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Abstract. Climate models contain closure parameters to
which the model climate is sensitive. These parameters ap-
pear in physical parameterization schemes where some un-
resolved variables are expressed by predefined parameters
rather than being explicitly modeled. Currently, best expert
knowledge is used to define the optimal closure parameter
values, based on observations, process studies, large eddy
simulations, etc. Here, parameter estimation, based on the
adaptive Markov chain Monte Carlo (MCMC) method, is ap-
plied for estimation of joint posterior probability density of
a small number (n = 4) of closure parameters appearing in
the ECHAM5 climate model. The parameters considered are
related to clouds and precipitation and they are sampled by
an adaptive random walk process of the MCMC. The param-
eter probability densities are estimated simultaneously for all
parameters, subject to an objective function. Five alternative
formulations of the objective function are tested, all related
to the net radiative flux at the top of the atmosphere. Con-
clusions of the closure parameter estimation tests with a low-
resolution ECHAM5 climate model indicate that (i) adaptive
MCMC is a viable option for parameter estimation in large-
scale computational models, and (ii) choice of the objective
function is crucial for the identifiability of the parameter dis-
tributions.

1 Introduction

Atmospheric general circulation models (GCMs) consist of
dynamical laws of atmospheric motions and physical param-
eterizations of sub-grid scale processes, such as cloud for-
mation and boundary layer turbulence. Specified parameters
appear in physical parameterization schemes where some un-
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resolved variables are expressed by predefined parameters
rather than being explicitly modeled. These are called clo-
sure parameters. A simple example of such a parameter is
provided by turbulent transfer in the atmosphere. In a first
order closure, the transfer of a quantityq is assumed to be
proportional to the gradient ofq multiplied by a fixed dif-
fusion coefficient – note that a whole hierarchy of closures
of different orders exists, each with different closure param-
eters (Mellor and Yamada, 1974). Another example is cloud
shortwave optical properties which depend on cloud optical
thickness. This can be related to resolved cloud liquid water
amount via the mean effective radius of cloud water droplets.
If the cloud micro-physics is not resolved, the mean effec-
tive radius has to be prescribed (Martin et al., 1994). The
modelled shortwave radiation flux is sensitive to the spec-
ified value of this parameter, and it can act as an effective
”tuning handle” of the simulated climate.

An underlying principle in climate model development is
to aim at few rather than many closure parameters. In the
model development process, best expert knowledge is used
to define the optimal parameter values. They can be con-
strained to some degree based on observations, process stud-
ies, large eddy simulations, etc. but they do not necessarily
represent any directly observable quantity. Additionally, pa-
rameter values can depend on the discretization details, such
as grid interval or choices made regarding modeling of other
physical processes. This is a dilemma since observations do
not provide guidance towards resolution or modeling envi-
ronment dependent parameter values. In summary, the clo-
sure parameters are determined such that (i) they are consis-
tent with prior knowledge, and (ii) simulations prove to be
realistic in posterior validation. In fact, both can be used in
an iterative manner to optimize model performance.

The closure parameters of atmospheric general circulation
models are, by definition, constant during the model run.
Therefore they should perform well independent of partic-
ular weather situations, both locally and in a global sense.
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Various approaches are available for solving the closure pa-
rameter estimation problem. First, the review paper ofNavon
(1993) concentrates on adjoint techniques (e.g.,Rinne and
Järvinen, 1993) and stresses the questions of parameter iden-
tifiability and stability. This implies that both the estima-
tion method and the parameters to be estimated need to be
selected carefully. Sequential state estimation in numeri-
cal weather prediction aims at fitting the initial condition
and model parameters to prior information and to observa-
tions (e.g.,Dee, 2005). Only the maximum-likelihood fit
and a Gaussian error covariance are obtained from solving
the tangent-linear analysis equation. If closure parameters
are estimated in this framework, their values partly reflect
the latest observations – this is in fact in slight contradiction
to the notion that the closure parameter distributions should
be stationary.

Annan and Hargreaves(2007) provide a review of the
available parameter estimation methods in climate mod-
elling. They also discuss the Markov chain Monte Carlo
(MCMC) method and consider it too computationally expen-
sive for estimating climate model closure parameters. Their
treatment of MCMC is, however, somewhat restricted to the
Metropolis algorithm (Metropolis et al., 1953), and recent
advances in adaptive methods are not fully covered.

