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Abstract. Active chlorine species play a dominant role in
the catalytic destruction of stratospheric ozone in the polar
vortices during the late winter and early spring seasons. Re-
cently, the correct understanding of the ClO dimer cycle was
challenged by the release of new laboratory absorption cross
sections (Pope et al., 2007) yielding significant model under-
estimates of observed ClO and ozone loss (von Hobe et al.,
2007). Under this aspect, nocturnal Arctic stratospheric limb
emission measurements carried out by the balloon version
of the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS-B) from Kiruna (Sweden) on 11 January
2001 and 20/21 March 2003 have been reanalyzed with re-
gard to the chlorine reservoir species ClONO2 and the active
species, ClO and ClOOCl (Cl2O2). New laboratory measure-
ments of IR absorption cross sections of ClOOCl for various
temperatures and pressures allowed for the first time the re-
trieval of ClOOCl mixing ratios from remote sensing mea-
surements. High values of active chlorine (ClOx) of roughly
2.3 ppbv at 20 km were observed by MIPAS-B in the cold
mid-winter Arctic vortex on 11 January 2001. While night-
time ClOOCl shows enhanced values of nearly 1.1 ppbv at
20 km, ClONO2 mixing ratios are less than 0.1 ppbv at this
altitude. In contrast, high ClONO2 mixing ratios of nearly
2.4 ppbv at 20 km have been observed in the late winter Arc-
tic vortex on 20 March 2003. No significant ClOx amounts
are detectable on this date since most of the active chlorine
has already recovered to its main reservoir species ClONO2.
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The observed values of ClOx and ClONO2 are in line with
the established polar chlorine chemistry. The thermal equi-
librium constants between the dimer formation and its dis-
sociation, as derived from the balloon measurements, are
on the lower side of reported data and in good agreement
with values recommended by von Hobe et al. (2007). Cal-
culations with the ECHAM/MESSy Atmospheric Chemistry
model (EMAC) using established kinetics show similar chlo-
rine activation and deactivation, compared to the measure-
ments in January 2001 and March 2003, respectively.

1 Introduction

Active ClOx species (Cl + ClO + 2 ClOOCl) play an impor-
tant role in the catalytic destruction of stratospheric ozone
in the polar vortices during the late winter and early spring
seasons after the release of chemically active chlorine com-
pounds from the reservoir species HCl and ClONO2 via het-
erogeneous chemical reactions. In the sunlit polar atmo-
spheres, the ClO dimer cycle is one of the most important
cycles for the destruction of polar ozone. The chlorine per-
oxide isomer ClOOCl (Cl2O2) is produced in the polar winter
stratosphere when high ClO concentrations (0.5–2 ppbv) are
available via the three body Reaction (see, e.g., Brasseur and
Solomon, 2005):

ClO+ClO+M ↔ ClOOCl+M (R1)
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Thereby, a nighttime thermal equilibriumKeq between the
dimer formationkrec and dissociationkdiss according to Re-
action (R1) exists:

Keq = krec/kdiss=[ClOOCl]/[ClO]
2 (1)

During daytime, the dimer is photolyzed:

ClOOCl+hν → Cl+ClOO (R2)

producing a chlorine atom and the ClOO radical which de-
composes upon collision with an atmospheric molecule M
(e.g. N2 or O2):

ClOO+M → Cl+O2+M (R3)

The Cl atom may react with ozone to produce chlorine
monoxide again via:

Cl+O3 → ClO+O2 (R4)

Taking into account twice Reaction (R4), the complete cat-
alytic cycle leads to the following net reduction of ozone: 2
O3 +hν→3 O2. By the end of the Arctic winter, increas-
ing amounts of NO2 (produced mainly by HNO3 photolysis)
enhance the importance of the reaction:

ClO+NO2+M → ClONO2+M (R5)

Hence, active chlorine is transferred into ClONO2, an im-
portant chemical reservoir species for chlorine.

Polar winter vertical profiles of ClONO2 have been in-
ferred from limb emission spectra measured by the balloon
version of the Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS-B) for many years (see, e.g., von
Clarmann et al., 1993, 1997; Oelhaf et al., 1994; Stowasser
et al., 2002; Wetzel et al., 2002, 2006). The high quality
of the MIPAS-B ClONO2 observations has been proven by
comparisons to data of other instruments such as MIPAS on
board the environmental satellite ENVISAT (Höpfner et al.,
2004; 2007) and the first and second Improved Limb Atmo-
spheric Spectrometer (ILAS) sensors (Nakajima et al., 2006;
Wetzel et al., 2008) aboard the Japanese ADEOS satellites.

The radical ClO was retrieved for the first time from spec-
tra measured by MIPAS-B during nighttime in February
1995 inside the Arctic vortex (von Clarmann et al., 1997).
A ClO value of 0.4 ppbv near 16 km was inferred from the
spectra. A daytime polar ClO climatology (1991–1998) was
deduced from satellite observations of the Microwave Limb
Sounder (MLS) on board the Upper Atmosphere Research
Satellite (UARS; Santee et al., 2003). Arctic ClO values
around 2 ppbv in the lower stratosphere were detected dur-
ing time periods of chlorine activation. In the Antarctic, ClO
values of nearly 3 ppbv have been observed by MLS. More
recent ClO observations of comparable magnitude have been
obtained by MLS on Aura at polar latitudes of both hemi-
spheres between 2004 and 2006 (Santee et al., 2008). ClO

mixing ratios of up to 2.5 ppbv during day and up to 0.5 ppbv
during night have been measured inside the lower strato-
spheric Antarctic vortex in September and October 2002 by
MIPAS on ENVISAT (Glatthor et al., 2004).

The isomer ClOOCl has been observed in the Arctic
stratosphere in winter 1999/2000 aboard the NASA ER-
2 aircraft, deployed from Kiruna, Sweden (Stimpfle et al.,
2004). Besides ClONO2 and ClO, ClOOCl was detected in-
situ by thermal dissociation into two ClO fragments that are
measured by a chemical conversion technique. Nighttime
ClOOCl values of up to 1.1 ppbv with an accuracy of 21%
were observed on 2 February 2000 near 20 km inside the po-
lar vortex. Daytime in-situ ClOOCl values of up to 0.2 ppbv
were observed by the HALOX instrument aboard the M55-
Geophysica aircraft inside the Arctic vortex on 7 March 2005
(von Hobe et al., 2007).

