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Abstract. High time-resolved aircraft data, concurrent sur-
face measurements and air quality model simulations were
explored to diagnose the processes influencing aerosol chem-
istry under the influence of lake-breeze circulations in a pol-
luted region of southwestern Ontario, Canada. The analy-
sis was based upon horizontal aircraft transects conducted
at multiple altitudes across an entire lake-breeze circulation.
Air mass boundaries due to lake-breeze fronts were identi-
fied in the aircraft meteorological and chemical data, which
were consistent with the frontal locations determined from
surface analyses. Observations and modelling support the
interpretation of a lake-breeze circulation where pollutants
were lofted at a lake-breeze front, transported in the synoptic
flow, caught in a downdraft over the lake, and then confined
by onshore flow. The detailed analysis led to the develop-
ment of conceptual models that summarize the complex 3-D
circulation patterns and their interaction with the synoptic
flow. The identified air mass boundaries, the interpretation
of the lake-breeze circulation, and the air parcel circulation
time in the lake-breeze circulation (3.0 to 5.0 h) enabled for-
mation rates of organic aerosol (OA/1CO) and SO2−

4 to be
determined. The formation rate for OA (relative to excess
CO in ppmv) was found to be 11.6–19.4 µg m−3 ppmv−1 h−1

and the SO2−

4 formation rate was 5.0–8.8 % h−1. The for-
mation rates are enhanced relative to regional background
rates implying that lake-breeze circulations are an important
dynamic in the formation of SO2−

4 and secondary organic
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aerosol. The presence of cumulus clouds associated with the
lake-breeze fronts suggests that these enhancements could be
due to cloud processes. Additionally, the effective confine-
ment of pollutants along the shoreline may have limited pol-
lutant dilution leading to elevated oxidant concentrations.

1 Introduction

The temporal and spatial structure of the boundary layer and
lower troposphere near coastlines can be complex due to ra-
diative property differences between land and water. This can
be an important feature affecting the transport and transfor-
mation of air pollutants in such regions. Temperature gradi-
ents between cooler air over water and warmer air over land
result in a pressure gradient that can initiate and sustain a lake
(sea) breeze during the day and a land breeze at night. Dur-
ing the day, air over a lake moves inland in a shallow inflow
layer (typically<500 m) and air aloft over land moves off-
shore in a return flow to replace air from over the lake. As the
cooler lake air moves over the warmer land surface, a ther-
mal internal boundary layer (TIBL) is created which grows in
height with an increase in inland distance (Lyons and Olsson,
1973; Garratt, 1990). At the leading edge of the lake breeze,
air is forced upwards at the convergence zone (lake-breeze
front) that separates the cooler lake air from the warmer air
inland. The passage of a lake-breeze front is often charac-
terized by increased upward motion, enhanced moisture and
wind shear, decreased temperatures and changes in wind di-
rection and speed (Lyons, 1972). Due to the upward motion
of air at the lake-breeze front, a line of cumulus clouds may

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


10174 K. L. Hayden et al.: Aircraft study of the impact of lake-breeze circulations

form along the frontal zone. At night, the temperature gradi-
ent is reversed and a land breeze is formed.

Numerous studies have identified the importance of lake
(sea) breeze circulations to air quality in coastal urban ar-
eas (e.g. McElroy and Smith, 1986; Lu and Turco, 1994;
McKendry et al., 1997; Cheng, 2002; Snyder and Straw-
bridge, 2004; Bouchlaghem et al., 2008; Lin et al., 2010).
Specifically, a number of studies have been conducted in the
Great Lakes area to examine lake breezes and their influence
on air quality (e.g. Biggs and Graves, 1962; Lyons, 1972;
Lyons and Cole, 1976; Reid et al., 1996; Sills 1998; Hastie
et al., 1999). The region of southwestern Ontario often ex-
periences poor air quality due to elevated O3 and particu-
late matter (PM) concentrations (OME, 2008). The impact
of the lakes and their associated lake-breeze circulations has
been a complicating factor in elucidating chemical processes
on a fine spatial scale in this region. For example, aircraft
measurements showed that aged, polluted air masses over
Lake Ontario were advected over land by lake breezes with
abrupt increases in O3 concentrations, as well as other pol-
lutants such as NOx and PAN (Reid et al., 1996; Hastie et
al., 1999). However, the interaction between lake breezes,
chemical transport and processes behind the increases is not
well understood.

In the summer of 2007, the Border Air Quality and Me-
teorology Study (BAQS-Met) was conducted in southwest-
ern Ontario to study the effects of lake breezes on air quality.
This multi-agency, collaborative study was a unique opportu-
nity to relate an intensive set of meteorological data to a com-
prehensive suite of trace gases and particle measurements in
an area of frequent lake breeze activity. This paper presents a
detailed analysis of a complete lake-breeze circulation using
high spatially and temporally resolved meteorological and
chemical measurements. Interpretation of the measurements
in combination with air quality model simulations provides
new insights into the complexities of lake-breeze circulations
related to air mass processing.

2 Experimental design

The study area was located in the southern Great Lakes re-
gion between Lakes Huron, Erie and St. Clair (see Fig. 1).
A meso-network of 50 stations spaced approximately 15 km
apart collected measurements of meteorology, O3 and PM
concentrations. These measurements were made from 1 June
to 31 August, 2007. The sites relevant to the present anal-
yses include Cottam, Essex, Woodslee, Lighthouse Cove,
Lake St. Clair (LSC) Buoy and Sombra (Fig. 1). From 20
June to 10 July 2007, intensive measurements of gaseous
compounds, particle chemistry and physics and meteorol-
ogy were made at three supersites (Bear Creek (42.5359◦ N,
−82.3892◦ W), Harrow (42.0330◦ N, −82.8933◦ W) and
Ridgetown (42.4533◦ N, −81.8878◦ W) (Fig. 1), and from

an aircraft and a ground-based mobile laboratory, CRUISER.
All times are in local time (LT) i.e. Eastern Daylight Savings
Time.

2.1 Flights

The National Research Council of Canada (NRC) Twin Ot-
ter aircraft was deployed during the study and flew 16 flights
over southwestern Ontario between 23 June and 8 July 2007.
Flights were made during daytime (with the exception of one
night flight) and at altitudes<3000 m a.g.l. Slight adjust-
ments were made to the flight paths to avoid flying through
thick cloud. The date, time, and flight duration for each flight
are provided in Table 1. Also shown for each flight are the
daily synoptic wind direction, an assessment of the air qual-
ity (AQ) and predominant source region, and the identified
lake-breeze type (Sills et al., 2011). Flight planning was sup-
ported by meteorological and air quality forecasting in the
field.

2.2 Aircraft instrumentation

The Twin Otter was outfitted with fast-response meteorolog-
ical instrumentation including 3-D winds, temperature, pres-
sure, relative humidity, dewpoint temperature and radiation
(National Research Council of Canada, 2008). The gas and
particle instrumentation aboard the Twin Otter is summa-
rized in Table 2. In-flight zeros and span checks for trace gas
instrumentation were performed on each flight. Detailed cali-
brations of these instruments using National Institute of Stan-
dards and Technology (NIST)-traceable standards were done
before and during the study. Particles were measured using
an aerosol mass spectrometer (Aerodyne C-AMS), a Con-
densation Nucleus particle Counter (CNC), a Passive Cavity
Aerosol Spectrometer Probe (PCASP), and a Particle Soot
Absorption Photometer (PSAP).

The C-AMS deployed during this study provides mass
concentrations and size distributions of particle chemical
components with diameters less than 1 µm (PM1). Previous
versions of the AMS have been described in detail (Jayne et
al., 2000; Jimenez et al., 2003) with more recent advance-
ments provided in DeCarlo et al. (2006). The C-AMS has
a compact time of flight mass spectrometer and was oper-
ated alternating between the mass spectrometric (MS) and
particle time of flight (PToF) modes with 30 s in each mode.
Typically, fragments of mass to charge ratio (m/z) <300 in
the MS mode are used to determine mass concentrations of
sulphate, nitrate, ammonium and total organics (Allan et al.,
2003; Jimenez et al., 2003). During the study, continuous
power was supplied to the instrument so that the pumps could
provide constant vacuum and maintain a low background sig-
nal. On many occasions, the C-AMS signals were affected
by low-level electronic noise, likely from cell phone tow-
ers in the area. The noise was most prevalent at mass frag-
ments ofm/z>100 amu, masking signals that are normally
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Fig. 1. Progression of lake-breeze fronts from 12:00–17:00 LT on 25 June. Position of lake-breeze fronts shown in magenta lines. Tracks for
Flights 4 and 5 are shown as blue lines in(a) and(f) respectively. SO2 major point sources shown as red circles (SO2 >10 000 tons/year).
Surface sites in black triangles: (1) Sombra, (2) Woodslee, (3) Cottam, (4) Lighthouse Cove, (5) LSC buoy, (6) Essex, (7) Ridgetown, (8)
Harrow, (9) Bear Creek, (10) London, (11) Mitchell’s Bay, (12) Sarnia.

due to organics, if present. During periods of no cell phone
interference, the organic mass determined with fragments
m/z<300 amu was only 2.4± 1.3 % higher than the organic
mass determined using a limited range of fragments,m/z
<100 amu. Therefore, since the organic mass including frag-
mentsm/z >100 amu was small, it was ignored in the or-
ganic mass determination. Five ionization efficiency calibra-
tions were performed prior to and during the field campaign
and showed very low variation (<9 %). Detection limits for
30-s sampling duration were determined to be 0.270, 0.024,
0.014 and 0.073 µg m−3 for organics, SO−2

4 , NO−

3 and NH+

4 ,
respectively. These detection limits are within the range of
AMS detection limits reported (e.g. DeCarlo et al., 2006).