Jackson et al.(2008) used a stochastic optimization
method, Multiple Very Fast Simulated Annealing (MVFSA),
for the search of optimal closure parameters of the CAM3.1
climate model, with respect to a cost function based on multi-
source observations. The search paths of the stochastic op-
timizer were used to infer about the parametric uncertainty.
Villagran et al.(2008) further evaluated the performance of
MVFSA and compared it against different MCMC methods
with a surrogate climate model. These methods included
Adaptive Metropolis (AM), the Single Component Adap-
tive Metropolis (SCAM) and the Delayed Rejection Adaptive
Metropolis (DRAM), see (Haario et al., 2001, 2004, 2005,
2006; Andrieu and Moulines, 2006). Villagran et al.(2008)
note that MVFSA may be efficient for optimization, but sta-
tistical inference about the parameter distribution tends to be
biased. The results were in favor of DRAM and SCAM, es-
pecially in test cases with short sampling chains.

In this article, we demonstrate the use of MCMC in
the context of the atmospheric general circulation model
ECHAM5. A central outcome is that it is, indeed, viable to
use MCMC for parameter estimation for a climate model,
at least in the context of a coarse-resolution atmospheric
GCM. Research methods are presented in Sect.2, experi-
mental setup and results in Sects.3 and 4, and discussion
and conclusions in Sects.5 and6.

2 Materials and methods

2.1 The adaptive MCMC approach

Markov chain Monte Carlo (MCMC) methods are widely
used in parameter estimation and computational inverse
problems. A mathematically solid way of describing the esti-
mation problem is to use Bayesian approach where the mea-
surements and unknown parameters are considered as ran-
dom variables and the solution is described as a combination
of prior information and the evidence that comes from the
measurements via the objective function (i.e., the likelihood).
The solution, i.e., the estimated distribution of the retrieved
parameters, is known as the posterior distribution. Instead of
just finding the “best estimate”, the MCMC technique simu-
lates the full distribution of the solution in then dimensional
model parameter space, wheren equals the number of pa-
rameters to be estimated.

The classical Metropolis algorithm (Metropolis et al.,
1953) proceeds in two steps. In the proposal step, a can-
didate value is sampled using a “proposal distribution”. In
the acceptance step, the candidate value is either accepted or
rejected. The Metropolis acceptance probability depends on
the values of the objective function at the candidate value and
the present value. If the value is accepted, it becomes the new
value in the chain and if it is rejected, the chain just repeats
the present value. More probable values are always accepted
but there is a positive probability to accept less probable val-
ues, too. In this way it is assured that the whole target dis-
tribution is explored. The exact formula for the acceptance
probability is selected such that the distribution of the simu-
lated values converges to the target probability.

The original Metropolis algorithm is simple and straight-
forward. In practice, however, an effective performance, i.e.,
convergence towards the correct target distribution with rea-
sonably few model evaluations, may require preliminary test
runs or laborious hand tuning of the proposal distribution.
Such methods, however, are not easily available in case of
a computationally demanding climate model like ECHAM5.
Recent developments speed up the search of the proposal by
using adaptive techniques that ’learn’ during the sampling
process. In this article, we have applied the Delayed Re-
jection Adaptive Metropolis (DRAM) algorithm. Textbook
treatment of MCMC methods can be found, e.g., inRobert
and Casella(2005).

2.2 ECHAM5 model and the closure parameters

Version 5.4 of the ECHAM5 atmospheric general circulation
model (Roeckner et al., 2003, 2006) was used. The dynam-
ical part of ECHAM5 is formulated in spherical harmonics,
while physical parameterizations are computed in grid point
space. The simulations reported here used a coarse horizon-
tal resolution of T21, i.e., triangular truncation at wave num-
ber 21, corresponding to a grid-spacing of 5.625 deg. The
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Table 1. The considered sub-set of ECHAM5 closure parameters.

Parameter Description

CAULOC A parameter influencing the accretion of
cloud droplets by precipitation
(rain formation in stratiform clouds)

CMFCTOP Relative cloud mass flux at the level above
non-buoyancy
(in cumulus mass flux scheme)

CPRCON A coefficient for determining conversion
from cloud water to rain
(in convective clouds)

ENTRSCV Entrainment rate for shallow convection

model vertical grid had 19 layers with model top at 10 hPa.
A semi-implicit time integration scheme is used for model
dynamics with a time step of 40 min. Model physical pa-
rameterizations (seeRoeckner et al., 2006) are invoked every
time step with the exception of radiation, which is computed
once in two hours.

Four ECHAM5 closure parameters were considered (Ta-
ble 1). These parameters are related to physical parameteri-
zations of clouds and precipitation. The choice of these pa-
rameters is motivated by their substantial influence on model
cloud fields and therefore the radiative fluxes at the top of the
atmosphere (TOA). It is thus plausible that they can be con-
strained by a suitable formulation of the objective function.

