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Abstract. In order to characterize the features of par-
ticulate pollution in the Pearl River Delta (PRD) in the
summer, continuous measurements of particle number size
distributions and chemical compositions were simultane-
ously performed at Guangzhou urban site (GZ) and Back-
garden downwind regional site (BG) in July 2006. Parti-
cle number concentration from 20 nm to 10 µm at BG was
(1.7± 0.8)×104 cm−3, about 40% lower than that at GZ,
(2.9± 1.1)×104 cm−3. The total particle volume concen-
tration at BG was 94± 34 µm3 cm−3, similar to that at GZ,
96± 43 µm3 cm−3. More 20–100 nm particles, significantly
affected by the traffic emissions, were observed at GZ, while
100–660 nm particle number concentrations were similar at
both sites as they are more regional. PM2.5 values were sim-
ilar at GZ (69± 43 µg m−3) and BG (69± 58 µg m−3) with
R2 of 0.71 for the daily average PM2.5 at these two sites,
indicating the fine particulate pollution in the PRD region
to be regional. Two kinds of pollution episodes, the accu-
mulation pollution episode and the regional transport pol-
lution episode, were observed. Fine particles over 100 nm
dominated both number and volume concentrations of total
particles during the late periods of these pollution episodes.
Accumulation and secondary transformation are the main
reasons for the nighttime accumulation pollution episode.
SO2−

4 , NO−

3 , and NH+

4 accounted for about 60% in 100–
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660 nm particle mass and PM2.5 increase. When south or
southeast wind prevailed in the PRD region, regional trans-
port of pollutants took place. Regional transport contributed
about 30% to fine particulate pollution at BG during a re-
gional transport case. Secondary transformation played an
important role during regional transport, causing higher in-
crease rates of secondary ions in PM1.0 than other species
and shifting the peaks of sulfate and ammonium mass size
distributions to larger sizes. SO2−

4 , NO−

3 , and NH+

4 ac-
counted for about 70% and 40% of PM1.0 and PM2.5, re-
spectively.

1 Introduction

Atmospheric aerosols have attached more and more atten-
tion in recent years because they influence the global climate
change and human health (Dockery et al., 1994) and degrade
visibility (Sokolik and Toon, 1996; Jung and Kim, 2006).
In order to understand these effects, accurate knowledge on
physical and chemical properties of aerosol is required. A
large number of studies showed that the size resolved proper-
ties of the atmospheric aerosols are more powerful to explain
their atmospheric behavior than their bulk properties (Dusek
et al., 2006; See et al., 2006).

On one hand, the absorbing and scattering effect of
aerosols on the incoming radiation is dependent on the par-
ticle size and composition (Nishita et al., 2007) and the
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accumulation mode particle number concentrations could ex-
plain the visibility degradation on hazy days (See et al.,
2006). On the other hand, only particles within a certain
size range have cloud-nucleating ability and affect the mi-
crophysical and optical properties of cloud condensation nu-
clei (CCN, Iorga and Stefan, 2005). In addition, whether
the adverse health effects of aerosols are number- or mass-
concentration-dependent is still a debating issue. Recently,
studies have proved that ultrafine particles with very small
sizes can be uptaken directly by cells as well as be translo-
cated to other sensitive target organs such as the heart and
central nervous system (Oberdörster et al., 2005). Compared
with larger particles of similar composition ultrafine parti-
cles are more toxic and induce more intense oxidative stress
in cells (Nel, 2005; Nel et al., 2006). The chemical composi-
tions are also key elements deciding the health effect as well
as the influence on climate change. Therefore, characteriz-
ing number size distributions and chemical compositions of
atmospheric aerosols is very important to understand their
effects on climate change, human health, and air quality.

The Pearl River Delta (PRD) is one of the most economi-
cally invigorating and densely populated regions and one of
the biggest city clusters in the world. Rapid urbanization and
economic development have deteriorated the air quality and
changed the properties of the air pollution: the primary pol-
lutants, such as SO2 and inhalable particulate matter (PM10)