2.3 Aircraft sampling inlets and particle collection
efficiency

Trace gases were sampled through a rear-facing1/4” O.D.
Teflon tube. Ozone, SO2 and NO/NO2 were sampled through
a pressure-controlled inlet that maintained a set-point pres-
sure of∼1 atm during flight to avoid pressure variations in
these systems. The Aerolaser CO instrument did not sample
through the pressure-controlled inlet.

Particles were sampled through a forward-facing near
isokinetic stainless steel diffuser particle inlet. The inlet was
mounted on the roof of the Twin Otter toward the front of
the aircraft. Theoretical calculations taking into account the
inlet dimensions, volume flow and velocity indicated 95 %
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Table 1. Summary of Twin Otter flights showing the synoptic wind direction (based on back-trajectories analyses), an air quality descriptor
(AQ), the lake breeze type (LD = Low Deformation; MD = Medium Deformation; HD=High Deformation; details in Sills et al., 2011), and
O3 and SO2−

4 mean and maximum levels based on aircraft measurements.

Flt # Date Takeoff
Time
(LT)

Landing
Time
(LT)

Flight
Duration
(hh:mm)

Synoptic Wind
Direction

AQ/Source
Region

Lake Breeze
Type

[O3] (ppbv) [SO2−

4 ] (µg m−3 )

Mean Max Mean Max

1 23 June 8:52 11:15 02:23 Northwest Good/Local
sources

LD 32.3 39.2 0.14 0.33

2 23 June 13:30 15:57 02:27 Northwest Good/Local
sources

LD 39.9 57.7 0.34 1.89

3 23 June 17:43 18:16 00:33 Northwest Good/Local
sources

LD 40.0 47.4 0.39 0.74

4 25 June 11:01 13:24 02:23 Southwest Poor/Local
sources

LD 64.9 84.1 4.70 15.13

5 25 June 15:37 17:56 02:19 Southwest Poor/Local
sources

LD 73.0 105.5 6.92 29.07

6 25 June 19:13 20:07 00:54 Southwest Poor/Local
sources

LD 71.8 84.1 7.79 10.72

7 26 June 08:46 11:06 02:20 Southwest Poor/Long
range transport

MD 67.5 87.2 6.00 25.51

8 26 June 13:26 15:06 01:40 Southwest Poor/Long
range transport

MD 71.3 93.3 4.35 14.89

9 26 June 16:16 18:20 02:04 Southwest Poor/Long
range transport

MD 70.3 93.2 4.81 18.59

10 27 June 08:43 09:43 01:00 West Detroit outflow HD 43.3 65.8 2.18 9.73
11 27 June 11:17 13:41 02:24 West Detroit outflow HD 62.9 85.2 2.98 8.20
12 3 July 19:00 21:30 02:30 South then

north
Poor/Long
range transport

MD 66.2 102.6 2.32 11.78

13 7 July 04:35 07:17 02:42 Northwest Detroit outflow MD 45.4 79.0 0.56 1.87
14 7 July 13:44 16:20 02:36 Northwest Detroit outflow MD 63.6 87.2 0.75 3.53

15 8 July 11:36 14:14 02:38 West Detroit outflow HD 66.5 87.2 2.47 7.41
16 8 July 18:32 21:00 02:28 West Detroit outflow HD 69.8 81.0 2.36 4.65

Table 2. Summary of trace gas and particle instrumentation on the Twin Otter aircraft.

Measurement Principle of Operation Instrument Resolution (s)

Particle
composition

aerosol mass spectrometry/time
of flight detection

Aerodyne C-AMS 30

O3 UV absorption TECO 49 5

CO VUV resonance fluorescence Aerolaser 1

SO2 UV fluorescence TECO 43S 10

NO/NO2 chemiluminescence, photolysis TECO 42S 20, alternating

Particle number light scattering TSI 7610 CNC 1

Particle size
distribution
(0.120–2 µm)

light scattering PCASP (passive cavity aerosol
spectrometer probe)

1

Black carbon light absorption PSAP (particle soot absorption
photometer)

1
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transmission efficiency for PM1 through the inlet. Air was
drawn through a 0.5 inch O.D. stainless steel tube using
controlled rapid air movement (RAM) from the aircraft at
∼70 LPM. The PSAP, CNC and C-AMS subsampled from
this manifold. The residence time from the inlet tip to
the AMS, CNC, and PSAP was<1 s. Sub-micron parti-
cles (0.120–2 µm) were measured with the PCASP that was
mounted in an under-wing pod (Liu et al., 1992).

The particle collection efficiency (CE) of the C-AMS for
ambient measurements is typically determined through com-
parisons with other particle chemical measurements such as
with the Particle Into Liquid Sampler–Ion Chromatography
instrument (PILS-IC) and/or with mass estimated from in-
struments such as Scanning Mobility Particle Sizers (SMPS).
The CE is a function of the particle transmission through
the aerodynamic lens (Jayne et al., 2000; Liu et al., 2007),
the efficiency of particles being focussed by the lens and di-
rected onto the vaporizer (Quinn et al., 2006; Salcedo et al.,
2007; Huffman et al., 2005; Jayne et al., 2000), and the ex-
tent to which particles bounce off the vaporizer (Matthew et
al, 2008; Huffman et al., 2005). Many researchers have de-
termined that a CE∼0.5 for ambient particles (e.g. Dunlea
et al., 2009; Kleinman et al., 2007a; DeCarlo et al., 2008;
Drewnick et al., 2004; Allan et al., 2004). However, higher
CE values between 0.5 and 1 were found for particles dom-
inated by ammonium nitrate and for acidic particles (Quinn
et al., 2006; Kleinman et al., 2007a). During BAQSMet, the
aerosol neutralization ratio (ANR) defined as the molar ratio
of ammonium to (sulphate + nitrate) indicated that the parti-
cles were neutralized most of the time with the exception of
data taken in high concentration sulphate plumes, where the
particles had not yet been neutralized by NH3. A compari-
son of mass concentrations from the C- AMS with those esti-
mated from the PCASP indicated a CE of 0.5 for neutralized
particles (ANR∼1.0), but approached 1.0 for acidic parti-
cles (ANR<0.5). Therefore, the C-AMS data in this study
were adjusted using CE = 0.5 for neutralized particles transi-
tioning linearly to a CE = 1.0 for acidic particles. A pres-
sure controlled inlet (PCI) was used in front of the AMS to
remove variations in particle sizing and transmission due to
pressure changes in the aerodynamic lens of the AMS (Jayne
et al., 2000; Hayden et al., 2008; Bahreini et al., 2008). In
the PCI, a low pressure region, between a 200 µm orifice up-
stream of the AMS inlet and a 130 µm orifice in the AMS in-
let (replacing the standard 100 µm orifice) was maintained at
a set point of 470 torr. This low pressure region was variably
pumped so that the inlet pressure of the AMS was maintained
at 1.3 torr. Under this configuration, no corrections to particle
sizing were required for altitudes up to 3000 m a.g.l. during
this study. Transmission efficiency experiments performed
during and after the study indicated that particles were trans-
mitted through the PCI with 100 % efficiency.

