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Abstract. Atmospheric processing of mineral aerosols by
acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a
key role in the transformation of insoluble iron (Fe in the
oxidized or ferric (III) form) to soluble forms (e.g., Fe(II),
inorganic soluble species of Fe(III), and organic complexes
of iron). On the other hand, mineral dust particles have a
potential of neutralizing the acidic species due to the alka-
line buffer ability of carbonate minerals (e.g., CaCO3 and
MgCO3). Here we demonstrate the impact of dust alkalin-
ity on the acid mobilization of iron in a three-dimensional
aerosol chemistry transport model that includes a mineral
dissolution scheme. In our model simulations, most of the
alkaline dust minerals cannot be entirely consumed by in-
organic acids during the transport across the North Pacific
Ocean. As a result, the inclusion of alkaline compounds
in aqueous chemistry substantially limits the iron dissolu-
tion during the long-range transport to the North Pacific
Ocean: only a small fraction of iron (<0.2%) dissolves from
hematite in the coarse-mode dust aerosols with 0.45% sol-
uble iron initially. On the other hand, a significant frac-
tion of iron (1–2%) dissolves in the fine-mode dust aerosols
due to the acid mobilization of the iron-containing miner-
als externally mixed with carbonate minerals. Consequently,
the model quantitatively reproduces higher iron solubility in
smaller particles as suggested by measurements over the Pa-
cific Ocean. It implies that the buffering effect of alkaline
content in dust aerosols might help to explain the inverse re-
lationship between aerosol iron solubility and particle size.
We also demonstrate that the iron solubility is sensitive to the
chemical specification of iron-containing minerals in dust.
Compared with the dust sources, soluble iron from combus-
tion sources contributes to a relatively marginal effect for de-
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position of soluble iron over the North Pacific Ocean dur-
ing springtime. Our results suggest that more comprehensive
data for chemical specificity of iron-rich dust is needed to
improve the predictive capability for size-segregated soluble
iron particles.

1 Introduction

Iron (Fe) is an essential nutrient for marine phytoplankton
(Martin et al., 1994; Mills et al., 2004). Most photosynthetic
aquatic organisms can take up iron only in the dissolved
form. Thus although the iron-containing soil dust mobilized
from arid regions supplies the majority of iron from the at-
mosphere to the oceans, the key flux in terms of the biogeo-
chemical response to atmospheric deposition is the amount
of soluble or bioavailable iron (Fung et al., 2000; Jickells et
al., 2005; Mahowald et al., 2009; Baker and Croot, 2010). It
has been proposed that atmospheric processing of mineral
aerosols by anthropogenic pollutants (mainly sulfuric acid
formed from oxidation of SO2) may transform insoluble iron
into soluble forms (Zhu et al., 1992; Zhuang et al., 1992;
Meskhidze et al., 2003).

The dissolution of dust minerals strongly depends on the
solution pH during the chemical processing. In a compre-
hensive modeling study, Meskhidze et al. (2005) developed
a specific mechanism, which described the mobilization of
iron in mineral dust by anthropogenic pollutants, and ap-
plied it to study the East Asian dust outflows. Solmon
et al. (2009) implemented the iron dissolution scheme of
Meskhidze et al. (2005) in a chemical transport model. Both
Meskhidze et al. (2005) and Solmon et al. (2009) predicted
insignificant amounts of the dissolved iron during major dust
events but a significant deposition of soluble iron during
smaller dust activities in the transpacific transport. On the
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other hand, mineral dust aerosols originating from the Asian
deserts may exhibit a strong buffering ability by neutraliz-
ing the acidic pollutants encountered during the long-range
transport (Iwasaka et al., 1988; Song and Carmichael, 1999,
2001; Tang et al., 2004). Recently, McNaughton et al. (2008)
and Fairlie et al. (2009) have argued that dust does not acid-
ify in the free troposphere generally. Their results indicate
that iron mobilization may be limited to the small dust parti-
cles (radius<1 µm) with very low initial alkalinity, because
the uptake of acid gases on large mineral aerosols is much
slower than that assumed by Meskhidze et al. (2005). On a
single particle basis, only dust particles internally mixed with
carbonate minerals can be buffered in this manner (Gao and
Anderson, 2001). Sullivan et al. (2007) found that submi-
cron dust particles could become very acidic by reacting with
sulfuric acid during the early stage of the transport. They
showed clear differences in the temporal changes of the sec-
ondary acid reaction products between dust particles rich in
calcite and aluminosilicates. Their results imply that sulphate
is highly associated with aluminosilicate-rich dust while ni-
trate is mixed with calcium-rich dust. Sulphate-dust peaks in
the submicron mode while nitrate-dust peaks in the supermi-
cron.

