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Abstract. The empirical relationship found between
column-integrated Arctic ozone loss and the potential vol-
ume of polar stratospheric clouds inferred from meteorolog-
ical analyses is recalculated in a self-consistent manner us-
ing the ERA Interim reanalyses. The relationship is found to
hold at different altitudes as well as in the column. The use of
a PSC formation threshold based on temperature dependent
cold aerosol formation makes little difference to the original,
empirical relationship. Analysis of the photochemistry lead-
ing to the ozone loss shows that activation is limited by the
photolysis of nitric acid. This step produces nitrogen diox-
ide which is converted to chlorine nitrate which in turn reacts
with hydrogen chloride on any polar stratospheric clouds to
form active chlorine. The rate-limiting step is the photolysis
of nitric acid: this occurs at the same rate every year and so
the interannual variation in the ozone loss is caused by the ex-
tent and persistence of the polar stratospheric clouds. In early
spring the ozone loss rate increases as the solar insolation in-
creases the photolysis of the chlorine monoxide dimer in the
near ultraviolet. However the length of the ozone loss period
is determined by the photolysis of nitric acid which also oc-
curs in the near ultraviolet. As a result of these compensating
effects, the amount of the ozone loss is principally limited by
the extent of original activation rather than its timing. In ad-
dition a number of factors, including the vertical changes in
pressure and total inorganic chlorine as well as denitrification
and renitrification, offset each other. As a result the extent of
original activation is the most important factor influencing
ozone loss. These results indicate that relatively simple pa-
rameterisations of Arctic ozone loss could be developed for
use in coupled chemistry climate models.
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1 Introduction

Polar ozone loss has been the subject of intense scientific
and public interest since the discovery of the Antarctic ozone
hole (Farman et al., 1985) and its relatively quick attribution
to observations of chlorine compounds (de Zafra et al., 1987;
Solomon et al., 1987; Anderson et al., 1989). Stratospheric
ozone loss takes place in the polar vortex which forms over
each pole in their respective winters. Marked differences in
stratospheric dynamics in the two hemispheres naturally lead
to large interannual variations in vortex stability and in ozone
in the dynamically active Arctic winter stratosphere and to
small interannual variations in the dynamically less active
Antarctic. These differences lead to higher natural average
amounts of total ozone over the Arctic (∼450 Dobson Units
– DU) than over the Antarctic (∼300 DU – Dobson, 1968;
Newman and Rex, 2007). These differences in dynamics also
lead to a much greater variability of polar ozone loss over
the Arctic (where, for example, there were losses of<10%
in 1998/1999 (Schulz et al., 2001) and>65% in 1999/2000
(Rex et al., 2002) at around 18 km) than over the Antarctic
where nearly complete ozone loss has taken place in nearly
all winters since the early 1990s at altitudes between about
15 and 20 km. Even in the anomalous year of 2002 when
the Antarctic vortex was disturbed and broke up just after the
middle of September, the minimum daily total ozone value
south of 40◦ S was∼140 DU, 30% below the late July values
(Bodeker et al., 2005), and losses of 70–75% had occurred
between the 400 and 500 K isentropic surfaces (Hoppel et
al., 2003; Ricaud et al., 2005). In percentage terms this loss
is comparable with the largest losses observed in the Arctic.

This large variability in the Arctic dynamics coupled with
a number of microphysical and photochemical thresholds
has made it hard to reproduce ozone loss in past win-
ters for which the meteorology is known and analyses are
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available, although 3-D chemical transport models (CTMs
– e.g., Chipperfield et al., 2005) and data assimilation ap-
proaches (Jackson and Orsolini, 2008) have been continually
improving. However the additional complication of calculat-
ing the stratospheric dynamics (coupled with the sensitivity
of the ozone loss processes to the dynamics and transport)
means that it is even harder to predict Arctic ozone losses for
the coming decades using coupled chemistry climate mod-
els (CCMs) (Austin et al., 2003; Eyring et al., 2007). The
sensitivity of ozone loss to changes in climate is thus hard to
assess.

The basic mechanisms leading to ozone loss are the same
over the two poles and are generally well understood (e.g.,
Newman and Rex, 2007). As the polar vortex is estab-
lished, the temperatures drop below a critical point, and po-
lar stratospheric clouds (PSCs) can form. HCl and ClONO2
react on the surface of PSCs, with these unreactive chlo-
rine species being converted under sunlit conditions to ac-
tive forms (ClOx = ClO + 2·Cl2O2) which can rapidly destroy
ozone. In the absence of further exposure to PSCs, the
ClO (chlorine monoxide) formed continues to destroy ozone
while it is gradually converted back to unreactive forms. The
observed evolution of the main chemical species in the Arc-
tic can be seen in Fig. 1 for the 2004/2005 winter. The
concentrations of HCl and ClONO2 decrease in the pres-
ence of PSCs, while the inferred concentration of ClOx in-
creases. (Note that ClOx in Fig. 1 is calculated as Cly minus
ClONO2 and HCl so it includes minor species such as HOCl
and Cl2.) Continued PSC occurrence leads to continued for-
mation of ClOx until the HCl is low. Reversion of ClOx to
ClONO2 and HCl occurs as the vortex warms and the PSCs
evaporate. Occasionally in Arctic winters, particularly large
ozone losses can occur when air masses become depleted in
HNO3 as PSCs sediment to lower altitudes during prolonged
cold periods, a process that delays the deactivation of the ac-
tive chlorine species. The persistence of PSCs depends very
strongly on the dynamical situation in that winter and so is
the main reason that ozone loss can vary so much from year
to year in the Arctic.