2.4 Model description

The Unified Regional Air-quality Modelling System (AU-
RAMS) model was used to support the BAQSMet field study.
Details of the model are provided in Makar et al. (2010), but a
brief description is presented here. The model has three main
components: (1) a prognostic meteorological model GEM
(Global Environmental Multiscale model: Côté et al., 1998);
(2) an emissions processing system, (Sparse Matrix Opera-
tor Kernel Emissions: Houyoux et al., 2000; CEP, 2003);
and (3) an off-line regional chemical transport model, the
AURAMS Chemical Transport Model (CTM: cf. Cho et al.,
2009; Makar et al., 2009; Gong et al., 2006). The AURAMS
model was run with three nested grids at 42, 15 and 2.5 km
horizontal resolution, driven by 15 km (for the two courser
resolutions) and 2.5 km GEM simulations. The driving me-
teorology simulations were created at the coarser (15 km)
resolution from analyses updated every 6 h, with 12 h sim-
ulations having 6 h of discarded spinup, the final 6 h being
stitched together for a continuous set of meteorological in-
puts for AURAMS. The driving meteorology was stored in
15 min timesteps for the coarser AURAMS simulations, and
2 min timesteps for the 2.5 km resolution simulation. Makar
et al. (2010) provide a detailed evaluation of the model per-
formance showing comparisons to observations with the air-
craft and identified the presence of very local-scale features.
Model output at 2.5 km horizontal resolution is used in con-
junction with the measurements to evaluate pollutant sources
and transport into the study region, and provides a more com-
prehensive analysis of pollutant behaviour and processing
during a lake-breeze event.

In addition to the AURAMS simulations, high resolution
forward and backward trajectories were calculated using the
Canadian Meteorological Centre (CMC) trajectory model
(D’Amours et al., 2001). This model made use of the 2.5 km
resolution, 2 min timestep GEM wind fields that were also
used to drive AURAMS at its highest resolution. Back tra-
jectory endpoints and forward trajectory starting points were
chosen to help elucidate the flow patterns associated with the
driving meteorology, as will be discussed in more detail.

3 Results and discussion

A brief summary of meteorological sampling conditions on
aircraft flight days is provided in Table 1. A detailed anal-
ysis of the meteorology and lake breezes observed through-
out the study has been described elsewhere (e.g. OME, 2008;
Sills et al., 2011; Slowik et al., 2011). The synoptic wind
flow was determined from the high resolution back trajecto-
ries computed for air parcels arriving into the study region at
500 m a.g.l. Large scale synoptic flow varied considerably,
and lake breezes were identified on each day (Sills et al.,
2011). The identification and classification of lake breezes in
this study was based on meteorological data collected from
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several different sources including surface measurements,
satellite observations of clouds, and radar data. The extent
to which the lake-breeze circulations were deformed by the
synoptic wind was used to classify lake breezes as Low De-
formation (LD), Moderate Deformation (MD) or High De-
formation (HD) (Sills et al., 2011). LD lake-breeze circula-
tions are most similar to the classic textbook depiction, with
the light synoptic wind regime allowing lake-breeze fronts to
develop around the perimeter of the lake and air parcels to
move along quasi-closed circuits. On the opposite end of the
spectrum are HD lake-breeze circulations in strong synoptic
wind regimes where lake-breeze fronts form only along seg-
ments of shoreline quasi-parallel to the synoptic wind and the
influence of the lake-breeze circulation on the movement of
air parcels is masked.

The highest O3 (max = 105 ppbv, mean = 73.0 ppbv) and
SO2−

4 (max = 29.1 µg m−3, mean=29.07 µg m−3) levels were
observed from the aircraft on 25 June under light to mod-
erate southwesterly synoptic flow that contributed to a poor
air quality episode between 24–27 June. On 25 June, lake
breezes developed in association with each of the lakes in the
region and aircraft flights (Flights 4 and 5) were designed to
sample across an entire LSC lake-breeze circulation at multi-
ple altitudes. Lake-breeze fronts are shown as magenta lines
in Fig. 1. The light gradient flow on this day was conducive
to the formation of lake-breeze fronts around LSC and along
the edge of LE, and thus, classified as a LD (or a “classic”)
circulation. LD circulations occurred several times through-
out the study period (Sills et al., 2011). In this paper, a com-
plete lake-breeze circulation on 25 June is analyzed. Hourly
surface mesoscale analyses (see Sills et al., 2011) are used
as a guide to identify signatures of lake-breeze fronts in the
aircraft meteorological data and compared with spatial and
vertical changes in pollutant concentrations. Cross-sectional
plots constructed from the aircraft data are analyzed in con-
junction with model simulations to interpret pollutant trans-
port and processing within the lake-breeze circulations. Con-
ceptual models of the lake-breeze circulation are proposed
followed by estimates of the lake breeze impacts on air mass
processing of PM.

3.1 Air mass history

As shown in Fig. 1, the study region is impacted by local, an-
thropogenic emissions from urban centres including Sarnia
to the north, Detroit/Windsor in the west/northwest, Toledo
to the southwest and Cleveland on the south shore of Lake
Erie (LE). Emissions of SO2 and NOx from power generating
plants and oil/chemical refining plants in the region include
the St. Clair (USA) and Lambton (Canada) stations (north
of Lake St. Clair [LSC]), Monroe (western shore of LE), and
Avon Lake and Cleveland Electric (south shore of LE). Major
SO2 point sources (SO2 emissions>10 000 tons/year, United
States Environmental Protection Agency (EPA,http://epa.
gov/airmarkets); Canadian National Pollutant Release Inven-

tory (NPRI,www.ec.gc.ca/inrp-npri/default.asp?lan=en)) are
shown as red circles in Fig. 1. The region is further affected
by local mobile and agricultural precursor emissions, ship
emissions along the St. Lawrence Seaway from LE and along
the Detroit River through to Detroit, and by longer-range
transport of pollutants from midwestern US states.

On 25 June 2007, a weak pressure ridge extended from
the New England states in the United States across the Great
Lakes. The synoptic flow was light from the southwest. In
Fig. 2, high resolution back trajectories (D’Amours et al.,
2001) are shown arriving into the study region during the
Flight 4 time period (11:01–13:24 LT). The arrival points
correspond to aircraft locations, times and altitudes selected
along the Flight 4 track. Trajectories are coloured as a func-
tion of altitude. Figure 2 indicates that the predominant flow
on 25 June was from the south to west-southwest with air
masses having travelled over urban areas and power plants at
the west end of LE. Figure 2 also shows that the back tra-
jectories are sensitive to perturbations in air mass flow due
to lake breezes. For example, over the Harrow site, the up-
wind flow was westerly, with transport of emissions from the
west end of Lake Erie, but after the onset of the lake breezes
(11:00 LT), the back trajectories switched to southerly closer
to the site. This is consistent with surface measurements at
Harrow that showed a change in wind direction from west-
erly to southerly at this time. The back trajectory at the south
end of LSC also shows a change in direction from westerly
to northeasterly in response to the LSC onshore lake breeze.

3.2 Lake-breeze identification

Mesoscale analyses for each hour (Sills et al., 2011) and
the inland progression of the lake breezes from 12:00 to
17:00 LT pm on 25 June 2007 is presented in Fig. 1. The po-
sitions of the lake-breeze fronts are shown as magenta lines.
Lake breezes on this day were first detected at 11:00 LT and
persisted until 21:00 LT. At 12:00 LT (Fig. 1a), lake-breeze
fronts were detected along the south and north shores of LE,
as well as almost all the way around LSC. The north shore
LE front progressed northward toward LSC until the LE and
LSC fronts merged along the south shore of LSC at 15:00 LT
(Fig. 1d). The merged fronts then remained quasi-stationary
until after 17:00 LT.

On 25 June 2007, two of the three aircraft flights sampled
across the LSC lake-breeze circulation. Aircraft tracks for
Flights 4 and 5 are shown in Fig. 1a and f respectively, for the
corresponding time interval in which they occurred. Flight 4
included horizontal transects between the north shore of LE
(near the Harrow supersite) and near Lambton (north of the
Sombra site) at 1560 m a.g.l. (free troposphere), 800 m a.g.l.
and 300 m a.g.l. Flight 5 included a similar flight pattern with
multiple transects at altitudes of 2600 m a.g.l., 1560 m a.g.l.,
800 m a.g.l., 460 m a.g.l. and 300 m a.g.l. At the beginning of
Flight 5, the aircraft performed a vertical spiral over the LSC
buoy extending from 200–2600 m a.g.l. Using the analyzed
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Fig. 2. High resolution back trajectories for 25 June arriving at
selected locations and times along the Flight 4 aircraft track. Arrival
times indicated as hh:mm. Trajectories are coloured by altitude (m
a.g.l.). Black circles along trajectories every 4 h . SO2 point sources
shown as red circles (SO2 >10 000 tons/year).

surface lake-breeze front locations as a guide, the aircraft
meteorological and chemical data were examined to iden-
tify signatures due to lake breezes. On 23 June, low defor-
mation lake breezes also occurred with even stronger lake-
breeze convergence zones (Sills et al., 2011). Although, pol-
lutant concentrations were low during this period of north-
westerly synoptic flow (Table 2), aircraft data on this day
were similarly analyzed for lake-breeze boundaries. It was
found that on 23 June sharp changes in the dewpoint temper-
ature and sustained upward gust velocities were good indica-
tors of lake-breeze front crossings. This provided confidence
that using these parameters to identify lake-breeze fronts on
25 June was applicable. This approach was also consistent
with an independent detailed analysis of all flight data.

