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Abstract. Hazardous impact of air pollutant emissions
from megacities on atmospheric composition on regional and
global scales is currently an important issue in atmospheric
research. However, the quantification of emissions and re-
lated effects is frequently a difficult task, especially in the
case of developing countries, due to the lack of reliable data
and information. This study examines possibilities to re-
trieve multi-annual NOx emissions changes in megacity re-
gions from satellite measurements of nitrogen dioxide and to
quantify them in terms of linear and nonlinear trends. By
combining the retrievals of the GOME and SCIAMACHY
satellite instrument data with simulations performed by the
CHIMERE chemistry transport model, we obtain the time
series of NOx emission estimates for the 12 largest urban ag-
glomerations in Europe and the Middle East in the period
from 1996 to 2008. We employ then a novel method allow-
ing estimation of a nonlinear trend in a noisy time series of
an observed variable. The method is based on the proba-
bilistic approach and the use of artificial neural networks; it
does not involve any quantitative a priori assumptions. As a
result, statistically significant nonlinearities in the estimated
NOx emission trends are detected in 5 megacities (Bagdad,
Madrid, Milan, Moscow and Paris). Statistically significant
upward linear trends are detected in Istanbul and Tehran,
while downward linear trends are revealed in Berlin, Lon-
don and the Ruhr agglomeration. The presence of nonlinear-
ities in NOx emission changes in Milan, Paris and Madrid is
confirmed by comparison of simulated NOx concentrations
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with independent air quality monitoring data. A good quan-
titative agreement between the linear trends in the simulated
and measured near surface NOx concentrations is found in
London.

1 Introduction

The largest urban agglomerations (megacities) concentrat-
ing a considerable fraction of the world’s population (see
e.g. Brinkhoff, 2009) are known to be associated with se-
rious air pollution problems and to contribute significantly
to the global anthropogenic sources of air pollution (Molina
and Molina, 2004; Marshall, 2005; Lawrence et al., 2007;
Butler et al., 2008; Chan and Yao, 2008). The physical and
chemical processes in the atmosphere of megacities and sur-
rounding regions have been in the focus of numerous studies
(see, e.g. Wang et al., 2006; de Foy et al., 2007; Molina et
al., 2007; Lei et al., 2008; Miyakawa et al., 2008; Nunner-
macker, et al., 2008; Esposito et al., 2009; Singh et al., 2009).
To properly simulate these processes and to estimate the ef-
fects of air pollutant emissions in megacities on both local
air quality and composition of the atmosphere on regional
and global scales, atmospheric models should be provided
with accurate information on emissions of air pollutants and
their temporal variability. However, available estimates of air
pollutant emissions in megacities are currently rather uncer-
tain; this is reflected, specifically, in big differences between
data of different “bottom-up” emission inventories (Butler et
al., 2008). It is also poorly known to what extent the available
emission inventories are capable to reflect actual inter-annual
and multi-annual changes in emission rates.
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As an alternative to the “bottom-up” emission inventory
approach which requires detailed information about sources
and emission factors, there is a possibility to derive emission
estimates directly from ambient measurements (see, e.g.,
Enting, 2002). The “measurement-based” approach proved
to be especially fruitful when used with satellite measure-
ments of the composition of the troposphere. In particular, it
has been demonstrated that satellite measurements of nitro-
gen dioxide can be used for identification of NOx emission
sources (Richter et al., 2004; Beirle et al., 2004; Jaeglé, et al.,
2004; Beirle et al., 2006; Boersma et al., 2005; Martin et al.,
2007; Lin et al., 2010), validation and improving of available
data on the spatial structure of NOx emissions (Martin et al.,
2003, 2006; Konovalov et al., 2006a, b; Toenges-Schuller
et al., 2006; Napelenok et al., 2008), as well as a source of
independent information on their temporal variability (Beirle
et al., 2003; Bertram et al., 2005; Wang et al., 2007; Boersma
et al., 2008; Kaynak et al., 2009) and multi-annual changes
(e.g., Richter et al., 2005; van der A et al., 2006, 2008; Uno
et al., 2007; Konovalov et al., 2008; Stavrakou et al., 2008;
Kim et al., 2009; Kurokawa et al., 2009) both on global and
regional scales.

Here we discuss satellite measurement-based estimates of
NOx emission trends in several megacity regions in Europe
and the Middle East. To our knowledge, the NOx emis-
sion trends in the compact regions considered in this study
have not yet been addressed in any dedicated study, although
some relevant estimates have been reported in the frame-
work of a more general global or continental-scale analysis
(Konovalov, 2007; Konovalov et al., 2008; van der A et al.,
2008). Note that some major urban agglomerations consid-
ered here do not satisfy the common definition of a megac-
ity as a metropolitan area with a total population in excess
of 10 million people, but, nevertheless, we refer to all these
densely populated areas (having a total population of more
than 4 million people) as megacities for the sake of concise-
ness. The method used here involves a simple combination of
retrievals of GOME and SCIAMACHY satellite instrument
data with model-simulated NO2 columns. The satellite mea-
surements of NO2 columns are available since 1996; the pe-
riod addressed in this study includes 13 years (1996–2008).
Importantly, we do not assume that the estimated emission
changes can be adequately described in terms of a linear
trend. Although this assumption proved to be useful in previ-
ous papers analysing multi-annual changes in NO2 columns
measured by satellites (e.g., Richter et al., 2005; van der A et
al., 2006, 2008; Konovalov et al., 2008), it appears to become
less adequate as the analysed time series becomes longer.
Unfortunately, while the linear trend analysis can be done
with a standard technique, there exists no common method-
ology which could be employed to estimate nonlinear trends
in any arbitrary case. One of the easiest ways to account for
a possible nonlinearity of a trend is to fit the data by means
of piece-wise linear regression models. This technique has
been useful, in particular, in studies aimed at detection of a

“turnaround” point in the trend of stratospheric ozone (see
e.g., Reinsel et al., 2005; Vyushin et al., 2007). A more gen-
eral approach to detect a nonlinear trend from a noisy time
series of a measured characteristic is based on the spectral
analysis (see, e.g. Moore et al., 2005 and references therein).
However, the spectral analysis would not be helpful in our
case because the available record of NO2 columns retrieved
from satellite measurements is too short.

Here we perform a nonlinear trend analysis by means of
an original algorithm based on the probabilistic Bayesian ap-
proach which is common for inverse modelling and data as-
similation studies. The basic ideas of our method are the
use of artificial neural networks for approximating nonlinear
trends and a cross validation technique for constraining the
optimal fit and for estimation of random uncertainties in the
input data. The applicability of the method is based on a few
general assumptions, but it is not assumed that the trend has
any specific character.

An important feature of our analysis is that it does not
involve any subjectively-defined a priori quantitative con-
straints which are typically involved in inverse modelling
studies. Another distinctive feature of this study is the use
of independent multi-annual data of air quality monitoring
in several megacities for validation of NOx emission trends
derived from satellite measurements. The comparison with
surface measurements is important in view of possible sys-
tematic uncertainties in the derived trend estimates, which
otherwise are difficult to evaluate.