Recently, the correct understanding of the ClO dimer cy-
cle was challenged by the release of new laboratory absorp-
tion cross sections (Pope et al., 2007) yielding to significant
model underestimates of observed ClO and ozone loss (von
Hobe et al., 2007). Under this aspect, nighttime Arctic strato-
spheric limb emission measurements carried out by MIPAS-
B from Kiruna, Sweden on 11 January 2001 and 20/21 March
2003 have been reanalyzed with regard to the chlorine reser-
voir species ClONO2 and the active ClOx species ClO and,
for the first time, ClOOCl. To our knowledge, these measure-
ments constitute the first simultaneous observations of ClO,
ClOOCl and ClONO2 over extended altitude regions in the
lower stratosphere. Retrieved trace gas profiles are used to
derive ClO/ClOOCl equilibrium constants and are compared
to 3-dimensional chemical modelling.

2 MIPAS-B instrument and flight situations

The balloon-borne cryogenic Fourier transform spectrome-
ter MIPAS-B is a limb-emission sounder which covers the
mid-infrared spectral range from 4 to 14 µm. Besides a
high performance and flexibility of the pointing system with
a knowledge of the tangent altitude of better than 50 m at
the 1-σ confidence limit, MIPAS-B spectra are character-
ized by their high spectral resolution (about 0.07 cm−1 af-
ter apodization). This allows the separation of individual
spectral lines from continuum-like emissions in combination
with a high radiometric accuracy. Typical values of the noise
equivalent spectral radiance (NESR) are within 10−9 and
10−8 W/(cm2 sr cm−1) for a single calibrated spectrum lead-
ing to signal-to-noise values of several hundreds in case of
the prominent spectral features. A comprehensive overview
and description of the instrument is given by Friedl-Vallon
et al. (2004) and references therein. It includes instrument
characterization in terms of the instrumental line shape, field
of view, noise equivalent spectral radiance, line of sight of
the instrument, detector nonlinearity and the error budget of
the calibrated spectra.
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Arctic winter MIPAS-B flights in 2001 and 2003 were car-
ried out from Kiruna (Sweden, 68◦ N, 21◦ E). The first one
was performed in the night on 11 January 2001 inside a cold
polar vortex with synoptic polar stratospheric clouds (PSCs;
Höpfner et al., 2002). This winter was characterized by a va-
riety of dynamical changes in the northern hemisphere (Eu-
ropean Ozone Research Coordinating Unit, 2001). The usual
seasonal cooling in the polar region and the strengthening
of the Arctic vortex was interrupted in the second half of
November by a strong Canadian warming in the lower strato-
sphere. After the weakening of this warming in the beginning
of December, a strong upper stratospheric warming devel-
oped. From late December to mid-January, the period where
the MIPAS-B flight took place, the vortex strengthened and
cooled again such that temperatures fell below the PSC exis-
tence threshold temperature for the nucleation of nitric acid
trihydrate particles (TNAT) at 30 hPa (∼22 km) and below.
MIPAS-B spectra of the southward scan (performed outside
of PSCs) were recorded from a float altitude of 28.1 km dur-
ing nighttime between 15:16 UTC and 15:58 UTC covering
14 limb scans from +2◦ to −4.2◦ elevation angles corre-
sponding to a lowermost tangent altitude of 10.4 km. The
coordinates of the mean tangent points are 65.2◦ N, 33.5◦ E,
corresponding to a measurement clearly inside the polar vor-
tex (see Fig. 1).

An overview on the meteorological situation in the win-
ter 2002/2003 is given by the European Ozone Research Co-
ordinating Unit (2003) and Grooß et al. (2005). This win-
ter started with low stratospheric temperatures below TNAT .
A major warming in mid-January was followed by a re-
formation of the vortex which was split by a minor warm-
ing around mid-February. The vortex was re-established by
the beginning of March, again with temperatures below the
threshold for PSC formation in its cold centre above Scandi-
navia, but only for a couple of days. The MIPAS-B observa-
tions were performed in the night from 20th to 21st March
2003. During this time the vortex was slightly warmed-
up but still stable because its centre was tightly coupled
to the cold centre in the lower stratosphere. Several limb
scans could be recorded during this long lasting flight from
18:22 UTC (20 March) to 09:38 UTC (21 March) includ-
ing continuous observations before, during, and after sun-
rise illustrating the evolution of photochemically active gases
like NO2 and N2O5 (Wiegele et al., 2009). Spectra of the
fourth (nighttime) sequence measured between 21:39 UTC
and 22:18 UTC from a float altitude of 31.0 km have been
used for this study. Seventeen limb scans from +2◦ to −4.7◦

elevation angles corresponding to a lowermost tangent al-
titude of 8.8 km (mean tangent point coordinates: 65.6◦ N,
27.2◦ E) were recorded inside the polar vortex in the absence
of PSCs (see Fig. 1).

 26

 

-20 -10 0 10 20 30 40 50 60
40

45

50

55

60

65

70

75

80

85
-20 -10 0 10 20 30 40 50 60

40

45

50

55

60

65

70

75

80

85

10.0

22.5

35.0

47.5

60.0

L
at

itu
d

e 
(°

N
)

Longitude (°E)

ECMWF 010111 15:40 UTC

475 K Pot. Vort. (10-6 K*m2/s*kg)
 MIPAS-B tangent points
 20-km altitude
 Vortex boundary

 

-20 -10 0 10 20 30 40 50 60
40

45

50

55

60

65

70

75

80

85
-20 -10 0 10 20 30 40 50 60

40

45

50

55

60

65

70

75

80

85

10.0

22.5

35.0

47.5

60.0

La
tit

ud
e 

(°
N

)

Longitude (°E)

ECMWF 030320 22:06 UTC

475 K Pot. Vort. (10-6 K*m2/s*kg)
 MIPAS-B tangent points
 20-km altitude
 Vortex boundary

 

Fig. 1. Potential vorticity (PV) fields from European Centre for Medium-Range Weather 

Forecasts (ECMWF) analyses on 11 January 2001 (top) and 20 March 2003 (bottom), 

interpolated to the MIPAS-B observation times, at the 475 K potential temperature surface 

(about 20 km altitude). MIPAS-B tangent points are plotted as black solid circles (20-km 

altitude in red colour). Vortex boundaries, representing the strongest PV gradient (Nash et 

al., 1996) are shown as dashed lines. 

