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Abstract. This paper presents the results of laboratory stud-
ies on the condensational uptake of gaseous organic com-
pounds in the exhaust of a light-duty gasoline engine onto
preexisting sulfate and nitrate seed particles. Significant con-
densation of the gaseous organic compounds in the exhaust
occurs onto these inorganic particles on a time scale of 2–
5 min. The amount of condensed organic mass (COM) is
proportional to the seed particle mass, suggesting that the
uptake is due to dissolution determined by the equilibrium
partitioning between gas phase and particles, not adsorption.
The amount of dissolution in unit seed mass,S, decreases as
a power function with increased dilution of the exhaust, rang-
ing from 0.23 g g−1 at a dilution ratio of 81, to 0.025 g g−1 at
a dilution ratio of 2230. It increases nonlinearly with increas-
ing concentration of the total hydrocarbons in the gas phase
(THC), rising from 0.12 g g−1 to 0.26 g g−1 for a CTHC in-
crease of 1 to 18 µg m−3, suggesting that more organics are
partitioned into the particles at higher gas phase concentra-
tions. In terms of gas-particle partitioning, the condensa-
tional uptake of THC gases in gasoline engine exhaust can
account for up to 30 % of the total gas + particle THC. The
organic mass spectrum of COM has the largest fragment at
m/z44, with mass ratios of mass fragments 43/44 and 57/44
at 0.59 and 2.91, much lower than those reported for gaso-
line engine primary organic aerosols. The mass fragment
44/total organic mass ratio of 0.097 indicates that COM con-
tains large oxygenated components. By incorporating the
present findings, regional air quality modelling results sug-
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gest that the condensational uptake of THC onto sulfate par-
ticles alone can be comparable to the primary particle mass
under moderately polluted ambient conditions. These find-
ings are important for modelling and regulating the air qual-
ity impacts of gasoline vehicular emissions.

1 Introduction

Airborne particles are known to pose serious health risks
(Dockery et al., 1993; Geller et al., 2006; Schwarze et al.,
2006; Pope and Dockery, 2006; Brook et al., 2010) and have
a large influence on the Earth’s climate (Jacob and Winner,
2009). Such impacts are increasing public and government
scrutiny of particulate matter (PM) emissions from all an-
thropogenic activities. Primary PM from automotive engine
exhaust is among the most studied and regulated emissions
over recent decades; yet to conform with current regulations,
automotive emissions of primary particles are determined on
a mass basis which ignore complex at-source processes that
re-distribute the semivolatile organic compounds (SVOCs)
between gas and particle phases. Standard automotive PM
mass emission measurements, based on sampling on filters
and gravimetric analysis, have proven to be artifact-prone,
particularly at low emissions levels (Chase et al., 2004; Lip-
sky and Robinson, 2006). Determining PM levels in emis-
sions at dilution levels spanning several orders of magnitude
can be a significant challenge, affected by even the slight-
est details in the vehicle testing and sampling protocols. Di-
rect particle size distribution measurements are now a rec-
ommended method to characterize particle emission from en-
gine exhaust, particularly with the recent focus on the particle
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number concentrations in newer standards, such as EURO 5
and 6 (European Commission, 2008).

The most difficult measurement challenge arises from the
highly dynamic situations of cooling and dilution upon mix-
ing with the ambient atmosphere, where the steady-state
equilibrium between gases and particles in the exhaust is
easily shifted. This can lead to changes in the physical and
chemical characteristics of particles. Notable recent studies
have focused on the impacts of ambient temperature and dilu-
tion on PM emissions (Lipsky and Robinson, 2006; Grieshop
et al., 2009) and low ambient temperature is known to re-
sult in the enhanced formation of nucleation mode particles
in gasoline and diesel vehicle exhaust (Mathis et al., 2004,
2005). Robinson et al. (2007) demonstrated that upon dilu-
tion, diesel exhaust PM mass decreases due to evaporative
loss of SVOCs from the particles. Shrivastava et al. (2006)
considered the impact of background organic aerosols on the
partitioning of emissions from diesel and wood combustion,
and found that partitioning to particles is enhanced by higher
background organic aerosols concentrations. Gasoline en-
gine particulate emissions are less well studied and it is dif-
ficult to predict whether primary particles in gasoline engine
exhaust behave similarly to diesel particles upon dilution and
mixing with ambient air, given the large differences in the ex-
haust compositions of gasoline engines and diesel engines.

What has not been considered in the automotive primary
PM emission studies to date is the condensational uptake of
gaseous pollutants to pre-existing ambient inorganic parti-
cles upon the initial mixing of engine exhaust with ambient
air. Theories of gas-particle partitioning dictate that at least
some of the SVOCs in exhaust gases, particularly the polar
compounds, will condense and reach equilibrium with am-
bient particles of inorganic composition under atmospheric
conditions. There is circumstantial evidence pointing to this
re-partitioning within exhaust gases (Kittelson, 1998; Khalek
et al., 1999; Maricq et al., 1999; Mathis et al., 2004; Lipsky
and Robinson, 2006). For example, diesel primary particles
are known to contain solid cores of soot with adsorbed hy-
drocarbons, nitrates and sulfates (Sakurai et al., 2003; Kwon
et al., 2003), and there is evidence that the growth of the
nucleation mode particles is partially attributable to conden-
sation (Mathis et al., 2004). The adsorbed hydrocarbons
are in dynamic equilibrium with the gas phase, moving in
and out of the primary particles as temperature and concen-
tration change. Such processes should also occur once the
gaseous exhaust comes into contact with ambient particles
that provide surface area or volume for uptake to occur, but
few studies have reported on the uptake process onto ambi-
ent particles, and it is not known how significant this process
is in terms of release of primary PM into the ambient atmo-
sphere. Although this uptake takes place in the atmosphere
after the exhaust is emitted, the time and spatial scales asso-
ciated with mixing and dilution at the tailpipe and uptake of
gases on ambient particles are from seconds to minutes and
from tens to hundreds of meters. Hence, from the standpoint

of health impacts and for atmospheric models, the condensed
SVOC species will be difficult to distinguish from primary
PM mass.

The present study addresses the condensational uptake of
organic gaseous pollutants on ambient particles. PM emis-
sions studies focused on gasoline engine exhaust are rela-
tively few compared to those on diesel exhaust, since exhaust
PM levels of modern catalyst-equipped, properly-operating
gasoline engines are low. In this study, the magnitude of the
condensational uptake of organic materials in gasoline en-
gine emissions is quantified, and a parameterization of the
condensational uptake onto pre-existing particles is derived.
This parameterization is further used in a regional air quality
model to assess the impact of this process on a regional basis.

2 Experimental design

The experiments were carried out using the setup illustrated
in Fig. 1. This setup consisted of two sections, an engine test-
ing facility from which the primary PM measurements were
made, and a flow tube where the gas uptake and condensation
on pre-existing particles was investigated.

