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Abstract. Hazardous impact of air pollutant emissions with independent air quality monitoring data. A good quan-
from megacities on atmospheric composition on regional anditative agreement between the linear trends in the simulated
global scales is currently an important issue in atmospheri@and measured near surface N€@ncentrations is found in
research. However, the quantification of emissions and retondon.

lated effects is frequently a difficult task, especially in the
case of developing countries, due to the lack of reliable data
and information. This study examines possibilities to re-
trieve multi-annual N@ emissions changes in megacity re-

gions from satellite measurements of nitrogen dioxide and toThe largest urban agglomerations (megacities) concentrat-

quantify them in terms of linear and nonlinear trends. By . . . : .
L2 . ing a considerable fraction of the world’s population (see
combining the retrievals of the GOME and SCIAMACHY e.g. Brinkhoff, 2009) are known to be associated with se-

satellite instrument data with simulations performed by the . . . , L
: . . “rious air pollution problems and to contribute significantly
CHIMERE chemistry transport model, we obtain the time he global anth . £ air polluti i
series of NQ emission estimates for the 12 largest urban ag-tO the global anthropogenic sources of air pollution (Malina
and Molina, 2004; Marshall, 2005; Lawrence et al., 2007;

glomerations in Europe and the Middle East in the perlodButler et al., 2008 Chan and Yao, 2008). The physical and
from 1996 to 2008. We employ then a novel method allow- : . L
chemical processes in the atmosphere of megacities and sur-

ing estimation of a nonlinear trend in a noisy time series Ofrounding regions have been in the focus of numerous studies
an observed variable. The method is based on the proba(—See e.a. Wana et al. 2006 de Fov et al. 2007: Molina et
bilistic approach and the use of artificial neural networks; it al 200? Lei eg'][ al 2'(’)08_ I\/iiyakaw); ot al., 2008,' Nunner-

does not involve any quantitative a priori assumptions. As a acker etal. 2008 Esposito et al., 2009; Singh et al., 2009)
result, statistically significant nonlinearities in the estimated ’ ! ’ " ' o :
NOy emission trends are detected in 5 megacities (Bagdad;,ro properly simulate these processes and to estimate the ef

) : ) - N ects of air pollutant emissions in megacities on both local
Madrid, Milan, Moscow and Paris). Statistically significant _. arp o 9 .
) ) air quality and composition of the atmosphere on regional
upward linear trends are detected in Istanbul and Tehran . .
. . ; . and global scales, atmospheric models should be provided
while downward linear trends are revealed in Berlin, Lon-

don and the Ruhr agalomeration. The presence of nonlinear\{Vith accurate information on emissions of air pollutants and
S nragg n. | NE prese .. their temporal variability. However, available estimates of air
ities in NG, emission changes in Milan, Paris and Madrid is

. ; . . pollutant emissions in megacities are currently rather uncer-
confirmed by comparison of simulated N©oncentrations o - T
tain; this is reflected, specifically, in big differences between

data of different “bottom-up” emission inventories (Butler et
al., 2008). Itis also poorly known to what extent the available

Correspondence td: B. Konovalov emission inventories are capable to reflect actual inter-annual
BY (konov@appl.sci-nnov.ru) and multi-annual changes in emission rates.
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As an alternative to the “bottom-up” emission inventory “turnaround” point in the trend of stratospheric ozone (see
approach which requires detailed information about source.g., Reinsel et al., 2005; Vyushin et al., 2007). A more gen-
and emission factors, there is a possibility to derive emissioreral approach to detect a nonlinear trend from a noisy time
estimates directly from ambient measurements (see, e.gseries of a measured characteristic is based on the spectral
Enting, 2002). The “measurement-based” approach provednalysis (see, e.g. Moore et al., 2005 and references therein).
to be especially fruitful when used with satellite measure-However, the spectral analysis would not be helpful in our
ments of the composition of the troposphere. In particular, itcase because the available record of,N®lumns retrieved
has been demonstrated that satellite measurements of nitrércom satellite measurements is too short.
gen dioxide can be used for identification of Nemission Here we perform a nonlinear trend analysis by means of
sources (Richter etal., 2004, Beirle et al., 2004; Jaegflal.,  an original algorithm based on the probabilistic Bayesian ap-
2004; Beirle et al., 2006; Boersma et al., 2005; Martin et al.,proach which is common for inverse modelling and data as-
2007; Lin et al., 2010), validation and improving of available similation studies. The basic ideas of our method are the
data on the spatial structure of N®@missions (Martin etal., yse of artificial neural networks for approximating nonlinear
2003, 2006; Konovalov et al., 2006a, b; Toenges-Schulletrends and a cross validation technique for constraining the
et al., 2006; Napelenok et al., 2008), as well as a source opptimal fit and for estimation of random uncertainties in the
independent information on their temporal variability (Beirle input data. The applicability of the method is based on a few
etal., 2003; Bertram et al., 2005; Wang et al., 2007; Boersmajeneral assumptions, but it is not assumed that the trend has
et al., 2008; Kaynak et al., 2009) and multi-annual changesany specific character.