2.3 Observational data sets

In this initial study, the definition of the objective function is
based solely on the net (longwave + shortwave) radiative flux
at the TOA. The observational estimates are taken from the
Clouds and the Earth’s Radiant Energy System (CERES) En-
ergy Balanced and Filled (EBAF) dataset (Loeb et al., 2009).
The CERES EBAF dataset is, however, only used for the
mean values. Since this dataset contains data for five years
only, we chose to derive the interannual standard deviations
from the the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data (ERA-40;Uppala et al.,
2005), which provides a much longer (44-year) timeseries.

2.4 The objective function

The parameter posterior probability distribution is condi-
tional to the choice of the objective function. In case of
ECHAM5, it is a measure of the accuracy of the climate sim-
ulation – a trained human eye would be very efficient in se-
lecting “good” and “bad” simulations and the aim here is to
construct an objective function which would replace this hu-
man element. On one hand, the objective function should
be physically justified, i.e., being capable of distinguishing
accurate climate simulations from inaccurate ones. On the
other hand, it should be constructed such that the parameter

distributions are identifiable with respect to the chosen ob-
jective function. If this is the case, the parameter posterior
probability distribution should be compact and limited. If
not, either the objective function does not provide the desired
guidance for the parameters, or they are simply not relevant
in tuning the model with respect to the objective function.

Five alternative formulations of the objective function are
tested, all of which are related to the net radiative flux at the
TOA in the ECHAM5 model (F ) and in CERES EBAF data
(F o). Annual and monthly mean fluxes are denoted byF and

F , and global and zonal means by〈F 〉 and[F ], respectively.
Subscriptsx and y refer to geographical location in zonal
and meridional direction, andt refers to time (in months).
The first of the five alternative formulations of the objective
function is denoted byJG(θ), and it uses only the global-
annual mean value ofF :

JG(θ) =

(〈
F

〉
−

〈
F o

〉)2

(σ o〈
F

〉)2
, (1)

whereθ is the vector of four closure parameters. It penalizes
climate simulations which deviate from the global annual-
mean net radiative flux in CERES EBAF data (0.9 Wm−2).
The squared net flux difference is normalized by the standard
deviationσ o〈

F
〉 of the inter-annual variability of the global an-

nual mean net flux, which is estimated from ERA-40 data
(0.53 Wm−2).

The second formulation is denoted byJXY (θ)

JXY (θ) =
1

12
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It accounts for local differences in monthly mean net fluxes.
The weightswx,y represent grid point area fractions. The
squared net flux difference is normalized by the standard de-
viation of the inter-annual variability of the local monthly
mean net fluxes, based on ERA-40 data. The third formu-
lation, denoted byJ ZONAL(θ), uses zonal mean values of
monthly mean net fluxes:

J ZONAL(θ) =
1

12
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wy

([
F y

]
−

[
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y

])2

(σ o[
F

])2
(3)

Here, the weightswy represent area fractions for the zonal
bands, and the normalizing factor is the standard deviation
of the inter-annual variability in monthly and zonal mean net
fluxes.

The last two formulations

JG+XY (θ) = JG(θ)+JXY (θ) (4)

JG+ZONAL(θ) = JG(θ)+J ZONAL(θ) (5)

are combinations of the objective function Eq. (1) with
Eqs. (2) and (3), respectively. Equations (4) and (5) attempt
to emphasize the weight of the global annual mean net flux
in addition to the regional details in net radiative fluxes.
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Table 2. Parameter values applied in the MCMC tests. The first column gives the default values for resolution T21L19, the second column
the initial estimate of one-sigma uncertainty used to initialize the MCMC chain, the third column minimum and maximum parameter values
allowed, and the fourth column the range of parameter values applied in standard ECHAM5. The upper limit of parameter CAULOC was
100 for the first four experiments, but it was reduced to 30 for theJG+ZONAL experiment, when it was realized that all values of CAULOC
higher than about 30 produceidenticalresults.

Parameter Default Initial Range in Range in ECHAM5
value std.dev. MCMC tests (other model resolutions etc.)