3.3 Aircraft observations of trace gases, particles and
meteorology

The wind direction, dewpoint temperature, vertical gust ve-
locity, CO, SO2, particulate SO2−

4 , and particulate organics
(OA) are shown for Flights 4 and 5 in Figs. 3 and 4, respec-
tively. The bottom axis is the distance between Lake Erie
(LE) and Lambton (just past Sombra) (see Fig. 2 for loca-
tions), the blue horizontal bar represents LSC. Note that in
order to compare one transect to the next, the data are plotted
so that geographically LE is always on the left and Lambton
is always on the right of the x-axis; this means then that the
time (hh:mm) will either go from left to right or right to left
depending on the direction of the aircraft transect. The grey
arrow indicates the direction of flight. The blue and green
arrows indicate the position of the lake-breeze fronts as iden-
tified from the aircraft data. The light blue boxes are selected
time slices that are discussed in Sect. 3.7. Although the fronts
above the surface were likely not in the same horizontal lo-
cation as at the surface because of sloped frontal zones, the

difference was likely small, i.e.<1 km. Thus, the mesoscale
surface analyses were used to guide the front locations in
the aircraft data. An additional complication considered in
the analysis was the movement of the fronts over time i.e.
between the 800 and 300 m a.g.l. aircraft passes in Flight 4,
the LE front migrated northward approximately 10 km. In
Flight 4, the 1560 m a.g.l. track was in the free troposphere
above an estimated 1200 m a.g.l. synoptic inversion height
(Fig. 3a1, a2). CO mixing ratios were< 140 ppbv and SO2
was below detectable levels. Particle mass concentrations of
OA and SO2−

4 ranged between 0.5–3 µg m−3. These observa-
tions are indicative of homogeneous regional background air.
In the 800 m a.g.l. transect, travelling from LE to Lambton
(Fig. 3b1), the LE lake-breeze front can be clearly identi-
fied by a 2◦C increase in the dewpoint from 18◦C to 20◦C
(blue arrow at 11:56 LT), which coincides with the position
of the lake-breeze front based on analyses of surface mete-
orological data. The increase in the dewpoint is due to up-
drafts at the front bringing up moister air from the surface.
There was also a sudden increase in the aircraft vertical gusts
(Fig. 3b1) and a visible line of clouds. At this altitude the
aircraft was below the synoptic inversion, but above a shal-
lower LE lake-breeze inflow layer (on the lake side of the
front), and thus, the relatively low chemical levels (Fig. 3b2)
reflect “residual” air or remnants of the previous day’s con-
vective boundary layer (Sills et al., 2011). The aircraft then
crossed the LE front and measurements showed an increase
in primary and secondary pollutants consistent with a pol-
luted convective boundary layer. Elevated pollutant concen-
trations were observed over land from the LE lake-breeze
front to the south shore of LSC. Guided by the location of
the surface lake-breeze front, finding evidence of the pres-
ence of the south shore LSC lake-breeze front beneath the
800 m a.g.l. flight level was more difficult based on meteo-
rology alone. Since CO is a relatively long-lived species in
the troposphere, these measurements were examined for per-
turbations related to lake-breeze boundaries. A brief, sharp
change in CO of 24 ppbv (green solid arrow at 12:01 LT),
was observed (Fig. 3b2) suggesting the influence of the lake-
breeze front. This was coincident with an increase in the ver-
tical gusts (Fig. 3b1). On the LSC side of the LSC front, pol-
lutants remained elevated followed by a sharp decrease over
the south shore of LSC. A LSC front north of LSC was not
detectable in the aircraft data and there were no discernible
features suggesting the presence of a surface-based front.

At Lambton, the aircraft turned around and travelled
southward toward Harrow at 300 m a.g.l. As the aircraft
passed over the south shore of LSC at 12:35 LT, the wind di-
rection changed from southerly to northeasterly (Fig. 3c1).
A northerly wind direction at this time was also mea-
sured at the LSC buoy (42.425◦ N, −82.558◦ W), Woodslee
(42.212◦ N, −82.748◦ W) and Lighthouse Cove (42.292◦ N,
−82.522◦ W) mesonet stations (see Fig. 1 for site locations).
This is due to the onshore LSC lake breeze and demonstrates
that the aircraft was successful in penetrating and sampling
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LSCCBL AFLE

Fig. 3. Flight 4 wind direction, dewpoint, vertical gust velocity, SO2, SO2−

4 , OA, and CO measured from the aircraft along tracks at a)
1560 m a.g.l., b) 800 m a.g.l., and c) 300 m a.g.l. over LSC. Blue bar along horizontal axis = LSC; coloured arrows indicate lake breeze fronts
(blue = LE, green = LSC). Data are plotted so that LE is on the left and Lambton is on the right of the x-axis and the direction of the aircraft
transect is depicted as a grey arrow. Light blue boxes are selected time slices discussed in Sect. 3.7.

in the shallow lake-breeze inflow layer at 300 m a.g.l. High-
est pollutant concentrations were between LE and just over
the south shore of LSC which were generally consistent with
levels at 800 m a.g.l. suggesting the development of a well-
mixed convective boundary layer (CBL) (Fig. 3c2). Chan et
al. (2011) also reported high surface concentrations of CO,
SO2 and SO2−

4 near this time at the LSC shoreline to the
northeast of the flight path. Concentrations were also ob-
served to decrease sharply over the south end of LSC. Sharp
changes in the dewpoint of∼1◦C signified the presence of
the LE (12:39 LT) and LSC (12:37 LT) lake-breeze fronts, as
supported by the surface mesoanalyses. The LSC front was
also identified in the aircraft data by the onshore wind direc-
tion. Between Harrow and the LE lake-breeze front, plumes
of SO2 and SO2−

4 were observed having been advected from
over LE.

During the time between Flight 4 and Flight 5,∼4 h ,
the LE lake-breeze front pushed north∼35 km and merged
with the LSC front along the south shore of LSC by 15:00
(Fig. 1d). As a result, the CBL air between LE and LSC
was replaced with lake air leaving the study region be-
ing largely influenced by lake-breeze circulations and lake-
modified air masses. The first two transects in Flight 5
at 2600 m a.g.l. and 1560 m a.g.l. were in free tropospheric

air. Figure 4a1,a2 shows the measurements from the tran-
sect at 1560 m a.g.l. indicating that the predominant flow was
still from the southwest. As in Flight 4, low pollutant con-
centrations at the higher altitudes are believed to reflect re-
gional background air. The measurements in the remaining
transects (Fig. 4b–d) reflect residual air influenced or mod-
ified by lake-breeze return flow. Multiple, positive peaks in
the updraft velocity at the three altitudes within the resid-
ual layer (16:36 LT (800 m a.g.l.), 16:43 LT (460 m a.g.l.),
17:20 LT (300 m a.g.l.)) are interpreted as updrafts along the
merged LE/LSC lake-breeze front. Pollutant concentrations
in this later afternoon flight were generally less variable com-
pared to Flight 4 in the region between LE and LSC, but
elevated pollutant levels were observed north of LSC, pos-
sibly originating from the CBL between LE and LSC, or
pollutants from over LSC earlier that were advected north-
ward and then mixed upward. North of LSC, SO2−

4 was
>15 µg m−3 and CO, in particular, was variable ranging be-
tween 180–390 ppbv indicating a non-homogenous air mass.
As the aircraft went further north just past Sombra, the mea-
surements were likely influenced by power plant emissions
from the Lambton area that were advected northeast in the
southwesterly flow.
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Fig. 4. Flight 5 wind direction, dewpoint, vertical gust velocity, SO2, SO2−

4 , OA, and CO measured from the aircraft along tracks at(a)
1560 m a.g.l.,(b) 800 m a.g.l.,(c) 460 m a.g.l., and(d) 300 m a.g.l. over LSC. Blue bar along horizontal axis = LSC; coloured arrow indicate
lake breeze front (magenta = LE/LSC merged front). Horizontal axis is fixed to geographical length of the longest transect; start/end times
refer to data. Data are plotted as in Fig. 3. Light blue boxes are selected time slices discussed in Sect. 3.7.