(e.g., Richter et al., 2005; van der A et al., 2006, 2008; Uno - A important feature of our analysis is that it does not
et_ al., 2007; Konovalov et al., 2008; Stavrakou et al., 2008;j0lve any subjectively-defined a priori quantitative con-
Kim et al., 2009; Kurokawa et al., 2009) both on global and graints which are typically involved in inverse modelling
regional scales. _ _ studies. Another distinctive feature of this study is the use
Here we discuss satellite measurement-based estimates gf independent multi-annual data of air quality monitoring
NOx emission trends in several megacity regions in EUrop&y, several megacities for validation of N@mission trends
and the Middle East. To our knowledge, the N@mis-  gerived from satellite measurements. The comparison with
sion trends in the compact regions considered in this studyface measurements is important in view of possible sys-
have not yet been addressed in any dedicated study, althougBmatic uncertainties in the derived trend estimates, which
some relevant estimates have been reported in the framesinerwise are difficult to evaluate.
work of a more general global or continental-scale analysis The paper is organised as follows. The data used for our

(Konovalov, 2007; Konovalpv et al., 2008; van dgr Aet al.., analysis are described in Sect. 2. The methods employed to
2008). Note that some major urban agglomerations Cor‘S'daerive time series of annual estimates of Né&nissions in

_ered here do not_satlsfy the commaon def'”'“o'? of a meg'ac'megacity regions from satellite measurements and to evaluate
ity as a metropolitan area with a total population in excess

£10 mill le b hel ¢ I th nonlinear trends in NQemissions are presented in Sect. 3.
0 million people, but, nevert eless, we reter _to all theser o results of our analysis and their validation are discussed
densely populated areas (having a total population of mor

- e 1074y Sect. 4. Section 5 summarises the major findings of this
than 4 million people) as megacities for the sake of concise-, tudy;
ness. The method used here involves a simple combination o% '

retrievals of GOME and SCIAMACHY satellite instrument

data with model-simulated NCcolumns. The satellite mea-

surements of N@columns are available since 1996; the pe- 2 Measurement and model data

riod addressed in this study includes 13 years (1996—2008).

Importantly, we do not assume that the estimated emissio2.1 Satellite data

changes can be adequately described in terms of a linear

trend. Although this assumption proved to be useful in previ-We use retrievals of the data of the GOME (Burrows et
ous papers analysing multi-annual changes in@umns  al., 1999) and SCIAMACHY (Bovensmann et al., 1999) in-
measured by satellites (e.g., Richter et al., 2005; van der A estruments onboard the ERS-2 and ENVISAT-1 satellites of
al., 2006, 2008; Konovalov et al., 2008), it appears to becoméhe European Space Agency (ESA). We employ seven years
less adequate as the analysed time series becomes longét996-2002) of the GOME measurements combined with
Unfortunately, while the linear trend analysis can be donesix years (2003—2008) of the SCIAMACHY measurements.
with a standard technique, there exists no common methodfhe GOME measurements were performed with a horizontal
ology which could be employed to estimate nonlinear trendsresolution of 3240 kn?. The satellite overpass time was

in any arbitrary case. One of the easiest ways to account foabout 10:30 local standard time (LST), and global coverage
a possible nonlinearity of a trend is to fit the data by meanswvas achieved within three days at the equator. The nomi-
of piece-wise linear regression models. This technique hasal horizontal resolution of SCIAMACHY is much higher
been useful, in particular, in studies aimed at detection of &60x 30 kn?) but at the expense of a longer period needed to
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Fig. 1. The areas attributed in model simulations to the megacity regions considered in this study.