The paper is organised as follows. The data used for our
analysis are described in Sect. 2. The methods employed to
derive time series of annual estimates of NOx emissions in
megacity regions from satellite measurements and to evaluate
nonlinear trends in NOx emissions are presented in Sect. 3.
The results of our analysis and their validation are discussed
in Sect. 4. Section 5 summarises the major findings of this
study.

2 Measurement and model data

2.1 Satellite data

We use retrievals of the data of the GOME (Burrows et
al., 1999) and SCIAMACHY (Bovensmann et al., 1999) in-
struments onboard the ERS-2 and ENVISAT-1 satellites of
the European Space Agency (ESA). We employ seven years
(1996–2002) of the GOME measurements combined with
six years (2003–2008) of the SCIAMACHY measurements.
The GOME measurements were performed with a horizontal
resolution of 320×40 km2. The satellite overpass time was
about 10:30 local standard time (LST), and global coverage
was achieved within three days at the equator. The nomi-
nal horizontal resolution of SCIAMACHY is much higher
(60×30 km2) but at the expense of a longer period needed to
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Fig. 1. The areas attributed in model simulations to the megacity
regions considered in this study.

Fig. 1. The areas attributed in model simulations to the megacity regions considered in this study.

obtain full global coverage (6 days). The ENVISAT-1 over-
pass time is 10:00 LST at the equator.

The tropospheric NO2 column data products used here
have been retrieved from the satellite measurements by IUP,
University of Bremen. The same data have already been used
in several earlier studies (Richter et al., 2005; Kim et al.,
2006, 2009; Konovalov et al., 2008). The general description
of the retrieval procedure can be found in Richter et al. (2005)
and Kim et al. (2009). Below we describe in detail only the
data pre-processing stage specific for the given study.

The goal of the pre-processing stage is to get consistent
time series of NO2 columns for several areas selected for this
study. Specifically, we consider the 12 largest urban agglom-
erations covered by the domain of our regional model in Eu-
rope and the Middle East. These agglomerations are marked
in Fig. 1. Each of these agglomerations has a total population
of more than 4 million. We do not consider the megacities of
Cairo and Alexandria because they are situated too closely
to be adequately addressed in our analysis. Initial daily data
for tropospheric NO2 columns were projected onto a 1◦

×1◦

grid and averaged over three summer months (June–August)
of each year. To insure the consistency of the measurement
data time series from the different instruments, the NO2 col-
umn data from SCIAMACHY were convoluted over a typical
area covered by the GOME measurements. The idea of this
procedure is to simulate the smoothing of the spatial structure
of NO2 columns, introduced by the GOME measurement:

cconv
s(i) =

2m∑
j=0

cs(i−m+j)ρj

[
2m∑
k=0

ρk

]−1

;

ρj = exp

(
−

[j −m]
2cos(ϕ)2

2s2
c

)2

(1)

wherecs(i) are the original NO2 column amounts in the grid
cell i closest to a megacity centre,m is the number of grid
cells on the longitudinal plane within 320 km (the typical res-
olution of the GOME measurements),ϕ is the latitude, and
sc is an effective distance scale. Such a transformation of
the NO2 columns is a heuristic method, which is used here
because we had no more specific information about the rela-
tionship between the seasonally averaged NO2 columns from
GOME and SCIAMACHY. Note that the main complication
in analytical consideration of this relationship is, specifically,
due to the fact that the area covered by SCIAMACHY mea-
surements is also, to some extent, smeared between several
cells of our grid.

The value of the distance scale,sc, was estimated to
be equal 0.85±0.16 (grid cells) by minimizing the mean
squared difference between the convoluted NO2 columns for
2003 and the original NO2 columns (from GOME) for 2002
over the 12 megacities. Such an evaluation ofsc is made
under the assumption that the change of NOx emissions be-
tween the years 2002 and 2003 is small in comparison with
the difference between the maximum and minimum NOx
emission rates during the whole period of 13 years. The un-
certainty ofsc is roughly estimated by repeating the same
estimation ofsc independently for four randomly selected
subsets of 3 different megacities and calculating the standard
deviation of the obtained 4 independent estimates. This un-
certainty is taken into account in our further analysis. Taking
into account our estimate ofsc, the smoothing specified by
Eq. (3) supposes (based on the analogy with properties of
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the Gaussian distribution) that, for example, in the case of
Paris, about 95 percent of the signal in the seasonally aver-
aged GOME data comes from the actual NO2 columns within
5 degrees of longitude or within about 360 km. Thus it should
be kept in mind that we do not distinguish here between
emissions in a given megacity and emissions in a surrounding
urban agglomeration. The final steps of the pre-processing
stage are the linear interpolation of the NO2 columns be-
tween the two belts of grid cells closest to a megacity centre
in the north-to-south direction and averaging of the interpo-
lated data corresponding to these grid cells.

2.2 Data of ground-based measurements

In the context of the given study, the ground based mea-
surements are an indispensable source of independent infor-
mation on emission changes in the considered megacities.
Specifically, the surface data are used for validation of the
NOx emission trends derived from satellite measurements.
While several hundreds of NOx monitors are currently oper-
ational in Europe, only few of them were continuously avail-
able during the whole period of 13 years considered, and not
all of the monitoring data are publicly accessible. Here we
used the available monitoring data for London, Madrid, Mi-
lan, and Paris.

The data for London agglomeration are obtained from
(i) UK National Air Quality Archive (www.airquality.co.
uk) and (ii) the London Air Quality Network (www.
londonair.org.uk). The data for Madrid and Milan are taken
from the Airbase database (http://air-climate.eionet.europa.
eu/databases/airbase), and the data for Paris have been pro-
vided by AIRPARIF (http://www.airparif.asso.fr). The mea-
surements are carried out by means of the chemilumines-
cence technique. In the cases of London and Paris, we were
provided with NOx (NO+NO2) measurements for all sum-
mer seasons from 1996 to 2008. The available NOx mea-
surements in Madrid span the period of only 8 years (2000–
2007), and only data of NO2 measurements for the period
from 1999 to 2007 were available for Milan. Note that even
the limited records of measurements in Madrid and Milan
were important to consider in view of interesting nonlinear
features detected in our analysis (see Sect. 4.1).

To insure the consistency of the surface data with the satel-
lite measurements, the raw hourly data (both from the model
and measurements) have first been averaged over the period
from 10:00 to 11:00 LST. Next, the daily data were processed
to get the seasonally averaged (over three summer months)
daily mean NOx (or NO2) concentrations. Taking into ac-
count that many days were not provided with data, some
common criterion was needed for the selection of monitors.
Here we chose to consider only those monitors that provided
data for at least 60 days in each summer of the considered
period. This criterion is a result of a subjective trade-off be-
tween quality and amount of the monitoring data. In view
of the goal of our analysis, we opted to disregard measure-

ments at traffic (or roadside) sites because of their low spatial
representativeness: we took into account that the data from
traffic monitors when combined with monitors of other types
(e.g. with urban background monitors) could induce some
disproportional biases in the estimated trend. However, as
an exception we consider traffic monitors in Madrid because
otherwise we would be left only with one monitor (of sub-
urban industrial type). In total, we considered data from six
monitoring sites in the London agglomeration, four sites in
Madrid, six sites in Milan and ten sites in Paris. The selected
sites are listed in Table 1.