2.1 Gas and primary particle emissions measurements

In the engine testing facility, a multi-port injected gasoline
engine, recovered from a 1991 model year General Motors
Lumina light duty vehicle, was equipped with a new but de-
greened original equipment three-way catalyst. The engine
was installed on a dynamometer and enclosed in a controlled-
access test room. The engine exhaust was directly vented into
a constant volume sampling (CVS) system, where it under-
went primary dilution with a dilution ratio between 14–22
(Table 1), and was kept at an ambient temperature of 25◦C.

Concentrations of CO, CO2, NOx and total hydrocarbon
(THC) in the primary dilute exhaust in the CVS were mon-
itored using non-dispersive infrared analyzers for CO and
CO2, chemiluminescence analyzers for NOx (NO + NO2),
and a flame ionization detector for THC. The analyzers
were zeroed and spanned to adjust for instrument drift every
30 min. The flame ionization detector was calibrated with
propane and concentration of THC was reported in ppm car-
bon (ppmC).

Primary particles in the CVS were characterized with a
scanning mobility particle spectrometer (SMPS, TSI model
3080) using a differential mobility analyzer (nano-DMA)
column (TSI model 3085) and a TSI model 3025A conden-
sation particle counter (CPC) for sizing particles from 4.6
to 162.5 nm diameter. The SMPS scanned over the size
range on a 3-min scanning cycle. A second CPC (TSI model
3022A) was used to monitor the particle number concen-
trations, for particles as small as 7 nm. The second CPC
monitored secondary dilute exhaust after second-stage di-
lution using Dekati ejection diluters, either one or two in
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Figure 1.  An illustration of the experimental setup for this study.  Section A shows the setup 

of the engine testing facility, where measurements of primary particles in the primary diluted 

exhaust in the CVS are made using SMPS, CPC, and filters.  A small flow from the primary 

dilute exhaust in the CVS is pumped into the flow tubes, where it is mixed with laboratory 

generated seed particles.  Arrows in Section B show the streams of air flow in the setup. 

 

Fig. 1. An illustration of the experimental setup for this study. Section A shows the setup of the engine testing facility, where measurements
of primary particles in the primary diluted exhaust in the CVS are made using SMPS, CPC, and filters. A small flow from the primary dilute
exhaust in the CVS is pumped into the flow tubes, where it is mixed with laboratory generated seed particles. Arrows in Section B show the
streams of air flow in the setup.

Table 1. Engine Operating Conditions and Gas and Primary Particle Characteristics in the Constant Volume Sampler (CVS).

Test Date Engine Modea Duration of Primary Average Gas Phase Primary Particle Mass and Number Size Distribution Characteristics in Primary
(2007) Experiments Dilution Ratio Concentrations in CVS Dilute Exhaust

(min) Fcvs/Fexhaust CO2 NOx THC Total Total Median Mean Mode Geo. Mean Geo. Std Dev
(%) (ppm) (ppmC) Mass Number (nm) (nm) (nm) (nm)

(µg m−3)c (/cc)

19 Apr 3 460 16.8 0.80 67.5 5.61 n/a 3.61E× 107 9.0± 1.7 9.2± 1.7 8.8± 1.9 9.0± 1.6 1.1–1.4
20 Apr b 3 300 16.5 0.81 61.1 5.49 n/a n/a n/a n/a n/a n/a n/a
24 Apr 1 120 14.2 0.94 173 6.16 740± 630 1.91× 108 13.6± 3.6 14.1± 3.6 14.2± 4.6 13.2± 3.2 1.3–1.5

1 100 14.1 0.95 154 6.15 110± 710 3.94× 108 12.6± 2.0 12.9± 2.0 13.2± 2.6 12.2± 1.8 1.2–1.5
25 Apr 2 400 22.3 0.60 68.3 6.68 220± 140 2.09× 108 6.9± 1.1 7.3± 1.1 6.5± 1.8 7.0± 1.0 1.2–1.4
26 Apr 1 350 14.2 0.94 180 5.75 1350± 370 4.81× 108 13.5± 0.9 13.8± 0.9 14.9± 1.5 12.9± 0.8 1.4–1.5

1 90 14.2 0.94 180 6.22 2000± 160 5.18× 108 15.0± 0.9 15.3± 0.8 16.5± 1.2 14.2± 0.7 1.4–1.5
27 Apr 3 290 16.8 0.80 57.6 6.09 850± 400 4.65× 108 10.8± 2.4 11.1± 2.3 11.5± 3.1 10.5± 2.1 1.3–1.5
1 May 2 270 22.3 0.60 67.1 5.57 550± 410 3.63× 108 10.1± 2.4 10.5± 2.3 10.5± 3.1 9.9± 2.0 1.3–1.5

2 130 22.3 0.60 67.1 5.80 1260± 210 4.93× 108 12.9± 0.9 13.3± 0.8 14.1± 1.3 12.4± 0.7 1.4–1.5
2 May 1 270 14.1 0.95 183 6.15 1930± 170 4.55× 108 15.9± 0.6 16.2± 0.6 16.9± 1.0 15.3± 0.5 1.4–1.5

1 110 14.2 0.94 182 6.14 2150± 110 5.07× 108 15.9± 0.6 16.1± 0.6 17.0± 1.1 15.2± 0.5 1.4–1.5

a Mode 1: engine speed 1700 RPM, engine torque 73 ft-lb; Mode 2: engine speed 1700 RPM, engine torque 47 ft-lb; Mode 3: engine speed 2250 RPM, engine torque 47 ft-lb. All
experiments were conducted after the engine has warmed up from a cold start.
b Particles in the primary dilute exhaust were not measured on 20 April 2007.
c Total mass and number of the primary particles are derived from SMPS number size distributions after the SMPS reached steady-state, assuming a density of 1.4 g cm−3 (Larson

et al., 1988; Park et al., 2003). The SMPS did not reach a steady-state on 20 April .
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series. The single diluter achieved a 7:1 dilution from the pri-
mary dilute exhaust in the CVS, and two in series achieved a
56:1 dilution.

2.2 Engine operation mode

During the experiments, the engine was operated in three
modes of engine speed (namely, rotation per minute or RPM)
and load that simulate different driving conditions (Table 1).
The engine was operated continuously for several hours in
each mode that was necessary for the condensational uptake
experiments. For the experiments, the engine was operated
on Canadian commercial summer grade gasoline with sul-
phur content<30 ppm. The CVS system was operated at a
fixed total volume flow rate (FCVS) of 21.24 m3 min−1. Thus,
depending on the RPM, the primary dilution ratio, defined as
FCVS/Fexhaust, varied over a range of 14.1 to 22.3 (Table 1).
Concentrations of CO, CO2, NOx and THC in the primary
dilute exhaust in the CVS were monitored every second in
repeated 30-min segments.

