adjustment is
applied to the temperature in the vertical column. Data from
several meteorological stations in the study area are used to
verify the model simulations. The results show that the pre-
sented assimilation procedure is able to improve the simu-
lated 2 m air temperatures and incoming shortwave radiation
significantly during cloudy days. The scheme is able to alter
the position of the cloud fields significantly and brings the
simulated cloud pattern closer to the observations. As the
scheme is rather simple and computationally inexpensive, it
is a promising new technique to improve the surface fields
of retrospective model simulations for variables that are af-
fected by the position of the clouds.

Correspondence to:D. Lauwaet
(dirk.lauwaet@vito.be)

1 Introduction

Mesoscale atmospheric models are used extensively to re-
construct high-resolution regional atmospheric conditions as
an input for e.g. hydrological, land surface or air pollution
models. Although sophisticated techniques are used to pa-
rameterize clouds and precipitation, a large source of uncer-
tainty in the model results remains in predicting the location
of cloud systems at high spatial resolutions. As clouds have
a strong impact on the surface energy budget and hence the
local temperatures, an inaccurate simulation of the overly-
ing cloud cover is problematic for certain applications that
need correct surface input data. The assimilation of satellite
data into the atmospheric model can play an important role
in providing improved model results on a local scale.

Cloud assimilation studies have focused mainly on cloud
retrievals from radar data, either with one-dimensional vari-
ational schemes (1DVAR) (Benedetti et al., 2003) or with
more complex models in 3DVAR (Hu et al., 2006a, b) and
4DVAR (Sun and Crook, 1998; Vukićevíc et al., 2004).
Recently, Benedetti and Janisková (2008) used a 4DVAR
system to assimilate Moderate Resolution Imaging Spectro-
radiometer (MODIS) cloud optical depth observations into
the European Centre for Medium range Weather Forecast
(ECMWF) model. Their results show a positive impact on
certain variables like the distribution of cloud ice water con-
tent but the assimilation did not always improve the analy-
sis fit to the observations. However, the large computational
infrastructure needed to run and maintain these systems are
limiting their use for smaller research centres and universi-
ties.

Other simpler and faster methods exist that attempt to re-
trieve model cloud microphysics from satellite observations
or other sources. Soutu et al. (2003) constructed cloud fields
for their forecasts over the Galician Region in Spain based
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on relative humidity values from the NCEP Aviation Model.
Their procedure followed the Local Analysis and Prediction
System (LAPS, Albers et al., 1996) and clearly improved
the model’s skill to predict precipitation amounts. Another
method is used by Yucel et al. (2003), who applied a nudging
assimilation technique to ingest remotely sensed cloud cover
and cloud top height data into their mesoscale atmospheric
model. The cloud ingestion was found to improve the ability
of the model to capture the variation in surface fields associ-
ated with cloud cover. However, they suggested that it would
be necessary to modify the model dynamics and thermody-
namics to be consistent with the ingested cloud fields.

In this context, the goal of the research reported here is
to present a rather simple and computational fast cloud as-
similation scheme. The scheme applies optimal interpola-
tion with latent heat adjustment for the assimilation of cloud
optical thickness (COT) observations into a mesoscale atmo-
spheric model to study the effect on the simulated surface
fields associated with cloud cover. The model used for this
study is the Advanced Regional Prediction System (ARPS),
a non-hydrostatic mesoscale atmospheric model developed
at the University of Oklahoma (Xue et al., 2000, 2001). Al-
though the ARPS model has its own cloud analysis package
(ADAS, Brewster, 1996), it is not used in our study. ADAS
needs information on the vertical extent of the clouds to es-
timate cloud types and related in-cloud vertical velocities
which can not be derived from our two-dimensional cloud
optical thickness data.

The remainder of the paper is organized as follows. A
description of the atmospheric model and a set-up for the
model simulations are given in Sect. 2. In Sect. 3, the details
of the cloud assimilation scheme are presented. The results
are evaluated and discussed in Sect. 4 while conclusion are
given in Sect. 5.

2 Numerical model and data description

The Advanced Regional Prediction System (ARPS) includes
conservation equations for momentum, heat, mass, water
(vapour, liquid and ice), sub-grid scale turbulent kinetic en-
ergy and the state-equation of moist air. The finite-difference
equations of the model are discretized on an Arakawa C-
grid, employing a terrain following coordinate in the verti-
cal direction. Advection is solved with a fourth-order cen-
tral differencing scheme and leapfrog time stepping. Tur-
bulence is represented by the 1.5-order turbulent kinetic
energy (TKE) model, and the Sun and Chang (1986) pa-
rameterization for the convective boundary layer. The 6-
category water/ice scheme of Lin et al. (1983) accounts for
the model microphysics while the Kain-Fritsch cumulus pa-
rameterization scheme solves the cumulus convection (Kain
and Fritsch, 1990). In order to suppress numerical noise, a
fourth-order monotonic computational mixing was applied,
following Xue (2000).