 

Fig. 1. Potential vorticity (PV) fields from European Centre for
Medium-Range Weather Forecasts (ECMWF) analyses on 11 Jan-
uary 2001 (top) and 20 March 2003 (bottom), interpolated to the
MIPAS-B observation times, at the 475 K potential temperature sur-
face (about 20 km altitude). MIPAS-B tangent points are plotted as
black solid circles (20-km altitude in red colour). Vortex bound-
aries, representing the strongest PV gradient (Nash et al., 1996) are
shown as dashed lines.
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3 Radiance sensitivity studies using new ClOOCl IR
cross sections

Radiance simulations were performed to assess, in terms of
detectability and random and systematic errors, the principal
potential of MIPAS-B to measure chlorine species like ClO
and ClOOCl which are, in contrast to ClONO2, not easily de-
tectable. Limb emission radiances were calculated with the
KOPRA (Karlsruhe Optimized and Precise Radiative trans-
fer Algorithm) radiative transfer model (Stiller et al., 2002).
Spectroscopic parameters for the calculation of limb emis-
sion spectra were taken from the HITRAN database (Roth-
man et al., 2005). Line data of ClO originate from spectro-
scopic measurements carried out by Burkholder et al. (1989)
and Goldman et al. (1994). Cross sections for ClONO2 have
been measured by Wagner and Birk (2003).

3.1 ClOOCl IR cross sections

ClOOCl cross sections in the IR spectral domain used for
the retrieval of ClOOCl mixing ratios have been determined
within the same project as ClONO2, funded by the German
“Ozon-Forschungsprogramm” (Wagner and Birk, 2001). For
ClOOCl, this work is discussed in the following section.

ClOOCl was produced in a flow reactor from atomic chlo-
rine (Cl2 flow through microwave discharge) and Cl2O (Cl2
flow through yellow mercury oxide, HgO) forming ClO and
subsequent dimerization at low temperatures (Birk et al.,
1989). The flow reactor was attached to a coolable multire-
flection cell set to a 59.2 m absorption path. The residence
time in the cell was about 50 s corresponding to a volume
flow of ca. 0.5 l/s. In order to suppress bimolecular conver-
sion of ClO into Cl2 and O2, as well as OClO and Cl2O3
formation, the gas flows (Cl in He and Cl2O in He/N2) were
cooled below 210 K shortly after mixing, before injection
into the multireflection cell. Furthermore, one measurement
was attributed to investigate the yield of ClOOCl from ClO.
In order to suppress the ClOOCl decomposition by the re-
action ClOOCl + Cl→ Cl2 + O2 + Cl, a large excess of Cl2O
was used (probability of ClOOCl destruction is proportional
to the number density ratio of ClOOCl/Cl2O). The flow con-
ditions were held stable for some hours allowing for subse-
quent low resolution mid infrared (MIR, 500–800 cm−1), far
infrared (FIR, 15–25 cm−1) and again a low resolution mid
infrared measurement. The low resolution measurements
were used to scale absorption cross sections from high res-
olution mid infrared spectra (0.0028 cm−1 for 20 hPa mea-
surements, 0.0056 cm−1 for 40 hPa measurements). Further-
more, the low resolution MIR measurements served as an
indicator that the conditions have indeed been stable. All
measurements were carried out with a Bruker IFS 120 HR;
the coolable multireflection cell was developed at the Ger-
man Aerospace Centre (DLR). The far infrared measure-
ments were used for calculating the number densities needed
for calculation of the mid infrared absorption cross sections.
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Fig. 2. Microwindow showing observed and calculated individual
rotational transitions of ClOOCl. The contaminants (Cl2O3, ClO,
HOCl and OClO) were also modelled, e.g. the line at 19.592 cm−1

is OClO. The amounts of the contaminants were well below 1%.
However, their line strengths are much larger when compared to
ClOOCl. Spectra of the precursor Cl2O were also measured, scaled
and divided before fitting to remove Cl2O lines.

Line strengths for the pure rotational far infrared transi-
tions were derived from the JPL line catalogue (Pickett et
al., 1998). The JPL data were calculated from the permanent
electric dipole moment. Furthermore, the vibrational parti-
tion function was calculated since this is not included in the
JPL catalogue, using the following fundamental wavenum-
bers: 127.0, 328.0, 443.0, 560.0, 653.0, and 752.0 cm−1.
Since the FIR spectra contained lines outside the quantum
number range of previous work (Birk et al., 1989) quan-
tum mechanical fits with the JPL software CALFIT were
performed yielding refined centrifugal distortion parameters.
The program CALCAT was then used for improved fre-
quency predictions taken as input in the line fitting software
FITMAS (Wagner et al., 2002). FITMAS resulted in scaled
line strengths for individual rotational transitions for both
the 35ClOO35Cl and35ClOO37Cl isotopologues each in the
ground and first excited torsional state. Fig. 2 shows an ex-
ample of one microwindow region of the FIR spectrum to-
gether with the modelled spectrum from the line fitting. From
the scaled line strength data (ca. 400 lines in the ground- and
ca. 200 in the torsionally excited state) and the JPL catalogue
line strengths considering vibrational partitioning, number
densities and the average gas temperature could be fitted.

The largest uncertainty in the reference line strengths is
caused by the large uncertainty in the torsional wavenum-
ber (127±20 cm−1) from previous work (Birk et al., 1989).
Its fundamental wavenumber could be refined from relative
intensities of rotational transitions in the ground and tor-
sionally excited states to 111.5±8.5 cm−1. Average num-
ber densities of about 1015 molecules cm−3 were achieved.
The number density uncertainty is 10% calculated by the
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root sum square of the following uncertainty contributions:
2% from permanent electric dipole moment uncertainty, 5%
from uncertainty in vibrational partition sum, 7% from tem-
perature error, and 4% statistical error from number density
fitting.