2.3 Condensational uptake experimental setup

The flow tube setup, depicted in Section B of Fig. 1, was de-
signed to measure the condensational uptake of gases on par-
ticles. In these studies, laboratory-generated seed particles
were used as surrogates for ambient inorganic particles. The
flow tubes were Teflon-coated stainless steel tubes of 2.54 cm
inner diameter and 30 cm length. A total of 13 tubes were
connected together using connectors equipped with sampling
ports. Three air streams were delivered into the flow tubes
(streams a, b, and c, Fig. 1), one carrying the primary gas
exhaust (stream a), one carrying zero air for dilution (stream
b), and one carrying seed particles (stream c). At the end
of the flow tubes, a probe was used to measure the relative
humidity (RH) and temperature of the mixture in the flow
tubes.

Seed particles were generated by atomizing a solution
of H2SO4/(NH4)2SO4with a constant volume atomizer (TSI
model 3076) with compressed zero air generated from a zero
air source (AADCO model 737). Depending on the experi-
ment, the ratio of H2SO4 to (NH4)2SO4 in the solution was
chosen to give different initial particle acidities; however, in
most experiments the sampled particles were neutral after ex-
posure to NH3 in the engine exhaust in the flow tube. In a
few experiments, NH4NO3 particles were generated instead
of sulfate particles. These particles were dried using a diffu-
sion dryer (TSI model 3062), and size selected using a TSI
SMPS/DMA model 3080/3081 before being delivered into
the flow tubes.

The seed particles were introduced into the first flow tube
at its central axis through1/4 inch outer diameter (o.d.) stain-
less steel tubing. This was designed with a coaxial intro-
duction of the primary dilute exhaust gas. The dilute ex-
haust was pumped from the CVS using a Teflon diaphragm

pump through a HEPA filter to remove the primary particles
(stream a). This particle-free exhaust gas was introduced into
the first flow tube through a 1/8 inch o.d. stainless steel tube
that is nested at the centre of the1/4 inch line used to intro-
duce the particles. Entry linear velocities of both the seed
particle flow and the exhaust gas flow into the flow tube were
maintained to be the same in some experiments, although it
was found that the effect of initial linear velocities of either
the particles or the exhaust gases on organic condensation
on the particles was minimal. Thus, both the particles and
the dilute exhaust gas traveled down the flow tubes concen-
trically along the axis of the flow tubes. The mixing of the
exhaust gas and the seed particle flows from their introduc-
tion at the first flow tube constituted a secondary dilution,
with a dilution ratio determined by the flow rates from both
flow streams a and c in Fig. 1. In a few experiments, extra
dilution was made with an additional flow stream of zero air
(flow stream b in Fig. 1).

Sampling of particles was made at the central axial posi-
tion in the air stream flowing down the flow tubes through a
1/4 inch stainless steel tube inserted radially through selected
sampling ports. Depending on the experiment, a tertiary dilu-
tion was made at the 1/4 inch sampling port that also helped
to balance the flows. After the tertiary dilution, the 1/4 inch
stainless steel sampling line was split and fed to three in-
struments, an aerosol mass spectrometer (AMS), a CPC (TSI
model 3775), and a proton transfer reaction mass spectrom-
eter (PTRMS). The contact time between the seed particles
and the diluted exhaust varied from 1.5 to 7 min, depending
on the total flow rate through the flow tubes and the position
of the sampling port, as further discussed below. Residence
time in the sampling line was approximately 1 second.

The particle chemical composition and mass were moni-
tored using an Aerodyne Research Inc high resolution time-
of-flight aerosol mass spectrometer (HR-ToF-AMS; DeCarlo
et al., 2006). The HR-ToF-AMS was operated in the high
sensitivity mode (V-mode) with a 2-min time resolution. Par-
ticle sulfate, nitrate and ammonium size distributions were
monitored using the particle time-of-flight mode of the HR-
ToF-AMS. The AMS data was analyzed using a fragmen-
tation table with modifications as suggested by Aiken et al.
(2009). Them/z44 signal was also corrected for CO2 in the
background.

2.4 Uptake and condensation conditions

Experimental conditions were designed to target each of five
controlling factors on the uptake and condensation, including
relative humidity, duration of exposure, chemical composi-
tion, seed particle sizes and dilution ratios. Table 2 shows
the range of the factors that were varied to determine the
impacts of these factors. During all experiments, tempera-
ture in the air flow inside the flow tube varied in a narrow
range of 23.5–28.8◦C, whereas the RH changed from 6.5 %
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Table 2. Uptake and condensation control parameter range during the study.

Date Number of Relative Exposure Seed Particle Final Dilution
Experiments Humidity∗ Time (min) Size (nm) Ratio

19 Apr 15 6.5–11.2 2.14–8.30 300 235–504
20 Apr 11 7.2-20.1 5.52 300 83
24 Apr 6 11.9-33.6 5.52 300 81
25 Apr 33 16.3-17.5 5.52 150, 200, 300, 350, 400 395
26 Apr 61 14.4-22.3 2.22–5.92 250, 300 140
27 Apr 45 16.5–28.7 5.53 300 96–672
1 May 74 16.7–22.4 5.53 250, 300, 350, 400 220
2 May 40 17.8–28 5.57 250, 300, 325, 450 127–2230
2 May 29 17.8–28 3.35–5.57 300 81–86

∗ when particles were exposed to gaseous exhaust.

to 33.5 %, resulting from the mixing of high RH in the engine
exhaust with the dry dilution air.

The HR-ToF-AMS measures particle chemical composi-
tion between 50–700 nm vacuum aerodynamic diameter (Liu
et al., 2007); in the present experiments, the monodispersed
seed particles were selected from 150 to 450 nm mobility
diameter (dm), equivalent to 206 to 619 nm vacuum aero-
dynamic diameter (dva) for NH4NO3 particles. Secondary
dilution ratios at the introduction point of the seed parti-
cles/primary exhaust gases into the flow tubes varied between
11 to 200, resulting in a total dilution ratio range of 81 to
2230. No active control of RH and temperature was used,
and thus the RH was mostly influenced by the water vapor
in the primary gas exhaust mixing with zero air, resulting in
a relatively low RH of 33 % in the flow tubes. Even in this
low range, the seed sulfate particles are expected to be del-
iquescent (Onasch et al., 1999) and the nitrate particles are
expected to contain water with the organic contents (Prenni
et al., 2003).