Land surface processes are parameterized by the Soil-
Vegetation-Atmosphere Transfer model of De Ridder and
Schayes (1997). The two primary parameters of the land sur-
face model are the type of vegetation, which is derived from
the Coordination Information Environment (CORINE) land
cover data and the soil texture, which is assumed to be that
of a loamy soil, homogeneous across the domain. Among
the secondary parameters, vegetation fraction is based on
the normalized difference vegetation index (NDVI) from the
SPOT-VEGETATION satellite imagery.

Data with a 0.25◦ horizontal resolution from the global
operational analysis by the ECMWF are used as initial con-
ditions and as 6-hourly lateral boundary conditions for the
model runs. The ARPS model domain has a grid spacing
of 16 km and a domain size of 1600 km× 1600 km, centred
over Paris (Fig. 1). In all simulations, 35 vertical levels are
employed with a grid spacing of 25 m near the surface in-
creasing to 1 km near the upper model boundary, located at
20 km altitude. The simulations are initialized on 1 June
2006 at 00:00 LT and run until 30 June 2006 at 24:00 LT. This
month is chosen to test our assimilation scheme as during
some periods of this month, the model has problems in sim-
ulating the right amount and position of clouds, which leads
to large errors in some surface variables as will be shown in
Sect. 4.

The cloud optical thickness images for June 2006 are re-
trieved from visible and shortwave infrared imagery from
the Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) onboard the Meteosat Second Generation satellite with
a semi-analytical cloud retrieval algorithm (Pandey et al.,
2011). This algorithm is based on the retrieval algorithm of
Kokhanovsky et al. (2003) for the estimation of cloud optical
thickness. The details of the scheme can be found in Pandey
et al. (2011). As Meteosat is a geostationary satellite, the al-
gorithm provides COT images every quarter of an hour dur-
ing daytime (06:00–20:00 LT). These images are assimilated
every 15 min into the ARPS model following the procedure
that is explained in Sect. 3.

To test the effect of our cloud assimilation procedure, 2 m
air temperature and specific humidity data for 2 observa-
tional stations close to Paris (Melun and Trappes) and a sta-
tion in Bordeaux are gathered from the National Climatic
Data Center (NCDC) dataset (Fig. 1). Furthermore, 2 m air
temperature, specific humidity and incoming shortwave ra-
diation data for 3 more stations (Fontainbleau, Grignon and
Oensingen, Fig. 1) are taken from the CarboEurope Inte-
grated Project.

3 Cloud optical thickness assimilation procedure

The data assimilation procedure applied in this study calcu-
lates 3-D analysis fields of specific cloud liquid and ice wa-
ter content (qc andqi) and operates on 1-D vertical columns.
The rationale behind the method is to find vertical profiles
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Figure 1: Location of the model domain and the observational stations. 3 
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Fig. 1. Location of the model domain and the observational stations.

of qc andqi that yield the observed cloud optical thickness
fieldsτ0, and that are consistent with the background (simu-
lated) profile, in the sense that clouds are put in layers with
a large humidity. This a priori assumption is required asτ0
does not contain height information.

3.1 Background COT

Consider a vertical model column containingn grid cells ir-
regularly spaced at positionszi (i = 1, ..., n), starting from
the surface. Each layer (thickness1zi) is characterized by
a simulated specific cloud water contentqcbi , which can
be either liquid or solid (ice) water. Noting that the quan-
tity ρiqcbi1zi is the incremental liquid/ice water path (in
kg m−2) of layer i (ρi being the air density of layeri), the
incremental optical depth contributed by layeri is given by
(Salby, 1996):

1τbi =
3

2ρw

ρiqcbi

rei
1zi (1)

with ρw = 1000 kg m−3 the density of liquid water, andrei
the effective radius of cloud droplets in layeri, which is pa-
rameterized in ARPS as a function of temperature, to account
for the different values of this quantity for liquid versus solid
water. The subscript “b” denotes the background fields. A
list of all the symbols is provided in Appendix A.