3.4 Distribution and evolution of trace gases and
particles

Data from the aircraft transects, averaged to 10 s, and mea-
surements from eight surface sites were interpolated using an
ordinary linear kriging method (GS+ ver. 5.1.1, Gamma De-
sign Software) to produce cross-sectional plots of CO, SO2
and vertical winds (Figs. 5, 6). Overlaid on the plots are
the interpolated plan-view horizontal wind directions (along
with the corresponding orientation of the north arrow) and
the size of the arrows represents the magnitude of the wind
speed. The vertical wind component is not included in the
wind direction, but is shown separately in the third panel of
the figures to highlight the measured vertical motions. It was
assumed that physical and chemical processes were suffi-
ciently slow to build 2D cross sections from the aircraft tran-

sects. Since there was some northward movement of the LE
front during Flight 4, the front locations are marked on each
transect. CO and SO2 were chosen because they are both
good tracers for different emission sources, both had fast in-
strument time responses (Table 2) and due to its 1 second
time-response, CO appeared to be a good chemical tracer for
lake-breeze motions. The surface sites chosen for this anal-
ysis were within 12.4 km horizontal distance of the Flight 4
and 5 mean flight path and included Harrow (3.3 km), Cottam
(1.3 km), Essex (5.7 km), Woodslee (0 km), Lighthouse Cove
(12.4 km), the LSC Buoy (3.8 km), Bear Creek (11.4 km) and
Sombra (0.8 km) (Fig. 1a, f). The sites are indicated as black
circles at the bottom of Figs. 5 and 6.

In Fig. 5, the LE lake-breeze front separates LE air and
polluted CBL air. In Fig. 5c, a return flow associated with
this front is not present, but an area of reduced wind speed
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Fig. 5. Flight 4 cross-sections for(a) CO, (b) SO2 and (c) verti-
cal wind gusts along the axis of the transect. Horizontal wind di-
rection overlaid (vertical wind component not included) and arrow
size = wind speed magnitude. Land = green bar; lake = blue bar. Ar-
rows indicate lake breeze fronts (blue = LE, green = LSC). Artefacts
due to lack of data have been blacked out.

(red circle) suggests that it may have been masked by the
larger synoptic flow with a resulting net flow along the axis
of the transect (southwesterly). Updrafts associated with
convective motion were observed in the CBL, and a signif-
icant downdraft was measured on the LSC side of the LSC
lake-breeze front. The synoptic inversion is estimated to be
∼1200 m a.g.l. In Fig. 5, CO and SO2 were observed to
be well mixed vertically within the CBL consistent with in-
creased convection over the land surface. Transport of emis-
sions from Detroit/Windsor and western LE in the southwest-
erly flow likely contributed to the elevated pollutant concen-
trations observed over land between LE and LSC. A horizon-
tal gradient in CO mixing ratios was observed with highest
levels further north compared to SO2 mixing ratios which
were elevated in the entire region between LE and LSC. This
is consistent with the back trajectories (Fig. 2) that show air
masses that arrived near Harrow had crossed over SO2 emis-
sion sources at the west end of LE, whereas other trajecto-
ries arriving at points further north of Harrow also crossed
over the Detroit/Windsor urban area. At the Harrow super-
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Fig. 6. Flight 5 cross-sections for(a) CO, (b) SO2 and (c) verti-
cal wind gusts along the axis of the transect. Horizontal wind di-
rection overlaid (vertical wind component not included) and arrow
size = wind speed magnitude. Land=green bar; lake=blue bar. Ma-
genta arrows indicate LE/LSC merged lake breeze front. Artefacts
due to lack of data have been blacked out.

site, SO2 was observed to be “plume-like”; elevated SO2
was observed between 10:00-11:20 LT with mixing ratios
reaching>100 ppb. Although lake-breeze circulations were
present around LE with onshore flow near Toledo, in order
for plumes of SO2 to travel northward, they were either lofted
over top of the lake-breeze inflow and/or were in transit prior
to the formation of the lake breezes. Based on aircraft mea-
surements, the spatial extent of the SO2 plumes is estimated
to range between 7.0–13.5 km horizontally; this indicates
that the plumes were remarkably intact suggesting minimal
dispersion, and thus mostly transported over the lake. Lyons
and Pease (1973) found that plumes from power plants trav-
elled long distances over Lake Michigan with little dilution
and attributed this to the absence of convective mixing over
the lakes. It might be expected that if the plumes had trav-
elled over top of the lake-breeze inflow, they would have un-
dergone some mixing and dilution. The back trajectories in-
dicate a 4–6 h transit time from the west end of LE to arrive
near Harrow (Fig. 2) and since this is prior to the onset of
the lake breezes, the likely explanation for the SO2 was that
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the plumes were already in transit and not affected by local
lake breeze mixing at the western end of LE. In addition,
the observations from the later afternoon flight do not show
an influence from SO2 emissions (except north of LSC from
other sources, Figs. 4, 6) suggesting that the lake-breeze on-
shore flow near Toledo, which was still present at this time
(Fig. 1), impedes transport to the study region even though
the large scale flow continues to be southwesterly.

Elevated mixing ratios of CO and SO2 were also observed
on the LSC side of the LSC lake-breeze front (Figs. 3, 5). The
sharp decrease of pollutant levels at the LSC shore points to-
ward important differences between lake and land surfaces
and influences from the lake-breeze circulation. From Fig. 5,
it is hypothesized that pollutants in the CBL were lofted up-
ward at the LSC lake-breeze front, transported northward in
the synoptic flow, transported in the downdraft on the north
side the front, and then confined by the LSC onshore flow
along the south shore of LSC. This is plausible since some
of the CBL air closest to the LSC front would be expected
to be advected in the upward vertical motion at the frontal
convergence zone, and the downdraft that was measured be-
hind the front (Fig. 5c) would draw air from above. This is
hypothesized to result in the transport, at least partially, of air
from the CBL to behind the LSC front within the lake-breeze
circulation. The pollutants are then confined along the LSC
shoreline by the onshore lake breeze. Another possible circu-
lation pattern could be that pollutants already present behind
the LSC lake-breeze front were lofted upward at the front,
transported northward, caught in the downdraft and confined
along the south shore of LSC. Pollutants from the CBL, also
appear to have been transported northward and observed dur-
ing the later Flight 5 time period discussed below.

Figure 3b2, c2 shows that CO and SO2 behind the LSC
front are confined to lower layers and not mixed through the
same depth as the CBL. This could be because the devel-
opment of a thermal internal boundary layer (TIBL) behind
the lake-breeze front growing vertically with inland distance
would not get as high as the fully developed CBL in the short
distance between the lake shore and the front. This would
result in pollutants within the TIBL being mixed over a shal-
lower layer, and thus less diluted, compared with the CBL.
The lake-breeze effect of confining pollutants is also evident
at the surface. During the time of Flight 4, significant levels
of SO2 (>50 ppb) and SO2−

4 (>35 µg m−3) were observed
by the CRUISER mobile laboratory from 12:40–13:10 LT at
Mitchell’s Bay, located on the shoreline at the eastern edge of
LSC (see Fig. 1) (Chan et al., 2011). Also along the eastern
shoreline, at Bear Creek, SO2 was 15–20 ppb from 11:00–
12:30 LT. There was no evidence of any significant pollu-
tant build up north of LSC, which could be because there
was less impact from sources along the back trajectory path
(Fig. 2) and/or the weaker offshore lake-breeze circulation
compared to the south and east sides of the lake. Mecha-
nisms to transport pollutants within a lake-breeze circulation
have been identified in previous studies (Lyons, 1972; Lyons

and Cole, 1976; Sills et al., 1998) and are known to be ef-
fective in confining pollutants to coastal regions (Simpson,
1994; Lu and Turco, 1995). Dynamics at the lake-breeze
front have been studied to understand effects on pollutants.
Hastie et al. (1999) noted that the arrival of the lake breeze
coincided with maximum trace gas concentrations with rapid
decreases behind the front suggesting that vertical mixing
generated by the front could result in entrainment of cleaner
air from above the inflow layer. Kitada and Kitagawa (1990)
showed that the vertical profile of pollutants was strongly im-
pacted by the micro-scale features of the sea breeze such as
the transport of pollutants in the downdraft behind the front
and suggested that the most aged air mass would be found in
the upper part of the circulation behind the front. Since lake
and land breezes are quasi-closed circulations and pollutants
emitted into them can be recirculated (Lyons, 1972), it might
be expected that air in the downdraft of the LSC lake-breeze
front would exhibit characteristics of a more aged air mass
relative to the air in the CBL. The impact of lake breezes on
air mass processing is discussed further in Sect. 3.7.