3 Results and discussions

3.1 Characterization of primary dilute
gaseous emissions

The average THC and NOx concentrations in the primary
dilute exhaust in the CVS for the multiple repeats of each
engine mode are listed in Table 1. CO was below the instru-
ment detection limit in the primary dilute exhaust except dur-
ing idling, indicating that the catalyst reached its minimum
operating temperature for all three modes. The NOx concen-
tration for Mode 1 was about 3 times higher than for Modes
2 and 3, reflecting the higher torque of this mode that re-
quires significantly higher fuel burns and higher combustion
temperature than the other two modes. As a result, THC con-
centrations, expressed in ppmC, was also typically higher for
Mode 1 than the other modes, even though it varied within a

narrow range of 5.5–6.8 ppmC among the three modes. This
reflects the relatively stable working conditions of the cat-
alyst. On the other hand, the ratio THC/CO2, a surrogate
for the emission factor for THC, was the lowest for Mode
1 at (6.5± 0.2)×10−4 compared with those for Mode 2 and
3 at (1.0± 0.1)×10−3, and (7.1± 0.4)×10−4, respectively,
indicating a more efficient fuel combustion at higher temper-
ature. The SVOCs in the THC mixture, not separately quan-
tified, are expected to be in equilibrium with organics in the
primary particles in the exhaust. The SVOCs are also avail-
able for further condensation onto existing ambient particles
once the exhaust gas is mixed with the ambient air. This pro-
cess and the resulting particle mass are not measured in the
current standard motor vehicle emission testing methods.

3.2 Condensational uptake of SVOCs onto
existing particles

Condensation of SVOCs in engine exhaust onto existing am-
bient particles is expected to occur once the SVOCs come
into contact with these particles. This re-partitioning of or-
ganic mass from gas to particle represents the reverse of
the process of primary particle evaporation upon dilution
(Robinson et al., 2007) and may result in a non-negligible
source of low bias in the current vehicular particle mass
emission data.

To determine the magnitude of condensation, laboratory
generated seed particles of inorganic composition were used
as surrogates for inorganic particles in ambient air. The seed
particles were exposed to the gaseous exhaust under different
experimental conditions as shown in Table 2.

Condensational uptake of SVOCs onto the particles was
observed in all experiments. To generalize the main find-
ings, this organic uptake has approximately a linear depen-
dency on the available seed particle mass as represented by
sulfate under each set of experimental conditions. Exper-
iments using different seed chemical compositions (nitrate
vs. sulfate) revealed similar linear relationships. Different
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Figure 2. The condensed organic mass (COM) on neutral sulfate seed particles.  It is 

approximately a linear function of the available sulfate particle mass regardless of particle 

sizes. 
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Fig. 2. The condensed organic mass (COM) on neutral sulfate seed
particles. It is approximately a linear function of the available sul-
fate particle mass regardless of particle size.

exposure times of the particles to the THC, between 1.5 to
7 min, produced no discernable differences in the condensa-
tional uptake. On the other hand, the exposures to different
levels of THC resulted in linear dependencies with signifi-
cantly different slopes. These THC levels varied over orders
of magnitude due to a combination of different engine run-
ning modes (Table 1) and different dilution ratios.

To illustrate these general findings, Fig. 2 shows the re-
sults obtained for Mode 2 experiments on April 25, reveal-
ing the condensed organic mass (COM) as an approximately
linear function of seed particle sulfate mass. In these ex-
periments, the seed particles were neutral, and the total di-
lution ratio of the gaseous exhaust was kept constant at 395
resulting in a constant THC (Tables 1 and 2). Furthermore,
the contact time between the seed particles and the diluted
gaseous exhaust remained constant at 5.5 min. The variables
in the experiments shown in Fig. 2 are the particle sizes and
number concentrations of the seed particles that resulted in
different seed particle mass loadings. The linear dependency
of the COM on the seed particle sulfate is highly significant
(r2

= 0.95).

3.3 Dilution effects on the condensation processes

As demonstrated above, organic materials are taken up onto
the seed particles as a result of re-partitioning from the gas
phase. A steady-state of COM with gas phase concentrations
is expected to be established in milliseconds to seconds for
typical accumulation mode ambient aerosol particles (Sein-
feld and Pandis, 1998), and COM is expected to be influ-
enced by the vapor pressures of the SVOCs, and hence by
the degree of dilution. Fig. 2 shows that under a dilution ra-
tio of 395, COM depends approximately linearly on the seed
particle mass regardless of the particle sizes (from 150 to

450 nm), i.e.,

COM=a+S ·Ms (1)

whereMs is the mass concentration of the seed particles in
a unit air volume and dominated by SO=

4 , and COM is the
amount of condensed organic mass concentration in the same
air volume, again determined by the HR-ToF-AMS. Results
show that under most experimental conditions, the intercept
a is not significantly different from 0. Therefore, the slope
of the curveScan be given by,

S =
1COM

1Ms
= COM/Ms (2)

The quantityS is the condensed organics to seed particle
mass ratio. Using a simple model of one chemical com-
pound to represent the organics in both the gas and con-
densed phase, under gas-particle equilibrium, the concentra-
tion (C) of the carbon in the condensed organics in the seed
particles (in unit of g l−1) is determined by the vapor pressure
PTHC as governed by Henry’s law

PTHC = KHC (3)

where KH is the effective Henry’s law constant in ppmC
(g l−1)−1, and PTHC is the partial pressure of the THC
in ppmC. Since COM is small compared toMs (Fig. 2), C
is approximately proportional toS

C =
f ·COM

(COM+Ms)/d
= f d ·

COM/Ms

(COM/Ms+1)
=

f d ·S

S +1
≈ f d ·S (4)

or

S ≈
C

fd
=

PTHC

fd·KH
(5)

whered is the density of the particles in g l−1, andf is the
mass fraction of carbon in COM. Eq. (5) indicates thatS is
proportional to the equilibrium organic carbon mass concen-
tration in the seed particles as determined by Henry’s Law
and therefore by the gas phase partial pressure of THC. Thus,
Srepresents the amount of dissolution of organics in the seed
particles as determined by equilibrium partitioning between
SVOCs and the particles. As further explored below, the rela-
tionship betweenSandPTHC was in fact not linear, suggest-
ing that theKH may not be a constant with changingPTHC.

In general, for a situation where significant re-partitioning
from the gas phase to particles occurs due to increases in seed
particle massMs, bothPTHC andC will decrease, as can be
derived from the Henry’s law:

PTHC = KHC= P 0
THC−

103
·f ·COM

W
·
RT

P
(6)

whereP 0
THC is the original partial pressure of THC before

condensation in ppmC,W is the atomic weight of carbon,
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R is the gas constant,T is temperature, andP is the ambi-
ent pressure and equals to 1 atm for the current experiments.
Combining Eqs. (6) with (4) yields

P 0
THC−

103
·f ·COM

W
·
RT

P
= KH

f ·COM

(COM+Ms)/d
(7)

This is further reduced to a quadratic equation for COM

aCOM2
+(f dKH −P 0

THC+aMs)COM−P 0
THCMs= 0 (8)

wherea =
103

·f
W

·
RT
P

is a constant. Hence, COM should be
approximately a quadratic equation ofMs.