Given the mechanistic complexity and large variability, it
came as a surprise to find that a compact, linear relation ex-
ists between ozone loss and the calculated volume of PSCs
(VPSC) when each is integrated over the period of vortex ex-
istence (Rex et al., 2004, 2006). The relation holds over a
wide range of ozone losses and PSC volumes implying that
the effects of many influences on ozone loss (e.g., denitrifica-
tion, solar exposure, initial chemical fields, descent rates, in-
mixing, vortex inhomogeneities, and vertical extent) must be
offsetting to some extent. The existence of this relation (cal-
culated from temperature fields and vortex average descent
rates derived from meteorological analyses and ozonesonde
measurements) has been confirmed using HALOE satellite
measurements and an independent approach to calculating
the ozone loss (Tilmes et al., 2004). Both Rex et al. (2004)
and Tilmes et al. (2004) found larger than expected chemical

Fig. 1. Evolution of chlorine species inside the Arctic vortex at
460 K in the 2004/2005 winter. The top panel shows the area of
PSCs as a percentage of the vortex area (light blue) and the vortex
average sunlit time per day in percent (pink). PSCs are assumed to
be NAT and the area is calculated from ECMWF analyses. A value
of 36 s−1 normalized potential vorticity is used to define the edge of
the vortex (see Rex et al., 1999). This value is close to the maximum
horizontal gradient in normalized PV between early January and
late March. The middle panel (based on Santee et al., 2008) is the
vortex average HCl from Aura MLS, the vortex average ClONO2
from ACE FTS, and an estimate of the vortex average ClOx found
by subtracting the sum of the HCl and ClONO2 from 2.8 ppb, a rep-
resentative value of Cly for 460 K in that winter. ClONO2 and ClOx
have been smoothed with a 10 day running mean in order to com-
pensate for the sampling biases from ACE FTS, which has the typi-
cal sampling issues of any solar occultation instrument. The bottom
panel shows the ozone loss rates found from the Match campaign
for that year (Rex et al., 2006).

ozone losses in the 1991/1992 and 1992/1993 winters which
they attributed to the increase in stratospheric aerosol follow-
ing the eruption of Mt Pinatubo.

Otherwise there has been little mechanistic investigation,
and the explanation for the existence of the relation is not
detailed, being simply that large ozone losses occur in cold
winters when PSCs are widespread and long-lasting, while
small ozone losses occur in warm winters when PSCs are
less common. This explanation does not really address either
the compactness or the near-linearity of the relation. The lack
of explanation is one of the main reasons why it has not been
used to evaluate the coupled climate models (CCMs) in the
CCM Validation Activity for SPARC (CCMVal) (see Eyring
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et al., 2005, updated athttp://www.pa.op.dlr.de/CCMVal/
CCMVal EvaluationTable.html; SPARC CCMVal, 2010),
despite its empirical robustness and the implication that there
is a sensitivity of 15 DU column ozone loss for each 1◦C
cooling (Rex et al., 2006). The relation has however been
used to evaluate (a) the improvements made to the SLIM-
CAT 3-D Chemical Transport Model (CTM) which previ-
ously showed a compact, linear relation of the wrong slope
(Rex et al., 2004), and now can reproduce the slope as well
(Chipperfield et al., 2005; Fig. 4.13 in Newman and Rex,
2007), and (b) the ozone loss calculated in the Whole Atmo-
sphere Community Climate Model (WACCM) (Tilmes et al.,
2007).

The aim of this paper is to explain the compactness and
linearity of this relationship and to unravel the important fac-
tors already present in the models as well as in the atmo-
sphere. We are not trying to reproduce the observed relation
quantitatively – that has already been done in more sophisti-
cated models. We therefore choose to use a relatively simple
tool (a photochemical box model with idealized trajectories)
to identify the main processes rather than a more complex
model which is harder to diagnose. Our earlier work (Harris
et al., 2009) found that the rate-determining step for chlorine
activation is the photolysis of HNO3, while the subsequent
ozone loss depended on the competition between the pho-
tolysis of Cl2O2 (leading to ozone loss) and HNO3 (leading
to deactivation). Since both processes go faster as the so-
lar zenith angle decreases, the integrated ozone loss depends
primarily on the extent of the initial chlorine activation and
not on the speed of the ozone loss. Here we investigate the
empiricalVPSC /ozone loss relationship in more detail using
ERA Interim reanalyses and looking at its altitude depen-
dence, and we extend the photochemical analysis to investi-
gate the effect of multiple activations, denitrification and the
vertical distribution of available chlorine (Cly).