CAULOC 1 1 0–30/100 1–5
CMFCTOP 0.10 0.08 0–1 0.10–0.35
CPRCON 8×10−4 4×10−4 0–1.5×10−2 1×10−4–10−3

ENTRSCV 3×10−4 3×10−4 0–5×10−3 3×10−4–10−3

3 Experimental setup

Five separate experiments were performed, one for each of
the five objective functions listed above (Eqs.1–5). An
MCMC chain consisting of 1000 model runs was applied,
with one exception: a longer chain of 4500 runs was carried
out for the experiment using theJG+ZONAL objective func-
tion (Eq.5)1. Each model evaluation represents a one-year
climate simulation with the low-resolution ECHAM5 model.
Prescribed distributions of sea surface temperature and sea
ice for year 1990 were used (AMIP Project Office, 1996),
and the model initial condition was 1 January 1990. One
simulation step took about 17 min using 30 CPUs on a Cray
XT5m computer.

Default parameter values and prior distributions (or
ranges) applied in the experiments are provided in Table2.
The MCMC algorithm was broadly as follows:

Step 0: Initialize the four closure parameters to their default val-
ues; Initialize proposal distribution to reflect the a priori
knowledge about parameter uncertainty; Run the model
for one year; Post-process the model data and evaluate
the objective function.

Step 1: Draw new parameters from the proposal distribution
centered at the current parameter values; Run the model
with new parameter values and evaluate the objective
function.

Step 2: Accept or reject new parameter values based on the dif-
ference of objective functions at current vs. previous
step; Update the proposal distribution according to the
adaptive MCMC algorithm.

Step 3: Return to Step 1 if the chain has not yet been completed.

1The actual length of the MCMC chain is slightly longer than the
number of ECHAM5 runs, because the parameter values proposed
by MCMC may fall outside the given parameter bounds, in which
case they are rejected immediately, without running ECHAM5.

Note that the difficulty in providing a correct initial pro-
posal covariance in Step 0 makes the adaptation method ap-
plied in Step 2 crucial for the sampling to be efficient.

4 Results

The MCMC tests with the low-resolution ECHAM5 climate
model are discussed in the next four subsections, with em-
phasis on general aspects of the results.

4.1 Parameter chains

The random walk process is started in each experiment from
the default parameter values (Table2). The parameter val-
ues for the subsequent runs depend on the definition of the
objective function. We illustrate this by showing the MCMC
chains for the five different objective functions and for two
parameters with contrasting behaviour: CMFCTOP (Fig.1)
and CPRCON (Fig.2). In Figs.1and2, the dots represent pa-
rameter values included in the MCMC chain. If a parameter
combination is rejected by the MCMC algorithm, the previ-
ous accepted parameter values are repeated. The horizontal
grey line represents the default parameter value, 0.1 for CM-
FCTOP and 8×10−4 for CPRCON, respectively. Note that
in Fig. 1, the scale is different in different panels.

For CMFCTOP (Fig.1), the parameter values are gen-
erally well-bounded from above. Only forJXY the con-
straint on CMFCTOP is somewhat weak, the largest accepted
parameter values approaching the upper limit of physically
meaningful values (CMFCTOP=1). For JG, the accepted
parameter values vary on both sides of the default value,
while for the three remaining cost functionsJ ZONAL , JG+XY

andJG+ZONAL , there is a clear tendency for parameter val-
ues smaller than the default. Overall, CMFCTOP is an exam-
ple of a parameter which behaves quite in an expected way.

The MCMC chains for the parameter CPRCON (Fig.2)
behave rather differently from those for CMFCTOP (Fig.1).
Generally, the values of CPRCON are weakly bounded from
above for all formulations of the objective function – sooner
(JXY ) or later (JG) the upper limit of the prior range of
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Fig. 1. The MCMC chain for parameter CMFCTOP. The horizon-
tal grey line at parameter value 0.1 is the default value. Note the
different scaling in different panels. Also note that the length of the
MCMC chains is slightly larger than the number of ECHAM5 runs
performed (1000 for the first four chains, 4500 for theJG+ZONAL

chain).

parameter values is met. There seems to be a tendency to-
wards parameter values larger than the default. Figure2 is an
example of a parameter which is weakly constrained by any
of the objective functions, and the overall behaviour is not
very desirable. A possible explanation is that for changes in
CPRCON, the corresponding changes in longwave and short-
wave fluxes at the TOA tend to cancel each other, leading to
smaller changes in the TOA net flux.

In general, Figs.1 and 2 point to the importance of the
choice of the objective function. This is seen both in the fact
that some objective functions constrain CMFCTOP much
more tightly than others (e.g., compareJG+ZONAL with
JXY ) and in the failure ofall objective functions to con-
strain CPRCON properly. The latter point calls for an im-
proved definition of the objective function in future work.
Specifically for CPRCON, compensation between longwave
and shortwave fluxes suggests that an objective function that

Fig. 2. Same as Fig.1 but for parameter CPRCON. The horizontal
grey line at parameter value 8×10−4 is the default value.

utilizes these fluxes separately, rather than only the net flux,
might better constrain this parameter. Other model fields sen-
sitive to CPRCON include precipitation rate, and middle and
high cloud fractions.