The full model-based columnar optical depth is then given
by:

τb =

n∑
i=1

1τbi

=
3

2ρw
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=
3
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(2)

H is a so-called observation operator, which linearly maps
qcb onto a background (i.e. simulated) optical thickness
(τb = Hqcb).

3.2 Optimal interpolation

Given observations of cloud optical thickness for a given po-
sition on the globe, the best linear unbiased estimate of cloud
water content is given by (Kalnay, 2003):

qca= qcb+K (τ0−Hqcb) (3)

with qca the vector containing the analyzed cloud water con-
tent values at leveli, andqcb likewise containing the values
generated by the model (“background” or first guess value).
The gain matrix is given by

K = BHT
(
HBHT

+R
)−1

(4)

with B the background error covariance matrix andR (≡σ 2
τ )

the observation error covariance, which in this case is a scalar
sinceτo itself is a scalar quantity.

We will assume thatB is a diagonal matrix. This is not en-
tirely realistic, since errors of cloud water content at different
vertical layers may be correlated, especially if these layers
are close to each other in comparison to the typical thick-
ness of a cloud layer. Nevertheless, it is difficult to estimate
these inter-layer correlations and, moreover, the thicknesses
of the layers that are prone to cloud development (sufficiently
far away from the surface) are rather thick, thus making this
diagonality assumption less of a problem. A diagonal back-
ground error covariance matrix has the advantage of leading
to a fairly simple final expression for the analyzed specific
cloud water content, as shown below. In Appendix B, the re-
sults of a test with a non-diagonalB matrix are presented in
order to have an estimate of the impact of this assumption.

Thus, in caseB is a diagonal matrix with elementsσ 2
ciδij

(with δij the Kronecker delta), one has:

HBHT
+R =

n∑
i=1

σ 2
cih

2
i +σ 2

BHT
=

(
σ 2

c1h1... σ 2
cnhn

)T
(5)
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with hi the operation operator for layeri. This leads, finally,
to:

qcai = qcbi +
σ 2

cihi

n∑
i=1

σ 2
cih

2
i +σ 2

(
τ0−

∑n

i=1
hiqcbi

)
(6)

The main challenge is to specify theσ ci in a suitable man-
ner, in particular in such a way that model layers with a high
simulated humidity are more affected than the drier layers.

3.3 Cloud water background error variance

The specification of the cloud water background error vari-
anceσ ci of each model layer is not straightforward, in par-
ticular when a layer contains no simulated liquid or ice water
(qcbi = 0). One might be tempted to setσ ci = 0 in such a situ-
ation, but from the analysis equation above it is clear thatqcai
will also be zero then, even if a cloud is observed (τo > 0).
Clearly, a non-zero cloud water background error variance
must be assigned, even for non-saturated layers. Simply tak-
ing σ ci as a fraction ofqcbi will not work for the reasons
just explained. The background error variance matrix will
therefore be established starting from a probability density
function for total specific water contentqt, which is defined
as the sum of vapour and cloud (liquid/ice) contributions, i.e.
qt = qv + qc. It should be noted that by assigning a cloud
variance to a non-cloudy background layer, the analysis im-
plicitly allows to adjust the water vapour profile in absence
of background clouds. The goal is now to find the cloud wa-
ter content error, given the error on total water content. The
error on the latter needs to be specified a priori, in our case
this will be done as a fixed fraction of total water content (see
Sect. 3.4).

We employ a normal distribution, given by:

f (qt) =
1

√
2πσt

e
−

(qt−qtb)
2

2σ2
t (7)

with qtb the background (simulated) value ofqt, andσ t the
standard deviation of the distribution, which is a measure for
the error on simulated total waterqt. Figure 2 presents the
concept of the normal distribution ofqt.

Cloud water is that portion ofqt which is in excess of the
saturated value, denotedqs (≡ qsat(T )), with T the tempera-
ture of the considered layer, so thatqc = (qt −qs)H(qt −qs),
with H (.) the Heaviside step function, which is unity for a
positive argument and zero otherwise. Using this, taking the
simulated cloud water contentqcb as expected value for this
quantity, and omitting the layer indexi for the moment, the
error variance of simulated cloud water can be calculated as
follows:
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Figure 2. Probability distribution function for total water content (blue line), with expectation 2 
value qtb, and standard deviation σt. The light shading corresponds to the area above the 3 
saturated specific humidity (denoted qs), which contains cloud water. 4 
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Fig. 2. Probability distribution function for total water content (blue
line), with expectation valueqtb, and standard deviationσt. The
light shading corresponds to the area above the saturated specific
humidity (denotedqs), which contains cloud water.
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with xs =
(qs−qtb)√

2σt
and erfc(.) the complementary error func-

tion. It should be noted that in these formulas the error on
the background saturated specific humidity, hence the back-
ground temperature field, is ignored to simplify the assimila-
tion scheme. In Appendix C, the effect of this approximation
is assessed and it is shown that it does not have a significant
effect on the outcome of the assimilation procedure.