have been reduced by abatement measures. However, the
secondary products such as ozone and fine particles of high
concentrations become two of the most formidable air qual-
ity and public health issues facing the PRD region. More-
over, the scale of the pollution problems in the PRD region
has also expanded (Zhang et al., 2008). The occurrence of
haze remains very high on about 150 days per year on av-
erage in Guangzhou from 1980 to 2006 (Deng et al., 2008).
Haze characterized of very low visibility and high mass con-
centrations of fine particles has been reported in summer as
well as in winter (Tan et al., 2009). The particle pollution in
the PRD region have been reported regarding to the chemi-
cal compositions in size resolved particles or in PM2.5 and
PM10 concentration at one or more sites and particle num-
ber size distributions at a coastal rural site Xinken (Cao et
al., 2004; Hagler et al., 2006; Liu et al., 2008a, b; Zhang et
al., 2008). However, simultaneous measurements of particle
number size distributions and chemical compositions at over
one site in the PRD region have not been reported. Resulted
from the intense photochemical activity in summer, particu-
late pollution in the PRD region will be characterized with
regional and secondary properties, which should be different
from that in the winter or in other cities with less intense solar
radiation. The average ratios of PM2.5 to PM10 in Guangzhou
were larger than three other big cities in China, i.e. Wuhan,
Chongqing, and Lanzhou (Wei et al., 1999). High concen-
trations of secondary products in fine particles, mainly ox-
idized organics and sulfates were observed during PRIDE-
PRD2004 and 2006 (Andreae et al., 2008; Jung et al., 2009).

The worse correlation between organic carbon (OC) to el-
emental carbon (EC) in the summer (R = 0.6) than in the
winter (R = 0.8) and the higher OC but lower EC concen-
trations in Guangzhou than in Beijing during summertime
(Cao et al., 2004) indicated the significance of the secondary
transformation in the PRD region in summer. Therefore, it is
of scientific significance to investigate the properties of par-
ticles especially of fine particles in the PRD region during
summertime.

Within the “Program of Regional Integrated Experiments
of Air Quality over the Pearl River Delta” intensive cam-
paign in July 2006 (PRIDE-PRD2006) focusing on gas phase
photochemistry and the aerosol formation and properties dur-
ing summertime, the particle number size distributions were
measured simultaneously at both Guangzhou urban site (GZ)
and Back-garden downwind regional site (BG), as well as
the concentrations of mass and chemical composition of fine
particles. Previous papers in the same special issue already
show that the conditions are mainly characterized by strong
particulate pollution at ground level (Li et al., 2010) and size
matters more than chemistry for the CCN activity of aerosol
particles at the BG site in the summer of 2006 (Rose et al.,
2010). Hence, the purpose of this study is to characterize the
particulate pollution in the PRD region on the basis of com-
parison of particle number size distributions and chemical
compositions between GZ and BG sites and to explore sec-
ondary formation and regional transport with the discussion
of pollution episodes.

2 Experimental methods

The intensive field campaign was performed simultaneously
at both GZ and BG sites in July 2006 (Zhang et al., 2010).
At the GZ site the instruments were set up on the top floor
of Guangdong Provincial Environmental Monitoring Center
(about 50 m above the ground level), which is located in the
western urban area of Guangzhou city. At the BG site the in-
struments were installed on the roof of a hotel building (about
15 m above the ground level), which is located in the north
of Huadu district, about 50 km north from the GZ site.

At the GZ site dry particle number size distributions be-
tween 15 nm and 10 µm were measured with a system con-
sisting of a Scanning Mobility Particle Sizer (SMPS, TSI
model 3080, TSI Inc., St. Paul, MN, USA) and an Aerody-
namic Particle Sizer (APS, TSI model 3321). The SMPS (a
long differential mobility analyzer (TSI model 3081) with
a Condensational Particle Sizer (TSI model 3025A)) was
used to measure particle number size distributions from 15
to 660 nm with a time resolution of 5 min. The system was
kept dry by silica gel tube within the inlet line.

At the BG site the particle number size distributions from
3 nm to 10 µm were measured with a system consisting of a
Twin Differential Mobility Particle Sizer (TDMPS) and an
APS (TSI model 3321, USA). The TDMPS is composed
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Table 1. Measurement of particle number size distributions and other parameters at GZ and BG.