The level of the decrease in PTHC from P 0
THC (Eq. 6) is

dependent on the level of COM and thereforeMs. Within
the range ofMs used in the present experiments, the magni-
tude of COM compared to PTHC is insignificant, and hence
Eq. (8) can be simplified to a linear relationship between
COM andMs. For example, for the experiments shown in
Fig. 2, with a total dilution ratio of 395,PTHC is calculated to
be 0.377 ppmC using the results in Table 1. COM is less than
1 µg m−3 for the seed sulfate particle mass range (Fig. 2),
or <2× 10−3 ppmC assuming an H:C elemental ratio of 1.2
in the organics, at least 200 times lower thanPTHC. Thus
PTHC was effectively a constant with regard to the conden-
sational uptake during the experiments, which led to an ap-
proximately constantC and thereforeS. As shown by the
results in Fig. 2, COM was indeed approximately linearly
related toMs, supporting the arguments above.

The situation can change ifMs increases dramatically. For
example, for the experiments shown in Fig. 2, ifMs were in-
creased by 100 times from the range used in the experiments
(to about 2 mg m−3 SO=

4 , an unrealistic atmospheric concen-
tration), COM would be equivalent to<0.2 ppmC, or about
half of PTHC. Under this situation, PTHC may indeed start to
experience noticeable decreases after condensation occurs,
andS = COM/Ms will no longer be a constant with respect to
changes inMs.

The condensational uptake occurred either through ad-
sorption onto the surface of the seed particles or dissolution
into the seed particles, or a combination of the two. To deter-
mine which process was responsible,S is derived following
Eq. (2) for each of the five sizes of the seed particles for the
experiments shown in Fig. 2, and plotted in Fig. 3 as a func-
tion of the surface area of a single seed particle for the five
sizes. Also plotted in Fig. 3 are the ratios COM/Ms for either
the pure dissolution (blue dash line) and adsorption processes
(red dash line) versus the surface area of a seed particle. For a
dissolution process that reaches equilibrium with gas phase,
the ratio COM/Ms remains a constant regardless of particle
sizes. Adsorption of organics onto the seed particles, on the
other hand, depends on the available surface area, leading to
an inverse relationship between the ratio COM/Ms and par-
ticle surface area. Fig. 3 clearly shows that COM is due to
dissolution rather than surface adsorption, having exhibited
no dependence on the particle surface area.
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Figure 2. The condensed organic mass (COM) on neutral sulfate seed particles.  It is 

approximately a linear function of the available sulfate particle mass regardless of particle 

sizes. 
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Figure 3.  The COM/unit seed particle mass as observed, S, are derived as the slopes of 

organic mass versus seed particle mass for different particle sizes (e.g., Fig 2).  Condensed 

mass from dissolution in the particle, relative to that at 150 nm seed particle, does not 

change with particle sizes (heavy dashed line); that from pure adsorption onto particle 

surface varies inversely with the surface area (light dashed line).  The uncertainties in the 

slopes of COM versus seed particle mass are plotted for each S value.

Fig. 3. The COM/Ms as observed,S, are derived as the slopes of
organic mass versus seed particle mass for different particle sizes
(e.g., Fig. 2). Condensed mass from dissolution in the particle, rel-
ative to that at 150 nm seed particle, does not change with particle
sizes (heavy dashed line); that from pure adsorption onto particle
surface varies inversely with the surface area (light dashed line).
The uncertainties in the slopes of COM versus seed particle mass
are plotted for eachSvalue.

Figure 4 shows the results of experiments specifically de-
signed to test the response ofS to different final dilution ra-
tios over a range from 81 to 2230. Plotted in the figure isS
versus the dilution ratios for near constant RH and temper-
ature, but for different seed particle composition, sizes, and
engine modes. Figure 4a showsS for separate (NH4)2SO4
and NH4NO3 seed particles, showing thatS for both types
of seeds is essentially the same and exhibits the same re-
sponse to dilution. Fig. 4b showsS for (NH4)2SO4 seed
particles under different engine modes, again showing simi-
lar responses to dilution.

There is a marked decrease inS as the dilution ratio (D)
increases. Such a dependency is similar to those reported
for the primary particle mass emissions in low-load diesel
engine exhaust and in wood smoke exhaust (Lipsky et al.,
2006). Robinson et al. (2007) observed a declining primary
organic mass emission factor for diesel engines as a function
of dilution ratio. For the gasoline exhaust studied here, a
power function

S = (0.024±0.09)+7305D−(2.39±0.03) (9)

was fitted to the data,D being the dilution ratio, with a corre-
lation coefficientr2 = 0.90 for the fit. The value ofSdropped
from 0.23 g g−1 at D =81, to 0.025 g g−1 at D = 2230, drop-
ping by a factor of 9.2. In comparison, for diesel exhaust
particles, a reduction by a factor of approximately 2 is re-
ported over the same dilution range but this was attributed to
the volatility of SVOCs on the diesel particles (Robinson et
al. 2007).
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3.4 Magnitude of COM versus primary organic
aerosols (POA)

The significance of COM can be cast in light of its relative
importance to the primary particles. The primary particles
from the gasoline engine were likely dominated by organic
mass (Mohr et al., 2011; Schauer et al., 2002) that is parti-
tioned between gas and particles. The partitioning between
the gas phase and the primary particles should be determined
by the vapor pressures of compounds in the THC mixture.
Unfortunately, no primary particle mass and THC data were
collected in the flow tubes for the direct comparison.

However, the partitioning between the gas phase and the
primary particles in the exhaust in the CVS can be calculated.
First, the primary organic aerosol (POA) mass concentration
in air (in unit of µg m−3), Cpp, is estimated from the primary
aerosol mass calculated using the particle number size spec-
tra from the SMPS measurements and assuming a density of
1.4 g cm−3 (Larson et al., 1998; Park et al., 2003) and a ra-
tio of organic carbon mass/total mass of 43.7 % (Schauer et
al., 2002). The calculated primary particle mass concentra-
tions were compared and verified with several Teflon-filter
based mass measurements. The total hydrocarbon concen-
tration in the CVS (CTHC, µg m−3) is calculated using the
THC data (which are reported asPTHC in units of ppmC) as-
suming an H/C atomic ratio of 1.2. The fraction,Fpp, of the
THC present in the primary particles in the CVS is calculated
to be 0.11±0.06 using

Fpp=
Cpp

Cpp+CTHC
=

Cpp

Cpp+2×10−3PTHC
(10)

where CTHC = 2×10−3PTHC is a conversion from partial
pressure to air concentration at 25◦C and 1 atm.Fpp did not
change significantly over the narrow range of dilution ratios
of 14-22 inside the CVS; however, it should decrease with
further dilution in the flow tube sinceCpp is expected to de-
crease faster thanCTHC due to evaporative loss of volatile
organic components from the primary particles.