2.3 Simulated data

In parallel with satellite data we use simulations performed
with the CHIMERE chemistry transport model. CHIMERE
is a three-dimensional Eulerian model designed to simulate
air pollution in the boundary layer and free troposphere on
the regional and continental scales. An in-detail description
of CHIMERE is available on the web athttp://www.lmd.
polytechnique.fr/chimere/. The tropospheric NO2 column
amounts simulated by CHIMERE were evaluated against the
SCIAMACHY and GOME measurements in earlier studies
(Konovalov et al., 2005; Blond et al., 2007). In this study, the
model’s domain covers all of Europe, the Mediterranean and
the Middle East with a horizontal resolution of 1◦

×1◦. This
rather coarse resolution was chosen in view of computational
costs of the study and also taking into account that the avail-
able multi-annual data of the EMEP emission inventory pro-
vided with the spatial resolution of 50×50 km2 did not allow
us to increase the resolution of our simulations considerably
using, e.g., a “nested domain” option. The simulations were
performed with 12 vertical levels specified in hybrid coordi-
nates with the top of the CHIMERE vertical domain fixed at
200 hPa pressure level. The multi-annual model runs are per-
formed with constant boundary conditions specified by us-
ing monthly average (“climatological”) values of the LMDZ-
INCA2 model (Hauglustaine et al., 2004). Other specific fea-
tures of the model configuration are the same as described in
Konovalov et al. (2008). The simulated NO2 columns were
sampled consistently with the measurement-based daily NO2
columns at the times of satellite overpasses. They were then
averaged over three summer months and convoluted in the
same way as the SCIAMACHY data (see Eq.3).

CHIMERE was run independently for each summer sea-
son starting on 24 May with the same initial and boundary
conditions. Anthropogenic emissions are based on the so-
called “expert” annual data of the EMEP emission inven-
tory (UNECE, 2009) for the years 1996–2007. The data
were obtained from the EMEP web site on a 50×50 km2

grid in August 2009. As 2008 emission data were not avail-
able, they are filled in by a linear interpolation between years
2007 and 2010 (for the latter a “projection” was available).
A base multi-annual run of CHIMERE was performed with
constant NOx emissions (corresponding to the year 2001),
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Table 1. The air quality monitors selected for this study.

City Monitor’s name
(location)

Monitor’s type

London London Bexley
London N. Kensington
London Elthem
Rochester
Ealing-Town Hall
Hackney-Clapton

suburban
urban background
urban background
rural
urban background
urban background

Madrid ES0116
ES0117
ES0123
ES1162

urban traffic
urban traffic
urban traffic
industrial suburban

Milan IT1017
IT1088
IT1174
IT1203
IT0732
IT0774

suburban background
suburban background
rural background
suburban background
suburban background
rural background

Paris Issy
Paris18
Paris12
Aubervilliers
Versailles
Vitry
St.-Denis
Paris7
Montgeron
Bobigny

urban
urban
urban
urban
suburban
urban
urban
urban
urban
urban

while annual EMEP emission data are used for other species
(NMVOC, CO and SOx).

As an illustration of the CHIMERE performance, Fig. 2
shows the mean summertime values of NO2 columns simu-
lated by CHIMERE in comparison with corresponding val-
ues derived from SCIAMACHY measurements. The model
tends, on the whole, to slightly underestimate the retrievals
from satellite measurements, but such underestimation is not
important for this study, because we consider variations of
NO2 columns in a relative scale. Stronger differences be-
tween the simulated and measured NO2 columns in sev-
eral Middle East countries and Spain are probably indica-
tive of missing NOx sources, as discussed in Konovalov et
al. (2006a, b).

Taking into account the limited spatial resolution of the
satellite data, the emission estimates for a given megacity
are assumed to be representative of an area of 5◦

×2◦ (see
Fig. 1). That is, the size of an urban agglomeration resolved
in satellite measurements is assumed to be typically in the
range from 200 to 300 km. Note that the NOx emission trend
estimates obtained in this study (see Sect. 4.1) do not depend
in any way on this definition which is only used for interpre-
tation and validation of our results.
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Fig. 2. Tropospheric NO2 columns derived from SCIAMACHY
measurements (a) in comparison with the corresponding NO2

columns simulated by CHIMERE (b). The data shown are averages
over three summer months of 2003.

Fig. 2. Tropospheric NO2 columns derived from SCIAMACHY
measurements(a) in comparison with the corresponding NO2
columns simulated by CHIMERE(b). The data shown are averages
over three summer months of 2003.

3 Method

3.1 Combining the measured and simulated NO2
columns

We assume that the dependence of NO2 columns on NOx
emissions can be approximated by a linear relationship:

C(ti) ≈ Cb(ti)+α(ti)E(ti) (2)

whereC(ti) is the seasonally averaged NO2 column amount
over a given megacity for a yeari, Cb(t) is the “background”
NO2 column amount which is not related to emissions from
the given megacity,E(ti) is the seasonally averaged NOx
emission rate andα(ti) is the sensitivity of the NO2 columns
to changes of the NOx emissions, which is assumed to be
independent on the NOx emissions themselves. Having in
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Fig. 3. A model-based test confirming the assumption about a lin-
ear dependence of NO2 columns on NOx emissions in megacity
regions: the NOx emission rates for the year 2001 have been scaled
within the estimated range of NOx emission changes in correspond-
ing megacities from 1996 to 2008. The results are shown for three
megacities (London, Moscow and Istanbul) representing different
geographical regions. The intercept reflects the ”background” NO2

amounts which are not dependent on anthropogenic NOx emissions
in the considered megacities.

Fig. 3. A model-based test confirming the assumption about a lin-
ear dependence of NO2 columns on NOx emissions in megacity
regions: the NOx emission rates for the year 2001 have been scaled
within the estimated range of NOx emission changes in correspond-
ing megacities from 1996 to 2008. The results are shown for three
megacities (London, Moscow and Istanbul) representing different
geographical regions. The intercept reflects the “background” NO2
amounts which are not dependent on anthropogenic NOx emissions
in the considered megacities.

mind this linear approximation (2), we estimate the normal-
ized annual emission rates as follows:

E(ti)/E0 ∼=
Co(ti)−Cbm(ti)

γCm(ti)|E=E0 −Cbm(ti)
(3)

where the indexes “o” and “m” denote the observed and mod-
elled data, respectively,E0 is the emission rate for the refer-
ence year (2001), andγ is the correction factor used to com-
pensate for systematic differences between the simulated and
observed NO2 columns. The magnitude ofγ is evaluated as
the ratioCo/Cm for the year 2001.

By employing the chemistry transport model in the con-
text of Eq. (3) for inversion of the relation (2), we attempt
to account for those variations in NO2 columns that are due
to meteorological variability and to estimate that part of the
NO2 columns over a megacity that is not associated with lo-
cal anthropogenic NOx emissions. It is particularly impor-
tant to try to “filter-out” the changes in NO2 columns asso-
ciated with multi-annual meteorological variability such as,
e.g., the North Atlantic Oscillation (see, e.g., Eckhardt et al.,
2003). This approximation allows us to take into account
also the changes in the NO2 lifetime associated with the as-
sumed changes of emissions of volatile organic compounds
(VOC). The background NO2 column amounts,Cbm(t), were
evaluated in a special model run with zero anthropogenic

NOx emissions. The changes in biogenic emissions are dis-
regarded; as it was argued in Konovalov et al. (2008), they
are much slower (at least in Europe) than changes in anthro-
pogenic emissions. The contribution of anthropogenic emis-
sions outside of a given agglomeration to NO2 columns over
the agglomeration is neglected.