In Fig. 6, a signature of the merged LE/LSC front is
not apparent, but surface analyses show that the front was
still present just offshore at 17:00 LT and by 19:00 LT the
LSC lake breeze moved back onshore, with a shift to on-
shore winds and a rapid increase in dewpoint. The height
of the synoptic inversion, determined from a vertical pro-
file performed over the LSC buoy (15:47–15:55 LT), was
1300 m a.g.l. It is noted that strong east-southeast winds were
measured above the merged front at the 2600 m a.g.l. level
which is consistent with 08:00 LT and 20:00 LT DTX sound-
ings showing winds with an easterly component between 2
and 3 km. In Flight 5, pollutant concentrations, compared
to Flight 4, were more homogeneous across the flight tran-
sect. In Fig. 6, with the exception of the north end of the
flight track near Lambton, CO and SO2 levels were lower
and less variable compared to Flight 4. The region is largely
enveloped in lake-modified air and pollutants in the CBL ob-
served in Flight 4 appear to have been displaced by the merg-
ing LE/LSC lake-breeze fronts. Thus, by 16:00 LT, only low
primary pollutant concentrations remained between LE and
LSC. The region having been fed by regional lake air from
the south and influenced by lake-breeze circulations is ex-
pected to exhibit characteristics of a more aged air mass and
is discussed further in Sect. 3.7. Pollutants from the CBL
between LE and LSC in Flight 4 appear to have been lofted
at the LSC front and carried northward by the southerly flow
resulting in increased concentrations of pollutants northeast
of LSC. Pollutants would be transported to the surface by
land-based convection.

3.5 Analysis of model-generated lake-breeze circulation

A more comprehensive view of the lake-breeze circulations
is possible through analysis of model data. In Fig. 7, model-
predicted SO2 mixing ratios overlaid with wind direction
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Fig. 7. Model-predicted SO2 mixing ratios overlaid with wind di-
rection at(a) 285 m a.g.l. and(a) 815 m a.g.l at 12:00 LT. Solid ma-
genta line indicates surface convergence at the LE and LSC lake
breeze fronts and dashed magenta line indicates divergence flow
aloft. Dashed red line is the aircraft transect.

are shown at 12:00 LT for altitudes of (a) 285 m a.g.l. and
(b) 815 m a.g.l. The model altitudes are the closest avail-
able to the 300 and 800 m a.g.l. aircraft transects, and the
model simulation time corresponds to the middle of Flight 4.
After 16:00 LT, the model predicts winds shifting to come
from the southeast, while the observations indicate a con-
tinuation of southwesterly flow (Figs. 4 and 6). Figure 7a
shows two zones of convergence (solid magenta lines) cor-
responding to the model’s predicted locations of the LE and
LSC fronts across the Flight 4 aircraft transect (red dashed
line). Figure 7b shows a region of divergence (dashed ma-
genta lines) along the north shore of LE in response to the
convergence at lower levels. The modelled wind direction
along the aircraft transect is quite similar to the measured
winds shown in Fig. 3b1 and c1 for the corresponding al-
titudes. This provides confidence that the model is correctly
simulating both the synoptic flow and lake-breeze circulation
at this time. Figure 7 shows that high concentrations of SO2
are located over LE (and over the Lambton area to the north-
east of LSC); these pollutants originated from sources on the
west end of the lake and were advected into the study region
by 12:00 LT, the Flight 4 time period.

Fig. 8. Vertical cross section for model-predicted(a) CO and(b)
SO2 and (c) SO2−

4 at 12:00 LT along the axis of the aircraft tran-
sect (dashed red line in Fig. 7). Wind direction overlaid is the 3-D
wind field in the plane of the cross-section and, thus can be used
to indicate horizontal and vertical motion in the plane of the cross-
section. Red arrow in panel(a) represents the LSC lake-breeze mo-
tions. Land = green bar; lake = blue bar. Coloured arrows indicate
lake breeze fronts (blue = LE, green = LSC).

In Fig. 8, vertical cross-sections of model-predicted (a)
CO, (b) SO2 and (c) SO2−

4 are shown along the aircraft flight
track at 12:00 LT (red dashed line in Fig. 7) corresponding to
the Flight 4 time period. The wind direction overlaid is the 3-
D wind field in the plane of the cross-section and, thus can be
used to indicate horizontal and vertical motion in the plane
of the cross-section. Consistent with the observations, the
wind vectors show convergence zones marking the LE (blue
arrow) and LSC lake-breeze (green arrow) fronts at lower
altitudes (<∼600 m a.g.l.). The model results suggest a cir-
culation where air just south of the LSC lake-breeze front
(in the CBL) moves upwards and northward over LSC, gets
caught in the downdraft behind the front, and moves ashore
in the LSC lake breeze; the red arrow in Fig. 8a depicts
this motion in the plane of the flight path. The model has
a similar distribution in pollutants along the flight track as in
Figs. 3 and 5. High pollutant levels are predicted to be south
of LSC with CO and SO2 well-mixed up to 1500 m a.g.l.,
consistent with the observations. However, the model shows
elevated CO mixing ratios in a narrow region at the LE lake-
breeze front. Also, the model has high levels of CO, SO2
and SO2−

4 at altitudes above 600 m a.g.l. over LSC, absent
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Fig. 9. Forward air parcel trajectory overlaid on the 285 m a.g.l.
model wind fields at(a) 12:00 LT and(b) 13:00 LT.

in the observations. In the CBL between the LE and LSC
fronts, CO mixing ratios of 160–170 ppbv are lower than the
observations (180–340 ppbv). At the LSC front the model
simulates a sharp decrease in all three species on the lake
side of the LSC front, whereas the observations show higher
values extending closer to the shore. In the circulation be-
hind the LSC front, the model shows the downward transport
of pollutants from aloft over the south end of LSC and the
LSC lake-breeze appears to move the pollutants along the
south shore of LSC consistent with the interpretation of the
measurements.

In an effort to further investigate the behaviour of the LSC
lake-breeze circulation and the possible connection between
air in the CBL and air behind the LSC front, a number of
forward trajectories derived from the same GEM meteoro-
logical data used in the air quality simulations, were com-
puted. In Fig. 9, a forward air parcel trajectory is shown
overlaid on the 285 m a.g.l. model wind fields at (a) 12:00 LT
and (b) 13:00 LT. Although, the model predicts the LE and
LSC fronts merging earlier than shown by the observations,
the trajectory shows that as the LE and LSC fronts begin
to merge, the air parcel drops in altitude, then increases to
∼1000 m a.g.l., and travels northward a little ways over LSC.
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Fig. 10. Conceptual models of the flow in the vicinity of a
lake-breeze circulation for(a) Flight 4 and(b) Flight 5 based on
the interpretation of aircraft, model and trajectory data. Black
straight arrows=synoptic flow, black, squiggly arrow = convective
boundary layer motion, dashed, dark grey horizontal arrows = flight
path/direction, dashed, solid grey arrows=lake-breeze motion, light
grey arrow = slower flow due to effects from LE return flow,
H = Harrow, L = Lambton.

The air parcel then drops close to the surface in the down-
draft behind the LSC front and moves onshore in the LSC
lake breeze in a helical pattern. Helical trajectories in lake-
breeze circulations have been previously reported (Lyons and
Olsson, 1973; Lyons and Cole, 1976; Lyons et al., 1995). Al-
though not a common pathway, the trajectory shows that air
in the CBL at 12:00 LT is connected to the air mass behind
the LSC front via a helical circulation that completes a circuit
in 4± 1 h.