Institute/
Site Instrument Data Time resolution Manufacturer Valid data in July Reference

GZ SMPS 15–660 nm PNSD 5 min TSI, USA 6–10, 15–30 This paper
APS 660–10 000 nm PNSD 5 min TSI, USA 6–10, 23–30

BG TDMPS 3–900 nm PNSD 10 min IfT, Germany 4–14, 16–23 This paper
APS 900–10 000 nm PNSD 10 min TSI, USA
TEOM PM2.5 1 min Thermo, USA Used when necessary PKU

and available

GZ&BG WAD/IC Ions in PM2.5 30 min PKU, China
MOUDI Size resolved ions in PM18 about 12 h MSP, USA
Met. Station T , RH, WS, WD 10 min Met One, USA
Corresponding Gas Analyzers CO, SO2, O3 1 min ECOTECH, Austria
EC/OC Analyzer EC and OC in PM2.5 or PM1.0 1 h Sunset, USA Takegawa et al., 2009;

Xiao et al., 2009
AMS OM and ions in PM1.0 10 min Aerodyne, USA

of two Hauke-type differential mobility analyzers and two
CPCs (TSI model 3010 and 3025, respectively, USA), de-
ployed to measure the particle number size distributions from
3 to 900 nm every 10 min. The relative humidity within the
whole system was kept below 30% by silica gel tubes within
the inlet line and both sheath air cycles.

The size range of particle number size distributions ob-
served by APSs was 500 nm−10 µm. The time resolution
of APS was set as 5 or 10 min according to SMPS’s or
TDMPS’s to keep consistent. APS data of particle number
size distributions between 660 or 900 nm and 10 µm were
transformed from aerodynamic diameter to Stokes diameter
with a supposed particle density of 1.7 g cm−3 (Yue et al.,
2009).

Size-dependent losses due to diffusion and sedimentation
within the inlet lines were corrected with empirical particle
loss corrections for both two systems (Willeke and Baron,
1993). The information on these instruments and the time
periods of valid data is listed in Table 1.

Other data including PM2.5 and mass concentrations of
water soluble ions (SO2−

4 , NO−

3 , and NH+

4 ) and organic mat-
ter (OM) in PM1.0 or PM2.5, meteorological factors (temper-
ature, relatively humidity, wind speed, and wind direction
(T , RH, WS, and WD, respectively)), and gaseous pollu-
tants (CO, SO2, O3) at both sites are also involved in this
paper. PM2.5 was measured by a Tapered Element Oscillat-
ing Microbalances (TEOM), ions in PM2.5 by two coupled
Wet Annular Denuder sampling/Ion Chromatograph analy-
sis systems (WAD/IC), size-resolved chemical composition
mass concentrations by Micro Orifice Uniform Deposit Im-
pactor (MOUDI), and CO, SO2, and O3 by CO Analyzer,
SO2 Analyzer, and O3 Analyzer (model 9830A, 9850A, and
9810A, ECOTECH, Australia), respectively. Meteorological
stations (Met. Station) were also set up at both sites. In ad-
dition, ions and OM in PM1.0 were detected by an Aerodyne
Mass Spectrometer (AMS) at the BG site. Relevant informa-
tion is also listed in Table 1.

3 Results and discussion

3.1 Overview of particle number size distributions and
mass concentrations

Weather system during summertime in the PRD region is
controlled by tropical cyclones and subtropical high pres-
sure alternately. The former brings frequent precipitation
and scavenge the pollutants, while the latter leads to high
atmospheric stability with high temperature and high RH,
causing regional pollution. The temperatures during PRIDE-
PRD2006 at both sites were similar, 31± 3◦C at GZ and
30± 3◦C at BG. RH were nearly the same at GZ and BG,
76± 14%. Low wind speeds (below 2 m s−1) were observed
during about 60% of the measurement time in the PRD re-
gion. Over 50% of the time during PRIDE-PRD2006 at GZ
and BG the wind came from south or southeast.

The mean particle number size and volume distributions
at both sites during the whole campaign are shown in Fig. 1.
The ultrafine particle number concentration at the GZ site
was significantly higher than that at the BG site. Dur-
ing the measurement period, the particle number concentra-
tion (20 nm−10 µm) at GZ site ((2.9± 1.1)×104 cm−3) is
70% higher than that at BG site, (1.7± 0.8)×104 cm−3 (Ta-
ble 2). The explanation is there are more intensive traffic
emission sources in the Guangzhou urban area than those
in the Back-garden suburban area. The number concentra-
tions at GZ were also significantly higher than the total par-
ticle number concentrations (3 nm−10 µm) at Xinken ru-
ral coastal site in the PRD region during PRIDE-PRD2004,
(1.6± 0.8)×104 cm−3 (Liu et al., 2008), which are com-
parable to the total particle number concentrations at BG,
(1.8± 0.8)×104 cm−3.