Previous studies have suggested higher iron solubility in
smaller particles (Siefert et al., 1999; Hand et al., 2004;
Baker and Jickells, 2006). Baker and Jickells (2006) at-
tributed the relationship between iron solubility and particle
size to a physical control (i.e., larger surface area to volume
ratio of smaller aerosol particles). However, the solubility
of iron may not be a simple function of the surface-area-to-
volume ratio (Baker and Croot, 2010; Buck et al., 2010). For
instance, smaller particles could go through more thorough
chemical processing due to a longer residence time in the at-
mosphere, which in turn results in higher solubility (Zhuang
et al., 1992; Hand et al., 2004). In addition, cloud process-
ing, which may involve radical reactions in liquid phase, has
been suggested to increase the soluble iron particles in the
fine mode (Zhu et al., 1992; Shi et al., 2009). The mineral-
ogy of iron also influences the particulate iron solubility and
may contribute to the size dependence of the soluble iron-
rich dust (Claquin et al., 1999; Cwiertny et al., 2008; Jour-
net et al., 2008; Schroth et al., 2009). Compared to mineral
dust aerosols, iron from combustion sources is suggested to
be more soluble, and found more frequently in smaller parti-
cles (Chuang et al., 2005; Guieu et al., 2005; Sedwick et al.,
2007; Sholkovitz et al., 2009).

Here we use a global aerosol chemistry transport model
to investigate the deposition of the dissolved iron during the
long-range transport of mineral dust over the North Pacific
Ocean. By incorporating a specific mineral aerosol dissolu-
tion scheme into the detailed aerosol chemistry model, we
provide a theoretical examination of the effects of dust alka-
linity on the acid mobilization of iron. In the following, Sec-
tion 2 describes the atmospheric aerosol chemistry model,
mineral aerosol dissolution scheme and iron emission data

sets from both dust and combustion sources. Four numeri-
cal experiments are conducted to examine the impact on iron
solubility due to assumptions about mixing states of mineral
aerosols and the mineralogy of iron. Section 3 examines the
sensitivity of the simulated soluble iron from the four model
experiments as well as comparisons with observations. Sec-
tion 4 presents a summary of our findings.

2 Model approach

2.1 Atmospheric aerosol chemistry transport model

We use an aerosol chemistry version of the Integrated Mas-
sively Parallel Atmospheric Chemical Transport (IMPACT)
model (Rotman et al., 2004; Liu et al., 2005; Feng and Pen-
ner, 2007; Ito et al., 2009) as a framework for this study. The
model is driven by assimilated meteorological fields for the
year of 2001 from the Goddard Earth Observation System
(GEOS) of the NASA Global Modeling and Assimilation
Office (GMAO). Simulations were performed at a one-hour
temporal resolution on a horizontal resolution of 2.0◦

×2.5◦

with 48 vertical layers. The model was spun up for two
months before the production runs. Emissions of primary
particles and precursor gases, chemistry of gas-phase, het-
erogeneous, and aqueous-phase reactions including mineral
dissolution scheme, gravitational settling, dry and wet depo-
sitions, are simulated.

An online sulfur model is applied to predict the concentra-
tions of SO2, SO2−

4 (represented in 5 aerosol size bins or sec-
tions: <0.05 µm, 0.05–0.63 µm, 0.63–1.25 µm, 1.25–2.5 µm,
2.5–10 µm in radius), H2O2 and DMS (Liu et al., 2005). The
concentrations of oxidants (i.e., HOx (≡OH+HO2) and O3)

are derived from a full gas-phase chemistry simulation us-
ing the same emission data and meteorological fields (Ito et
al., 2007, 2009). Sea salt and mineral dust aerosols are con-
sidered in 4 size bins (radius:<0.63, 0.63–1.25, 1.25–2.5,
and 2.5–10 µm). For this study, the total amount of partic-
ulate sulfate condensed on the large dust particles (radius
>1.25 µm) is determined by the available particle surface
area (Nishikawa et al., 1991; Song and Carmichael, 1999,
2001; Zhang et al., 2000).

Since accurately solving the dynamic mass transfer equa-
tions over the entire aerosol size range is computationally
expensive, Capaldo et al. (2000) developed a hybrid method
which applies the thermodynamic equilibrium assumption to
the fine aerosol mode and the dynamic approach to the coarse
aerosol mode. Feng and Penner (2007) have demonstrated
the importance of using such a hybrid dynamical approach
in the calculation of nitrate and ammonium aerosols in global
chemical transport models. Therefore the heterogeneous up-
take of nitrate and ammonium by aerosol mixtures is interac-
tively simulated in our model following the hybrid dynamical
approach (Feng and Penner, 2007). Specifically, a thermody-
namic equilibrium model (Jacobson, 1999) is applied for the
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Table 1. Constants Used to Calculate Mineral Dissolution/Precipitation Rates.