Validity of the linear approximation in Eq. (2) was con-
firmed by a model test run which yielded an almost per-
fect linear relationship between NOx emissions scaled in the
range typical for the trends retrieved in this study and NO2
columns calculated for all of the megacities considered (see
Fig. 3). Another model run was performed to estimate the
contribution of anthropogenic NOx emissions outside of a
given agglomeration to NO2 columns over the agglomera-
tion. In this run, the anthropogenic emissions in the megac-
ity regions specified in Fig. 1 were put to zero. As a re-
sult, it has been estimated that the “external” part of NO2
columns over the megacities is typically less than 15 per-
cent. A corresponding bias in the estimated emission trend
in a megacity depends on the trends in NOx emissions in
the surrounding regions. If the emission changes are similar
in both the megacity and surrounding regions, then the ef-
fect of the external part of the NO2 column amount should
be rather negligible. In fact, both the EMEP emission in-
ventory (Vestreng et al., 2009) and inverse modeling results
(Konovalov et al., 2008) suggest there are no strong differ-
ences in NOx emission changes between most of the regions
considered here and their surroundings. A check of the self-
consistency of our estimates for all the megacities regions
has been performed: that is, the linear emission trend esti-
mates obtained in this study were employed in the model to
simulate NO2 columns which were then used as input data in
Eq. (3) instead of the satellite data, and the linear trends in
the simulated NO2 columns were compared with the linear
trends in the original data from satellites. This test yielded
an expected positive result, the difference between the lin-
ear trends in the measured and simulated NO2 columns also
being, on average, about 15 percent.

Note that the inter-annual variations of NOx emissions
(E(ti)/E0) can, in principle, be estimated directly from the
measured NO2 columns as theC(ti)/C0 ratio, whereC0 is
the NO2 columns in the reference year. Figure 4, where the
relative variations of the measured NO2 columns are shown
on the same scale as variations of the NOx emission esti-
mates, gives an idea about the differences between the two
approaches, and it also shows other quantities involved in
Eq. (3). It can be seen that the difference in the temporal
evolution of the measured NO2 columns and the emission
estimates is not large on average, but can be significant in
some cases. In particular, the magnitudes of the linear trends
in NOx emissions are considerably larger than those in NO2
columns in several Western European megacities (Berlin,
London, Milan and Paris), and also in Bagdad, Tehran and
Moscow. The impact of the background NO2 columns on
the estimates of NOx emission trends is rather negligible in
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Fig. 4. The combined time series of satellite data (1−Cs) for
tropospheric NO2 columns in comparison with the NO2 columns
simulated by CHIMERE with constant NOx emissions (2−Cm)
and with zero anthropogenic emissions (3−Cbm). The time series
of NOx emission estimates (4−E) are also shown. Magnitudes of
slopes of linear fits are related to values of corresponding charac-
teristics in 1996. Uncertainty range is given in terms of the 68.3
percentile (one sigma).

Fig. 4. The combined time series of satellite data(1−Cs ) for tropospheric NO2 columns in comparison with the NO2 columns simulated
by CHIMERE with constant NOx emissions(2−Cm) and with zero anthropogenic emissions (3−Cbm). The time series of NOx emission
estimates (4−E) are also shown. Magnitudes of slopes of linear fits are related to values of corresponding characteristics in 1996. Uncertainty
range is given in terms of the 68.3 percentile (one sigma).

the cases of London and the Ruhr region (more specifically,
if this impact were disregarded, then the resulting change in
the linear NOx emission trends would be less than 10 percent
of their values) and the difference is mainly due to the trends
in the modelled NO2 columns (seeCm in Eq.3). In contrast,
the role of the background NO2 columns is dominant in the
cases of Bagdad and Tehran. In the other cases, the contri-
butions of all factors to the differences between the trends
in NOx emission estimates and in measured NO2 columns
are about equally important. Additional analysis has re-
vealed that the trends in the simulated data are mainly due to
changes in emissions of volatile organic compounds (VOC).
Specifically, the model shows that a decrease of VOC emis-
sions (which, according to the EMEP inventory, took place in
Western Europe during the considered period) is associated
mainly with an increase of tropospheric NO2 (presumably
due to a decrease in OH concentration). Note, however, that
the effect of VOC emission changes alone does not explain
positive trends of the background NO2 column amount sim-

ulated in megacities of France, Germany and Great Britain:
there is also a contribution of long-term meteorological vari-
ability, but it remains unknown whether or not such variabil-
ity is reproduced in our simulations adequately. In any case,
the impact of trends in the background NO2 columns on our
results is quite negligible.

The fact that the inter-annual variations in the measured
NO2 columns are rather poorly reproduced by the model
can be explained by considerable uncertainties in both the
measured and simulated NO2 columns. Taking into account
that the uncertainty range of the linear trends (see Fig. 4)
is larger in the case of the satellite data than in the cases
of simulations in 8 out of 12 regions, it can be concluded
that the random fluctuations in the measured NO2 columns
are larger than those in the simulations. However, this ob-
servation does not necessarily mean that the satellite data
are more uncertain. Values of the simulated and measured
NO2 columns are in a rather good agreement in the reference
year (2001) in most cities, except for Istanbul, Madrid, and
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Fig. 5. Flow chart illustrating major steps of the algorithm for esti-
mation of a nonlinear trend in a NOx emission time series

Fig. 5. Flow chart illustrating major steps of the algorithm for esti-
mation of a nonlinear trend in a NOx emission time series.

Tehran, where the simulated NO2 columns are much lower
than the measurement-based ones probably due to strongly
underestimated NOx emission rates (Konovalov et al., 2006a,
b).

If the chemistry transport model were perfect, the inverse
modelling approach employed in this study would definitely
lead to more accurate results than the direct approach. This
is the main reason for our choice. It should be kept in mind,
however, that the estimates obtained by the inverse mod-
elling may be affected by possible unspecified model errors,
and that the “direct” method (used, for example, by Richter
et al., 2005, van der A et al., 2008; Kim et al., 2009) can
also enable a reasonable estimate of the NOx emission trends
in large urban agglomerations. In a general case, both ap-
proaches can be subject to some systematic errors which are
difficult to estimate (otherwise they could be corrected). The
detailed analysis of the differences between these two ap-
proaches goes beyond the scope of this paper.

The natural logarithms,e(= ln(E)), of the estimates de-
fined by Eq. (3) are used as input data for our analysis. A lin-
ear fit of these data gives an exponential fit for the emissions
E, which optimally approximates the evolution of the emis-
sions, assuming a constant relative rate of their inter-annual
changes.