3.6 Conceptual models of the lake-breeze circulations

Conceptual models of the flow in the vicinity of the lake-
breeze circulations on 25 June for Flights 4 and 5 are pro-
posed in Fig. 10. The models are based on an integration of
the aircraft, model and trajectory data previously discussed.
The aircraft flight path is illustrated as grey dashed arrows
showing the altitude and direction of flight; the black arrows
indicate the large scale movement and the grey arrows show
the lake-breeze motions. In Fig. 10a (Flight 4), the CBL con-
taining a mix of emissions from various sources across LE
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and Detroit/Windsor is bounded by the LE and LSC lake-
breeze fronts over land. The black, squiggly arrow in the
CBL depicts the observed convection motion. Regional air
containing SO2 and SO2−

4 from source areas southwest of
LE are transported into the region with the LE lake-breeze
front acting as a boundary between LE and CBL air. The
CBL contains air composed of a mix of pollutants from the
Detroit/Windsor urban area, as well as sources at the west
end of LE. The aircraft data clearly shows upward verti-
cal motion at the LE front where air is advected and trans-
ported northward in the synoptic flow. The dashed grey ar-
row (Fig. 10a) represents the region of reduced wind speeds
associated with effects from the LE return flow as previously
discussed. Model simulations indicate transport of pollutants
from the CBL and Detroit/Windsor area to over LSC that are,
at least partially, caught in a downdraft over the south end of
LSC. A downdraft was observed in the aircraft data behind
the LSC lake-breeze front and both observations and model
data show that pollutants were advected at low altitudes (<

300 m a.g.l.) in the LSC inflow toward the south shore of
LSC. Model simulations show that pollutants are lofted up-
wards at the LSC front and returned back over LSC, along
the LSC convergence zone toward Detroit/Windsor. The tra-
jectory in Fig. 9 indicates that some of the CBL air can be
entrained into the LSC lake-breeze system through a heli-
cal circulation pattern. In Fig. 10b (Flight 5), much of the
heterogeneity observed during Flight 4 has disappeared and
the region is more homogeneous in pollutant concentrations
with the exception of high mixing ratios north of LSC. The
available observations and model results indicate that pollu-
tants in the CBL in Flight 4 were continually lofted at the
LE and LSC fronts while the two fronts gradually merged to-
gether by Flight 5, and either caught in the LSC lake-breeze
circulation or transported northward in the synoptic flow and
brought downward through convective mixing north of the
lake.

Figure 11 shows some of the main features of the Flight 4
lake-breeze circulations in perspective view: the surface po-
sition of the lake-breeze fronts are shown as magenta lines,
and the circulation flows are shown as arrows coloured ac-
cording to altitude. Note that in order to demonstrate the
lake-breeze flows, the vertical dimension of the arrows, rel-
ative to the horizontal dimension, has been greatly exagger-
ated – in reality, these circulations occur within a very shal-
low vertical layer of the troposphere. Synoptic flow is from
the southwest and below 800 m a.g.l., the lake-breeze circu-
lation creates two regions of uplift at the LE and LSC lake-
breeze fronts. There is a subsidence (downdraft) region over
the southern and eastern end of LSC with onshore flow asso-
ciated with the LSC lake-breeze front at<300 m a.g.l. For-
ward trajectories suggest a helical recirculation moving west
along the LSC front (not illustrated). By Flight 5, the LE and
LSC fronts have merged together.

Fig. 11. Flight 4 perspective view. Surface position of lake-breeze
fronts shown as magenta lines and the lake-breeze motions shown
as arrows coloured according to altitude.
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Fig. 12. Correlation of OA/1CO with SO2−
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4 )×100
across all air mass types for Flight 4 and 5. Linear regression line
fitted to Flight 4 data. The error bars are the standard deviations for
each point.

3.7 Impacts of the lake breezes on air mass processing

Increases in the OA/1CO ratio are considered to be indica-
tive of photochemical processes forming secondary organic
aerosol (SOA) (DeCarlo et al., 2008, 2010; Kleinman et al.,
2008), and thus can be used as a proxy for SOA forma-
tion. Similarly, changes in the ratio SO2−

4 /(SO2 + SO2−

4 ) in-
dicate different degrees of SO2 oxidation in the atmosphere
(Hennigan et al., 2006; Quinn et al., 2005). Assuming no
depositional losses, the dominant process affecting the ra-
tios are those contributing to the chemical evolution of the
aerosol. Figure 12 shows the relationship between OA/1CO
and SO2−

4 /(SO2 + SO2−

4 ). Each point represents an average
of an air mass type which are defined below. OA is ratioed to
1CO to account for mixing and dilution;1CO is determined
as (CO – CObackground), where CObackgroundfor each flight
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was taken from an average of CO above the boundary layer
and/or during periods where the aircraft was minimally in-
fluenced from anthropogenic emissions. Both OA and SO2−

4
are secondary aerosols resulting from concurrent chemical
processing in an air parcel, and as such they are expected to
be related in air masses on regional scales (i.e., at locations at
least a certain distance downwind (∼>100 km) of the main
locations of their precursor emissions). However, the relative
magnitudes of OA and SO2−

4 formation depend on the mix-
ture and concentrations of SO2 and precursor hydrocarbons.
Figure 12 shows that the relationship between OA/1CO and
SO2−

4 /(SO2 + SO2−

4 ) × 100 for Flight 5 is confined to a nar-
row range of OA production (∼2.25 µg m−3 ppmv−1 %−1),
whereas in Flight 4, a linear relationship is observed with
a range of OA production (relative to SO2−

4 production) ex-
tending from 1.2–1.75 µg m−3 ppmv−1 %−1. The relation-
ship between OA/1CO and SO2−

4 /(SO2 + SO2−

4 ) in Flight 4
provides a relatively convenient gauge of how much and how
fast OA is formed since SO2 conversion in clear air is a better
understood process and can be obtained through modelling.
The rate of SO2 conversion in clear air has been reported at
1–3 % h−1 (Newman et al., 1981; Davis et al., 1979; Luria
and Sievering, 1991) and can be further derived from the
model. The modelled SO2−

4 production rate at 12:00 LT for
285 m a.g.l. for the study domain is shown in Fig. 13 and in-
dicates that the regional background SO2−

4 production rate
(non-plume influenced and non-lake-breeze influenced) is
about 1–2 % h−1, though much higher (>20 % h−1) closer to
sources and in high concentration plumes. The OA formation
rate for regional background air is determined by multiplying
the slope in Fig. 12 (Flight 4,m = 87.1 µg m−3 ppmv−1 %−1)

by the regional background SO2−

4 formation rates taken from
Fig. 13 (1–2 % h−1). Thus, the regional background OA for-
mation rate is 0.87–1.7 µg m−3 ppmv−1 h−1. The regional
background formation rates of OA and SO2−

4 are used as ref-
erence points in the following analysis for determining if the
production rates could be enhanced in the lake-breeze recir-
culation.

Following on the analysis of air mass boundaries and
movement in response to the lake breezes (summarized in
Fig. 10), time slices of aircraft data were selected that rep-
resent different air mass “types” (shown as shaded boxes in
Figs. 3 and 4). The selection of air mass types is as fol-
lows: RegB represents regional air along flight tracks above
the boundary layer; LE represents air originating over LE and
characterized by low pollutant concentrations with the excep-
tion of SO2 and SO2−

4 from power plants across LE; CBL is a
section of the boundary layer closest to the LSC lake-breeze
front and most influenced by lake-breeze circulations; AF
represents air in the downdraft region of the LSC lake-breeze
front; and LSC is air least affected by recent land-based emis-
sions and lake-breeze circulations. Changes in the chemical
characteristics of OA and SO2−

4 in these air masses are ex-
pected to reflect the influence of the lake-breeze circulations.

dSO4
2-/(dSO4

2-

+SO2) *100% 
(%mass/hr)

0

Fig. 13. Model-predicted SO2−

4 production rate in % h−1 at
12:00 LT for the study domain at 285 m a.g.l. Dashed red line is
the aircraft transect.
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In Fig. 14, the average and standard deviation of the
OA/1CO and SO2−

4 /(SO2 + SO2−

4 ) ratios are shown for each
air mass type. The OA/1CO ratios in Flight 4 span a larger
range of values, 91.1 µg m−3 ppmv−1, compared to Flight 5
(60.7 µg m−3 ppmv−1). Similarly, the SO2−

4 /(SO2 + SO2−

4 )

ratio is more variable in Flight 4 compared to Flight 5. In
addition, the OA/1CO ratio shows a general increase from
Flight 4 to Flight 5. These ratios highlight the spatial het-
erogeneity in the earlier flight, largely induced by the sepa-
ration of air mass types due to the lake-breeze boundaries,
and the subsequent transition to a comparatively homoge-
neous air mass during the later afternoon flight. The highest
OA/1CO ratios are in RegB for both Flight 4 and Flight 5,
suggesting similarities in the chemical composition of re-
gional background air arriving in the study region through-
out the day. In Flight 4 (Fig. 14a), the aircraft measure-
ments in the CBL reflect a mixture of pollutant sources
from Detroit/Windsor and from the west end of LE, and as
such the low OA/1CO value, 30.9± 2.5 µg m−3 ppmv−1 in-
dicates limited photochemical processing. This is consistent
with reported values for unprocessed urban air. DeCarlo et
al. (2008) note that the lowest ratio for relatively “fresh”
urban air over Mexico City and surrounding region was
∼35µg sm−3 ppm−1. For similarly fresh urban air, Klein-
man et al. (2007b) showed a ratio of∼18 µg m−3 ppmv−1.
Figure 14b shows SO2−

4 /(SO2 + SO2−

4 ) ratios in the CBL that
are consistent with an air mass that has undergone limited
processing of SO2. Compared to the CBL, the ratios over the
lakes (LE and LSC) in Flight 4 reflect air masses that have
been further processed.