At both sites fine particles with diameter below 1000 nm
were the main contributor to the total particle volume con-
centrations, as shown in the lower panel of Fig. 1. In the
fine particle size range, the particle volume size distributions
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Table 2. Comparison of important particle properties (mean± σ )

Site N20−10 000 NTotal STotal VTotal PM2.5
(×104 cm−3) (×104 cm−3) (×102 µm2 cm−3) (µm3 cm−3) (µg m−3)

GZ 2.9± 1.1 – 13.8± 5.4 96± 43 69± 43
BG 1.7± 0.8 1.8± 0.8 9.6± 4.6 94± 34 69± 58
Xinken – 1.6± 0.8 9.7± 4.0 63± 25 51± 19a

Guangzhoub – – – – 78± 30

a PM1.8 during PRIDE-PRD2004 (Liu et al., 2008);
b in the summer of 2002 (Cao et al., 2004).

Fig. 1. Average particle number and volume size distributions at
GZ and BG during the whole campaign.

were similar and no significant difference within the ultrafine
sizes (below 100 nm) was observed at GZ and BG sites. In
coarse mode, the peak of average particle volume size distri-
bution at the BG site shows at about 2 µm, smaller than that
at the GZ site at about 3 µm. This indicates that the major
sources for the coarse particles are different at the BG and GZ
sites. Construction and road dust are probably major sources
for coarse particles in the Guangzhou city, while coarse parti-
cles at the BG site are more affected by the biological sources
and biomass burning. The total particle volume concentra-
tion at the GZ site of 96± 43 µm3 cm−3 is similar to that at
the BG site (94± 34 µm3 cm−3). In addition, the measured
mean particle PM2.5 mass concentrations are also similar at
both sites (69± 43 µgm−3 at GZ and 69± 58 µgm−3 at BG)
with R2 of 0.71 for the daily average PM2.5 at these two sites.
These findings suggest that the fine particulate pollution in
the PRD region is a regional problem. The average PM2.5 in
the summer of 2006 is lower than that in Guangzhou city in
the summer of 2002, i.e. 78± 30 µgm−3 (Cao et al., 2004).
The higher fine particle mass concentrations and total parti-

cle volume concentrations at the GZ and BG sites than those
at Xinken, 60 km southeast of the GZ site with a rural/coastal
background character, is probably caused by the influence of
the sea breeze at Xinken (Zhang et al., 2008).

3.2 Characteristics of pollution episodes

In the summer of PRD region, the mass concentrations of
particles can increase quickly from very low level to very
high level such as with PM2.5 exceeding 100 µg m−3 re-
sulted from accumulation, secondary transformation, and/or
regional transport. During such days, the daily average PM10
does not violate the national standard of the second grade,
although heavy particulate pollution occurs with high hourly
average particle mass concentrations and low visibility. The
daily average particle mass concentrations conceal the pollu-
tion conditions and do not reflect them in detail. Therefore,
an hourly criterion will capture the properties of the particu-
late pollution better. According to the frequency distribution
of hourly average PM2.5, conditions with PM2.5 exceeding
100 µg m−3 for more than two hours (excluding those caused
by short time local emissions) were classified as pollution
episodes in this paper. 100 µg m−3 is set with the 90% per-
centile of the hourly average PM2.5 concentrations during
this measurement and it is almost the same as the PM2.5 value
of 103 µg m−3 calculated from the ambient air quality stan-
dard of PM10 of 150 µg m−3 with the average ratio of PM2.5
to PM10 over the PRD region in summer of 68.7% (Cao et
al., 2004). Totally, pollution episodes were observed on five
days (12, 14, 19, 21, and 23 July) simultaneously at both
sites from 6 to 23 July. Mainly two different kinds of pollu-
tion episodes were identified, accumulation pollution episode
(cases on 12, 14, and 23 July) and regional transport pollu-
tion episode (cases on 19 and 21 July).

3.2.1 Accumulation pollution episode

Pollution episodes with gradual increase of PM2.5 mass con-
centrations were observed at both sites simultaneously. Such
pollution episodes took place under stagnant meteorological
conditions with wind speed below 1 m s−1, RH over 80%,
and low boundary layer at night.
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Fig. 2. Variations of particle number size distributions, number con-
centrations, and volume concentrations at BG from 00:00 LT, 11
July to 12:00 LT, 12 July.