3.2 Estimation of a nonlinear trend

3.2.1 Formulation of the general problem

The estimation of the nonlinear trend in NOx emission times
series is a particular case of a general problem of estimation
of a nonlinear trend of a natural characteristicx, by a noisy
time series of its measurements (or estimates),y:

yi = xi +εi,i ∈ Id (4)

wherei is the temporal index (e.g. the year number),ε are
errors, andId ={1,. . . , n}. In our case,y are the natural log-
arithms of emission estimates obtained from Eq. (3). Let us
make three simple assumptions, which seem to be reasonable
in the considered situation. First, the noise is uncorrelated
(white), so that< εiεj >= 0 for anyi 6= j , and< ε2

i >= σ 2,
where the angled brackets denote averaging over a statistical
ensemble. Second,ε satisfies the normal distribution. And
third, the changes of the real valuex are smooth in compari-
son with the level of noise (xi+1−2xi +xi−1)

2
� σ 2 for any

i. This condition implies that we can disregard any single
measurement without losing essential (available) information
about the trend.

Our goal is to obtain a series of estimated valuesxe, such
that (xei −xi)

2
�σ 2 for any i. It should be emphasised that

we neither impose any “external” a priori constraints to a
trend, nor do we assume any definite level of uncertainties
in the input data.

3.2.2 Description of the algorithm

The basic steps of our algorithm are the following (see
Fig. 5). First, we use use a three-layer feed-forward network
with a sigmoid transfer function in combination with a lin-
ear regression for approximation of the unknown nonlinear
trend:

xei(w) = β0+β1i +

N∑
k=0

w1kgk;

gk =
1

1+exp(w2ki +w3k)
, (5)

whereβ0 andβ1 are coefficients of a linear regression,w are
weight coefficients of a neural network, andN is the num-
ber of neurons (see, e.g., Nelson et al., 1991; Bishop, 1995).
The linear regression is fitted by the standard least-squares
method directly to the input data (y), while the neural net-
work is used to approximate only a residual (nonlinear) part
in variability of y. By definition, the coefficientw10 is set
to be zero; that is, ifN = 0, the neural network is not used,
and the estimated trend is strictly linear. Neural networks
are employed here because they are commonly considered
as universal approximators. Specifically, it has been shown
(Hornik et al., 1989) that given a sufficient number of neu-
rons, a multi-layer feed-forward network can approximate
any smooth function with any given accuracy. Neural net-
works are extensively used in air pollution studies for ap-
proximation of unknown relationships between the observed
quantities and forecasting (see, e.g. Gardner and Dorling,
1998; Konovalov 2002, 2003; Lary et al., 2004; Hooyberghs,
2005; Argiriou, 2007; Feister et al., 2008).

Second, we follow the Bayesian probabilistic approach,
which is commonly used in inverse modeling and data as-
similation studies and is applied here to the estimation of
weight coefficients of the neural network. Specifically, using
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Bayes’s theorem, we get the following a posteriori probabil-
ity distribution function (pdf) for the weight coefficients.

p(w|y) ∝ exp

[
−

n∑
i=1

(yi −xei(w))2

2σ 2

]
pa(w) (6)

wherepa(w) is the a prioripdf. Here we constrain a priori
only the maximum magnitude of the components ofw, that
is,

pa(w) = const(> 0) if |w| < wmax;

pa(w) = 0 if |w| > wmax, (7)

wherewmax is a parameter estimated as described below, and
|w| is the absolute value of any weight coefficient used in the
neural network. In other words, the a priori probability of
|w| is assumed to be a constant (larger than zero) if|w| is
less (or equal) thanwmax and zero otherwise. The magnitude
of this constant is not important: formally, it can be deter-
mined by demanding that the total probability is unity. In
principle, we could specify the a prioripdf in different ways.
The rectangular shape of the a prioripdf was chosen as a re-
sult of preliminary experiments with both artificial and real
data: it was found that this simple structure enables both ef-
ficient noise filtering and high sensitivity of the algorithm to
actual nonlinearities in input data. The maximum likelihood
estimate ofw can then be found as follows:

ŵ = arg min

[
n∑

i=1

(yi −xei)
2

]
|w ∈ [−wmax;wmax] (8)

Third, we use the leave-one-out method of cross validation
in order to find the optimal value ofwmax. The idea is to
minimize the difference between a given measurement and
an approximation which is built without using this measure-
ment. Specifically, using again Bayes’s theorem and assum-
ing a uniform a priori forwmax, we obtain the following prob-
ability distribution ofwmax:

p(wmax|y) ∝ exp

[
−

n∑
i=1

(yi −xei(ŵ))2

2σ 2

]
(9)

The principal point here is that the estimatexei is obtained
without using a corresponding measurementyi . Based on the
third assumption formulated in Sect. 3.2.1, we consider the
differences betweenyi andxei as a manifestation of noise.
By finding the maximum of this distribution, we estimate
wmax. If the estimated value ofwmax is zero, then it means
that either the trend is linear or the nonlinearity is too weak
in comparison with the noise level.

In principle, a similar procedure could also be used to op-
timize the number of neurons,N . However, in practice, it is
also necessary to take into account that the uncertainties of
estimatesxei obtained with a larger number of neurons are
larger. Besides, the differences between estimates obtained

with different numbers of neurons are frequently insignifi-
cant. Thus we define the optimal number of neurons in a dif-
ferent way. Specifically, we find the estimates of the trends
with all values ofN in the range from 0 to n/6. The upper
limit for N (which is, in our case, equals 2) is determined by
the consideration that the number of fitted parameters cannot
be larger than a half of the number of data points (taking into
account our assumption that each second data point can be
regarded as “excessive”). We choose the smallest value ofN

such that a corresponding nonlinear trend (if it is detected)
is significantly different from a linear trend but is not signif-
icantly different from trends obtained by the larger numbers
of neurons. Evaluation of the statistical significance level (in
terms of 68.3 percentile) is based on the uncertainty analysis
described below. While minimizing the number of neurons,
we also minimize the risk of overfitting. On the other hand,
we try to make sure that the network is not underfitted; that
is why we test networks with different numbers of neurons.
If N optimized in such a way equals zero (this may be, for
instance, whenwmax= 0 for anyN considered), the retrieved
trend is linear.

Oncewmax is optimized,xe is estimated again, but this
time employing the whole time series. Technically, the
optimization ofwmax is carried out by means of the one-
dimensional golden section search method (Press et al.,
1992). The optimization of the weight coefficients of the
neural network is achieved in the embedded cycle by the
Nelder-Mead simplex algorithm (Press et al., 1992).