3.4 Implementation in the ARPS model

In the above, the standard deviation on the simulated total
water content and the observed cloud optical thickness are
still unknown. These standard deviations are expressed as a
fraction ofqt andτ0, respectively, i.e.σ t=aqt andσ τ =bτ0.
In our study, a value of 0.3 is adopted for coefficienta (i.e.
±30 % error ofqt). This value is obtained from a comparison
between modelled and observed specific humidity profiles at
Trappes, as more than 80 % of the observed data points are
within this error margin of the simulated profiles. For coef-
ficient b, a rather conservative value of 0.25 is adopted (i.e.
±25 % error ofτ0), with a lower limit of 5 forσ τ , based on a
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Figure 3: 2 m air temperature at Melun (upper panel) and Oensingen (lower panel) for June 4 
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Fig. 3. 2 m air temperature at Melun (upper panel) and Oensingen (lower panel) for June 2006.

validation study of our cloud optical thickness product with
Cloudsat COT data (Pandey et al., 2011). To test the sensitiv-
ity of the assimilation procedure to these two coefficients, a
sensitivity study is performed by varying the values between
0.1 and 0.5. The results are presented at the end of Sect. 4.2.

The resultingqca from the assimilation procedure is de-
fined as cloud liquid water when the temperature is warmer
than−10◦C, and as cloud ice when the temperature is colder
than−30◦C. A linear ramp is applied for the temperature in
between. Whenever a non-saturated (and cloudless) layer be-
comes cloudy after the analysis, the specific humidity is set
to its saturated value. Last, a latent heat adjustment to tem-
perature based on the added or subtracted amounts ofqc and
qi is applied, according to the formula:

1Tqc = 1qc
Lv
Cp

1Tqi = 1qi
Lv+Lf

Cp

(10)

whereLv andLf are the latent heat of vaporization and fusion
at 0◦C respectively, andCp is the specific heat of dry air at
constant pressure.

4 Results of the assimilation procedure

This section describes the results for a COT assimilation ex-
periment (EXP) for the month of June 2006, compared to a
reference simulation (REF) with a setup identical to the cloud
assimilation experiment to provide a benchmark for the effect
of the introduction of cloud optical thickness data.

4.1 Comparison to observations

Figure 3 shows the impact of the COT assimilation on 2 m
air temperatures, measured at Melun and Oensingen (loca-
tions in Fig. 1). It is apparent that the reference simula-
tion does not correctly capture a sharp temperature decrease
halfway through the month (Julian day 166 in Melun and
168 in Oensingen) and keeps on overestimating the temper-
atures around noon by a few degrees during the rest of the
month. This is substantially improved by the COT assim-
ilation which picks up these temperature decreases on the
respective days and the following period. The problems for
the reference simulation are caused by a wrong location of a
cold front and associated overlying cloud cover during these
days, as will be shown later on. The assimilation procedure is
thus capable of improving the cloud fields and yielding more
accurate temperature values. Note that sometimes also the
temperature during night time improves in the EXP simula-
tion (e.g. on Julian day 177 in Melun) although the assimila-
tion scheme is only active during day time (as satellite data
from a visible channel are needed to derive COT). This is due
to the transportation of the assimilated moisture throughout
the model domain.

These findings are further demonstrated in Table 1, which
shows the results for 4 of the observation stations throughout
the model domain. The COT assimilation reduces the root-
mean-square error (RMSE) between modelled and observed
values for all stations. Also the correlation coefficients be-
tween the modelled and observed time series are higher for
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Figure 4: Incoming shortwave radiation at Grignon (upper panel) and Oensingen (lower 4 
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Fig. 4. Incoming shortwave radiation at Grignon (upper panel) and Oensingen (lower panel) for June 2006.

the assimilation experiment. The positive bias for the sta-
tions around Paris that is present in the reference simulation
is decreased. However, there is a slight negative effect of the
assimilation on the biases in Oensingen en Bordeaux. Over-
all, the statistics of these time series are clearly improved by
the assimilation.