In the next section the methodology and data sources are
described. In Sect. 3, the altitude variation of the relation is
investigated and the sensitivity to the assumptions about PSC
composition are discussed. The critical photochemical steps
involved in the activation and deactivation steps are then de-
scribed and illustrated in Sect. 4 by photochemical calcula-
tions on a single surface. Three dimensional aspects are dis-
cussed in Sect. 5. Finally the relevance and context of these
results is discussed and summarised in Sect. 6.

2 Methodology

This study uses the values for ozone loss andVPSC calcu-
lated in Rex et al. (2006) updated with values for 2005/2006,
2006/2007 and 2007/2008 using the same methodology. Vor-
tex averaged profiles of ozone loss have been determined as
the differences between ozone mixing ratio profiles at the end
of March and early January, with an adjustment for the vor-
tex average descent being made using diabatic heating rates

from the SLIMCAT CTM. These have been converted into
concentration versus altitude profiles, using the vortex aver-
aged temperature and pressure profiles from late March. The
total column loss was calculated as the vertical integral of
the loss profiles between 14 and 24 km in March. The lower
limit of this range (∼380 K) is close to the bottom of the well-
isolated part of the polar vortex. For most winters ozone loss
at this level is small. Also, the effect of any chemical loss in
the vertical region below 14 km on the total ozone column in
the Arctic would be limited because of rapid exchange with
mid latitude air. Formation of PSCs above the vertical range
considered here is unlikely (Pitts et al., 2009), and conse-
quently significant chemical loss of ozone is not expected to
be seen in air masses at or above 24 km at the end of winter.
(Note that in our analysis we are using end of winter alti-
tudes as a reference and that airmasses have descended from
higher altitudes.) The estimated uncertainty in the integrated
ozone loss is∼10–15 DU (Rex et al., 2002), mainly due to
uncertainties in the calculated cooling rates and the potential
impact of mixing across the vortex edge.

PSCs are assumed to be nitric acid trihydrate (NAT), and
VPSC is calculated from the laboratory observations of Han-
son and Mauersberger (1988), a water vapour mixing ratio
of H2O = 5 ppm, and an observed profile of HNO3 (see Rex
et al., 2002 for more details and discussion of the methodol-
ogy). In this paper temperatures from ECMWF ERA-Interim
re-analyses are used in order to have a consistent vertical res-
olution and data quality across the whole period. The validity
of this approach, particularly the assumptions made about the
composition of PSCs, is discussed further in Sect. 3.

In order to investigate the underlying processes, the Al-
fred Wegener Institute (AWI) photochemical box model was
used. This model contains 48 chemical species and 174 re-
actions. The formation of solid and liquid PSC particles is
simulated according to Murray (1967), Hanson and Mauers-
berger (1988) and Carslaw et al. (1995). For the photolysis
of Cl2O2, the absorption cross sections from Burkholder et
al. (1990) are used, which are close to the values found in
the most recent laboratory studies (Chen et al., 2009; Pa-
panastasiou et al., 2009; von Hobe et al., 2009). All remain-
ing information on rate constants is taken from the NASA-
JPL 2006 Evaluation (Sander et al., 2006). The overhead
ozone needed for the calculation of photolysis frequencies
is the average of all ozonesonde measurements made be-
tween January and March from 1992–2007 at Ny-Alesund
(79◦ N). The numerical integration is performed using the
kinetic preprocessor KPP (Damian et al. 2000). Unless oth-
erwise stated, the model is initialised with HCl = 2.25 ppb,
ClONO2 = 0.75 ppb (consistent with Fig. 1), ClOx = 0 ppb,
HNO3 = 10 ppb, NOx = 0, H2O = 3.5 ppm, O3 = 3 ppm and
Bry = 20 ppt.

The model is run on idealised trajectories which corre-
spond approximately to the range of conditions on the sur-
faces on which the observed ozone loss is derived. Hori-
zontally, the trajectory is designed to mimic air toward the
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Fig. 2. Integrated ozone loss as a function ofVPSCfor 1992/1993 to
2008/2009. Ozone losses are derived from the Arctic ozonesonde
network using the vortex average approach. No meaningful ozone
losses could be calculated in the winters 2000/2001, 2001/2002,
2003/2004, 2005/2006 and 2008/2009 due to major warmings over-
lapping with the ozone loss period and/or lack of ozonesonde data.
The error bars associated with the ozone loss values reflect a con-
servative estimate of 20 DU (e.g. Newman and Rex, 2007).VPSCis
derived from ECMWF ERA-Interim re-analyses using the temper-
ature of formation of nitric acid trihydrate. The error bars onVPSC
show the sensitivity to a temperature perturbation of±1 K in the
ECMWF data. (Updated from Rex et al., 2006).

edge of an Arctic vortex which is centred at 80◦ N towards
Europe with a radius corresponding to 20◦ (as often encoun-
tered in reality). The airmass thus moves around the vortex
with latitudes ranging from 60◦ N above Europe over the pole
to 80◦ N above the Aleutians, taking 6 days to do so (a typ-
ical time for one circum-navigation). The main set of runs
is performed at 50 hPa (∼475 K). Runs investigating the ver-
tical dimension were performed at 550 K (∼30 hPa), 500 K
(∼40 hPa) and 450 K (∼55 hPa). The analysis presented here
is split into three main parts: the activation period (Sect. 4.1);
the ozone loss period (Sect. 4.2); and aspects of the vertical
dimension process (Sect. 5).