The estimate of the maximum amount of ClOOCl from
titrated Cl2O is a check only, that the number densities de-
rived from the far infrared line strength are in the right order
of magnitude (10–20% range). From the FIR line intensities
we got a number density of 0.98×1015 molecules cm−3 with
an overall uncertainty of 10%. In case of the estimation of the
maximum amount of ClOOCl, the difference of Cl2O num-
ber densities were measured for discharge off and discharge
on from far infrared line intensity measurements with an
overall error below 10% for the difference in Cl2O. The Cl2O
number density determination is more accurate than that for
the ClOOCl, since Cl2O has more intense isolated lines and
a very accurate dipole moment and no low frequency funda-
mentals explaining why the difference of 30% titration can
be measured with small uncertainty. Furthermore, it should
be stated that the sum of number densities of ClO, OClO and
Cl2O3, all derived from far infrared intensity measurements,
are well below 10% of the total chlorine budget. From these
measurements it is obvious that ClOOCl is indeed the ma-
jor product of the ClO reaction at low temperatures and that
ClOOCl is a stable molecule at low temperatures.

When calculating the number density from the titrated
amount of the precursor Cl2O a 20% higher value was found.
This shows that the ClO self reaction indeed produces almost
only ClOOCl and is also a proof for the average number den-
sity determination. It should be noted that the number den-
sity determination from the FIR is highly specific since it was
fitted together with the gas temperature from 400 individual
rotational transitions. Another important question should be
addressed: Is the number density in the FIR path the same as
for the MIR path? Due to the nature of the flow experiment
the ClOOCl distribution in the cell may not be homogeneous.
In the present experiment, exactly the same optics was used
for the FIR and MIR experiments except for the beamsplitter,
detector, and entrance aperture size. Thus the optical path is
nearly identical.

Finally, four sets of absorption cross sections were
obtained for combinations of temperatures 225 K and
250 K and total pressures 20 hPa and 40 hPa in the range
500–800 cm−1 covering the 3 fundamentals with different
integrated band strengths:ν2 (Cl-O symmetric stretch, 510–
600 cm−1, 2.16×10−18 cm−1 cm2 molecule−1), ν5 (Cl-O
asymmetric stretch, 620–680 cm−1, 3.07×10−18 cm−1 cm2

molecule−1), and ν1 (O-O stretch, 710–790 cm−1,
9.35×10−19 cm−1 cm2 molecule−1). The total uncer-
tainty of the absorption cross sections is 12%. Fig. 3 shows
the absorption cross section for theν1 band relevant for the
present paper. The strongest bandν5 is blended by CO2, the
second strongest bandν2 lies outside the spectral range of
MIPAS-B, thus the weakest band was used.

The only published mid infrared band intensity results by
Brust et al. (1997) are a factor of 3 smaller. They used par-
allel UV measurements for number density determination.
According to Pope et al. (2007) the UV cross section data
are accurate enough for number density determination with
10% accuracy. The factor of 3 discrepancy may be caused
by the different UV and mid infrared optical path through the
highly inhomogeneous ClOOCl sample in the flow setup. As
already mentioned, in the present work the optical path for
FIR and MIR was almost identical. Assuming that the ab-
sorption cross sections of Brust et al. (1997) are correct, this
would imply that our number density should be 3 times larger
than our actual result. This is impossible since for 100% con-
version the ClOOCl amount can only be 20% larger.

3.2 Radiance sensitivity calculations

Radiance sensitivities to changes in the mass of the species
ClO, ClOOCl, and ClONO2 have been computed in selected
spectral regions (see Table 1). Radiance calculations are
based on Arctic winter profiles of stratospheric species and
temperature, selected for typical cases of activated and de-
activated stratospheric conditions at day and night inside the
polar vortex. Vertical profiles of the chlorine species used
for the sensitivity calculations are shown in Fig. 4. ClO and
ClOOCl represent situations of activated chlorine for day and
night conditions, respectively. Daytime ClOOCl values are
very small and therefore not detectable with MIPAS-B. The
diurnal variation of ClONO2 can be neglected. This profile
stands for a situation at the end of the polar winter where
active chlorine has already been converted to this reservoir
species. Assuming a float altitude of 31 km, a total of 12
limb scans down to 13.5 km with a vertical spacing of 1.5 km
have been simulated, representing a typical MIPAS-B mea-
surement scenario in the Arctic. The following kinds of sim-
ulations were performed in order to assess the principal de-
tectability of the target species given the NESR of MIPAS-B:
Based on the reference run with the standard atmosphere, the
massm of the target molecule was either enhanced by 20%
or set to zero (−100%). From the changing radiance signal
the radiance difference (1L) to the reference run can be cal-
culated at each spectral grid pointi and further on be divided
by the MIPAS-B noise equivalent spectral radiance (NESR)
of the MIPAS-B instrument:

SNRi =
1Li(1m)

NESRi

(2)

where SNRi is the signal to noise ratio at each spectral grid
point. Taking into account many independent spectral grid
pointsN with radiance contributions of the target molecule
improves the signal to noise ratio:

SNRN =
1

√
N

N∑
i=1

1Li(1m)

NESRi

(3)

where SNRN refers to a spectral interval.
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Fig. 3. Absorption cross sections of the ClOOClν1 band at different total pressures and temperatures(a)–(d). The band structure is
dominated by partly resolved P- and R-branches. A high resolution structure is visible and, as expected, stronger in the low pressure case.
The non-purified chlorine unfortunately contained CO2 yielding huge lines. The CO2 was subtracted out but some residual lines remain
visible in the lower wavenumber part of the spectra at 20.1 hPa/250 K and 44.3 hPa/225 K (negative CO2 peaks). The peak-to-peak noise
level of the 40/20 hPa measurements is 0.01/0.02×10−18cm2 molecule−1. Temperature dependence is rather small.

Table 1. Set-up for MIPAS-B sensitivity studies and retrievals. Results are given for different species in corresponding spectral windows.

Species Band Spectral range Interfering species Signal to noise ratio at 18 km D.o.f. Alt. reso.