In Flight 4, as most of these air masses are largely “uncon-
nected” due to the lake-breeze induced boundaries, the vari-
ability in the extent of processing is not surprising. However,
based on the interpretation of the LSC recirculation inferred
from Flight 4 and 5 observations and modelling results, air
masses in the CBL appear to be connected to that behind the
LSC lake-breeze front (AF). Particles in the CBL are hypoth-
esized to move aloft over the LSC front towards the north into
the zone labelled as AF and then to descend and be recircu-
lated through the onshore flow. The forward trajectory anal-
yses (Fig. 9) suggests that the recirculation time is 4± 1 h .
Thus, the CBL in Flight 4 and the AF in Flight 5 can be com-
pared to determine if the lake-breeze recirculation results in
changes in particle mass locally.

In Fig. 14a (Flight 4), the OA/1CO ratio in the
AF air mass (behind the LSC lake-breeze front)
(89.1± 4.2 µg m−3 ppmv−1) is higher compared to the
CBL by 58.2 µg m−3 ppmv−1. If the complete recircu-
lation time is 3.0 h, the rate of increase in the OA/1CO
ratio is 19.4 µg m−3 ppmv−1 h−1, but if the recircula-
tion time is closer to 5.0 h, the increase corresponds to
11.6 µg m−3 ppmv−1 h−1. Thus, the OA formation rate
(relative to excess CO) determined in the lake-breeze recir-
culation, 11.6–19.4 µg m−3 ppmv−1 h−1, shows a significant
enhancement over the regional background formation

values inferred above (0.87–1.7 µg m−3 ppmv−1 h−1). From
Fig. 14b, the SO2 conversion rate can be similarly estimated.
The average SO2−

4 /(SO2 + SO2−

4 ) ratio in the AF air mass
of 0.45± 0.03 and in the CBL of 0.19± 0.03 results in an
estimated SO2 conversion rate to range between 5.0 % h−1

(5 h recirculation) and 8.8 % h−1 (3 h recirculation). This
suggests an enhancement over the non-plume influenced
regional background formation rate (1–2 % h−1) as predicted
by the model. Enhancements in SO2−

4 and OA formation
rates, relative to regional background formation rates, im-
plies that lake-breeze circulations are an important dynamic
in the formation of SO2−

4 and SOA.
One possible explanation for such enhancements is

through cloud processing. The presence of clouds can signif-
icantly increase the rate of SO2 oxidation (Luria and Siever-
ing, 1991; Leaitch, 1996; Joos and Baltensperger, 1991) and
SOA formation (Lim et al., 2005; Yu et al., 2005; Blando
and Turpin, 2000;). An analysis of the cloud situation on 25
June indicates that at 11:00 LT there were no clouds present
and then an hour later,∼12:00 LT there was enhanced cloud
growth at the LE and LSC fronts, and shallow cumulus cloud
in the CBL. This was the time when the data in the CBL
(Flight 4) were taken. Thus, clouds started to form just prior
to when the measurements were made so it is likely that only
limited cloud processing had taken place at this time. Be-
tween 13:00–14:00 LT, there was continued cloud growth at
the LE and LSC fronts and significant enhanced cloud growth
as the LE and LSC fronts merged. By 15:00 LT, there were
no clouds and at∼17:00 LT the Flight 5 measurements were
made. Given the forward trajectory shows that the air in the
CBL, at least partially, would have made it to behind the LSC
front in about 4± 1 h , the Flight 5 AF data would reflect
more cloud processing time through clouds in the CBL, as
well as processing through cloud at the LSC front. There-
fore, it is possible that cloud processing contributed to the
enhancements in SO2−

4 and OA formation rates.
A second explanation is that the effective confinement of

pollutants behind the LSC front may have prevented the dilu-
tion of pollutants from further mixing and led to elevated ox-
idant and precursor concentrations, and therefore enhanced
oxidation of primary pollutants including SO2 and organics.
Both processes may be at work in the study region. Regard-
less of the processes, the lake-breeze front apparently led to
locally enhanced SO2 (and probably organic aerosol precur-
sors) and increased production of SO2−

4 and SOA.

4 Conclusions

High time-resolved aircraft data, concurrent surface mea-
surements and meteorological and air quality model simu-
lations were explored in a highly integrated manner to di-
agnose the processes influencing aerosol chemistry for a
polluted BAQS-Met case associated with a well-developed
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lake-breeze circulation. This was based upon two aircraft
flights (Flights 4 and 5 on 25 June 2007) in southwestern On-
tario where horizontal transects across the entire lake-breeze
circulation at multiple altitudes were performed. Air mass
boundaries due to lake-breeze fronts were identified in the
aircraft meteorological (dewpoint temperature and vertical
gust velocity) and chemical data, which were consistent with
the frontal locations determined from surface observations
and satellite and radar images (Sills et al., 2011). The mete-
orological model was also found to simulate the conditions
during the first flight reasonably well.

Cross-sectional plots created from the aircraft horizontal
transects indicated that in the early afternoon flight (Flight 4),
elevated mixing ratios of CO and SO2 were well-mixed ver-
tically within a CBL and bounded by the LE and LSC fronts.
Back trajectories indicated that the origin of these pollutants
was from the west end of LE and the Detroit/Windsor area.
Elevated pollutant concentrations were also observed aloft on
the lake side of the LSC front and also closer to the surface,
which was assumed to be due to subsiding air or downdrafts
both observed and modelled. This area of high concentra-
tion did not extend far away from the front, thus indicating
that the circulation pattern tended to confine pollutants in the
lake-modified air relatively close to the front. By the late af-
ternoon (Flight 5), the region was largely enveloped in lake
air and pollutants observed in Flight 4 were displaced by the
merging LE and LSC fronts. The available observations and
model results indicate that pollutants in the CBL in Flight 4
were continually lofted at the LE and LSC fronts while the
two fronts gradually merged together by Flight 5, and either
caught in the LSC lake-breeze circulation and confined by
the LSC onshore flow along the south shore of LSC, or trans-
ported northward in the synoptic flow and brought downward
through convective mixing north of the lake. Forward trajec-
tories suggest that air parcels caught in the LSC recirculation
travelled a helical trajectory along the LSC front toward De-
troit/Windsor with a complete recirculation time of 4± 1 h.

This detailed, integrated approach led to the develop-
ment of conceptual models that summarizes the complex
3-D circulation patterns and its interaction with the syn-
optic flow. An attempt was then made at determining lo-
cal SO2−

4 and OA production rates in the LSC lake-breeze
circulation. Using the relationship between OA/1CO and
SO2−

4 /(SO2 + SO2−

4 ) (Fig. 12) as a gauge of how much OA
is formed and a background formation rate for SO2−

4 rang-
ing between 1–2 % h−1 taken from the model, the regional
background formation rate for OA was calculated to be 0.87–
1.7 µg m−3 ppmv−1 h−1. Based on the interpretation of the
LSC lake-breeze circulation, air masses in the CBL (Flight 4)
and behind the LSC front (AF, Flight 5) (Figs. 10, 11) were
compared to determine formation rates of OA and SO2−

4 . The
maximum and minimum values (5.0 and 3.0 h, respectively)
of the best estimates for recirculation time (or processing
time) provide upper and lower bounds on the formation rates.

The OA formation rate (relative to excess CO in ppmv),
determined in the lake-breeze recirculation was found to
be 11.6–19.4 µg m−3 ppmv−1 h−1 which shows an enhance-
ment over the regional background formation values inferred
above (0.87–1.7 µg m−3 ppmv−1 h−1). The SO2−

4 formation
rate is estimated to range between 5.0–8.8 % h−1, also en-
hanced over the regional background formation rate. The en-
hanced formation rates relative to regional background rates
implies that lake-breeze circulations are an important dy-
namic in the local, near-source formation of SO2−

4 and SOA.
The presence of cumulus clouds associated with the lake-
breeze fronts suggests that these enhancements could be due
to cloud processes. Additionally, the effective confinement
of pollutants along the LSC south shore may have limited
pollutant dilution thereby leading to elevated oxidant con-
centrations, and enhanced oxidation of primary pollutants in-
cluding SO2 and organics. Continued research is required
to better understand the physical mechanisms and chemical
processes within lake-breeze circulations, specifically related
to the formation of PM, and the relative importance of PM
components.
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