Another variable that is closely linked to the cloud fields,
is the surface shortwave radiation. The results for the obser-
vation stations of Grignon, Fontainbleau and Oensingen are
presented in Fig. 4 and Table 2. As for the temperature, the
COT assimilation experiment clearly improves the time se-
ries, especially on the problematic Julian days 166 (Grignon)
and 173 (Grignon and Oensingen). The statistics show a sub-
stantial reduction of the bias and RMSE and higher correla-
tion coefficients. These numbers confirm that the improve-
ment in the assimilation experiment is linked to a better po-
sition of the cloud cover in the model.

However, the impact of the COT assimilation is not posi-
tive for all variables, as shown in Table 3. The specific hu-
midity at the surface is in good agreement with the observa-
tions for the reference simulation, whereas it is overestimated
by about 1 g kg−1 for most observation stations when the as-
similation scheme is applied. Only in Oensingen, the assimi-
lation improves the underestimated humidity in the reference
simulation. The extra moisture is caused by the fact that the
assimilation scheme sets the humidity of a layer to its satu-
rated value whenever a non-saturated layer becomes cloudy.
As the reference simulation underestimates the amount of
clouds compared to the observations, an increase of the hu-

Table 1. Statistics of the 2 m air temperature for the entire month of
June 2006.

T (◦C) Mean Bias RMSE R2

Melun

Obs 18.06 – – –
REF 18.59 0.53 2.64 0.85
EXP 18.01 −0.05 1.94 0.89

Grignon

Obs 17.18 – – –
REF 18.52 1.34 2.95 0.84
EXP 17.84 0.66 2.14 0.87

Oensingen

Obs 15.83 – – –
REF 16.13 0.30 3.42 0.79
EXP 15.28 −0.55 2.84 0.80

Bordeaux

Obs 21.27 – – –
REF 21.11 −0.16 3.09 0.84
EXP 20.53 −0.74 2.52 0.88

midity is the logical consequence in this case. This can not
be avoided if we want to retain the assimilated clouds, oth-
erwise they would evaporate instantly. In their cloud as-
similation experiments, Benedetti and Janiskova (2008) also
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Figure 5: The water column at Trappes from radio-sounding measurements (dark grey bars), 3 
the Reference simulation (black bars) and the COT assimilation experiment (light grey bars). 4 
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Fig. 5. The water column at Trappes from radio-sounding measurements (dark grey bars), the Reference simulation (black bars) and the
COT assimilation experiment (light grey bars).

Table 2. Statistics of the incoming shortwave radiation for the entire
month of June 2006.

Rs (W m−2) Mean Bias RMSE R2

Grignon

Obs 360.30 – – –
REF 416.12 55.82 156.35 0.77
EXP 400.72 40.42 124.02 0.84

Fontainbleau

Obs 381.90 – – –
REF 430.69 48.79 157.24 0.77
EXP 410.46 28.56 119.35 0.85

Oensingen

Obs 311.84 – – –
REF 360.75 48.91 168.43 0.77
EXP 344.00 22.16 140.24 0.83

noticed that the humidity was affected in a slightly negative
way by the assimilation.

In order to evaluate the effect of the assimilation on the
vertical distributed moisture, the total water columns from
radio-soundings launched at Trappes are compared to the ref-
erence and assimilation experiments (Fig. 5). Overall, there
is a good agreement between model results and observations,
as the mean RMSEs of both the REF and EXP simulations
are only 4 mm. The assimilation scheme has only a small
impact on the total water column and slightly improves the
small negative model bias. So the problems with the humid-
ity that are mentioned before are limited and do not translate
in drastic changes in the total vertical moisture amounts.

Table 3. Statistics of the 2 m specific humidity for the entire month
of June 2006.

q (g kg−1) Mean Bias RMSE R2

Melun

Obs 8.67 – – –
REF 8.70 0.03 1.35 0.56
EXP 9.62 0.95 1.89 0.50

Grignon

Obs 8.67 – – –
REF 8.64 −0.03 1.26 0.58
EXP 9.44 0.77 1.66 0.54

Oensingen

Obs 9.68 – – –
REF 8.67 −1.01 2.13 0.67
EXP 9.41 −0.27 1.76 0.71

Bordeaux

Obs 8.96 – – –
REF 8.82 −0.14 1.26 0.69
EXP 9.85 0.89 1.62 0.66

4.2 Impact on temperature, humidity and cloud
parameters

To assess the impact of the assimilation procedure on the
model variables in the entire model domain, mean zonal
differences between the experiment and the reference for
temperature, specific humidity and vertical wind speed are
shown in Fig. 6. The assimilation clearly has the largest
effect in the lowest 2000 m of the model domain for both
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Figure 6: Monthly mean differences between the COT assimilation experiment and the 5 
Reference simulation, averaged per latitude band. 6 