(µm) (cm−1) 1m = 20% 1m =−100% (km)

ClO 11.8 821.0–841.5 O3, CO2, NO2, HNO3, H2O, 3.0c, 4.4d (day) 15c, 22d (day) 4.5 3–7
ClONO2, CFC-22, CFC-11 0.4c, 0.5d (night) 1.9c, 2.5d (night)

ClOOCl 13.3 721.0–788.0a O3, CO2, HNO3, COF2, 0.4c, 4.4d (night) 2.0c, 22d (night) 4.0 3–7
755.0–788.0b HCN, ClONO2, N2O5 0.4c, 3.8d (night) 2.0c, 19d (night)

ClONO2 12.8 779.7–780.7 O3, CO2, HNO3 51c, 88d 419c, 548d 11–12 1.5–3

a used for sensitivity studies;
b used for sensitivity studies and retrieval calculations.
c Signal to noise ratio (SNRi ) refers to the maximum signal of the target molecule spectral feature at one grid point in the spectral window
assuming a measurement time of 1.5 min (10 averaged spectra).1m corresponds to changing the signal by varying the massm of the target
molecule by 20% and−100%, respectively.
d Using a number of independent grid pointsN in the retrieval improves the signal to noise ratio (SNRN ) by N0.5. Degrees of freedom
(D.o.f.) are calculated from the main diagonal elements of the averaging kernel and are given together with the corresponding altitude
resolution (Alt. reso.).
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Fig. 4. Arctic winter profiles of chlorine species used for the radi-
ance sensitivity calculations. ClO (day) and ClOOCl (night) profiles
correspond to activated chlorine conditions; ClONO2 mixing ratios
represent deactivated air masses.

Results of the radiance simulations are compiled in Ta-
ble 1. ClO calculations were carried out in the P-branch
region of the 11.8 µm band which is characterized by com-
paratively little interference with other species. A spectral
window containing a well-separated ClO signature is dis-
played in Figs. 5 and 6. The main interfering species in this
microwindow is the molecule O3. A significant difference
is visible in the strength of the ClO signature between day
(Fig. 5) and night (Fig. 6) conditions. While during day, a
20% change in the mixing ratio of ClO yields to a signal to
noise ratio of 4.4 (see Table 1), the nighttime signal to noise
ratios are less than unity such that noise errors of more than
20% can be expected when this species is derived from noc-
turnal MIPAS-B spectra.

Radiance calculations in the spectral region of the ClOOCl
band centred near 753 cm−1 are shown in Fig. 7. The spec-
trum is dominated by contributions of the molecules O3 and
CO2. The maximum difference between the radiance calcu-
lated with elevated nighttime ClOOCl and without ClOOCl
(what corresponds to daytime conditions) is about two times
the spectral noise of the MIPAS-B instrument for a single
spectral grid point. Taking into account a large number of in-
dependent grid points in this wide spectral window will sig-
nificantly improve the signal to noise ratio (see Table 1) ac-
cording to Eq. (3). Restricting the fitting to only the R-branch
region of ClOOCl (above 755 cm−1) does only slightly re-
duce the signal to noise ratio (see Table 1) since the radi-
ance sensitivity is largest in the R-branch region (cf. Fig. 7).
Hence, high values of ClOOCl should be detectable with
MIPAS-B. However, it must be mentioned that interferences
with other species are strong, especially in the P-branch re-
gion of the ClOOCl band below 750 cm−1. Systematic errors
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Fig. 5. Radiance simulations around a well-separated ClO signa-
ture from 833.0–833.6 cm−1 for activated polar winter day condi-
tions at a tangent altitude of 18 km. The figure shows a calculation
taking into account all emitting molecules (black solid line); simu-
lations with enhanced ClO (1m = +20%; red dotted line), without
ClO (1m =−100%; blue dotted line), and with ClO alone (cyan
solid line). Differences are plotted in the bottom part of the figure
(red and blue solid lines). The typical spectral noise band (NESR)
of the MIPAS-B instrument is also displayed (green dotted lines).
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Fig. 6. Same as Fig. 5 but for polar winter night conditions. 

 

Fig. 6. Same as Fig. 5 but for polar winter night conditions.

are therefore expected to play an important role during the re-
trieval process of the target molecule ClOOCl (see Sect. 4).

Radiance simulations of the species ClONO2 are depicted
in Fig. 8. The ClONO2 Q-branch at 780.2 cm−1 shows up as
a strong signature between two adjacent O3 lines. Signal to
noise ratios are large (see Table 1); consequently, noise errors
during the retrieval are expected to be small (see Sect. 4).
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Fig. 7. Simulation for ClOOCl in polar night in chlorine-activated conditions. Broadband radiance calculations for the 18-km tangent altitude
in the spectral window from 721 to 788 cm−1 comprising the mid-infrared ClOOCl band centred near 753 cm−1. Notation as per Fig. 5.
Please note, that in simulation (4) ClOOCl is scaled by a factor of 50 for better clarity.
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Fig. 8. Radiance simulations in the spectral region of the
ClONO2ν4 Q-branch between 779.7 and 780.7 cm−1 for a tan-
gent altitude of 18 km (Arctic spring, deactivated chlorine). No-
tation as per Fig. 5. Calculated signal-to-noise ratios for the cen-
tre of the ClONO2 Q-branch are about 50 for a1m of 20%.
The noise level (NESR) of the MIPAS-B instrument is only about
2x10−9 W/(cm2 sr cm−1) in this spectral region (for an integration
time of 1.5 min).

4 Retrieval results and model comparison

In this section, retrieved profiles of the chlorine species ClO,
ClOOCl, and ClONO2, are discussed and compared to simu-
lations performed with a chemical model.