Number Mineral Rate ConstantKi (molmineral dissolvedm
−2 s−1) mi Ai (m2 g−1) Wi (%) Reference

RS1 Calcite Equilibrium 11 Meng et al. (1995)

RS2 Magnesite 4.4× 10−5exp[2400(1/298–1/T )] 1.0 1.0 5.5 Chou et al. (1989)

RS3 Hematite Stage I (0–0.8% of total oxide dissolved) 0.5 100 5.0 Azuma and Kametani (1964);
4.4× 10−12exp[9200(1/298–1/T )] Zinder et al. (1986); Blesa et al. (1994);
Stage II (0.8–40% of total oxide dissolved) Cornell and Schwertmann (1996);
1.8× 10−11exp[9200(1/298–1/T )] Skopp (2000)
Stage III (40–100% of total oxide dissolved)
3.5× 10−12exp[9200(1/298–1/T )]

RS4 Illite 1.3× 10−11exp[6700(1/298–1/T )] 0.39 90 45 Tessier (1990) ; Nagy (1995);
Skopp (2000); Journet et al. (2008)

gas-aerosol partitioning in the fine mode (radius<0.63 µm),
while the concentrations of gaseous species and aerosols in
the coarse aerosol mode (radius>0.63 µm) are determined
by dynamically solving the mass transfer equations. In the
thermodynamic equilibrium/mass transfer calculations, sul-
fate, sea salt and mineral dust aerosols were assumed to be
internally mixed in each size bin (Feng and Penner, 2007).
Thus particles in the same size bins have the same chemical
composition in aerosol mixture.

2.2 Mineral aerosol dissolution

A mineral aerosol dissolution scheme is introduced to the
aerosol chemistry in the global model. We explicitly treat
the dissolution/precipitation of two carbonate minerals (i.e.,
calcite and magnesite). The most likely clay minerals for
carbonates are calcite (CaCO3) and dolomite (CaMg(CO3)2)

(Andronova et al., 1993; Shao et al., 2007). Since the
dissolution rate of dolomite is much faster than magnesite
(MgCO3), the dissolution rate of magnesium is thus con-
trolled by the latter (Chou et al., 1989). Analysis of the
ion charge balance based on airborne aerosol measurements
suggests that significant fractions of the observed Ca2+ and
Mg2+ are in the form of carbonates (CaCO3 and MgCO3)

(Maxwell-Meier et al., 2004).

The dissolution/precipitation of the calcite (CaCO3) is
assumed to be in thermodynamic equilibrium (RS1 in Ta-
ble 1). The dissolved Ca is distributed among 4 possi-
ble solids (CaCO3, CaSO4, Ca(NO3)2, and CaCl2) or the
aqueous-phase species (Ca2+). The relative amount of each
of these species is calculated interactively by the thermody-
namic module (Jacobson, 1999).

Magnesite (MgCO3) dissolution is treated explicitly as a
kinetic process depending on pH, chemical composition of
the aerosol solution coated on dust particles, and the ambi-
ent temperature. For kinetically-controlled dissolution rate
of the mineral (Ri), we adopt the formulation of Lasaga et

al. (1994):

Ri = Ki(T )×a(H+)mi f (1Gi)×Ai ×Wi (1)

whereKi is the temperature (T ) dependent reaction coeffi-
cient (moles dissolved m−2 of mineral s−1) for mineral i,
a(H+) is theH+ activity, mi is an empirical parameter,f is
a function of Gibbs free energy change of a particular min-
eral dissolution reaction (1Gi), which accounts for the effect
of the solution saturation state on dissolution rates (Cama et
al., 1999),Ai is the specific surface area of mineral in units
of m2 g−1, andWi is the weight fraction of the mineral to
dust in units of g of mineral (g of dust)−1. Values forKi ,
mi , Ai , andWi for each of the mineral-dissolution reactions
considered here are listed in Table 1. The functionf is given
by

f (1Gi) = 1−exp[(n×1Gi)/(R×T )] (2)

where

1Gi = R×T × ln(Qi/KEQi) (3)

andn is an empirical parameter that in mineral-fluid reaction
kinetics is most commonly set to 1 (e.g., Burch et al., 1993),
R is the gas constant,Qi is the reaction activity quotient (i.e.,
the ratio of the product of the reactants over the product of
the species produced), andKEQi is the equilibrium constant
(Meng et al., 1995). Values of the kinetic constants for mag-
nesite dissolution are available from Chou et al. (1989) (RS2
in Table 1). In highly acidic solutions, rates are independent
of pH in the case of relatively fast dissolving minerals such as
carbonates (Pokrovsky and Schott, 1999). Thus we set pH=3
for the calculation of dissolution rates when pH<3. The pre-
cipitation of secondary compounds (MeSO4, Me(NO3)2, and
MeCl2, Me = Ca and Mg) formed from the reactions of car-
bonate minerals with inorganic acids is assumed to be irre-
versible (Dentener et al., 1996; Song and Carmichael, 1999,
2001; McNaughton et al., 2008).