3 Altitude variation of relation and PSC composition

The original plots of integrated column ozone loss against
integrated PSC volume (Rex et al., 2004, 2006) were calcu-
lated using ECMWF operational analyses. The PSC volumes
shown in Fig. 2 are calculated using ERA-Interim re-analyses
(Simmons et al., 2006). These give greater consistency be-
tween years. The general features of the plot are unchanged.
The most notable change is that the largest value forVPSC
is now calculated to be in 1995/1996 rather than 2004/2005.
The slope of a linear fit between ozone column loss andVPSC
is slightly reduced. All these changes are within the estimate
uncertainties.

Figure 3 shows the ozone loss on individual isentropic sur-
faces (400, 450, 500 and 550 K) plotted against the area of
PSCs (APSC), both integrated over the course of the win-
ter. (As for the column ozone loss andVPSC, the isen-

Fig. 3. Integrated ozone loss for individual subsiding surfaces de-
rived with the approach described in Rex et al. (2006) as a function
of APSC for 1992/1993 to 2008/2009. The potential temperature
shown in each panel is the spring equivalent potential temperature
which is the value of the subsiding layers at the end of winter. Other
details are given in the caption for Fig. 2. We estimate that the ab-
solute uncertainties associated with the ozone loss at 400, 450 and
500 K are±0.75×1012molec cm−3 and ±0.5×1012molec cm−3

at 550K where there is less sensitivity to errors in the diabatic cool-
ing. The relative uncertainty associated with APSC is estimated to
be±20%.

tropic surfaces “descend” over the course of the winter ac-
cording to the diabatic heating rates calculated in the SLIM-
CAT model whose validity has been shown by compar-
isons of modelled and observed long-lived tracers (Feng et
al., 2005). The isentropic surface referred to is the one
at the end of the winter, and is referred to here as spring
equivalent potential temperature (eθ ).) The ozone losses in
Fig. 3 are shown in molec cm−3 (not ppm), so that their rel-
ative contributions to the column can be seen. The plots
for theseeθ levels are generally similar to the column plot
of ozone loss vsVPSC, being reasonably linear and com-
pact. The slopes are greatest ateθ = 400 K and 450 K
(0.85±0.16, and 0.51±0.055 molec cm−3/million km2, re-
spectively: 1 s.d.), with smaller values at 500 K and
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550 K (0.26±0.057, 0.15±0.041 molec cm−3/million km2,
respectively), showing the importance of the lower levels to
the integrated column loss. The 550 K plot has the largest
relative scatter. This is partly due to the smaller ozone losses
found there and partly due to the poorer data quality (a sig-
nificant fraction of ozonesondes do not reach that high espe-
cially early in winter as the descending layer starts at 600 or
700 K).

VPSC and APSC in Figs. 2 and 3 are meant as proxies for
the geographical extent of conditions favourable for chlorine
activation. The values in these plots are derived from mete-
orological analyses based on a threshold temperature for the
existence of such conditions. The particular numerical val-
ues in the plots show the results for using the NAT equilib-
rium temperature (TNAT) as threshold. The formation of STS
is a gradual process without such a clear threshold. But the
efficiency of chlorine activation on STS is a steep function
of temperature and the NAT equilibrium temperature is very
close to the small range of temperatures at which the chlorine
activation on STS becomes efficient on timescales of days or
hours. So usingTNAT as the proxy for chemical processing
due to heterogeneous reactions is meaningful even though
the real process of activation is more complicated and in-
volves different types of droplets or particles in the strato-
sphere. The composition of large-scale fields of PSCs has
been recently investigated using the MIPAS infrared sounder
and the CALIPSO/CALIOP lidar measurements (Höpfner et
al., 2009; Pitts et al., 2007, 2009). They find that the PSC
fields can be described by four main types (ice, NAT-STS
mixtures, STS-ICE mixtures, and just STS). The overall evo-
lution of the observed PSCs is similar to that deduced from
meteorological analyses. In the Antarctic (their main focus)
they find that the PSC occurrences calculated from meteo-
rological analyses are 30–40% less than their observations.
However it is hard to make quantitative comparisons. Pitts
et al (2009) use observed HNO3 and H2O fields to calculate
possible PSC existence while we assume a temporally un-
varying concentration profile. In the Antarctic they observe
significant amounts of optically thin NAT which are at the
threshold limit of their instruments. A closer examination of
these issues in the Arctic is needed to see if these findings are
also valid there.