One accumulation pollution episode occurred from about
18:00 LT on 11 July to about 06:00 LT on 12 July is illus-
trated in Fig. 2 and Fig. 3 (Accumulation pollution episodes
on 14 and 23 July will not be discussed in detail in this paper
as they were not observed completely.). During this episode,
a clear particle growth process was observed: The number
peak diameter at about 80 nm in the beginning grew gradu-
ally to at about 120 nm in 12 h (Fig. 4). The evident increase
in particle number concentration from 100 to 660 nm was ob-
served. Conversely, the number concentrations for particles
from 3 to 20 nm and from 20 to 100 nm decreased during the
episode. In the early morning of 12 July, the lowest num-
ber concentration of the 3–20 nm particles occurred (around
10 cm−3). This can be ascribed to the strong coagulation
scavenging produced by the high concentration of the accu-
mulation mode particles (M̈onkkönen et al., 2004).

The obvious increases of PM2.5 and secondary ions in
PM2.5 including SO2−

4 and NO−

3 were also observed at both
sites, as shown in Fig. 3. Two main reasons for this increase
can be postulated: (1) the dispersion of primary emissions
was weak under stable weather conditions. (2) Secondary
transformation processes played a key role in the particle
growth. Evident growth in the mass concentrations of sec-
ondary water soluble ions was observed. In addition, contri-
bution of unknown sources with significant emission of EC
to this pollution episode might be important.

During this episode, the increase rates ofN100−660 and
V100−660 were about 400 cm−3 h−1 and 4.0 µm3 cm−3 h−1,

Fig. 3. Variations of trace gases at BG, PM2.5, and mass con-
centrations of chemical compositions in PM2.5 at both sites from
00:00 LT, 11 July to 12:00 LT, 12 July.

Fig. 4. Particle number size distributions during the accumulation
pollution episode from 18:00 LT, 11 July to 07:00 LT, 12 July.

respectively (Table 3). If the average density of 100–660 nm
particles is assumed to be 1.43 g cm−3as estimated in the
summer of Beijing (Yue et al., 2009), the latter was equal
to 5.7 µg m−3 h−1. The increase rates of SO2−

4 and NO−

3 in
PM2.5 were 2.4 and 0.6 µg m−3 h−1, respectively. SO2−

4 in-
creased significantly faster than NO−

3 , partly because of the
lower volatility of SO2−

4 . The sum concentration of SO2−

4 ,
NO−

3 , and NH+

4 accounted for about 60% in PM2.5 increase,
if the measured SO2−

4 and NO−

3 are neutralized by NH+4 . This
result is similar to that reported by Liu et al. (2008) that
SO2−

4 , NO−

3 , and NH+

4 accounted for about 50% in fine par-
ticle mass at Xinken during PRIDE-PRD2004.
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Table 3. Increase rates of major species during the nighttime accumulation pollution episode.

Site N100−660 V100−660 M100−660 PM2.5 SO2−

4 NO−

3 NH+

4 SNA SNA*
(cm−3 h−1) (µm3 cm−3 h−1) (µg m−3 h−1) (µg m−3 h−1) (µg m−3 h−1) (µg m−3 h−1) (µg m−3 h−1) (µg m−3 h−1) (µg m−3 h−1)

BG 400 4.0 5.7 6.5 2.4 0.6 1.1 4.1 3.3
GZ – – – 6.8 2.7 0.6 1.2 4.5 3.6

SNA=SO2−

4 +NO−

3 +NH+

4 ; SNA*=0.8×(SO2−

4 +NO−

3 +NH+

4 ).

Fig. 5. Particle number concentrations from 100 to 660 nm
(N100−660), mass concentrations of SO2−

4 , mixing ratio of NO2,
and wind direction (WD) and wind speed (WS) from 19 to 22 July
at GZ and BG.