The hematite dissolution is also treated explicitly as a
kinetic process (RS3 in Table 1), following Meskhidze et
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al. (2003, 2005). Thus, the three-stage kinetic process is
considered for specification of hematite dissolution constants
only, depending on the total amount of the hematite dis-
solved. The first (0–0.8% of total oxide dissolved) and third
(40–100% of total oxide dissolved) stages are slower in dis-
solution compared to the second stage (0.8–40% of total ox-
ide dissolved).

Mezkhidze et al. (2003) have assumed that hematite is an
important source for the dissolved iron over the North Pa-
cific, because most of the iron in surface soil of the Gobi
deserts is found in the form of hematite (a-Fe2O3) (Hseung
and Jackson, 1952; Claquin et al., 1999). However, the as-
sumption of hematite as the solely important source for dis-
solved iron may need to be revisited, as more comprehen-
sive experimental data for chemical specificity of iron-rich
dust become available (Cwiertny et al., 2008; Journet et al.,
2008; Schroth et al., 2009; Fu et al., 2010). Here, the illite
dissolution is also considered for specification of “structural
iron”, which is trapped in the crystal lattice of aluminosili-
cate minerals (RS4 in Table 1). Since the dissolution of iron-
containing minerals is very slow, the system consistently re-
mains far from reaching equilibrium under the experimental
conditions, hence no backward reaction is considered (i.e.,
f (1Gi)=1).

2.3 Iron emission

We compiled an emission inventory for iron from dust and
combustion sources (Fig. 1). The Gobi (northern China and
southern Mongolia) and Taklimakan (western China) deserts
are the dominant dust sources in East Asia during springtime
(Sun et al., 2001). On the other hand, combustion sources
show a broad distribution across rural areas of China, where
domestic coal combustion is prevalent (Streets et al., 2003).

For the simulation of mineral aerosols, we use the
daily dust emissions at 1.0◦

×1.0◦ compiled by Dentener et
al. (2006). We applied a factor of 2.5 to the Asian dust emis-
sions so that the total Asian dust emission for April 2001 is
321 Tg (Fairlie et al., 2009). The dust emission fluxes were
interpolated and represented in the 4 size bins (0.05–0.63 µm,
0.63–1.25 µm, 1.25–2.5 µm, 2.5–10 µm in radius) (Liu et al.,
2005). The iron-containing mineral in dust aerosols is sim-
plified with pure iron oxides (Fe2O3) for base simulations
(Exp1 and Exp2). We also examine sensitivity simulations
with iron in illite (Exp3 and Exp4).

Iron from combustion sources could have a pronounced
effect on aerosol iron solubility in addition to mineral dust
aerosols (Chuang et al., 2005; Luo et al., 2008; Schroth
et al., 2009). For this study, we develop an inventory for
combustion-generated iron in 2001 (1.2 Tg Fe year−1), us-
ing the fuel-consumption data and specific emission factors
for individual fuel-use categories. The particulate emissions
estimates are obtained from Ito and Penner (2005) and the
emission factors used here are based on Luo et al. (2008).
The conservative values for iron fractions in combustion-

Fig. 1. Spatial distribution of monthly averaged soluble iron emis-
sion (ng m−2 s−1) from (a) desert and(b) combustion sources in
April.

generated mineral aerosols from literature are used (Table 2).
We assume that the inorganic matter in combustion includes
all other materials that are not black carbon and organic mat-
ter. Therefore, the iron content in the fine and coarse parti-
cles does not exceed the estimated amount of inorganic mat-
ter. Following Luo et al. (2008), we use 4% and 0.45% in
the initial conditions for the soluble iron fractions from the
combustion and dust sources, respectively. The transport and
deposition of the fine (coarse) iron particles from combus-
tion sources are treated similarly to black carbon (coarse-
mode dust aerosol). The combustion-generated iron is as-
sumed to have a labile chemical form in circumneutral solu-
tions, and the iron on the particle surface is readily released
into solutions (Schroth et al., 2009). They are assumed to
be externally mixed with other aerosols in all of the size
bins. We note that, however, internal mixing between dust
and biomass burning particles may enhance the combustion-
iron solubility (Paris et al., 2010), but the process is still not
well known.

3 Model sensitivity studies and analysis

The concentration, chemical composition and transport of
mineral dust along with the East Asian continental outflow
have been previously studied by a number of investigators,
notably during the ACE–Asia field campaign (Huebert et al.,
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Table 2. Iron Fractions of Combustion Emissions in Minerals.