Another general point evident in particular in Fig.2 con-
cerns the convergence of the MCMC chains. For exam-
ple, when using the objective functionJG, the values of
CPRCON remain relatively close to the default value nearly
until the end of the chain, but then rapidly drift to a much
higher level. Had we stopped the chain after (e.g.) 800
runs, we could have falsely concluded thatJG constraints
CPRCON rather well. This suggests that a MCMC chain
length of 1000 runs is not long enough for analyzing the pos-
terior parameter distributions properly. The issue of chain
convergence is addressed more comprehensively in the fol-
lowing section, based on theJG+ZONAL experiment.

4.2 Analysis of the JG+ZONAL experiment

To visualize how the statistical characteristics of the MCMC
parameter chains evolve in theJG+ZONAL experiment, we
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Fig. 3. A demonstration of how the MCMC posterior distribution
converges with increasing chain length for theJG+ZONAL objec-
tive function. The dotted blue, black and red lines show the 10th,
50th and 90th percentiles of the posterior distribution for the previ-
ous 500 runs (or for all runs performed so far, for runs 1–499). The
horizontal blue, black and red lines indicate the 10th, 50th and 90th
percentile of the posterior distribution computed using the last 3500
runs (i.e, runs 1001–4500) of the chain. The horizontal grey lines
indicate the default values of the parameters.

evaluated the posterior distributions after each run, always
using the last 500 runs only. The blue, black and red dotted
lines in Fig.3 show the 10th, 50th and 90th percentage points
computed from these distributions for each of the four param-
eters. The solid horizontal lines show the respective percent-
age points computed from the last 3500 runs (i.e., runs 1001
through 4500).

While the parameters start from their default values, all
of them experience a drift in the early part of the chain, so
that the distributions of CAULOC, CPRCON and ENTRSCV
drift towards higher values and that of CMFCTOP towards
lower values. By visual inspection of Fig.3, the drift lasts
for roughly 500–1000 runs, CPRCON and ENTRSCV sta-
bilizing slightly earlier than CAULOC and CMFCTOP. For
all parameters, percentage points computed from runs 1001–
1500 are close to those computed from runs 1001–4500. This
suggests that for the analysis of the parameter posterior dis-
tributions, it is sufficient to omit the first 1000 runs.

Figure4 displays posterior distributions of the four param-
eters computed from runs 1001 through 4500. As shown
before (Fig.1), for CMFCTOP there is a strong preference
for values smaller than default (0.1). Also, as suggested by
Fig. 2, CPRCON is poorly constrained from above. In broad
terms, all values are deemed equally likely by the MCMC
algorithm, except that the very lowest values are ruled out.
CAULOC behaves quite similarly to CPRCON. Finally, the
posterior distribution for ENTRSCV features a broad maxi-
mum centred around ENTRSCV≈ 1.5×10−3. Both the low-
est values and very high values of ENTRSCV are deemed

0 5 10 15 20 25 30

CAULOC

0 0.05 0.1 0.15 0.2

CMFCTOP

0 0.005 0.01 0.015

CPRCON

0 1 2 3 4 5

x 10
−3

ENTRSCV

4 4.5 5 5.5 6

sqrt(costf.)

Fig. 4. Estimated posterior distributions as chain histograms for the
JG+ZONAL cost function. Histogram is calculated from the chain
with the first 1000 values removed. The lowest panel shows the
histogram of square root of values of the cost function.

unlikely. The 2-dimensional marginal posteriors (Fig.5) do
not display significantly large correlations between the pa-
rameters and further reveal the rather poor identifiability of
CAULOC and CPRCON. In summary, when using the ob-
jective functionJG+ZONAL , the MCMC algorithm is able
to providesomeconstraints on all four parameters consid-
ered, although for CAULOC and CPRCON, the constraints
are rather weak.

4.3 Objective function versus radiative fluxes

Trivially, parameter retuning by the MCMC process can im-
prove (i.e., decrease) the value of the objective function com-
pared to its value for default parameter settings. A crucial
question is, however, whether the MCMC process helps to
reduce errors in those quantities not explicitly included in
the objective function. A simple test illustrated in Fig.6 in-
dicates that this is, again, dependent on the choice of the ob-
jective function.