Almost all SO2−

4 , NO−

3 , and NH+

4 are in the form of fine
particles, and most SO2−

4 , NO−

3 , and NH+

4 are in 100–660 nm
particles. If we assume that 80% of SO2−

4 and NO−

3 in PM2.5
are in 100–660 nm particles according to the measured aver-
age chemical composition size distributions by MOUDI and
the measured SO2−

4 and NO−

3 are neutralized by NH+4 , SO2−

4 ,
NO−

3 , and NH+

4 (actually 80% of the sum concentration of
SO2−

4 , NO−

3 , and NH+

4 in PM2.5) can explain about 60% of
the 100–660 nm particle mass increase, which is similar to
the portion of SO2−

4 , NO−

3 , and NH+

4 in the accumulation
mode particle mass increase (over 60%) in the summer of
2006 in Beijing (Yue et al., 2009). During the same period,

the corresponding increase ratios of some species at the GZ
site were also given in Table 3. The corresponding increase
rates at the GZ site are usually higher than those at BG site.
The possible reasons might be that the percentage of SO2−

4 ,
NO−

3 , and NH+

4 was larger in PM2.5 at the urban site GZ
(about 40%) than at the regional site BG (about 25%), so
particles grow more under the condition with high RH dur-
ing nighttime at GZ. It is consistent with the fact that increase
rates at Peking University, an urban site in Beijing are higher
than those at Yufa, a regional site in Beijing, during accumu-
lation pollution episodes (Yue et al., 2009).

3.2.2 Regional transport pollution episode

On 19 and 21 July the number concentrations of particles
within 100–660 nm, mass concentrations of SO2−

4 , and mix-
ing ratios of NO2 at BG showed peaks 6 to 8 h behind cor-
responding peaks appeared at GZ in the afternoon (Fig. 5.
With the average wind speed of 2 m s−1, it takes about 7 h
to transport from GZ to BG). It was observed with south or
southeast wind prevailing at both sites (Fig. 5 and Fig. 6b),
indicating air masses move from south or southeast. These
findings suggest that when south or southeast wind prevails
in the PRD region, regional transport of pollutants includ-
ing particles takes place. In the afternoon of 19 and 21 July,
particles around 100 nm at GZ decreased gradually, but parti-
cles around 100 nm at BG increased quickly at the same time,
shifting the geometric mean diameter of these particles at BG
to larger sizes (conditions on 21 July in Fig. 7a). The aver-
age mass size distribution of SO2−

4 and NH+

4 on 21 July also
peaked at larger sizes at BG (mass size distributions of SO2−

4
in Fig. 7b) with the average equivalent ratio of sulfate to to-
tal sulfur (SO2−

4 /(SO2−

4 +SO2)) at BG being 0.4± 0.1, about
30% higher than that at GZ, 0.3± 0.1. In addition, the mass
size distribution of oxalate peaked at a larger size with higher
peak value at BG compared with GZ. These results suggest
that during such a transport process, particles became to be
aged. The contribution of secondary formed fraction to fine
particles increased significantly.

Compared with on 19 and 21 July, there were similar
wind speeds (below 3 m s−1) but different wind directions
from the west or northwest to the BG site (Fig. 7a) on 12
and 13 July, where lay the mountains. So when the wind
comes from this direction, it brings clean air, and 12 and
13 July were taken as the contrast days without obvious
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Table 4. Influence of regional transport on fine particles at BG.

N100−660 V100−660 PM2.5 PM∗
1.0 SNA SO2−

4 NO−

3 NH+

4 OM
cm−3 µm3cm−3 µg m−3 µg m−3 µg m−3 µg m−3 µg m−3 µg m−3 µg m−3

(A) 6.2± 2.6×103 38± 16 50± 29 27± 13 17± 10 11.8± 7.1 0.9± 0.8 3.8± 2.2 10.9± 5.0
(B) 9.5± 4.7×103 53± 20 70± 28 41± 24 27± 16 18.7± 9.9 1.5± 2.0 5.9± 3.2 14.1± 10.1
(B-A)/B 35% 28% 29% 33% 38% 37% 39% 35% 23%

A: without obvious regional transport on July 12 and 13; B: with regional transport on July 19 and 21.
∗ PM1.0=SO2−

4 +NO−

3 +NH+

4 +OM.

regional pollutant transport. In order to quantify the con-
tribution of regional transport to the fine particulate pollu-
tion at BG, average particle number and volume concentra-
tions from 100 to 660 nm, PM2.5, and mass concentrations
of the chemical compositions in PM1.0, including secondary
ions (SO2−