Retrieval calculations were carried out with a least squares
fitting procedure using analytical derivative spectra calcu-
lated by KOPRA (Ḧopfner et al., 2002). While the verti-
cal distance of the observed tangent altitudes amounts be-
tween 0.8 and 1.7 km, the retrieval grid was set to 1 km up to
the balloon float altitude, whereas above, the vertical spacing
slightly increases to 10 km at 100 km altitude. A Tikhonov-
Phillips regularization approach was applied which was con-
strained with respect to a height-constant zero a priori profile
of the target species. The number of degrees of freedom of
the retrieval, which corresponds to the trace of the averaging
kernel matrix, is listed in Table 1. A large number of de-
grees of freedom corresponds with a high altitude resolution
(and vice versa) as in the case of ClONO2 where 1.5 to 3 km
(dependent on altitude) are reached since there is much infor-
mation on the vertical distribution of this species contained
in the measured spectra of the limb sequence. In contrast, the
altitude resolution is limited to 3 to 7 km in the case of ClO
and ClOOCl. All chlorine species have been analyzed in the
spectral windows which are listed, together with interfering
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Fig. 9. Best fit of measured MIPAS-B spectra in the R-branch region of the ClOOCl 13.3 µm band corresponding to a tangent altitude
of 18.7 km. (a) Measured spectrum (black solid line); calculated spectrum (red dotted line); calculated spectrum without ClOOCl (blue
dotted line); calculated spectrum with only (retrieved) ClOOCl emissions, scaled by a factor of 50 (solid cyan line).(b) Residual spectrum
“measured – calculated” (red solid line); NESR (dark green dotted line) is shown together with root of mean squares (σ ). (c) Residual
spectrum “measured – calculated without ClOOCl” (blue solid line) together with NESR andσ . (d) Residual spectrum “calculated –
calculated without ClOOCl” (green solid line), corresponding to the difference (c)–(b).

species, in Table 1. Concerning ClOOCl, only the R-branch
part of the 13.3 µm band above 755 cm−1 has been used for
the retrieval calculations because the P-branch region was
not available due to the special optical filter configuration
during the January 2001 flight. Besides temperature, promi-
nent interfering gases were adjusted simultaneously together
with the target molecule, frequency shift, and radiance offset.
Less prominent interfering species were previously fitted in
appropriate spectral regions.

A best fit in the spectral region of the molecule ClOOCl
is shown in Fig. 9. Main interfering species are O3, CO2,

HNO3, and ClONO2. Mean deviations in the residual spec-
tra are close to the noise level of the measured spectra. Fea-
tures in the residual spectra deviating from white noise are
mostly connected with strong and dense transitions of the
molecules O3 and CO2 as, e.g., near 758, 763, and 771 cm−1,
most probably caused by spectroscopic inaccuracies and line
mixing effects. However, the important thing is that the
information on the amount of ClOOCl is contained in the
gradually changing shape of the emission of its R-branch
along the wavenumber scale of a broad spectral interval of
33 cm−1 containing more than 900 spectral grid points. Such
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Fig. 10. Retrieved results in chlorine-activated conditions (night-
time). Vertical profiles of the species ClONO2, ClO, and ClOOCl,
as measured by MIPAS-B on 11 January 2001 above Kiruna with
absolute total errors (left) and relative random (noise and covari-
ance effects of the fitted parameters) and total errors (right). While
random errors are dominant for nighttime ClO, systematic error
sources are also important for the ClOOCl analysis.

large-scale features are not strongly influenced by the small
scale residuals which appear in Fig. 9. The large-scale fea-
ture is reflected by the difference of the retrievals performed
with and without the species ClOOCl (green solid line in
Fig. 9). Introducing the (small) emission of ClOOCl into the
retrieval slightly improves the root of mean squares of the
residual which is dominated by the imperfect fitting of the
prominent CO2 and O3 features.

The error estimation consists of random and systematic
errors. Random errors include spectral noise as well as co-
variance effects of the fitted parameters. Systematic errors
mainly comprise spectroscopic data errors (band intensities),
uncertainties in the line of sight, background emission vari-
ations, and CO2 line mixing effects. Errors of the non-
simultaneously fitted interfering gases were estimated with
test retrievals and also treated as systematic. Random and
systematic errors were added quadratically to yield the total
error which refers to the 1-σ confidence limit.

Retrieved volume mixing ratios for the January 2001 flight
are depicted in Fig. 10 together with their random and total
errors. As expected from the large signal to noise ratio (cf.
section 3), the ClONO2 random error is very small, except
at 20 km, where the mixing ratio is close to zero. The total
error, which is dominated by the spectroscopic data uncer-
tainty (5% in band intensity), is close to 5% in regions where
ClONO2 mixing ratios are larger than 0.3 ppbv. Concern-
ing the molecule ClO, random noise is the dominating error
source since nighttime ClO mixing ratios are small and hence
the signal to noise ratio is as well (cf. Sect. 3). In contrast,
the large number of spectral grid points is reducing the noise
error for the species ClOOCl. Here, systematic error sources
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Fig. 11. Chlorine species as measured by MIPAS-B on 11 January
2001 inside the polar vortex above northern Scandinavia. Besides
ClONO2, ClO, ClOOCl, and ClOx, Cl∗yres

(mainly HCl) and total
inorganic chlorine Cl∗y (consisting of ClOx, ClONO2, and Cl∗yres

),
are plotted, too. Cl∗y is calculated from MIPAS-B N2O via a N2O-
Cly correlation deduced from in-situ observations of Arctic balloon
flights between 2000 and 2003. Cl∗

yres
has been derived from the dif-

ference of Cl∗y minus ClONO2 and ClOx. A layer of activated chlo-
rine (ClOx∼2.3 ppbv, ClONO2<0.1 ppbv) is visible in the measure-
ments around 20 km.

are also relevant. Besides spectroscopy (band intensity error:
12%), uncertainties due to interfering gases and, to a lesser
extent, line of sight errors, dominate this kind of error. Above
22 km and below 19 km, no ClOOCl mixing ratios could be
retrieved since the amounts of ClOOCl are below the detec-
tion limit which is about 0.5 ppbv.

Retrieved profiles of the chlorine species ClONO2, ClO,
and ClOOCl, as measured by MIPAS-B during the mid-
winter flight on 11 January 2001 and the late winter flight
on 20 March 2003 inside the polar vortices are displayed in
Figs. 11 and 12.