The effect of usingTNAT as the temperature threshold for
calculating our PSC proxy was investigated by Tilmes et
al. (2008). They introduced a PSC proxy based on a temper-
ature threshold for the activation of chlorine on STS and cold
background aerosol and investigated the effect of using this
PSC formulation on the ozone loss/VPSCrelation. Significant
differences were only found in winters with high sulphate
aerosol loading, i.e. 1991/1992 and 1992/1993 following the
Mt Pinatubo eruption. For comparison, we have used the
temperature dependent cold aerosol formation to calculate
APSC(as in Fig. 3, but not shown). No meaningful difference
is found except ateθ = 400 K, where there is a slightly more
compact relation with a correspondingly higherR2 value.

This is presumably related to the higher amount of back-
ground aerosol at these altitudes. This is consistent with the
CALIOP analysis in the Antarctic which shows the biggest
discrepancy in a 1–2 km band at altitudes below 15 km at the
beginning of winter (Fig. 14c in Pitts et al., 2009). A similar
feature can be seen in the comparison of calculated PSC oc-
currence usingTNAT with ground-based lidar observations in
1999/2000 Arctic winter (Fig. 2 in Rex et al., 2002). Over-
all we conclude thatVPSC andAPSC calculated using NAT
existence are good proxies for the existence of PSCs, the ac-
tivation of chlorine and for threshold conditions for ozone
loss.

4 Idealised case: a single layer

We now examine the relationship of the ozone loss to the
photochemical steps involved in the activation and deactiva-
tion of ClOx at 50 hPa using the AWI box model. In section
4.1 we discuss the effects of the frequency of occurrence and
temperature of the PSCs; while in Sect. 4.2 we investigate
the competition between the ozone loss and ClOx deactiva-
tion chemistry.

4.1 Activation

Figure 4a shows the mixing ratios of the chlorine reservoirs,
ClONO2 and HCl, and the activated forms ClOx from 1 De-
cember to 14 February assuming that PSCs are continuously
present. The assumed temperature is 194 K which is rep-
resentative of the vortex as a whole. Two phases can be
seen: (i) a rapid initial rise in ClOx associated with equal
decreases in both HCl and ClONO2; and (ii) a slower contin-
ued increase in ClOx accompanied by a continued decrease
in HCl. By the end of the period, nearly all the available
chlorine is in the form of ClOx. ClOx rises initially as a
result of the fast heterogeneous reaction between ClONO2
and HCl, with the extent of the initial activation being deter-
mined by the amount of ClONO2 initially present (M̈uller et
al., 1994; Santee et al., 2008). The heterogeneous reaction of
ClONO2 + HCl proceeds quicker at lower temperatures, and
the main effect of lower temperatures is thus to accelerate the
initial activation (Fig. 4b).

If the initial mixing ratio of HCl is greater than that of
ClONO2, further activation depends on the formation of
more ClONO2 (e.g., Müller et al., 1994) which depends in
turn on the photolysis of HNO3 producing NO2 which re-
acts with ClO to form ClONO2. In the presence of PSCs, the
ClONO2 reacts rapidly with HCl to produce more ClOx. In
the Arctic winter the slow step in the overall activation mech-
anism is the photolysis of HNO3, with a timescale of days to
weeks.

ClONO2+HCl
het
→Cl2+HNO3 (R1)

HNO3+hν → NO2+OH (R2)
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Fig. 4. (a)The evolution of (ClOx + 2Cl2), HCl and ClONO2 for an
idealised trajectory at a temperature of 194 K and 50 hPa with con-
tinued activation from 1 December to 14 February. The latitude of
the trajectory oscillates around 80◦ N with a 20◦ amplitude. The or-
ange shading indicates the sunlight exposure experienced by the air
parcel.(b) The same for an idealised trajectory at 50 hPa with a one
day period of activation at 192 K every six days from 1 December
to 14 February.

NO2+ClO+M → ClONO2+M. (R3)

The slow, continued rise in ClOx in Fig. 4 thus depends
principally on the photolysis frequency,J (HNO3), and this
factor is responsible for the acceleration in the activation
after mid-winter. The initial activation is also faster if the
ClONO2:HCl ratio is closer to unity. If significant chlorine
activation occurs, Reaction (R3) is sufficiently fast that most
of the NO2 produced by the photolysis of ClONO2 reacts
back to ClONO2 with a time constant of a few minutes, and
so the ClONO2 photolysis can be disregarded in these condi-
tions.

In the real Arctic vortex, the initial activation is patchy
depending on the altitudes and regions where the PSCs first
form as well as on their extent. Vortex average ClOx initially
rises slower in reality than in the idealised case, as indicated
in Fig. 1. To illustrate this, Fig. 4b shows the same model
calculation as in Fig. 4a, except that the PSCs occur episodi-
cally (1 day in 6) and at temperatures of 192 K. The stabilisa-

Fig. 5. The photolysis frequencies of HNO3 and Cl2O2 at 50 hPa
in the Arctic vortex as a function of solar zenith angle.

tion of HCl between PSC exposures is a result of the lack of
PSCs. Each of the small rises in ClOx results from exposure
to PSCs, and the decreases occur during exposure to sunlight
(orange). The overall shape is still determined byJ (HNO3).
Further, the initial rapid activation could be responsible for
the non-zero intercepts in Figs. 2 and 3, as any small-scale
or sub-grid process leading to PSC formation (e.g. mountain
waves) could rapidly activate a small but significant amount
of air while barely contributing toVPSC.