Figure6 displays the five different objective functions ver-
sus global annual mean net, longwave (LW) and shortwave
(SW) radiative fluxes at the TOA – recall that only the net
flux, rather than LW and SW fluxes separately, is used in the
objective functions (1)–(5). The vertical grey line represents
the observed global annual mean fluxes from CERES EBAF
data, and the grey dot corresponds to the default parameter
values. ForJG (Fig. 6, panels a–c), the cloud of points of
the MCMC chain is exactly parabolic for net radiation, as
JG penalizes of squared differences in global annual mean
net radiation. The default parameter values correspond quite
closely to the objective function minimum. Obviously, this
has been used as a criterion in the ECHAM5 model tuning.
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Fig. 5. Pairwise MCMC chain plots for theJG+ZONAL cost func-
tion. The first 1000 points are removed as burn-in time, as in the
histograms of Fig.4. The contours estimate 50% and 95% poste-
rior probability levels of the marginal 2 dimensional distributions.
Note that in addition to the four model parameters, the square root
of value of the cost function is included as the fifth chain member.

For JG, the default parameter values correspond to LW and
SW biases of 7–8 Wm−2. It is possible to select parameter
values for an unbiased model in net radiation which corre-
spond to LW and SW biases in the interval of about 3 to
20 Wm−2, but not smaller. In particular, an overestimate of
the (down-up) LW radiation at the TOA compared to CERES
EBAF data seems to be an inherent bias of ECHAM5 at T21
resolution.

For JXY (Fig. 6d–f), the cloud of points of the MCMC
chain is diffuse and weakly parabolic for net radiation, and
JXY varies rather little from one MCMC step to another.
There is a strong tendency for a positive net flux bias. Thus,
minimization of errors in the geographical distribution of the
monthly net flux is not a sufficiently strong constraint for
obtaining correct global annual net flux. Note, however, that
JXY tends to decrease when the LW and SW biases decrease,
which is a very desirable property ofJXY .

For J ZONAL (Fig. 6g–i), the main cloud of points has a
weak tendency for a positive bias in the global annual net
flux, implying thatJ ZONAL constrains somewhat better the
global annual mean flux thanJXY . There is a very clear
tendency forJ ZONAL to decrease when the LW and SW bi-
ases decrease. The default model is somewhat outlying in the
LW/SW fluxes compared to the main cloud of points.

Next, the formulationsJG+XY andJG+ZONAL , which uti-
lize both the global annual net flux and the geographical dis-
tribution on monthly basis, are examined. The behaviour
of JG+XY versus net radiation is largely dominated by the

Fig. 6. The objective function versus global annual mean radia-
tive fluxes (net, LW, and SW). The vertical grey line represents
the observed global annual mean value in CERES data (0.9 Wm−2,
−239.6 Wm−2 and 240.5 Wm−2 for net, LW, and SW fluxes, re-
spectively), and the grey dot corresponds to the default parameter
values.

global annual mean term (Fig.6, j–l). This is mainly be-
cause the normalizing factorσ is much smaller in Eq. (1)
than in Eq. (2) (i.e., the global annual mean flux varies much
less than local monthly mean values, and therefore provides
a stricter constraint on the parameters). However,JG+XY

constrains the LW and SW parts somewhat better thanJG

alone (Fig.6a–c). Finally, the behaviour ofJG+ZONAL ver-
sus net radiation is to some extent dominated by the global
annual mean term (Fig.6m–o), but the zonal net flux dis-
tribution makes a significant contribution. The LW and
SW parts are nicely constrained such that their biases de-
crease asJG+ZONAL decreases. Overall, the behaviour of
JG+ZONAL is probably the most attractive of the five tested
objective functions. In conclusion, addition of the global an-
nual net flux term inJG+XY andJG+ZONAL (Fig. 6, last two
rows) has the desired effect that the results are unbiased with
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Fig. 7. Time-latitude cross section of TOA net flux difference be-
tween the default ECHAM5 and CERES observations (panela), the
corresponding difference for the ECHAM5 run with the smallest
value ofJG+ZONAL (panelb), and the difference between these
two ECHAM5 runs (panelc; note the different scale for shading).
(d)–(f): Same as (a)–(c) but for the (down-up) shortwave flux at
the TOA.(g)–(i): Same as (a)–(c) but for the (down-up) longwave
flux at the TOA.(j)–(l) : Same as (a)–(c) but for total cloud fraction
(Ctot) compared with ISCCP satellite observations. The parame-
ter values corresponding to default ECHAM5 are CAULOC= 1,
CMFCTOP=0.1, CPRCON= 8×10−4, and ENTRSCV= 3×10−4;
while those for the best run are CAULOC=29.83, CMFCTOP=
0.0333, CPRCON= 1.05× 10−2, and ENTRSCV= 1.35× 10−3.
The corresponding values ofJG+ZONAL are 28.7 and 16.7.

respect to the net flux and the geographical distributions are
respected to some extent.