To obtain a proxy of total inorganic chlorine Cly a N2O-
Cly correlation was derived from measurements performed
on air samples collected with the balloon-borne cryogenic
whole air sampler BONBON in the Arctic winters between
the years 2000 and 2003 (Engel et al., 2006). This correla-
tion has been deduced taking into account in-situ N2O and
chlorine measurements of CFC-11, CFC-12, CFC-22, CFC-
113, CCl4, CH3CCl3, and CH3Cl. The organic chlorine de-
termined as the sum of these species was increased by 3% in
order to account for long lived chlorine source gases which
were not measured on these samples, in particular HCFC-
141b and HCFC-142b. Cly is then calculated as the differ-
ence between the organic chlorine determined in this way and
the total chlorine calculated from the tropospheric burden of
chlorine source gases taking into account the mean age of
the air (Engel et al., 2002). Data for chlorine source gases
are taken from NOAA ESRL GMD (National Oceanic and
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Fig. 12. Chlorine species as measured by MIPAS-B on 20 March
2003 inside the Arctic vortex. Notation as per Fig. 11. Deactiva-
tion of active chlorine is expressed by high ClONO2 values around
20 km. ClOOCl values were set to zero for the calculation of Cl∗

yres
since ClOOCl was well below the detection limit.

Atmospheric Administration, Earth System Research Labo-
ratory, Global Monitoring Division; Montzka et al., 1999).
150 pptv of chlorine were added to account for very short
lived species (VSLS) and unmeasured chlorine source gases.
A polynomial fit was applied to calculate the proxy inorganic
chlorine [Cl∗y] calculated in this way in dependence of [N2O],
both given in ppbv:

[Cl∗y]=3.4954−1.3849×10−3
[N2O]− (4)

1.9941×10−5
[N2O]

2
−3.2180×10−8

[N2O]
3.

This correlation has been adapted to MIPAS-B measured
N2O and yields up to 3.5 ppbv Cl∗

y in the stratosphere. Cl∗
y

differences between 18 and 25 km reflect the stronger sub-
sidence of air masses in late winter 2003 compared to the
case in earlier winter 2001. The amount of residual inor-
ganic species [Cly∗

res
] = [HCl] + [HOCl] + [. . . ] which are not

directly measured can be calculated via:

[Cl∗yres
]=[Cl∗y]−[ClOx]−[ClONO2]. (5)

The nighttime MIPAS-B observations in January 2001,
which were carried out about 2.5 h after local sunset, show
enhanced ClOOCl values with a maximum mixing ratio of
nearly 1.1 ppbv at 20 km altitude. As expected, low nocturnal
ClO values below 0.3 ppbv were detected all over the lower
stratosphere. ClOx shows a peak value of about 2.3 ppbv at
20 km. This layer of activated chlorine is reflected by very
low mixing ratios of the chlorine reservoir species ClONO2
with values of less than 0.1 ppbv at 20 km altitude and re-
duced mixing ratios of Cl∗

yres
which consists mainly of HCl.

In contrast to the mid-winter January 2001 situation, the
nocturnal observations carried out in March 2003 exhibit

very high ClONO2 values (nearly 2.4 ppbv at 20 km) which
are typical for the late winter Arctic vortex when active chlo-
rine has been converted to this reservoir species via Reac-
tion (R5). This ClONO2 profile, together with further pro-
files of nitrogen species and tracers like N2O and CH4, has
already been discussed by Wetzel et al. (2008). Such high
ClONO2 amounts have also been measured in earlier late
winter vortices by MIPAS-B (von Clarmann et al., 1993; Oel-
haf et al., 1994; Wetzel et al., 2002). An activated chlorine
layer is not visible in these measurements. No significant
ClOOCl values could be retrieved. Inferred ClOx values are
also close to zero.

Measured profiles are compared to calculations per-
formed with the Chemistry Climate Model (CCM) EMAC
(ECHAM/MESSy Atmospheric Chemistry model) devel-
oped at the Max-Planck-Institute for Chemistry in Mainz
(Jöckel et al., 2006). EMAC is a combination of the gen-
eral circulation model ECHAM5 (Roeckner et al., 2006) and
different submodels as, for instance, the chemistry submodel
MECCA (Sander et al., 2005) combined through the inter-
face Modular Earth Submodel System (MESSy; Jöckel et al.,
2005).

For this study data from a nine year simulation from 2000
to 2008 with EMAC Version 1.7 (time step: 15 min) are
used. The simulation was performed with horizontal reso-
lution T42 (2.8◦×2.8◦) and with 39 layers, covering the at-
mosphere from the surface up to 0.01 hPa (approx. 80 km).
A Newtonian relaxation technique of the prognostic vari-
ables temperature, vorticity, divergence and the surface pres-
sure above the boundary layer and below 10 hPa towards
ECMWF operational analysis data has been applied, in or-
der to nudge the model dynamics towards the observed me-
teorology. The boundary conditions for greenhouse gases are
from the IPCC-A1B scenario (IPCC, 2001) adapted to obser-
vations from the AGAGE database (Prinn et al., 2001) and
for halogenated hydrocarbons from the WMO-Ab scenario
(WMO, 2007). The simulation includes a comprehensive at-
mospheric chemistry setup for the troposphere, the strato-
sphere and the lower mesosphere with 98 gas phase species,
178 gas phase reactions, 60 photolysis reactions and 10 het-
erogeneous reactions on liquid aerosols, NAT- and ice par-
ticles. The solar zenith angle (SZA) to separate day and
night in the photolysis submodel is set to 94.5◦ on ground.
This corresponds to SZAs from 97.7◦ at 10 km to 100.0◦ at
30 km. The range of SZAs associated with the observations
extends from 104.0◦ (29 km) to 111.4◦ (10 km) on 11 Jan-
uary 2001 and from 113.2◦ (30 km) to 115.3◦ (10 km) on 20
March 2003. Rate constants of gas-phase reactions and sur-
face reaction probabilities are mainly taken from the compi-
lation by Sander et al. (2003). This holds also for the ClOOCl
dissociation Reaction (R1) and the absorption cross section
photolysis Reaction (R2). The ClOOCl recombination is cal-
culated according to the International Union of Pure and Ap-
plied Chemistry (IUPAC) recommendation (Atkinson et al.,
2007). For short-lived substances, instantaneous steady state
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January 2001 in comparison to simulations of the chemistry climate model EMAC. 