The noise level is estimated as follows:

σ 2
≈

1

n

∑n

i=1
(yi −xei(ŵ

∣∣wmax= ŵmax))
2. (10)

Note that such an estimated noise level takes into account
only a random (varying) part of errors in the input data (y),
assuming that the probability distribution of such errors is
stationary. In the case of NOx emission estimates defined
by Eq. (3),σ is determined by uncertainties both in satel-
lite data and model errors. Note also thatσ is estimated af-
ter having determined the best estimate of weighting coeffi-
cients; this estimate does not influence the optimization pro-
cedure specified by Eqs. (5)–(9). The estimate of the noise
level is further used to assess the uncertainties in results by
means of the Monte Carlo method. Specifically, we sample
the errors,εi, from the normal distribution withσ defined by
Eq. (10). Technically, such sampling is performed by means
of the Box-Muller method for generating random deviates
with a normal distribution (Press et al., 1992). In the prob-
lem considered in this study, we have to take into account
also the uncertainty of the convolution scale,sc, and thus we
also randomly change this factor within the estimated uncer-
tainty range (see Sect. 2.1). This uncertainty is taken into
account even if the algorithm yields only a linear trend. Ac-
cordingly, the Monte Carlo experiment consists of the fol-
lowing steps. First, a random perturbation from the lognor-
mal distribution is added to the optimal value ofsc. Second,
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the algorithm specified by Eqs. (5)–(9) is applied to the NOx
emission estimates (see Eq. 3) obtained with the perturbed
value ofsc. Third, the errors are added to the trendxe es-
timated with the perturbedsc, and the estimation procedure
defined by Eqs. (5)–(9) is repeated. These steps are iterated
(with the fixed optimalN) many times (in this study, 300).
Finally, given a set of samples ofxe generated in the Monte
Carlo experiment, we find (by means of a simple iterative
procedure) the interval which includes at least 68.3 percent
of the samplesxe.

Note that the procedure described above enables estima-
tion of only that part of the uncertainties in our results, which
are associated with random fluctuations in the input data.
Estimation of uncertainties associated with any unidentified
drifts in the satellite and model data is much more difficult
and goes beyond of the scope of this paper. We expect, how-
ever, that the total impact of all potential sources of uncer-
tainties on our estimates can be manifested in the comparison
of the retrieved emission trends with independent measure-
ments (see Sect. 4.2).

We characterise trends by the rate of inter-annual changes.
Taking into account that the algorithm described above is ap-
plied in this study to the log-transformed NOx emission esti-
mates (see the last paragraph in Sect. 3.1), the relative rate of
inter-annual changes,δe, is calculated (in percent) as follows:

δei = [exp(xi+1−xi)−1]×100(%); i = 1,...,n−1 (11)

The uncertainty intervals for the estimated rate of inter-
annual changes are derived from the statistical distribution
of δe obtained in the Monte-Carlo experiment.

The nonlinearity of the trend is considered as statistically
significant if there are at least two different periods such that
the corresponding uncertainty intervals of the rates of inter-
annual changes do not intersect. In other words, the trend
of NOx emissions is nonlinear if there are statistically sig-
nificant variations of the rate of emission changes, because a
linear trend is characterized by a constant rate.

3.2.3 Testing examples

Before applying it to the real data, the algorithm was tested
with artificial time series representing both “ideal” and
“noisy” cases. The examples of application of our algorithm
to artificial time series are presented in Fig. 6. In both cases,
we defined the “true” smooth changes shown in the left plots
by red crosses. Similar to the case with real data, the artificial
data were log-transformed before application of the trend es-
timating algorithm. It can be seen that when the noise is
absent, the algorithm yields almost ideal fits. Some inaccu-
racies are the result of constraining the neural network pa-
rameters using the cross-validation method. In essence, the
uncertainties in the ideal case are due to the sparseness of
data points in the time series.

The red crosses in the right plots of Fig. 6 show the data
obtained after the noise was added to the same ideal depen-

Table 2. Estimates (*) of the trends in NOx emission and NO2
columns for several urban agglomerations (in percent per year).

Cities NOx emission trends Trends in NO2
columns from

satellites

This study EMEP

Bagdad 3.91 (±4.21) −0.62 (±0.31) 1.59(±0.97)
Barcelona 3.34 (±1.04) −0.01 (±0.37) 3.05 (±0.78)
Berlin −5.25 (±1.51) −3.37 (±0.15) −3.63 (±0.86)
Istanbul 2.00 (±1.01) 1.72 (±0.40) 1.34 (±0.81)
London −4.47 (±1.07) −4.13(±0.27) −2.86 (±0.89)
Madrid 1.75 (±1.19) −0.47 (±0.32) 1.77 (±0.95)
Milan −1.41 (±1.10) −3.48(±0.19) 0.41 (±0.77)
Moscow 1.88 (±1.62) 3.72(±0.37) 0.50 (±1.61)
Paris −3.38 (±1.33) −1.92 (±0.44) −1.39 (±0.98)
Ruhr region(**) −4.04 (±1.26) −4.44 (±0.22) −1.77 (±0.69)
S.−Petersburg 0.06 (±1.52) 2.65(±0.36) −0.96 (±1.06)
Tehran 4.47 (±1.50) −0.63 (±0.51) 3.47 (±1.07)

(*) The reported values represent the relative linear trends (calculated by means of an
exponential fit to the data) in average anthropogenic emission rates for three summer
months (June to August). The summertime emission estimates based on the EMEP
annual data were obtained by means of the CHIMERE emission interface. Values
provided in brackets are estimates of uncertainties of the linear fit in terms of the 68.3
percentile. The megacity regions for which the statistically significant differences are
found between our estimates and the EMEP inventory are marked in bold. (**) the
Ruhr region is defined around the center of Essen.

dencies. The noise level corresponds to that in a real time
series of the emission estimates (specifically, for Moscow).
It can be seen that in spite of the large noise, our algorithm
has managed to retrieve properly at least the qualitative non-
linear features of the “true” variations. Although these tests
do not provide a proof of validity of our method, they never-
theless show in an illustrative way that the method is capable
to retrieve realistic trend estimates even from very noisy time
series.

4 Results

4.1 NOx emission trend estimates

Our estimates of trends in NOx emissions in the urban ag-
glomerations considered in this study in comparison with
similar trends calculated with the EMEP data are presented
in Figs. 7 and 8. Additionally, values of linear trends in our
emission estimates in comparison with those derived from
the EMEP data are listed in Table 2. Note that the emis-
sion data based on the EMEP inventory, which are compared
below with the observation based emission trends, represent
annual emission data processed by the standard CHIMERE
interface to yield the daily average emissions for the summer
season only.

Statistically significant nonlinearities are detected in five
megacities (Bagdad, Madrid, Milan, Moscow and Paris).
Specifically, for Madrid and Moscow we got positive
changes in the 1990s and negative changes in more recent
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Fig. 6. Examples of application of the nonlinear trend estimation
algorithm to artificial time series: (a, c) the “ideal” cases where the
input data are determined by smooth nonlinear functions and (b, d)
cases where the input data are determined by the same nonlinear
functions but with added random perturbations. The results are ob-
tained with two neurons in the network (N=2). The uncertainties
are evaluated in terms of the 68.3 percentile.

Fig. 6. Examples of application of the nonlinear trend estimation algorithm to artificial time series:(a, c) the “ideal” cases where the input
data are determined by smooth nonlinear functions and(b, d) cases where the input data are determined by the same nonlinear functions but
with added random perturbations. The results are obtained with two neurons in the network (N = 2). The uncertainties are evaluated in terms
of the 68.3 percentile.

years. An interesting nonlinearity which indicates the growth
of the rate of the negative trend in recent years is also found
for Paris. Most probably, the latest tendencies in Madrid,
Moscow, and Paris are related to the increase of the fraction
of modern cars equipped with catalytic converters. In con-
trast, the statistically significant negative trend in Milan in
the period from 1996 to 2002 was followed by some increase
of emissions (although this increase is not statistically signif-
icant). In Bagdad, the statistically significant positive trend
is detected since 2003; it can be suggested that this increase
of NOx emissions is associated with economical changes in
Iraq triggered by the events of the year 2003.