Source Fine (%) Coarse (%) Reference

Fossil Fuels

Coal: power/industrial 7.5 9.4 Mamane et al. (1986)
7.6 8.1 Olmez et al. (1988)
4.5 Smith et al. (1979)

Value used 6.5 8.7
Coal: residential 0.1 0.1 Luo et al. (2008)
Coal briquettes 1.6 Luo et al. (2008)
Oil boiler 0.13 Hildemann et al. (1991)

1.7 Mamane et al. (1986)
0.41 0.46 Mamuro et al. (1979a)
1.6 2.95 Olmez et al. (1988)

Value used 0.96 1.16
iron and steel 1.22 15.7 Mamuro et al. (1980)

Biofuels

Agricultural wastes 0.017 0.13 Turn et al. (1997)
Fuelwood 0.0058 0.026 Turn et al. (1997)

Waste

incinerator 0.59 0.61 Mamuro et al. (1979b)
0.22 1.7 Olmez et al. (1988)

Value used 0.36 1.02

Biomass burning

Savanna 0.020 Maenhaut et al. (1996)
Savanna 0.030 Maenhaut et al. (1996)
Ceraddo 0.900 Ward et al. (1991)
Ceraddo 1.200 Ward et al. (1992)
Ceraddo 0.077 Yamasoe et al. (2000)
Ceraddo 0.045 Yamasoe et al. (2000)
Extratropical forest 0.100 Ward et al. (1991)
Tropical forest 0.900 Ward et al. (1991)
Tropical forest 0.100 Ward et al. (1992)
Tropical forest 0.031 Yamasoe et al. (2000)
Tropical forest 0.048 Yamasoe et al. (2000)
Tropical forest 0.100 Yamasoe et al. (2000)

3.4 Luo et al. (2008)
Value used 0.296 3.4

2003). Here, we focus on the processes and factors that af-
fect the iron dissolution. Vertical distribution of simulated
aerosol concentrations is compared with measurements from
the total aerosol sampler (TAS) aboard the C-130 aircraft for
the non-sea-salt sulfate (Fig. 2a and b) and soluble calcium
(Fig. 2c and d) in April 2001 (Huebert et al., 2003; Kline
et al., 2004). The model results are averaged over the se-
lected regions and the periods of sampling time in the air-
craft flights, which covered large areas. The model demon-
strates the ability to simulate the vertical structure of the ob-
served anthropogenic sulfate and mineral dust aerosols. The
absolute concentration of soluble calcium (2± 3 µg m−3) is

lower than the aircraft measurements (4± 6 µg m−3), but the
difference is within a standard deviation. More importantly,
the model simulates the non-sea-salt sulfate concentrations
well (8± 10 µg m−3 for model vs. 8± 7 µg m−3 for measure-
ment), which drives the acid mobilization in the absence of
alkaline dust. This sets the stage for investigating the iron
solubility.

Two sets of simulations were performed with (Exp1 and
Exp3) and without (Exp2 and Exp4) the alkaline dust min-
erals in the aqueous chemistry, respectively. In the first ex-
periment (Exp1), the chemical composition of dust aerosols
is assumed to be: 11% CaCO3, 5.5% MgCO3, and 5%
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Fig. 2. Altitude distribution of simulated (red circles) versus measured (black crosses) concentration from ACE-Asia for (a) non-sea-salt sulfate 
and (c) soluble calcium during April 2001. Scatter plots are also shown for (b) non-sea-salt sulfate and (d) soluble calcium.
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Fig. 2. Altitude distribution of simulated (red circles) versus mea-
sured (black crosses) concentration from ACE-Asia for(a) non-sea-
salt sulfate (NSS) and(c) soluble calcium during April 2001. Scat-
ter plots are also shown for(b) non-sea-salt sulfate and(d) soluble
calcium.

Fe2O3 (66 Tg Fe per year) (Duce and Tindale, 1991; Gillette
et al., 1993; Meskhidze et al., 2005; McNaughton et al.,
2008). Carbonate minerals (MeCO3, Me = Ca and Mg) re-
act with inorganic acid pollutants (H2SO4, HNO3, and HCl),
producing thermodynamically more stable species (MeSO4,
Me(NO3)2, and MeCl2). Thus, the dust alkalinity reservoir
is able to buffer the acidification linked to the anthropogenic
emissions, although the pH buffering capacity of the original
dust particles might be compromised during the long-range
transport especially for submicron particles with large sulfate
concentrations.

In the second experiment (Exp2), dust without carbonate
minerals reacts with sulfate readily. Dust particles could be-
come very acidic at the early stage of the transport before
being neutralized by alkaline gases (Sullivan et al., 2007).
Therefore, iron in aluminosilicate minerals potentially repre-
sents a significant source of soluble iron in the acidic envi-
ronment (Cwiertny et al., 2008; Journet et al., 2008; Schroth
et al., 2009).

In the last two experiments (Exp3 and Exp4), we explore
the sensitivity of iron solubility to the iron mineralogy, be-
cause of the importance of chemical specificity of iron-rich
dust. The dissolution rate of illite (RS4 in Table 1) and abun-
dance of iron in dust (1.8%) are taken from literature val-
ues (Nagy, 1995; Tessier, 1990; Skopp, 2000; Journet et al,
2008). The mixing state with alkaline dust is also examined
for internal and external mixing in Exp3 and Exp4, respec-
tively.