 

Fig. 13.Ratios of active chlorine to total inorganic chlorine as mea-
sured by MIPAS-B on 11 January 2001 in comparison to simula-
tions of the chemistry climate model EMAC.

is assumed. The applied submodels are the same as in the
simulations in Kirner (2008). In particular we used a new
parameterisation of polar stratospheric clouds based on the
efficient growth and sedimentation of NAT-particles in the
submodel PSC (Kirner, 2008).

A comparison of measured and simulated chlorine species
for both discussed winter situations is shown in Figs. 13 and
14. To separate dynamical from chemical effects, ratios of
individual Cly components to total inorganic chlorine are cal-
culated here. The chlorine activation (ClOx/Cl∗y) as mea-
sured by MIPAS-B in January 2001 (Fig. 13) is quite well
reproduced by the EMAC model where the altitude region
of the activation is slightly broader compared to the obser-
vation, with an extension to lower altitudes. This can be
explained by the history of the PSC particles in the model
which fell down in the course of the cold winter to altitudes
below 19 km and which consequently caused chlorine acti-
vation in the model. The EMAC model is also able to repro-
duce measured ClONO2/Cl∗y and Cl∗yres

/Cl∗y ratios in a con-
sistent manner. The species OClO plays a minor role in the
EMAC simulations on 11 January 2001 at the time and loca-
tion of the MIPAS-B measurement. A maximum OClO value
of 0.09 ppbv was calculated at 26 km.

In March 2003, no chlorine activation was measured in
the lower stratosphere. This is also displayed by the EMAC
simulations. Observed ClONO2/Cl∗y and Cl∗yres

/Cl∗y ratios are
again well reproduced by the model simulations.

Fig. 15 depictsKeq values as deduced from MIPAS-B
observations on 11 January 2001 and EMAC simulations
according to Eq. (1). Measured and modelledKeq values
lie close together. On the other hand, data from the liter-
ature (see, von Hobe et al., 2007, and references therein)
span a wide region of equilibrium constants in the lower
stratosphere. MIPAS-B and EMAC values are located in
the lower part of the shaded region in Fig. 15. This is
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Fig. 15. ClO/ClOOCl equilibrium constantKeq calculated via
Eq. (1) for MIPAS-B observations and simulations of the chemical
model EMAC. For comparison,Keq values CH88 (Cox and Hay-
man, 1988) and AT01 (Avallone and Toohey, 2001), recommended
by Stimpfle et al. (2004); Pea05 (Plenge et al., 2005), recommended
by von Hobe et al. (2007); JPL06 (Sander et al., 2006) and fur-
ther data from literature (as compiled in Table 3 in von Hobe et al.,
2007) are shown. These values are calculated using the JPL for-
mat K = A×exp(B/T ) with corresponding coefficientsA andB

(see, Table 3 in von Hobe et al. (2007) and references therein) and
temperatureT as measured by MIPAS-B.

in good agreement with equilibrium constants inferred by
Plenge et al. (2005) which were recommended by von Hobe
et al. (2007).

5 Conclusions

Nighttime Arctic stratospheric limb emission measurements
were carried out by MIPAS-B from Kiruna, Sweden on 11
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January 2001 and 20/21 March 2003 inside the polar vortices
under activated and deactivated chlorine (ClOx) conditions.
The winter 2000/2001 was characterized by a very cold pe-
riod in the lower stratosphere before and during the time of
the MIPAS-B flight. Polar stratospheric clouds could form
since the end of December when temperatures sank below
TNAT in the lower stratosphere. Hence, activation of chlorine
(ClOx) was possible via heterogeneous chemistry on cloud
particles right before the MIPAS-B flight. Measured spectra
were analyzed with regard to the chlorine reservoir species
ClONO2 and the active ClOx species, ClO and ClOOCl. Sig-
nificant amounts of nighttime ClOOCl (nearly 1.1 ppbv at
20 km) could be observed by MIPAS-B for the first time in
an altitude region where an enhanced value is expected to oc-
cur. The amount of observed ClOOCl (using our new cross
sections) shows the same magnitude as nighttime Arctic vor-
tex ClOOCl mixing ratios measured in-situ in February of
the previous winter under various conditions in the same al-
titude region (Stimpfle et al., 2004). It is worth mentioning
that if the Brust et al. (1997) ClOOCl cross sections were
used for the analysis, our retrieved ClOOCl mixing ratios
would be enhanced by a factor of 3 leading to unreasonably
high values of more than 3 ppbv for this species (and accord-
ingly more than 6 ppbv Cly). Radiance sensitivity calcula-
tions have underpinned the feasibility of measuring ClOOCl
under chlorine activated conditions by taking into account a
large number of spectral grid points. Low values of noctur-
nal ClO (0.2 ppbv at 20 km) and very low ClONO2 mixing
ratios of less than 0.1 ppbv reveal a consistent picture of the
chlorine partitioning observed during this flight which can
be expected from the established chlorine chemistry. During
the time of the MIPAS-B observation inside the late March
2003 polar vortex the situation was very different. ClOx had
already dropped to values close to zero, which are typical for
normal non-activated gas-phase conditions. No significant
ClOOCl data could be retrieved from the recorded spectra.
Accordingly, the chlorine reservoir species ClONO2 reached
very high values of up to 2.4 ppbv at 20 km. Simulations with
the CCM EMAC show that the model is able to reproduce the
observed activated and deactivated chlorine conditions quite
well using established kinetics.

Altogether we conclude that the first simultaneous atmo-
spheric remote sensing measurements of ClO, ClOOCl and
ClONO2 at different geophysical conditions in the polar
stratosphere are in line with the established polar chlorine
chemistry (see, e.g., Brasseur and Solomon, 2005). This also
holds for the derived MIPAS-B ClO/ClOOCl equilibrium
constantKeq which has been compared to literature data cal-
culated using MIPAS-B temperatures (range: 192–203 K).
EMAC Keq data are in line with MIPAS-B results and both
Keq data are characterized by comparatively smaller values
(less than 2×10−8 molecules cm−3) supporting the findings
of von Hobe et al. (2007). Most recent studies by Papanas-
tasiou et al. (2009) and Wilmouth et al. (2009) also indicate
that - in contrast to the findings by Pope et al. (2007) – major

revisions in current atmospheric chemical mechanisms are
not required to simulate observed polar ozone depletion.
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