An aggregate partitioning coefficientKp may be defined
for the condensational uptake shown in Fig. 2 using

Kp =
COM/Ms

CTHC
=

S

2×10−3PTHC
(11)

or, S= 2× 10−3 KpPTHC; PTHC is the partial pressure of
THC in the flow tube and changes with the different dilu-
tion ratios. It should be noted that a true partitioning coef-
ficient of a compound is determined only by its particle and
gas phase concentrations, but in the absence of speciation
information in both phases, the aggregate partitioning coeffi-
cientKp as defined in Eq. (11) provides a convenient tool for
modeling the organic mass that may reside in ambient par-
ticles from condensation of THC compounds in the engine
exhaust. Comparing Eqs. (11) and (5), it is clear thatKp is
inversely related to the Henry’s law constantKH for the dis-
solving THC in the inorganic particles.
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Figure 4. The amount of dissolution S of the organic matter in the inorganic seed particles 

(condensed organic mass per unit mass of seed particles) in g/g unit versus total dilution 

ratios from 81 to 2230.  The uncertainties in S are derived from the linear fits to COM versus 

seed particle mass. (a) Red diamonds are for for (NH4)2SO4 seed particles of all engine 

modes; blue squares are for NH4NO3 seed particles in engine mode 1.  (b) S for (NH4)2SO4 

seed particles in engine modes 1, 2, and 3. 

 

Fig. 4. The amount of dissolutionS of the organic matter in the
inorganic seed particles (condensed organic mass per unit mass of
seed particles) in g g−1 unit versus total dilution ratios from 81 to
2230. The uncertainties inSare derived from the linear fits to COM
versus seed particle mass.(a) Red diamonds are for for (NH4)2SO4
seed particles of all engine modes; blue squares are for NH4NO3
seed particles in engine mode 1.(b) Sfor (NH4)2SO4 seed particles
in engine modes 1, 2, and 3.

Figure 5 shows a plot ofS versusCTHC, showing non-
linear increases inSwith increasingCTHC. Similar to Fig. 4,
the S responses toCTHC are separated by the seed particle
composition (NH4NO3 versus (NH4)2SO4 seeds, Fig. 5a)
and by the different engine mode for (NH4)2SO4 seed par-
ticles (Fig. 5b). A power function fitted toS versusCTHC
yields

S = (0.012±0.0001)+(1.37±0.28)×10−4C
(2.53±0.76)
THC (12)

with a correlation coefficientr2 = 0.81 for the fit. The value
of S increases from 0.012 g g−1 to 0.26 g g−1 with CTHC in-
creasing from 1 to 18 µg m−3 (over the range of the dilution
ratios between 81.5 to 2230). As shown in Fig. 5, the re-
sponses are consistent between the two types of seed par-
ticles, and among the different engine modes. The non-
linearity shows that the partitioning coefficientKp, being the
derivative of the function given in Eq. (12), is not a constant

Atmos. Chem. Phys., 11, 10157–10171, 2011 www.atmos-chem-phys.net/11/10157/2011/



S.-M. Li et al.: Condensational uptake of semivolatile organic compounds 10165

 33 

0.30

0.25

0.20

0.15

0.10

0.05

0.00

S
 (

g
/g

)

20181614121086420

THC (µµµµg m
-3

)

y = a + b x
c

 

a = 0.012 ± 0.0001

b = (1.37±0.28)x10
-4

c = 2.53±0.76
 

r
2
=0.82

 SO4 seed particles - All Modes
 

 Nitrate seed particle - Mode 1
 
 

(a)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

S
 (

g
/g

)

20181614121086420

THC (µµµµg m
-3

)

y = a + b x
c

 

a = 0.012 ± 0.0001

b = (1.37±0.28)x10
-4

c = 2.53±0.76
 

r
2
=0.82

 
 SO4 seed particles Mode 1

 
 SO4 seed particles Mode 2

 
 SO4 seed particles Mode 3

(b)

 

Figure 5.  The amount of dissolution of organic mass in inorganic particles, S, in g/g unit 

versus the concentrations of THC in the gasoline engine exhaust, CTHC.  A non-linear 

increase in S is observed with increasing CTHC.  The relationship is fitted with a power 

function as shown by the fitted curve.  The uncertainties in S are derived from the linear fits 

to COM versus seed particle mass.  (a) Red diamonds are S for (NH4)2SO4 seed particles of 

all engine modes; blue squares are for NH4NO3 seed particles in engine mode 1.  (b) S for 

(NH4)2SO4 seed particles in engine modes 1, 2, and 3. 

Fig. 5. The amount of dissolution of organic mass in inorganic par-
ticles,S, in g g−1 unit versus the concentrations of THC in the gaso-
line engine exhaust,CTHC. A non-linear increase inS is observed
with increasingCTHC. The relationship is fitted with a power func-
tion as shown by the fitted curve. The uncertainties inSare derived
from the linear fits to COM versus seed particle mass.(a) Red di-
amonds areS for (NH4)2SO4 seed particles of all engine modes;
blue squares are for NH4NO3 seed particles in engine mode 1.(b)
S for (NH4)2SO4 seed particles in engine modes 1, 2, and 3.

with respect toCTHC. It increases from 0.0004 (µg m−3)−1 at
CTHC = 1 µg m−3, to 0.03 (µg m−3)−1 at CTHC = 18 µg m−3,
increasing by>100 times. The intercept (0.012± 0.0001)
in the power function of Eq. (12) implies that at very high
dilutions, the value ofS becomes asymptotic. The relative
size of this intercept may represent irreversible condensation
versus reversible equilibrium, similar to olefin reactions with
sulfate seed particles (Liggio and Li, 2008). Regardless, this
intercept is small compared toS, and could be a result of the
choice of fitting function. Clearly, more experiments will be
needed to determine the significance of the intercept with re-
gard to the possibility of irreversible condensation.

The relationship betweenS and CTHC suggests that, as
CTHC increases, proportionally more organics are partitioned
into the particles. Since the uptake was determined mostly
by dissolution of organics (see Fig. 3), the increasingSwith
CTHC may be due to enhanced solubility with the higher or-

ganic content of the inorganic seed particles at the higher
CTHC. Other factors not included in a simple solubility par-
titioning model, which can enhance the organic uptake and
increase the amount of dissolution under higherCTHC, in-
clude potential organic reactions in the particles (Liggio et
al., 2007; Hallquist et al., 2009).

To compare the partitioning of THC to the seed particles
and the partitioning of THC on the primary particle, the par-
titioning of THC to the seed particles is calculated as:

Fcom=
COM

C0
THC

=
S ·Ms

C0
THC

(13)

whereC0
THC is the initial THC concentration before dilution

in unit of µg m−3. Equation (13) shows thatFcom varies lin-
early with respect toS if Ms andC0

THC are fixed. For the
experimentsC0

THC changed significantly whileSvaried over
the dilution range of 81 to 2230 (Fig. 4). However, there are
no corresponding changes in the aggregate partitioning co-
efficient Kp with the dilution ratio, suggesting that diluting
both the gas and particle phase SVOCs did not cause system-
atic shifts in partitioning between the two phases.