Overall, our analysis of the chlorine activation shows that
activation in Reaction (R1) is fast and that the rate limiting
factor for any continued activation is the photolysis of HNO3
to form NO2 in Reaction (R2) and then ClONO2 in Reac-
tion (R3). To first order the photolysis of HNO3 does not
vary much from year to year, and so interannual variations in
activation depend on the presence of PSCs for activation to
occur through Reaction (R1).

4.2 Deactivation and ozone loss

There have not been many studies explicitly looking at how
the amount of ozone loss depends on the timing and extent
of the initial activation. The main ozone loss period starts
early in the year as the insolation increases. The instanta-
neous ozone loss rates have been observed to peak in late
January with a gradual reduction thereafter (von der Gathen
et al., 1995). The daily ozone loss rate maximises a little
later as it is also determined by the length of the day which is
increasing in this period. As discussed in Harris et al. (2009),
both the ozone loss and the chlorine deactivation are driven
by sunlight and so the ozone loss and chlorine deactivation
processes accelerate as the insolation increases. The rate lim-
iting step for ozone loss in the Arctic (for a given amount of
total inorganic chlorine (ClOx)) is:

Cl2O2+hν → ClOO+Cl (R4)

while in the absence of PSCs, Reactions (R2) and (R3) be-
come the main deactivation mechanism.

Both HNO3 and Cl2O2 are photolysed in the UV, and
the atmospheric photolysis rates of both Reactions (R2) and
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Fig. 6. Ozone mixing ratios calculated for an air parcel with an ini-
tial chlorine activation of 3 ppb ClOx on 11 January (red), 1 Febru-
ary (blue) and 22 February (green); and(b) the ozone loss rates for
the same cases.

(R4) in the Arctic polar lower stratosphere depend mainly on
wavelengths longer than 300 nm as shorter wavelengths are
absorbed by stratospheric ozone.

Figure 5 shows these photolysis rates as a function of so-
lar zenith angle. They both increase markedly as the solar
zenith angle decreases as winter turns into spring. To first or-
der both the chlorine deactivation rate, which determines the
duration of the ozone loss, and the instantaneous ozone loss
rate are proportional to the insolation, with both processes
having a timescale of several days at 70–75◦ N in January
and February. As a result the integrated ozone loss is, to first
order, independent of the insolation and the timing of the ac-
tivation, but is dependent on the original level of activation.

The effect of the timing of activation on the ozone loss
rates and on the ozone itself can be seen clearly in Fig. 6.
All cases have an initial activation of 3 ppb of ClOx with the
same hypothetical trajectory used before (50 hPa centred at
80◦ N with 20◦ deviation with a 6 day cycle). The only dif-
ference is in the start dates which are set three weeks apart:
11 January (red), 1 February (blue) and 22 February (green).
The later the activation, the larger the daily ozone loss, the
shorter the period of ozone loss. Despite the large differences
in the start dates and the evolutions of the ozone loss rates,

the cumulative ozone losses are within±10% (1.16 ppm for
11 January 1.10 for 1 February and 0.99 ppm for 22 Febru-
ary).

While this analysis highlights the importance of the two
photolysis Reactions (R2) and (R4) in determining ozone
loss in the Arctic, other processes do play a limited role. For
example, in Fig. 6 a smaller ozone loss is calculated when
the 22 February start date is used. This is consistent with the
greater sensitivity of the Cl2O2 photolysis rate to decreas-
ing SZA at high SZA (∼90◦) and the greater sensitivity of
the HNO3 photolysis rate at lower SZA (∼70–80◦) shown in
Fig. 5. Also, the conversion of HNO3 to NOx via the alter-
native channel

OH+HNO3 → NO3+H2O (R5)

depends onJ (HNO3) since HNO3 photolysis is the main for-
mation pathway for OH in polar spring.

In addition, reactions which play an important role in
Antarctic ozone loss are less significant in most Arctic win-
ters. The highly temperature-dependent, heterogeneous re-
activation of ClONO2 through

ClONO2+H2O→ HOCl+HNO3 (R6)

is unimportant in most Arctic winters.
The sensitivity with respect to the calculated ozone loss

with respect to the assumptions on the idealised trajecto-
ries was investigated by repeating the model runs shown in
Fig. 6 at two fixed latitudes, 65◦ N and 75◦ N. The differ-
ence in the cumulative ozone losses for the three start dates
was∼ ±10%, similar to the result found for the base case
trajectory with varying latitudes. However, the ozone loss
does depend on latitude: the greatest loss (1.3 ppm) was seen
for the case where the trajectory started on 11 January at
75◦ N, while the smallest (0.8 ppm) occurred when the tra-
jectory started on 22 January at 65◦ N. These variations also
illustrate one of the reasons we chose base case trajectories
which cover a realistic range of latitudes.