Based on Fig.6 (and also Figs.1 and2), what can we con-
clude regarding the choice of the objective function? First,
given that a reasonable simulation of the global annual-mean
net flux at the TOA is necessary to avoid climate drift in
coupled atmosphere-ocean GCMs, it seems prudent to in-
clude this term explicitly in the objective function (cf.Jack-
son et al., 2008). Second, use of the global-mean TOA radi-
ation balance alone does not work well. It is possible to get a
single number “right” with very different model climates, as

demonstrated by the wide range of global mean LW and SW
radiation corresponding to low values ofJG in Fig. 6b and
c. Thus, terms addressing modeled spatio-temporal struc-
tures should also be included in the objective function. In
this respect, use of zonal and monthly-mean values (J ZONAL

andJG+ZONAL) appears a better choice than the use of lo-
cal monthly-mean values (JG andJG+XY ). The reason for
this is that zonal values exhibit smaller interannual “random”
variations than the local values (i.e., values ofσ o[

F
] in Eq. (3)

are substantially smaller than those ofσ o

F
in Eq.2). In order

for MCMC to be able to efficiently distinguish “good” from
“bad” parameter combinations, the systematic impact of pa-
rameter changes needs to be relatively large compared to the
random variations.

Lastly, it is by no means our purpose to imply that
JG+ZONAL is the ultimate solution to the problem of defin-
ing the objective function. Other model fields beyond the net
flux could/should be included. Also, it should be stressed that
while the use of zonal means is simple, it is hardly the opti-
mal choice for the description of spatial structures. For ex-
ample, the use of empirical orthogonal functions, as inJack-
son et al.(2008), is certainly an option worth considering.

4.4 Illustration of the simulation errors

Figure 7 illustrates the impact that a parameter retuning
through the MCMC process has on the climate simulated
by ECHAM5. Two model runs are considered: the “default
run” using the default parameter setting, and the “best run”
corresponding to the smallest value of the objective func-
tion JG+ZONAL . The corresponding values ofJG+ZONAL are
28.7 and 16.7, respectively.

For the default run, the largest net flux errors appear at
high latitudes (∼55◦ S and∼60◦ N) during local summer,
with differences of about−40 Wm−2 from CERES EBAF
data (Fig.7a). At lower latitudes, smaller and predominantly
positive biases prevail. For the optimized closure parameters
(Fig. 7b), the maximum monthly mean errors are reduced by
about 10 Wm−2. The pattern of differences between the two
runs (Fig.7c) is, for the most part, opposite to that of the
original biases.

The SW and LW fluxes at the TOA are considered in
Figs.7d–f and g–i, respectively. It can be seen that the im-
proved simulation of the net flux in the “best run” mainly
results from reduced biases in SW radiation, especially at
high latitudes. The impact of parameter tuning on zonal-
mean longwave fluxes is, overall, neutral: the positive bias
at mid- to high-latitudes is reduced, but at the same time,
the negative bias in the tropics is increased. For precipita-
tion (not shown), the impact of tuning also appeared neutral:
the “default run” and the “best run” both featured essentially
similar biases when compared to Climate Prediction Center’s
(CPC) Merged Analysis of Precipitation (CMAP) data (Xie
and Arkin, 1997).
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Finally, total cloud fraction is considered in Figs.7j–l.
Compared to the International Satellite Cloud Climatology
Project (ISCCP) D2 data (Rossow et al., 1996; Rossow and
Duẽnas, 2004), the default run features too much cloudiness
at high latitudes, and too little cloudiness at lower latitudes,
with largest negative biases around 30◦S (Fig. 7j). In the
“best run”, cloudiness is, overall, reduced (Fig.7l). While
this alleviates the positive bias compared to ISCCP data at
high latitudes, the negative bias prevailing over most of the
globe is increased (Fig.7k). In summary, some of the quan-
tities not included in the cost function are improved, while
others are deteriorated.