For anMs of 15 µg m−3 Eq. (13) yields anFcom between
0.02 and 0.21 and averages 0.12± 0.06. For anMs of
30 µg m−3, Fcom rises to a range between 0.07 to 0.4 and
averages 0.21± 0.09. Considering thatFpp is estimated at
0.11 for the low dilution situation inside the CVS and should
decrease with further dilutions,Fcom will be equivalent to
Fpp at Ms lower than 15 µg m−3. Thus, in moderately pol-
luted atmosphere, the condensational uptake of SVOCs on
inorganic particles can account for significant fractions of the
THC emitted from gasoline engines, fractions that are equiv-
alent to the fraction of THC partitioning on primary particles.

3.5 Organic composition of COM versus primary
organic aerosol (POA)

In the current experiments, primary organic aerosol (POA)
particles from the gasoline engine were filtered before the
exhaust gas was exposed to the seed particles (Fig. 1) rather
than allowing the POA to interact with the seed particles.
In theory, transfer of semivolatile organics from the POA
to the seed particles can occur, first through evaporation of
semivolatiles followed by condensation of the evaporated
components to the seed particles, resulting in COM. This
process might have contributed more mass to COM, accom-
panied by a loss of organic mass from the POA. However,
as demonstrated below with estimates of evaporative mass
from POA and with differences in chemical composition be-
tween POA and COM, this potential mass transfer from POA
to COM is negligible.

Firstly, this mass transfer can be estimated as follows. The
primary organic mass was 11 % of the THC based on Eq. (10)
at relatively low dilution ratios of 14–22 in the CVS (and
should be lower at higher dilution ratios). Assuming that the
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maximum evaporative loss fraction for the POA from further
dilution over the current dilution range was about 67 %, sim-
ilar to that reported by Robinson et al. (2007), the evaporated
mass from the POA would be approximately 7 % of the total
gas phase THC. Of this evaporated organic mass, most would
remain in the gas phase after repartitioning to the seed parti-
cles. The value ofFcom obtained using Eq. (13) can be used
as an estimate for the fraction of the evaporated POA which
re-partitions onto the seed particles. AtMs = 15 µg m−3, the
value ofFcom is 0.12 and the condensed fraction is 10 % of
the total evaporated POA. In fact, as discussed below, the
particle-bound fraction of the evaporated POA would be even
smaller than thisFcom value would indicate since COM was
comprised of different species than POA. Thus, the repar-
titioning of the evaporated POA would contribute<7 % of
the COM on the seed particles, and<10 % of the evaporated
POA would condense as COM.

Secondly, the chemical composition of POA and COM
was different, suggesting that the potential contribution to
COM from the repartitioning of the evaporated POA was
even smaller than the above analysis based on partitioning of
the bulk THC. The organic mass spectrum of POA was not
determined by the AMS in the current study. However, an
organic mass spectrum was published for POA from a gaso-
line engine by Mohr et al. (2009), showing the largest frag-
ments atm/z43 and 57, with fragments ratios ofm/z43/44
and 57/44 of 6.80 and 6.32, respectively. Furthermore, the
ratio m/z44 to total organics in the reported POA is 0.017.
These values are further supported by ambient measurements
results which suggest that primary combustion aerosols in
general are dominated by hydrocarbon-like organic aerosols
(HOA) (Ng et al., 2011 and references therein). HOA, de-
rived from statistical analysis of ambient AMS organic mass
spectra from many field studies, has the maximum organic
fragment atm/z43 and a prominent fragment atm/z57, with
a ratio of m/z43 to m/z44 of 6.9 and am/z57/44 ratio of
5.52 (Ng et al., 2011), consistent with the reported POA from
gasoline engines (Mohr et al., 2009).

In comparison, the typical organic mass spectrum of
COM, in Fig. 6, shows the largest organic fragment atm/z44,
and the fragmentsm/z43 and 57 are small. Them/z43/44
mass ratio (0.59) in COM is a factor of 12 lower, and the
m/z57/44 ratio (2.91) a factor of 2.2 lower, than that for the
POA reported by Mohr et al. (2009). The ratio of fragment
m/z44 to total organics is 0.097, 5.7 times higher than that
of POA reported by Mohr et al. (2009). Therefore, COM
is significantly different than either the POA or the HOA,
containing a higher oxygen content than either aerosol types.
The organic mass spectrum of COM demonstrates that the
oxygenated SVOCs in the gasoline engine emissions were
likely the more active condensing organics compared to the
hydrocarbons. This makes it much less likely for POA repar-
titioning and re-condensation to be important to COM.

This oxygen-containing COM is consistent with lab
studies that showed large and fast uptake of carbonyls
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Figure 6.  The average spectrum of the normalized organic mass spectra for the condensed 

organic mass (COM) on sulfate seed particles.  The average spectrum was obtained for all 

the same experiments as those shown in Figure 2. Fig. 6. The average spectrum of the normalized organic mass spec-
tra for the condensed organic mass (COM) on sulfate seed particles.
The average spectrum was obtained for all the same experiments as
those shown in Fig. 2.

on seed particles (Liggio et al., 2005, 2007). In light
duty gasoline vehicle emissions, carbonyls can be ap-
proximately 5–10 % of the hydrocarbons (Graham, 2005),
which is consistent with the profiles published by the US
EPA (http://cfpub.epa.gov/si/speciate/ehpaspeciatebrowse
source.cfm?ptype=G) and by Shauer et al. (2002). Although
small, this oxygenate proportion in the VOCs from gasoline
engine emissions may be sufficient to lead to the high oxygen
content seen in the COM. This oxygen-containing primary
organic mass on seed particles would in fact help solve the
issue (at least partially) that models typically under-predicted
SOA.

3.6 Significance of condensational uptake: AURAMS
regional air quality modeling

To test the significance of COM on a regional scale, a uni-
fied regional air quality modelling system, AURAMS (Gong
et al., 2003; Stroud et al., 2008; Cho et al., 2009; Smyth
et al., 2009; Slowik et al., 2010; also see Supporting Infor-
mation, SI), was used to model the gasoline exhaust emis-
sions and subsequent condensation of SVOCs onto SO=

4
aerosol. Gasoline exhaust total organic vapor (THC) was
treated as an additional gas-phase species in the mobile
stream of the emissions processing system. THC was emit-
ted, transported, lost by gas-phase chemistry, and allowed
to reach equilibrium partitioning with SO=4 aerosol using
Eq. (12). AURAMS was run at a 15 km grid spacing with
a domain covering eastern North America for the month of
June, 2007. AURAMS produced concentration predictions
for PM2.5 SO=

4 , gasoline engine exhaust THC, total primary
organic aerosol (POA) from all sectors, ’traditional’ sec-
ondary organic aerosol (SOA), gasoline engine exhaust pri-
mary particulate mass and condensed organic mass (COM)
from gasoline engine exhaust. The model was run over a
high pollution episode (24 to 27 June) and a low pollution
period (20 to 23 June).
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Figure 7.  AURAMS model simulation of surface level ambient aerosols in µg m
-3

 or ratios 

centering on Lake Erie.  The simulation is for the polluted case from June 24 – 27: (1) 

average surface PM2.5 SO4; (2) gasoline engine exhaust THC; (3) COM on SO4 from the 

gasoline engine exhaust THC; (4) PM2.5 total primary OA mass from all sources; (5) COM 

from gasoline exhaust on PM2.5 SO4; (6) PM2.5 secondary OA using traditional mechanisms; 

(7) ratio of COM to total primary OA from all sectors; (8) ratio of COM to primary OA from 

gasoline exhaust.  The model grid resolution is 15 km.