We would like to emphasize that the trend estimates should
be considered together with their uncertainties. Because of
the strong noise in input data, we work with a rather low level
of statistical significance (0.683): the nonlinearities revealed
in this study would not be significant at the 0.90 or 0.95

significance levels. Accordingly, our results should be un-
derstood in the probabilistic sense as the most probable (but
not necessarily true) estimates derived from the given sets of
noisy data under the assumptions specified in the Sect. 3.2.1.
However, in most cases some nonlinear tendencies in the in-
put data are visible to naked-eye inspection (see red crosses
in Fig. 7); in particular, the most obvious cases are Bagdad
and Madrid. Taking this into account, we believe that our es-
timates are sufficiently meaningful and can be considered by
experts together with other relevant data (from, e.g., bottom-
up emission inventories).

Nonlinearities are not detected in the other regions, and
therefore linear trends are evaluated (see Table 2 and Fig. 8).
In particular, strong negative trends are detected in Berlin,
London, and the Ruhr agglomeration (−5.2±1.5,−4.5±1.1,
−4.0±1.3 percent per year, respectively). In contrast, posi-
tive trends are found in Barcelona and Tehran (3.3±1.0 and
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Fig. 7. Trends in NOx emission estimates retrieved from satel-
lite measurements in comparison with corresponding NOx emission
data derived from the EMEP inventory. The results are obtained
with two neurons in the network (N=2). The uncertainties are eval-
uated in terms of the 68.3 percentile using estimates of the noise
level (σ, see Eq. (10)) shown in the plots.

Fig. 7. Trends in NOx emission estimates retrieved from satel-
lite measurements in comparison with corresponding NOx emission
data derived from the EMEP inventory. The results are obtained
with two neurons in the network (N=2). The uncertainties are eval-
uated in terms of the 68.3 percentile using estimates of the noise
level (σ , see Eq. (10)) shown in the plots.

4.5±1.5). Note that a strong positive trend (6.5±1) in NO2
columns over Tehran in the period from 1996 to 2006 was
reported earlier by van der A et al. (2008), based on the anal-
ysis of a different product of retrieval of NO2 columns from
the GOME and SCIAMACHY measurements.

The EMEP data are, at least, in qualitative agreement
with our estimates in most European megacities (except for
Barcelona and S.-Petersburg) and also in Istanbul. Note
that the EMEP data for some cities show irregular inter-
annual changes which are probably artefacts of changes in
methodology used in the EMEP inventory for different years
(R. Wankm̈uller, personal communication, 2009). An exam-
ple is a “jump” of the EMEP emissions in 2006 in Paris.
Changes in the EMEP data for Moscow also do not always
look quite realistic; in particular it is difficult to explain
why the NOx emissions slightly decreased between 2004 and
2005 but suddenly strongly increased (by more than 10 per-
cent) between 2005 and 2006. Nonetheless, both the EMEP
data and our estimates show strong downward tendencies in
Berlin, London, Milan (until 2003), Paris (until 2006), and
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Fig. 8. The same as in Fig. 7 but for the megacity regions where sta-
tistically significant nonlinearities in inter-annual emission changes
are not detected.

Fig. 8. The same as in Fig. 7 but for the megacity regions where sta-
tistically significant nonlinearities in inter-annual emission changes
are not detected.

the Ruhr agglomeration. Both kinds of data also suggest that
the NOx emissions in Moscow during the period from 1996
to 2004 have increased by about 20 percent.

In contrast, our analysis does not confirm the strong de-
crease of NOx emissions in Milan and the adjoining urban
agglomeration after 2002, as predicted by the EMEP inven-
tory. Our results also suggest that the upward tendencies have
been underestimated in the EMEP data for the Spanish cities.
Interestingly, the EMEP data for Madrid show, nevertheless,
a kind of nonlinearity similar to that revealed in our analy-
sis. The fact that the EMEP data for Bagdad and Tehran are
constant indicate that EMEP did not have sufficient informa-
tion about emissions changes in these megacities, and thus
the information provided by satellites is really unique in this
case.
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Fig. 9. Comparison of (1) air quality monitoring data in London
with (2) simulations based on the relative linear trend in NOx emis-
sions. The trend estimated as an exponential fit to emission esti-
mates derived from satellite data is also shown (3). The range of
uncertainties reported along with values of trends is estimated as
the standard deviation of the slope of the linear fit.

Fig. 9. Comparison of (1) air quality monitoring data in London
with (2) simulations based on the relative linear trend in NOx emis-
sions. The trend estimated as an exponential fit to emission esti-
mates derived from satellite data is also shown (3). The range of
uncertainties reported along with values of trends is estimated as
the standard deviation of the slope of the linear fit.

Note that if NOx emission estimates were derived directly
from the measured NO2 columns (as discussed in Sect. 3.1),
the linear NOx emission trends would be statistically dif-
ferent from the linear trends in the EMEP data in London,
Moscow and Ruhr agglomeration (see Table 2), while the
inverse modeling approach yields no significant differences
with the EMEP one for these cities. With the direct approach,
the agreement could become significantly better only in the
case of Berlin, where our estimates show a stronger negative
trend than the EMEP data.

4.2 Validation of derived NOx emission trend estimates
with independent measurements

In this section, we investigate whether the derived NOx emis-
sion trends and their nonlinear features are manifested also in
independent surface measurements. We used our estimates
of emission trends to scale the base case NOx emissions in
the CHIMERE grid cells attributed to a given agglomeration
(see Fig. 1). The model concentrations were compared with
the spatial average of the measured concentrations normal-
ized by their temporal average (over all years considered)
at each site. The results of the comparison are presented in
Figs. 9 and 10.

In the case of London (see Fig. 9), the linear trend in simu-
lated NOx concentrations coincides with that in the measure-
ments. Although this coincidence is likely occasional, a good
agreement between the simulated and measured trends in
London was, nevertheless, expected taking into account that
the NOx emission trend in London estimated in this study
is very close to that in the EMEP. Also for Great Britain as
a whole, changes in NOx emissions in the EMEP inventory
were found to be in accordance to inverted ones in our previ-
ous study (Konovalov et al., 2008).

In the case of other cites (see Fig. 10), the quantitative
agreement is not as good, but still rather satisfactory, at least
in the cases of Paris and Milan. Remaining discrepancies
can be explained not only by uncertainties in our emission
estimates but also by insufficient spatial coverage of the sur-
face measurements and by model errors. In the context of
the given study, it is important to consider if the surface mea-
surements manifest any evidences of nonlinearities in NOx
emission trends. For this purpose, we have performed two
model runs based on our estimates of linear and nonlinear
trends in NOx emissions, respectively. The idea of validation
of the revealed nonlinearities is to compare linear trends eval-
uated for two halves of the considered period of the surface
measurements and to investigate, whether or not the results
from the nonlinear approach agree better with independent
observations.