Fig. 3. Spatial distribution of the secondary compounds (i.e. sum of
CaSO4, CaCl2, Ca(NO3)2) in total calcium (%) in(a) the surface
air and(b) the free troposphere during April 2001.

3.1 Dust alkalinity

Since calcite dissolves much faster than magnesite, it is the
main contributor to the buffering effect of dust that neutral-
izes acidic anthropogenic aerosols in the long-range trans-
port. In the model simulations including the alkaline dust in
the aqueous chemistry (Exp1 and Exp3), calcite is converted
to the secondary compounds (i.e. sum of CaSO4, CaCl2,
Ca(NO3)2), as dust particles travel from the source regions
in East Asia to the eastern North Pacific Ocean, as shown for
April in Fig. 3. The estimated fraction (%) of the secondary
compounds in total calcium is significantly different between
the surface air (Fig. 3a) and free troposphere (Fig. 3b). The
low-altitude dust aged faster than the high-altitude dust, as a
result of higher pollutant loadings near the surface (Tang et
al., 2004). However, the simulated alkaline dust aerosols are
only partly consumed by acids both at the surface (50–70%)
and in the free troposphere (20–30%) during the transport.
In the surface air, the percentage of the modeled secondary
compounds are increased from 0–10% near the source region
to 20–30% over south of the Korean Peninsula. In the free
troposphere, only 20–30% of the calcite is converted to the
secondary compounds (CaSO4, Ca(NO3)2, and CaCl2) over
the eastern North Pacific, which is consistent with the obser-
vation (McNaughton et al., 2008).
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Fig. 4. Modeled dissolved iron fraction (DIF) in dust (%) in the surface air during April 2001 for(a) the fine mode with the alkaline dust,
(b) the fine mode without the alkaline dust,(c) the coarse mode with the alkaline dust, and(d) the coarse mode without the alkaline dust.

Fig. 5. Modeled pH in aerosols in the surface air during April 2001 for(a) the fine mode with the alkaline dust,(b) the fine mode without
the alkaline dust,(c) the coarse mode with the alkaline dust, and(d) the coarse mode without the alkaline dust.

3.2 Iron solubility

The model simulations demonstrate a substantial reduction
in the dissolved iron fraction (DIF) in dust when aerosol
carbonate chemistry is included (Fig. 4). Here, the DIF in
dust (%) was calculated using the total iron concentration
from dust sources only. Emissions of alkaline gas (i.e., am-
monia) exceed the amount that is needed to neutralize sul-

fate and nitrate in large portions of East Asia (Tang et al.,
2004). In our model calculations, a relatively high pH (>3),
which may hinder the dissolution of iron-containing miner-
als, is predicted over the ammonia source regions (Fig. 5).
In the absence of alkaline dust (Exp2), lower pH (<3) is
predicted near both dust and sulfur source regions. When
aerosol carbonate chemistry is included (Exp1), however, the
calcite-rich dust does not acidify near the dust source regions
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Table 3. Observed and Modeled Iron Fractional Solubility and Soluble Iron Concentration for the Fine Mode and Coarse mode
(mean± standard deviation).

Location GOSAN (33◦17′ N, 126◦10′ E) Cruise (24◦ N–28◦ N, 170◦ E–155◦ W)

Particle size Bulk Bulk Fine Coarse

Number of data 27 23a 18 18

Iron Fractional Solubility (%)

Observations 2.6± 3.3 1.4± 1.2 1.7± 0.8 0.6± 0.2
Exp1b 1.2± 0.5 1.1± 0.5 0.7± 0.1 0.52± 0.02
Exp2c 1.7± 0.7 1.6± 0.7 2.0± 0.2 1.8± 0.2

Soluble Iron concentration (ng m−3)

Observations 32± 23 26± 15 1.1± 1.2 0.3± 0.2
Exp1b 5± 4 6± 4 0.2± 0.3 0.2± 0.3
Exp2c 8± 6 8± 6 0.5± 0.6 0.7± 0.8

a Four distinct high values of the water-soluble fraction of iron in the total suspended particles were excluded.
b Alkaline dust aerosols are internally mixed with the iron-containing minerals.
c Alkaline dust aerosols are externally mixed with the iron-containing minerals.

Fig. 6. Modeled dissolution rate constants (×1.0−12 molmineral dissolvedm
−2 s−1) for hematite (RS3) in the surface air during April 2001

for (a) the fine mode with the alkaline dust,(b) the fine mode without the alkaline dust,(c) the coarse mode with the alkaline dust, and(d)
the coarse mode without the alkaline dust.

due to the buffering ability of carbonate minerals. Thus the
iron-containing mineral aerosols in Exp2 dissolve faster than
those in Exp1, and also dissolve faster in some regions due
to an accelerated dissolution rate at the second stage (Fig. 6).