A further important point about the degree of activation is
that the ozone loss is close to linear with ClOx. The blue line
in Fig. 7 shows the dependence of the accumulated ozone
loss at 500 K (close to 50 hPa, the level of the calculations
shown in Fig. 6) on the initial amount of ClOx. The accumu-
lated ozone losses for 1, 2 and 3 ppb ClOx at 500 K are 0.27,
0.59 and 1.00, respectively, so that there is a small, positive
non-linearity in this relationship.

5 Extending to the 3-D view

The analysis discussed in section 4 is concerned only with
a single layer in the Arctic vortex. In this section we look
at some of the greater complexities of the real atmosphere by
investigating the effects of a number of the three-dimensional
processes which affect ozone loss: (1) dependence of reac-
tion rate coefficients on pressure (altitude); (2) the increasing

www.atmos-chem-phys.net/10/8499/2010/ Atmos. Chem. Phys., 10, 8499–8510, 2010



8506 N. R. P. Harris et al.: A closer look at Arctic ozone loss and polar stratospheric clouds

Fig. 7. Integrated ozone loss as a function of initial activation on the
450 K (green), 500 K (blue) and 550 K (red) potential temperature
surfaces. The crosses represent the amount of available inorganic
chlorine in March 1992 inferred by Schmidt et al. (1994).

Cly with altitude; (3) the vertical redistribution of NOy in
de/renitrification; (4) the interannual variation of transport.

5.1 Dependence of reaction rate coefficients on pressure
(altitude)

For fixed ClOx, the potential for ozone loss depends slightly
on pressure, with larger ozone losses calculated at lower po-
tential temperatures as shown in Fig. 7. For an initial ClOx of
3 ppb, the accumulated ozone losses at 450, 500 and 550 K
are 1.2, 1.0 and 0.8 ppm. The reasons for the pressure depen-
dence are as follows.

(a) At higher altitudes the ClO and BrO concentrations are
smaller for the same mixing ratios, as is the overall pressure,
thus reducing the rates of the reactions

ClO+ClO+M → Cl2O2+M (R7)

ClO+BrO→ Br+Cl+O2. (R8)

(b) At higher altitudes the chlorine deactivation rate is higher,
because NO2 production through both HNO3 photolysis and
(R5) is faster. An increase of the HNO3 mixing ratio with
altitude, not considered in the present model runs, would am-
plify this effect.

Two possibly counteracting effects at higher altitudes are
the faster rate of the reaction

ClO+O→ Cl+O2 (R9)

because the O concentration increases with altitude; and the
faster photolysis of Cl2O2 (Reaction R4). However these are
small compared to points (a) and (b).

5.2 Available chlorine

The amount of available chlorine increases rapidly with al-
titude in the Arctic vortex (Schmidt et al., 1994). As a re-
sult, more chlorine is activated for a given PSC exposure at

higher altitudes. The black crosses in Fig. 7 indicate the val-
ues of Cly measured toward the end of the 1991/1992 winter
(Schmidt et al., 1994). Taking these as representative upper
limits for the amount of ClOx initially available shows that as
altitude increases the additional Cly offsets the decreasing ef-
ficiency of the ozone loss processes. The combined effect is
to limit the importance of any interannual variations of PSC
altitudes on the integrated ozone loss.

5.3 Vertical Redistribution of NOy

The vertical redistribution of NOy through denitrification at
higher altitudes and renitrification at lower altitudes has been
widely cited as having a major impact on the accumulated
ozone loss as the removal of NOy limits the deactivation of
ClOx through (R3). Significant denitrification in the Arctic
only occurs in a few winters (1994/1995 (Sugita et al., 1998);
1995/1996 (Rex et al., 1997); 1999/2000 (e.g., Popp et al.,
2001) and 2004/2005 (Kleinböhl et al., 2005)), which are the
winters with the larger ozone losses in the top right of Fig. 2.
Denitrification in the majority of winters is negligible, even
non-existent. When large-scale denitrification does occur,
the enhanced ozone loss in the denitrified layer tends to be
offset by reduced ozone loss in a lower, renitrified layer (e.g.
Rex et al., 1997). The magnitude of this effect is investigated
here by assuming a denitrification at 550 K of 5 ppb (Fig. 8a)
and a concurrent renitrification of 5 ppb at 450 K (Fig. 8b),
similar to those reported by Popp et al. (2001). For a given
ClOx, there is a greater sensitivity of ozone loss to changes
in NOy at 450 K than at higher altitudes (though note that the
cases shown are for similar changes in mixing ratio, not con-
centration). However at this level, the Cly and ClOx are lower
and so the overall effect of this hypothetical de/renitrification
on the vertically integrated ozone loss is limited. Interest-
ingly (but not conclusively) if one looks at particular years
in Fig. 3, one can see indications of both denitrification and
renitrification. For example in 1999/2000, a year of extensive
ozone loss and well observed denitrification, Fig 3b shows
higher than “expected” ozone loss ateθ = 450 K and less than
“expected” at 400 K, consistent with the altitudes of the ob-
served denitrification/renitrification (Popp et al., 2001).