Fig. 7. AURAMS model simulation of surface level ambient aerosols in µg m−3 or ratios centering on Lake Erie. The simulation is for the
polluted case from 24–27 June: (1) average surface PM2.5 SO4; (2) gasoline engine exhaust THC; (3)COM on SO4 from the gasoline engine
exhaust THC; (4) PM2.5 total primary OA mass from all sources; (5) COM from gasoline exhaust on PM2.5 SO4; (6) PM2.5 secondary OA
using traditional mechanisms; (7) ratio of COM to total primary OA from all sectors; (8) ratio of COM to primary OA from gasoline exhaust.
The model grid resolution is 15 km.
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Figure 8. Same as Fig. 7 but for the clean case of June 20 12Z to June 23 12Z. 

Fig. 8. Same as Fig. 7 but for the clean case of 20 June, 12:00 Universal Time to 23 June, 12:00 Universal Time.
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During the high pollution episode, southerly flow brought
air rich in SO=

4 aerosol from the Ohio Valley to the Detroit-
Windsor area; the maximum modeled SO=

4 concentrations
reached over 20 µg m−3 on 26 June which is consistent with
measured concentrations. The model captured some of the
temporal behavior of the SO=4 observations with a general
small positive bias (Fig. S1, SI). In the Detroit-Windsor area,
there were two noticeable maxima in the gasoline engine
exhaust THC time series on 25 and 26 June. These days
overlapped with the SO=4 event resulting in a large uptake of
gasoline engine exhaust THC to the SO=

4 aerosol (maximum
COM of 20 µg m−3). The maximum COM from gasoline
engine exhaust THC uptake was over an order of magnitude
larger than the maximum gasoline engine exhaust primary or-
ganic aerosol maximum (gasoline exhaust POA, 0.7 µg m−3)

in the urban area.

The model results also show that by condensing onto sul-
fate particle alone, COM from SVOCs in the gasoline engine
exhaust is a significant amount in comparison with the total
primary particle mass from all sources. Figure 7 shows the
3-day averaged model results over the high pollution episode
from 24–27 June for a model domain centered over Lake
Erie. For polluted conditions, the traditional SOA and COM
were both important on regional scales and POA was only
significant at urban locations. The amount of COM is higher
than the total primary particle mass from all sources during
the pollution episode across the model domain by a factor of
up to 3, and higher than the gasoline primary particle mass
by a factor of up to 7.5. During the pollution period, COM is
comparable to “traditional” SOA over a wide region of south-
eastern Michigan.

For cleaner conditions, Fig. 8 shows the 3-day averaged
surface distributions for the period 20 to 23 June. This was
a period with northwesterly winds and low SO=

4 over Wind-
sor. During the clean period, COM is comparable in mag-
nitude to ’traditional’ secondary organic aerosol mass within
and just downwind of some major urban centers (e.g. south-
ern Detroit). Gasoline exhaust COM in the Detroit-Windsor
air shed was also comparable in magnitude to POA from all
sectors. On regional scales, for the clean period, the “tra-
ditional” SOA was larger than COM or POA for most loca-
tions.

In summary, the modeling results suggest that gasoline
exhaust COM could be an important component of organic
aerosol within or just downwind of urban areas with coinci-
dent high sulfate aerosol loadings. It should be noted that
the model application above uses SO=

4 to derive the magni-
tude of COM over a regional scale. Other inorganic mass in
the ambient particles may also serve as a good medium for
the condensable organic materials to dissolve in, as shown in
the experiments with NH4NO3 seed particle experiments. If
these additional inorganic masses are included in the model
application, COM will be larger than that based on SO=

4 only,
and relative to the primary particle mass the contributions

from COM will be even higher over a regional scale. Fur-
thermore, dissolution of SVOCs into the organic components
in particles is probable and may further enhance COM.

4 Implications and uncertainties

Although COM can be significant compared to organic
aerosols on a regional scale, there are a number of unresolved
issues and uncertainties based on the current results. Firstly,
the largest uncertainty relates to the exact identities of the
condensing organic species (or classes of species) and the de-
gree to which they contribute to the total VOC burdens. Sec-
ondly, it is unclear if fast chemical processing in the particles
contributed to the measured COM and therefore altered the
original chemical composition of the soluble species. Hence,
the chemical speciation of the condensing organics is criti-
cally important for addressing this issue. Speciation is also
important since the amount of condensation relative to the
partial pressures of the condensing organics can affect the re-
lationship between this amount and the mass of the seed par-
ticles. For example, if the partial pressure of the condensing
organics is similar or small compared to COM, then increas-
ing the seed particle mass will not result in corresponding
increases in COM. Furthermore, chemical speciation infor-
mation can help quantify the potential effect of POA evap-
oration and repartitioning into the seed particles as part of
COM. A third uncertain aspect of the condensation process
is whether the condensation and dissolution processes are
reversible. The fourth issue is whether the dissolution pro-
cess is affected by the matrix effect of the seed particle ionic
strength. This may help explain partially the changing effec-
tive Henry’s law constant as observed. From a purely physi-
cal condensation and dissolution perspective, one expects the
processes to be reversible depending on changes in the par-
tial pressures of the condensing organics. However, if there
are chemical processes occurring on the seed particles after
condensation and dissolution, part of the COM may become
irreversible. Finally, the limited engine operational modes
deployed may not truly reflect the real world working con-
ditions of light duty gasoline engines. These uncertainties
point to the need for further studies to provide in-depth in-
sights into these complex processes.

Regardless of these uncertainties, the results presented
here have implications for the emission databases used for
modeling primary organic aerosol particles (POA), and for
automotive emission control policies. The current emission
data are based on results obtained under legislated methods
for specific set of sampling conditions using filters at low
dilution ratios (US EPA, 1993, 1996). No protocols are con-
tained in the sampling guidelines to address the condensed
organic mass on ambient particles. Thus, the primary particle
mass emissions do not include the condensed organic mass
as revealed in the present study. Consequently, current par-
ticle mass emissions underestimate the true POA emissions
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from automotive sources, neglecting an amount that can be
similar to the primary particle mass.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/10157/2011/
acp-11-10157-2011-supplement.pdf.
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