Measurements taken at a regional sampling site (GOSAN)
(33◦17′ N, 126◦10′ E) on the west-end of Jeju Island, south of
the Korean Peninsula, from 31 March to 2 May in 2001 have
shown four extremely high values for the water-soluble iron

fraction in the total suspended particles (6.45–12%) during
the time periods when the air masses originate from Japan
(Duvall et al., 2008). Model results of the iron fractional
solubility (Exp1 and 2) underestimate the mean and stan-
dard deviation when these values are included for compar-
ison (Table 3). Here, the fractional solubility of aerosol iron
(%) was calculated using the total iron concentration from
both dust and combustion sources. However, the comparison
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Fig. 7. Average soluble iron deposition (pg m−2 s−1) to the ocean
from (a) dust source (Exp1),(b) combustion source, and(c) dust
source with combination of Exp1 for coarse mode and Exp2 for
fine mode during April 2001.

excluding the four extremes shows good agreement in the
averaged iron fractional solubility (1.1–1.6% for Exp1–2 vs.
1.4% for measurement). The model significantly underes-
timates the total soluble iron concentration (6–8 ng m−3 for
Exp1–2) at the GOSAN site (26 ng m−3 for measurement),
which is located between the sources and remote conditions
with a great gradient in aerosol concentration (Chen et al.,
1997). It is probably because the coarse horizontal resolution
of the global model does not account for the distinctive local
geography and spatial variability, which could significantly
affect the comparisons with the point-based daily measure-
ments.

In our model, faster removal of larger particles leads
to larger fractions of fine particles in total aerosols over
the remote ocean (i.e., more soluble iron from combustion
sources). Additionally, the buffering capacity of mineral

aerosol in the fine mode is consumed more efficiently due
to the preferential condensation of acids on smaller parti-
cles. As a result, the global model simulates higher iron frac-
tional solubility for the fine mode (diameter<2.5 µm) than
that for the coarse mode (diameter>2.5 µm) along the at-
mospheric transport to the eastern North Pacific Ocean. The
onboard cruise measurements have reported that smaller par-
ticles have higher iron fractional solubility over the tropi-
cal Pacific Ocean between 24◦ N–28◦ N and 170◦ E–155◦ W
from 9 to 26 April 2001 (Chen and Siefert, 2003; Hand et
al., 2004). Similarly, the simulated iron fractional solubil-
ity for the fine mode is also higher than that for the coarse
mode averaged over the cruise tracks (Table 3). When the al-
kaline dust chemistry is included (Exp1), the model estimate
of the iron fractional solubility is in good agreement with
measurements (0.5% vs. 0.6± 0.2%) for the coarse mode,
while the model underestimates for the fine mode (0.7% vs.
1.7± 0.8%). When the buffering ability of alkaline dust is
neglected (Exp2), better agreement is obtained for the fine
mode (2.0%), but the model significantly overestimates for
the coarse mode (1.8%). These results may suggest that
the iron-containing dust in the coarse mode is likely asso-
ciated with calcite-rich dust, which is internally mixed with
the hematite. On the other hand, the iron-containing dust
in the fine mode is possibly associated with aluminosilicate-
rich minerals including iron substituted in the crystal lattice
of alminosilicates, which are externally mixed with alkaline
carbonate minerals (Sullivan et al., 2007). Thus we propose
that smaller dust particles may yield increased amounts of
soluble iron relative to larger particles due to possible vari-
ations in chemical mixing state of alkaline dust with iron-
containing minerals as a non-linear function of particle size.
We note that some dust particles in the atmosphere are min-
eral aggregates composed of two or more minerals, such as
aggregates of alminosilicate and gypsum, alminosilicate and
calcite, and alminosilicate and iron oxides (Falkovich et al.,
2001; Gao and Anderson, 2001; Shi et al., 2005). However,
the representation of aggregation process of individual soil
particles with different materials as well as chemical pro-
cess of iron dissolution for different composition can be very
complex and challenging for modeling. Thus, achieving a
predictive capability for size-segregated aerosols of soluble
iron will require further work involving laboratory experi-
ments, modeling, and observations, such as spatial distribu-
tion of iron content in clays, size distribution data of chemi-
cal composition in mineral aerosols, and dissolution rates of
iron from clay minerals.

3.3 Soluble iron deposition

In addition to mineral dust aerosols, iron from combustion
sources could have a pronounced effect on aerosol iron sol-
ubility (Chuang et al., 2005; Luo et al., 2008; Schroth et al.,
2009). Nevertheless, we estimate that average soluble iron
deposition for the month of April 2001 from dust sources
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Fig. 8. Average soluble iron deposition (pg m−2 s−1) to the ocean from dust source for(a) hematite internally mixed with the alkaline dust
(Exp1), (b) hematite externally mixed with the alkaline dust (Exp2),(c) illite internally mixed with the alkaline dust (Exp3), and(d) illite
externally mixed with the alkaline dust (Exp4) for fine mode during April 2001.

is significantly higher (5–20 pg m−2 s−1 in Fig. 7a and c)
than that from the combustion sources (0.5–1.0 pg m−2 s−1

in Fig. 7b) over the eastern North Pacific Ocean, due to a
more efficient long-range transport in the free troposphere.