Fig. 6. Monthly mean differences between the COT assimilation ex-
periment and the Reference simulation, averaged per latitude band.

the temperature and specific humidity. Here, the tempera-
ture values of the experiment have a tendency to be lower
(up to 0.5 K) while the specific humidity is augmented (up
to 0.5 g kg−1). Both temperature and moisture changes are
in phase to enhance cloud formation. In the upper levels,
a slight temperature increase is visible for the assimilation
experiment, which is caused by latent heat release during the
formation of additional clouds. As shown in the previous sec-
tion, the temperature decrease near the surface improves the
positive bias in the reference simulation, while the moisture
increase has a negative effect when compared to the observa-
tions.
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Figure 7: Monthly mean differences in liquid water path (upper panel), ice water path (middle 3 
panel) and rainfall amounts (lower panel) between the COT assimilation experiment and the 4 
Reference simulation.  5 

Fig. 7. Monthly mean differences in liquid water path (upper panel),
ice water path (middle panel) and rainfall amounts (lower panel) be-
tween the COT assimilation experiment and the Reference simula-
tion.

Atmos. Chem. Phys., 11, 10269–10281, 2011 www.atmos-chem-phys.net/11/10269/2011/



D. Lauwaet et al.: Assimilating cloud optical thickness 10277

41 
 

 1 
 2 
Figure 8: Cloud optical thickness maps on 15 June 2006 at 1200 LT. 3 
  4 

Fig. 8. Cloud optical thickness maps on 15 June 2006 at 12:00 LT.

Regarding the vertical wind speed, the largest changes
clearly occur in the southern part of the model domain where
most extra water is added to the model (see Fig. 7). The
enhanced convection and latent heat release causes more up-
drafts in the higher model layers and downdrafts close to the
surface. It should be noted that these changes are rather small
(less than 10 %) in comparison to the mean vertical wind
speeds. As a response to the changes induced by the assim-
ilation scheme, there is a noticeable redistribution in liquid
water path and ice water path in the model domain (Fig. 7).
The changes appear to have a rather varied structure over the
largest part of the model domain. Most increases occur along
the southern boundary of the domain and over the alpine re-
gion. Overall, there is a clear tendency of increased cloud
amounts in the assimilation experiment. The monthly mean
values of the liquid and ice water paths are raised by 25 and
8 % respectively. Regarding the overestimation of incoming
shortwave radiation by the reference simulation (Table 2),

these changes appear to have a positive impact on the model
results. The assimilation also has an impact on the modelled
rainfall amounts with a logical positive trend in the regions
where more cloud ice is produced (last panel of Fig. 7). The
overall effect is relatively large as the monthly mean rainfall
is increased by 26 %, although it should be noted that this is
a dry month where eventual changes have a strong effect on
the overall statistics.

The direct impact of the COT assimilation on the modelled
cloud fields is presented in Fig. 8. In this figure the position
of the clouds is shown on 15 July at noon, when a cold front
passes Paris which is not picked up in the reference simula-
tion (Fig. 3). The top two panels of the figure show a compar-
ison between the cloud optical thickness product of the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
our product from MSG Seviri. The positions of the clouds in
both images are clearly very similar, although the mean COT
value of MODIS is 18 % higher than the MSG Seviri value.
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Table 4. Statistics for Melun for all the sensitivity experiments.

Obs REF EXP a = 0.1 a = 0.5 b = 0.1 b = 0.5

T (◦C) 18.06 18.59 18.01 18.10 16.19 16.57 18.03
RMSE – 2.64 1.94 2.44 3.04 2.51 1.97
R2 – 0.85 0.89 0.86 0.82 0.86 0.88

q (g kg−1) 8.67 8.70 9.62 9.18 10.30 10.13 9.61
RMSE – 1.35 1.89 1.60 2.78 2.65 1.88
R2 – 0.56 0.50 0.51 0.41 0.44 0.50

For the reference simulation, the clouds are positioned too far
to the east and there is no strong front structure visible. The
COT assimilation scheme is able to alter the cloud structure
significantly and brings it much closer to the observations
over the central region of the model domain. Although the
scheme is not able to get rid entirely of the overestimation of
clouds in the west side of the model domain, it is clearly able
to improve the model simulation.