In particular, the linear trends of surface concentrations in
Paris are evaluated separately for the periods of 1996–2002
and 2002–2008. The magnitudes of the negative trends in
both the measured and simulated concentrations in the sec-
ond period are much larger than those in the first period. The
differences are statistically significant (outside of the total
uncertainty range) in both cases. In contrast, the simulations
based on the linear estimate of the NOx emission changes
do not demonstrate a statistically significant difference be-
tween the two periods. Importantly, there is a quantitative
agreement (within the uncertainty range) between the mea-
sured and simulated trends in surface concentrations in Paris.
Note that, as an additional test, we applied our algorithm di-
rectly to surface NOx observations in Paris. As a result, we
found an accelerating negative nonlinear trend, which is in
agreement with the trend obtained with satellite data within
its uncertainty limits.

The available measurements in the Milan agglomeration
show that the linear trend in the period from 1996 to 2003
was significantly different from that in the period from 2003
to 2008: the first period was characterized by a statistically
significant negative trend, while the second period shows a
positive (although statistically insignificant) trend. Similar
features are demonstrated by simulated concentrations ob-
tained with the nonlinear emission trend estimates, except
that the trend in the second period is statistically signifi-
cant. The difference between the trends calculated for the
two periods with the linear NOx emission trend estimates is
not statistically significant.
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Fig. 10. Comparison of (1) air quality monitoring data with simula-
tions based on (2) nonlinear and (3) linear trends of NOx emission
estimates derived from satellite measurements. The nonlinear (4)
and linear (5) NOx emission trends used in simulations are also
shown. The reported uncertainties of the piece-wise linear trends
are evaluated as the standard deviation of the slope of the corre-
sponding linear fits.

Fig. 10. Comparison of (1) air quality monitoring data with simulations based on (2) nonlinear and (3) linear trends of NOx emission
estimates derived from satellite measurements. The nonlinear (4) and linear (5) NOx emission trends used in simulations are also shown.
The reported uncertainties of the piece-wise linear trends are evaluated as the standard deviation of the slope of the corresponding linear fits.

In the case of Madrid, both simulations based on the
nonlinear emission trend estimates and the measurements
demonstrate significantly different linear trends for the two
(slightly overlapping) periods of 5 years: 2000–2004 and
2003–2007. And again, the nonlinear NOx emission trend
leads to much better agreement of simulations with the mea-
surements than the linear NOx emission trend. However,
there are significant quantitative differences between the
trends in the simulated and measured concentrations. These
differences could be explained by insufficient spatial rep-

resentativeness of available surface NOx measurements in
Madrid (because the measurements are mainly performed at
traffic sites) and an undetected positive trend (about 3 percent
per year) of NOx emissions from other sources (not apparent
at traffic sites).

As a caveat, note that the quantitative results (which are
rather encouraging) should be considered with care in view
of the limited amount of surface measurement data available
for this study and also possible model errors, which may
be due, in particular, to insufficient spatial resolution and
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possible uncertainties in VOC emission data. As it was al-
ready mentioned in Sect. 2, the resolution of the model used
in this study was limited not only by consideration of com-
putational costs but also by the resolution of available multi-
annual emission data. The difference between the resolution
of the EMEP data (50×50 km2) and that of our model grid
(1◦

×1◦) is small in comparison with the resolution required,
ideally, for adequate modeling on urban scales. Indeed, a
control multi-annual model run performed with the resolu-
tion of 0.5◦×0.5◦ has not revealed any considerable differ-
ences in the evolution of NOx concentrations in compari-
son with corresponding simulations presented in this paper.
Another caveat concerns possible inaccuracies of NOx mea-
surements performed by chemiluminescence analyzers due
to possible interference of non-NOx reactive nitrogen (NOz)
species (Dunlea et al., 2007). As it is discussed by Kono-
valov et al. (2008), this interference may lead to some bias
of a linear trend in the measured NOx concentrations, but it
is unlikely that such a bias exceeds 10 percent. It seems also
very unlikely that the measurement inaccuracies may be re-
sponsible for the strong nonlinearities of the trends in NOx
measurement data in Madrid, Milan and Paris, particularly
because NOx at these urban sites is not yet fully oxidized,
and thus the measurement inaccuracy is relatively small.

Taking into account all the results presented in this sec-
tion, we can conclude that surface measurements manifest
evidences of nonlinearities in NOx emission trends, in agree-
ment with the results retrieved from satellite data with our
nonlinear trend analysis. Using the results from a linear
emission trend analysis leads to poorer agreement between
modelled NO2 and independent measurements.

5 Conclusions

The data for tropospheric NO2 columns amounts derived
from long-term GOME and SCIAMACHY satellite measure-
ments are used to estimate trends in NOx emissions in the 12
largest urban agglomerations in Europe and the Middle East
for a 13 years period (1996–2008). The study is based on the
synergetic use of the satellite data and simulations performed
with a chemistry transport model. It involves an analysis
of different degrees of complexity ranging from evaluation
of linear trends in the time series of NO2 columns derived
from satellite measurements to the estimation of nonlinear
trends in NOx emission estimates obtained with an inverse
modelling method. The challenging part of the study is the
nonlinear trend estimation which is performed by means of
an original algorithm enabling filtering out noisy fluctuations
caused by measurement and model errors from the retrieved
time series of the NOx emission estimates. The algorithm
uses artificial neural networks for fitting the unknown trend
and a probabilistic approach along with the cross-validation
technique for estimation of its optimal parameters.

It is found that most of the urban agglomerations consid-
ered exhibit statistically significant (in terms of 68.3 per-
centile) linear trends in NOx emission, ranging from−5.2
(in Berlin) to +4.5 (in Tehran) percent per year, with strong
negative trends dominating in several Western European ag-
glomerations and positive trends outside of Western Europe.
As an exception, positive linear trends are also detected in
Spanish cities (in Barcelona and Madrid). This illustrates
a general picture of emission control measures having been
efficient for most of Western Europe, while increasing ur-
banization and/or traffic increases emissions especially in
Middle-East cities. The agreement between the trends es-
timated in this study and calculated with the EMEP data is
best in London and the Ruhr agglomeration, while the dis-
agreement is strongest in Tehran, where the EMEP data do
not exhibit any significant changes.

Statistically significant nonlinearities of NOx emission
trends are revealed in 5 megacity regions (Bagdad, Madrid,
Milan, Moscow and Paris). Specifically, for Madrid and
Moscow we found positive changes in the 1990s and neg-
ative changes in more recent years. An accelerating negative
trend was found for Paris. In contrast, the statistically signif-
icant negative trend in Milan in the period from 1996 to 2002
is not detected in later years.

Results of model runs using the obtained estimates of
emission changes are found to be consistent with indepen-
dent data of air quality monitoring in London, Milan and
Paris. It is found that nonlinear trends are more consistent
with near surface measurements than the corresponding lin-
ear trends in Madrid (where some quantitative inconsistency
was expected because of low spatial representativeness of the
available measurements), Milan and Paris. This justifies the
attempt to perform a more complex trend analysis including
also nonlinear trends.

On the whole, the results of this study confirm that satel-
lite measurements are a source of highly useful information
on multi-annual NOx emission changes, and it demonstrates
the feasibility of using a simple inverse modelling method
associated with the nonlinear trend analysis for quantifying
these changes in megacity regions. This approach may be
especially useful for densely populated regions in develop-
ing countries where dynamic changes in economic activities
may be accompanied by corresponding (nonlinear) variations
in air pollutant emissions but where alternative information
is insufficient.
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