5.4 Interannual variations in transport

A further process which could affect the chemical recovery
is any in-mixing of air with a different chemical composition
from outside the vortex. Previous work indicates that this is
not a significant influence on ozone loss in the Arctic vortex
(Newman and Pyle, 2003) despite the identification of indi-
vidual events (e.g., Pyle et al., 1994).

6 Discussion and summary

We have updated and extended the previous studies reporting
the empirical relation between accumulated ozone loss and
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Fig. 8. The integrated ozone loss as a function of initial activa-
tion on the(a) 550 K and(b) 450 K potential temperature surfaces.
The green lines show the effect of HNO3 = 5 ppb, the red lines for
HNO3 = 10 ppb and the blue lines for HNO3 = 15 ppb. The arrows
indicate the effect of a dentrification of 5 ppb at 550 K in (a) and a
renitrification of 5 ppb at 450 K in (b).

potential PSC volume in the Arctic vortex (Rex et al., 2004,
2006; Tilmes et al., 2004) using the ERA-Interim reanalyses
to calculateVPSC. Not only do the previous results still hold
with additional winters and the self-consistent meteorolog-
ical data set, but they are also shown to hold on individual
potential temperature surfaces albeit with greater scatter. At
eθ = 400 K, the relationship is found to be slightly more sig-
nificant when cold aerosol activation is assumed in the place
of NAT. This is consistent with the larger amounts of back-
ground aerosol at 400 K than at higher altitudes. At higher
potential temperatures, the correlation with PSC areas de-
duced from NAT existence is better. This finding implies a
smaller sensitivity of ozone loss to stratospheric aerosol load-
ing than that found by Tilmes et al. (2008) in their assess-
ment of the deliberate maintenance of an enhanced strato-
spheric aerosol layer as a geo-engineering response to cli-
mate change.

The compactness and linearity of the empirical results
are interpreted using a photochemical box model with stan-
dard photochemistry and idealised trajectories. The aim is
to identify the important mechanisms, not to reproduce the
losses from winter to winter. (More complete reconstruc-
tions have been successfully reported elsewhere using a 3-D
CTM and analysed meteorological fields (Chipperfield et al.,
2005; Tilmes, 2007).) We show that the principal timescale

for the extensive activation of chlorine is not the fast reac-
tion of ClONO2 and HCl on NAT particles but the re-supply
of ClONO2 with photolysis of HNO3 as the rate determin-
ing step. As a result, extensive activation in the Arctic vortex
takes place with a timescale of days to weeks, and the overall
activation depends on the continued (though not necessarily
the continuous) presence of PSCs. The use ofVPSC is thus a
sensible proxy for the activation process.

The extent of ozone loss in any particular winter is found
to depend most strongly on the degree of activation and not
so much on its timing or vertical distribution. This some-
what surprising finding occurs as a result of a number of off-
setting factors. For any given air mass, there is the almost
cancelling competition between ozone loss and chlorine de-
activation, both of which rely on the photolysis in the near
UV and so accelerate as the Sun becomes higher in the sky in
early spring. In the vertical, the effect of the decreasing num-
ber density with altitude is offset by the increasing Cly mix-
ing ratios, and in the few winters where denitrification occurs
the increased ozone loss at the denitrified altitudes is offset
by the decreased ozone loss at the lower altitudes where re-
nitrification takes place. The baroclinicity of the vortex af-
fects the degree of denitrification (Mann et al., 2003): this
would affect our conclusions about denitrification if the cold
region were sufficiently deep that the renitrification occurred
below the region of ozone loss. However this is very rare in
the Arctic and has probably not occurred even in the years of
extensive denitrification.

These findings raise a number of interesting possibilities
for the development of simple parameterisations of strato-
spheric Arctic (or even polar) ozone loss in coupled chem-
istry climate models (CCMs), a step beyond the use of sim-
ple models to investigate future sensitivities (Knudsen et al.,
2004; Tilmes et al., 2008). For example, the relationship
shown in Fig. 2, which is derived in a period of high and
nearly constant Cly, could be scaled by the levels of Cly
calculated in the CCMs. As Cly decreases so will ozone
loss – but the effect of any changes in the occurrence of
PSCs resulting from climate change would be allowed for.
A slightly more sophisticated and intellectually more satis-
fying approach based on processes would be to develop a
simplified photochemical model based around the main fea-
tures described above, namely photolysis of nitric acid and
Cl2O2, an activation involving ClONO2 on PSCs, and the
initial levels of Cly. The success of either of these schemes
would depend on good representations of PSCs and denitrifi-
cation, which implies a need for continued improvements to
the dynamical schemes used in CCMs which determine tem-
perature and vortex characteristics, rather than to the pho-
tochemical schemes. These comments only apply to po-
lar ozone loss, because of the unique nature of the strato-
sphere over the poles. Additionally this work underlines the
value of more analysis of the existing models to see where
simplifying assumptions are justified and where parameteri-
sations might be made.
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