Finally, the sensitivity of the assimilation scheme to the
coefficientsa andb, related to the standard deviation of the
simulated total water content and the observed cloud optical
thickness, respectively, is tested. The results of this sensi-
tivity experiment on the statistics for Melun are presented in
Table 4. The values of these parameters have an effect on the
model results and the scheme seems a little more sensitive to
σ t. Considering the results of both the temperature and hu-
midity at the surface for this station, the initial choice of the
values fora andb seems accurate as none of the sensitivity
experiments can improve on these results.

5 Discussion and conclusions

In this paper, a technique has been presented to assimilate
cloud optical thickness information into a mesoscale atmo-
spheric model to yield improved diagnoses of surface solar
radiation and temperature. The technique comprises an opti-
mal estimation of cloud liquid and ice water in 1-D vertical
columns together with a latent heat adjustment. The scheme
requires some assumptions including an independent pixel
approximation, but it is rather simple and computationally in-
expensive, especially when compared to the 4DVAR systems
that are currently developed (e.g. Benedetti and Janisková,
2008). The goal of the assimilation scheme is to improve
retrospective model simulations by feeding the model with
observed cloud optical thickness images every 15 min.

Results for the month of June 2006 show a positive impact
of the assimilation on near-surface temperatures and incom-
ing shortwave radiation, two variables that are closely linked
to the overlying cloud cover and are crucial as input in, for
instance, air pollution models. However, comparison to spe-
cific humidity observations show that the changes induced

by the assimilation do not always improve the model fit to
the observations. The assimilation scheme tends to induce
overestimations of humidity close to the surface due to the
fact that a layer is set to saturation when it becomes cloudy.
This is necessary to retain the new clouds in the model and
the same technique is used in the cloud analysis scheme of
Soutu et al. (2003). Although the moisture field in the lowest
2000 m of the model domain is affected in a slightly negative
way, the results show that the position of the cloud fields are
more accurately simulated when the cloud observations are
assimilated.

We can thus conclude that it is feasible to introduce the
presented COT assimilation procedure in a mesoscale atmo-
spheric model. The results show that the benefits of the as-
similation to the surface temperature and radiation fields out-
weigh eventual inconsistencies that are caused by only ad-
justing the moisture and temperature fields of the model. As
the procedure is simple and fast, it is a promising new tech-
nique to improve the quality of surface level model output of
retrospective simulations.

Appendix A

List of symbols

a coefficient in relation toσt (−)
b coefficient in relation toστ (−)
B background error covariance matrix
Cp specific heat of air at constant pressure (J kg−1 K−1)

erfc complementary error function
H observation operator matrix
H heaviside step function
HT transposed observation operator matrix
K gain matrix
Lf latent heat of fusion (J kg−1)

Lv latent heat of vaporization (J kg−1)

q specific humidity (kg kg−1)

qc specific cloud liquid water content (kg kg−1)

qca analyzed cloud water content (kg kg−1)

qcb simulated (background) cloud water content (kg kg−1)

qi specific cloud ice water content (kg kg−1)

qs saturated specific humidity (kg kg−1)

qsb simulated (background) saturated specific humidity (kg kg−1)
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Figure 9: Left: Radio-sounding profile of temperature (red) and dew point temperature (blue) 3 
at Trappes on 20 June at 1200 LT. Right: Resulting cloud water profiles from experiments 4 
with a non-diagonal B matrix. 5 
 6 
  7 

Fig. B1. Left: radio-sounding profile of temperature (red) and dew point temperature (blue) at Trappes on 20 June at 12:00 LT. Right:
resulting cloud water profiles from experiments with a non-diagonalB matrix.

qt total water content (kg kg−1)

qtb simulated (background) total water content (kg kg−1)

r decorrelation distance (m)
re effective radius of cloud droplets (m)
R observation error covariance matrix
Rs incoming shortwave radiation (W m−2)

T air temperature (K)
z height (m)
δ Kronecker delta
ρ air density (kg m−3)

ρw density of liquid water (kg m−3)

σc standard deviation of the background cloud water content
σs standard deviation of the simulated saturated specific humidity
σt standard deviation of the simulated total water content
στ standard deviation of the observed cloud optical thickness
τ0 observed cloud optical thickness (-)
τb simulated (background) cloud optical thickness (-)

Appendix B

Non-diagonal B matrix

To obtain the formulas in Sect. 3.2, we have assumed that
the background error covariance matrix is diagonal, which
ignores the correlation of errors of cloud water content be-
tween different vertical layers. This may have an impact on
the resulting cloud water profiles of the analysis, especially
if the layers are close to each other in comparison to the typi-
cal thickness of a cloud layer. In order to have an estimate of
the effect of this assumption, a test is performed with a non-
diagonalB matrix. In our test, a simple exponential decay

of the correlation of the errors is applied to the off-diagonal
elements ofB, which gives for rowi and columnj :

Bij = σciσcj e
−

|zi−zj |
r (B1)

with r the vertical decorrelation length.r is given a value
of 2000 m, corresponding to the value used byŽupanski et
al. (2005) for the vertical decorrelation length of total water
mixing ratio in their study on vertical correlations in error
covariance modelling.