5 Discussion

The MCMC approach requires long chains of model runs
and is therefore best applicable to models that can be run
relatively fast. In the present work, we have demonstrated
(as far as we know, for the first time) that it is viable to
apply MCMC to parameter estimation in an atmospheric
general circulation model (GCM) used for climate simula-
tions. This is based on three facts: the low spatial reso-
lution of the model, application of the adaptive MCMC al-
gorithm (DRAM), and the relatively fast response of atmo-
spheric processes to “external forcing” (in our case, changes
in parameter values). As to the limits of the approach, we
note that in, e.g., ocean GCMs, the response time scales are
much longer and MCMC would be computationally more de-
manding. Also, additional care is needed in selecting the cost
function if we model systems which include important reser-
voirs associated with long time scales, such as carbon pools.
This is the case with comprehensive Earth system models
with sub-models for terrestrial biosphere and ocean biogeo-
chemistry. One can of course estimate parameters off-line
for terrestrial biosphere models (Tuomi et al., 2009), for in-
stance, but interactions and feedbacks with the rest of the
modelling systems are omitted in this procedure.

Traditional model parameter sensitivity analysis applies
perturbations on model parameters, and draws conclusions
about the sensitivity of model simulations on parameter val-
ues. This is typically done separately for different model
parameters. This study illustrates that the range of param-
eter values that can produce good simulations in terms of
an objective function can be much wider when more than
one parameter is considered simultaneously. This is because
the combined effect of two or more parameters can keep the
model simulation in an acceptable region. Traditional sen-
sitivity analysis thus makes the parameter space to appear
more limited than it really is. Also, it is extremely hard to
find these combined effects with traditional methods.

One issue of concern with the MCMC approach is related
to error compensation. The optimal values of the closure pa-
rameters may depend on processes that these parameters do
not directly influence. For example, all-sky net radiation at

the TOA is a sum of clear-sky net radiation and cloud radia-
tive forcing. Any bias in clear-sky radiative transfer calcu-
lations could influence the posterior distribution of closure
parameters that affect cloudiness. The problem of error com-
pensation is, however, not inherent to MCMC but applies to
model retuning in general. Presumably the best way to miti-
gate this problem in the framework of MCMC is to carefully
select an objective function that accounts for multiple aspects
of climate. Various other fields beyond the TOA net radiation
could be used, as inJackson et al.(2008).

In this article, the definition of the objective function has
been based on very simple statistics such as global and zonal
mean values. More sophisticated formulations would ac-
count for observed climate phenomena, especially those as-
sociated with three-dimensional distributions and possibly
including also their temporal evolution. The spatial charac-
teristics can be captured using standard statistical techniques,
such as empirical orthogonal functions. Their extensions
(e.g.,Ilin et al., 2006) can account for more distinctive fea-
tures of the observed climate variability. Formulation of such
an advanced cost function is one of the future directions of
our research. Other questions that have to be addressed in
the cost function formulation are, e.g., how to combine sev-
eral similarity criteria in one objective function, and what is
the length of climate simulation required to alleviate the ef-
fects of purely random variations in the objective function.

6 Conclusions

All general circulation models of the atmosphere or ocean
– including climate models – contain closure parameters to
which the model simulations are sensitive. These parameters
appear in physical parameterization schemes where some un-
resolved variables are expressed by predefined parameters.
In climate modeling, typically, best available expertise is
used to define the optimal closure parameter values, based
on observations, process studies, large eddy simulations, etc.
This procedure has the drawback that little is learned about
the parameter posterior distributions: is the optimum local or
global, are parameters correlated, etc. Here, parameter es-
timation, based on the adaptive Markov chain Monte Carlo
(MCMC) method, was applied for estimation of joint pos-
terior probability distribution of closure parameters in the
ECHAM5 climate model run at a coarse horizontal resolu-
tion T21. The four selected parameters related to clouds and
precipitation were sampled by an adaptive random walk pro-
cess, subject to an objective function. Five alternative for-
mulations of the objective function were tested, all of which
were related to the net radiative flux at the top of the atmo-
sphere.

We have demonstrated the viability of MCMC methods,
especially adaptive MCMC, for the objective estimation of
the uncertainties related to closure parameters in climate
models. For the four closure parameters, we found an
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MCMC chain consisting of 4500 one-year ECHAM5 runs
sufficient for a full exploration of the posterior distribution.
Chains of 1000 runs were somewhat too short due to an ini-
tial drift of the parameter distributions. Even with the most
promising cost function, only two parameters (CMFCTOP
and ENTRSCV) were found to identify and produce rea-
sonable tight posterior uncertainties within the predefined
parameter limits (Fig.4). However, it is a strength of the
MCMC methodology that it allows one to study the iden-
tifiabilities and the correlation structures of the parameters
(Fig. 5) even when the parameters do not identify. Further
work is ongoing in the construction of more refined objec-
tive functions for the estimation of the closure parameters
and their uncertainties.
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