4 , NO−

3 , and NH+

4 ) and OM during the time pe-
riod from 12:00 LT to 24:00 LT on 12 and 13 July without
obvious regional transport and on 19 and 21 July with re-
gional transport are compared in Table 4. They all increased
significantly with regional transport. The contribution of re-
gional transport toN100−660 was around 35%. The contri-
bution of regional transport ofV100−660 was similar to that
of PM2.5, close to 30%. The higher increase rates of sec-
ondary ions in PM1.0 (38% on average) than that of OM
(23%) indicated that during the transport secondary transfor-
mation occurred and deteriorated the particulate pollution.
SO2−

4 , NO−

3 , and NH+

4 accounted for about 70% of PM1.0

(PM1.0=SO2−

4 +NO−

3 +NH+

4 +OM) and about 40% of PM2.5,
suggesting that SO2−

4 , NO−

3 , and NH+

4 are the major compo-
sition of fine particles and play a very important role in the
regional transport pollution episode.

Secondary transformation plays an important role in the
pollution episodes in the PRD region during summertime,
causing the main contributor of total particle number concen-
tration as well as volume concentration to be fine particles
over 100 nm with major composition of SO2−

4 , NO−

3 , and
NH+

4 . During accumulation pollution episodes taking place
under stagnant meteorological conditions with wind speed
below 1ms−1, SO2−

4 , NO−

3 , and NH+

4 account for similar
proportion in 100–660 nm particle mass and PM2.5 increase,
for example about 60% in the case from about 18:00LT on
11 July to about 06:00 LT on 12 July. Such pollution cases
occur in similar periods at both sites. In contrast, during re-
gional transport pollution episodes with south or southeast
wind prevailing in the PRD region, SO2−

4 , NO−

3 , and NH+

4
accounted for significant more in PM1.0 than in PM2.5; the
fine particle mass and their chemical composition mass con-
centrations increase quickly at the downwind site when cor-
responding values tend to decrease at the GZ site, resulting
in a lag of several hours between corresponding peaks at the
downwind site after the GZ site.

Fig. 6. Wind fields in the PRD region in the late afternoon of 12 and
19 July. The arrows show the directions.

4 Summary and conclusions

Particle number concentration from 20 nm to 10 µm in the
summer of 2006 at the GZ site was 70% higher than that at
the BG site. Resulted from intensive traffic emissions, more
20–100 nm particles were observed at GZ, while 100–660 nm
particle number concentrations were similar at both sites as
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Fig. 7. Average particle number size distributions on 21 July(a) and
average mass size distributions of sulfate and oxalate from 06:30 LT,
21 July to 06:00 LT, 22 July(b) at GZ and BG.

they are more regional. The total particle volume concentra-
tions were similar at the GZ site (96± 43 µm3 cm−3) and BG
site (94± 34 µm3 cm−3). PM2.5 were also similar withR2 of
0.71 for the daily average PM2.5 at these two sites, indicat-
ing that particulate pollution in the PRD region is a regional
problem.

Two kinds of pollution episodes, the accumulation pol-
lution episode and the regional transport pollution episode,
were observed. Fine particles over 100 nm dominated both
number and volume concentrations of total particles during
the late periods of these pollution episodes. Accumulation
and secondary transformation are two main reasons for the
nighttime accumulation pollution episode, with higher in-
crease rate of SO2−

4 than NO−

3 . SO2−

4 , NO−

3 , and NH+

4
account for about 60% in 100–660 nm particle mass and
PM2.5 increase. When south or southeast wind prevailed in
the PRD region, regional transport of pollutants took place.
The contribution of regional transport was about 30% to fine
particulate pollution at the BG site during a regional trans-
port case. Secondary transformation occurred and played an
important role during regional transport, causing higher in-
creasing rates of secondary ions (including SO2−

4 , NO−

3 , and
NH+

4 ) in PM1.0 than other species and shifting the peaks of
sulfate, ammonium, and oxalate mass size distributions to
larger sizes. SO2−

4 , NO−

3 , and NH+

4 accounted for about 70%
in PM1.0 and about 40% in PM2.5.

Pollution episodes in the PRD region during summertime
are usually contributed by secondary transformation, causing
the main contributor of total particle number concentration as
well as volume concentration to be fine particles over 100 nm
with major composition of SO2−

4 , NO−

3 , and NH+

4 . Hence,
these particles will dominate CCN and impose significant ef-
fect on visibility degradation during the pollution episodes
in the PRD region. Control of the precursors of SO2−

4 , NO−

3 ,
and NH+

4 will effectively help to reduce the fine particulate
pollution and decrease the influence of the aerosols in the
PRD region during the summertime.
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