The impact of the non-diagonalB matrix on the ana-
lyzed cloud water contents for a radio-sounding profile at
Trappes is presented in Fig. B1. The non-diagonal matrix
has some effect on the assimilated cloud water profile and
mainly spreads out the cloud water peaks. However, the total
amounts and locations of the assimilated cloud water content
are comparable between both experiments. Therefore, we
can conclude that the assumption of a diagonal background
error covariance matrix will not have a strong impact on the
assimilated cloud water profiles in this study.

Appendix C

The uncertainty on the background saturated
specific humidity

In the formulation of the error variance of simulated cloud
water (σc) in Sect. 3.3, the error on the background saturated
specific humidity (which depends on the error in background
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 1 
 2 
Figure 10: Left: Radio-sounding profile of temperature (red) and dew point temperature (blue) 3 
at Trappes on 20 June at 1200 LT. Right: Resulting cloud water profiles from experiments 4 
including the uncertainty in the background saturated specific humidity. 5 
 6 

Fig. C1. Left: radio-sounding profile of temperature (red) and dew point temperature (blue) at Trappes on 20 June at 12:00 LT. Right:
resulting cloud water profiles from experiments including the uncertainty in the background saturated specific humidity.

temperature) is assumed to be zero to simplify the assim-
ilation scheme. To assess the implications of ignoring the
error onqs, an alternative (and more complex) formulation
is derived here, which takes into account this error. The er-
ror variance of simulated cloud water is now calculated as
follows:

σ 2
c = 〈q2

c 〉−〈qc〉
2, (C1)

with, for n = 1, 2,

〈qn
c 〉 =

1

2πσ sσt

+∞∫
−∞

+∞∫
qs

(qt −qs)
ne

−

(
qt−qtb√

2σt

)2

e
−

(
qs−qsb√

2σs

)2

dqtdqs (C2)

In this expression,qtb andqsb denote the simulated (back-
ground) values of the quantitiesqt (total specific water con-
tent) andqs (saturated specific humidity content), which have
assumed known standard deviationsσt andσs, respectively,
and which are taken here to be stochastically independent.

We first proceed to a transformation of variables byx =
(qt−qs)√

2σt
, and also introducexs =

(qtb−qs)√
2σt

andxsb=
(qtb−qsb)√

2σt
.

Moreover, introducingα = σt
/
σs, and changing the order of

integration, the integral can be written as:

〈qn
c 〉 =

(√
2σt

)n+2

2πσ sσt

+∞∫
0

xn

[
+∞∫
−∞

e−(x−xs)
2
e−α2(xs+xsb)

2
dxs

]
dx

=

(√
2σt

)n+2

2
√

πσ sσt

1√
1+α2

+∞∫
0

xne
−

[
α(x+xsb)√

1+α2

]2

dx

(C3)

where we made use of one of the definite integrals listed in
Gradshteyn and Rhyzik (2007). After some further algebra,

again using integrals listed in Gradshteyn and Rhyzik (2007),
and introducingσ 2

ts ≡ σ 2
t +σ 2

s , it is then fairly straightfor-
ward to work out the above integrals, which yields:

〈qc〉 = σts

[
1

√
2π

e−x2
sb−

xs√
2
erfc(xsb)

]
〈q2

c 〉 = σ 2
ts

[
1

√
π
xsbe

−x2
sb−

1
2

(
1+2x2

sb

)
erfc(xsb)

] (C4)

The impact of this new formulation, which takes into account
the error ofqs, on the analyzed cloud water contents for a
radio-sounding profile at Trappes is presented in Fig. C1. For
this experiment,σ s is given a value of 0.2, which corresponds
to an uncertainty on the background air temperature of about
3 K. The effect on the assimilated cloud water profile is rather
small as only some minor shifts can be noticed. The total
amounts and locations of the assimilated cloud water content
are very similar between both experiments. Therefore, we
can conclude that the assumptions that are made in Sect. 3.3
are not likely to have a significant impact on the results of
this study.
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