The simulation of Exp1 underestimated the mass fraction
of soluble iron in the fine mode to the total soluble iron con-
centration (0.5 for Exp1 vs. 0.8 for measurement in Table 3)
over the Pacific Ocean. When we combine the iron deposi-
tion for fine particles from Exp2 with that for coarse particles
from Exp1, we would be able to obtain a better agreement in
the mass fraction (0.7) with the observation. The combined
data set (Fig. 7c) is based on the assumption that chemical
mixing state of iron-containing minerals with alkaline dust
could be different between the fine and coarse particles. The
mass fraction of dust in the fine-mode aerosols is small near
the source regions, so that the resulting increases in iron de-
position are small near the continents. However, it is note-
worthy that the deposition of soluble iron from this scenario
would become predominantly high (10–20 pg m−2 s−1) over
the eastern North Pacific Ocean, due to a longer residence
time of smaller particles.

Finally, we present the sensitivity of iron solubility in the
fine-mode dust to the mineralogy of iron in simulations of
Exp3 and Exp4. The faster dissolution rate of illite is partly
compensated by the lower abundance of iron in dust. As a
result, average soluble iron deposition (pg m−2 s−1) to the
ocean from dust source for hematite internally mixed with
the alkaline dust (Fig. 8a) is comparable to that for illite
internally mixed with the alkaline dust (Fig. 8c). On the
other hand, when the buffering effect of alkaline dust min-

erals is excluded, a higher iron fraction in dust and a faster
dissolution rate at the second dissolution stage with the as-
sumption for hematite lead to substantially higher soluble
iron deposition (Fig. 8b) than that for illite externally mixed
with the alkaline dust (Fig. 8d). These results demonstrate
that the iron solubility is sensitive to the chemical specifica-
tion of iron-containing minerals in dust, especially when the
iron-containing minerals are externally mixed with carbonate
minerals.

4 Summary and conclusions

We investigated the impact of alkaline dust on the acid mo-
bilization of iron. In this study, we introduced a specific
mineral dissolution component to the global aerosol chem-
istry transport model. We have compiled the soluble iron
emission data set from both dust and combustion sources.
Through this study, we demonstrated that most alkaline dusts
cannot be entirely consumed by acids during transport across
the North Pacific Ocean. The mixing state of iron-containing
aerosols with alkaline carbonate minerals and subsequent at-
mospheric chemical processing of the aerosols resulted in
substantial differences in the iron solubility. The inclusion of
alkaline dust in aqueous chemistry significantly limited the
iron dissolution by inorganic acids in aerosol solution dur-
ing the long-range transport. However, deserts in East Asia
were still the dominant sources to the ocean deposition of to-
tal soluble iron over the N. Pacific, compared to combustion
sources.
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Our results suggest that the iron dissolved from hematite
in calcite-rich dust could be lower than that previously es-
timated, while aluminosilicate-rich minerals might provide
a highly-soluble aerosol iron due to the strong acid mobi-
lization of iron. Taking into account this non-linearity, we
have improved our ability to estimate the iron fractional sol-
ubility in different particle sizes; but quantitative, episodic,
and predictive capabilities of the soluble iron simulation re-
main challenging. Using this scenario, we showed that the
deposition of soluble iron from smaller dust particles could
be a dominant source of bioavailable iron over the eastern
North Pacific Ocean. Thus while much of the research on
understanding the role of mineral-dust iron in ocean produc-
tivity has focused on larger dust particles, further work would
be required to study the atmospheric processing of mineral
aerosols for different size modes in conjunction with size-
fractionated mineralogy.

Conventionally, dust is assumed as the major supply of
bioavailable iron with a constant solubility at 1–2% to the
remote ocean, while Krishnamurthy et al. (2009) employed
dust and combustion sources of Luo et al. (2008) with a 50%
reduction (from 4% to 2%) in combustion iron initial solu-
bility. However, the timing and location of the atmospheric
input to the ocean may be different from those previously as-
sumed. Past and future changes in aerosol supply of bioavail-
able iron might affect the availability of nutrients for phyto-
plankton production in the upper ocean, as global warming
has been predicted to intensify stratification and reduce ver-
tical mixing (Bopp et al., 2001; Ito and Kawamiya, 2010).
Thus the feedback of climate change through ocean uptake
of CO2 as well as via aerosol-cloud interaction, which may
be induced by sulfate formation from dimethylsulfide (DMS)
and carbon-containing aerosols production from the ocean
biomass, might be modified by the inclusion of bioavailable
iron deposition.
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