obtain full global coverage (6 days). The ENVISAT-1 over- [j —m]?cogy)? 2
pj=exp| ———5—— (1)

pass time is 10:00 LST at the equator. 252

The tropospheric N® column data products used here
have been retrieved from the satellite measurements by [lURVherec,;) are the original N@ column amounts in the grid
University of Bremen. The same data have already been use€gll i closest to a megacity centre, is the number of grid
in several earlier studies (Richter et al., 2005; Kim et al., cells on the longitudinal plane within 320 km (the typical res-
2006, 2009; Konovalov et al., 2008). The general descriptiorplution of the GOME measurementg),is the latitude, and
of the retrieval procedure can be found in Richter et al. (2005)c is an effective distance scale. Such a transformation of
and Kim et al. (2009). Below we describe in detail only the the NG columns is a heuristic method, which is used here
data pre-processing stage specific for the given study. because we had no more specific information about the rela-
tionship between the seasonally averageg N@umns from

. The g_oal of the pre-processing stage is to get consist_enéOME and SCIAMACHY. Note that the main complication
time series of N@columns for several areas selected for this in analytical consideration of this relationship is, specifically,

study. Specifically, we consider the 12 largest urban agglom—Olue to the fact that the area covered by SCIAMACHY mea-
erations covered by the domain of our regional model in Eu-

. . surements is also, to some extent, smeared between several
rope and the Middle East. These agglomerations are markegeIIS of our grid

in Fig. 1. Each of these agglomerations has a total population . .
of more than 4 million. We do not consider the megacities of The value of the dlgtance scale, was .est|mated o
' be equal 0.85:0.16 (grid cells) by minimizing the mean

Cairo and Alexandria because they are situated too Closel)équare d difference between the convolutedoNGIUmns for

to be adequately addressed in our analysis. Initial daily dat%003 and the original N©columns (from GOME) for 2002

for tropospheric N@ columns were projected onto 8x1° o ;
rid and averaged over three summer months (June—Augus ver the 12 megaqmes. Such an evaluatlonc.cof.s made
9 nder the assumption that the change ofyNfissions be-

of each year. To insure the consistency of the measuremen ; ; : :
data time series from the different instruments, the,N6l- tween the years 2002 and 2003 is small in comparison with

umn data from SCIAMACHY were convoluted over a typical the_ dl_ﬁerence betyveen the maximum and minimum NOx

: .emission rates during the whole period of 13 years. The un-
area covered by the GOME measurements. The idea of th'%ertaint ofs.. is rouahlv estimated by repeating the same
procedure is to simulate the smoothing of the spatial structure Y Olse gnly y rep 9

) . estimation ofs. independently for four randomly selected
0f NO; columns, introduced by the GOME measurement: subsets of 3 different megacities and calculating the standard

deviation of the obtained 4 independent estimates. This un-
om om -1 certainty is taken into account in our further analysis. Taking

OV =N" it )P Ok : into account our estimate af, the smoothing specified by
$® ;, e ,;, Eq. 3) supposes (based on the analogy with properties of
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the Gaussian distribution) that, for example, in the case ofments at traffic (or roadside) sites because of their low spatial
Paris, about 95 percent of the signal in the seasonally averrepresentativeness: we took into account that the data from
aged GOME data comes from the actualN®lumns within  traffic monitors when combined with monitors of other types
5 degrees of longitude or within about 360 km. Thus it should(e.g. with urban background monitors) could induce some
be kept in mind that we do not distinguish here betweendisproportional biases in the estimated trend. However, as
emissions in a given megacity and emissions in a surroundin@n exception we consider traffic monitors in Madrid because
urban agglomeration. The final steps of the pre-processingtherwise we would be left only with one monitor (of sub-
stage are the linear interpolation of the N@olumns be-  urban industrial type). In total, we considered data from six
tween the two belts of grid cells closest to a megacity centremonitoring sites in the London agglomeration, four sites in
in the north-to-south direction and averaging of the interpo-Madrid, six sites in Milan and ten sites in Paris. The selected
lated data corresponding to these grid cells. sites are listed in Table 1.

2.2 Data of ground-based measurements 2.3 Simulated data

In the context of the given study, the ground based meain parallel with satellite data we use simulations performed
surements are an indispensable source of independent infowith the CHIMERE chemistry transport model. CHIMERE
mation on emission changes in the considered megacitiess a three-dimensional Eulerian model designed to simulate
Specifically, the surface data are used for validation of theair pollution in the boundary layer and free troposphere on
NOy emission trends derived from satellite measurementsthe regional and continental scales. An in-detail description
While several hundreds of NOnonitors are currently oper- of CHIMERE is available on the web dtttp://www.Imd.
ational in Europe, only few of them were continuously avail- polytechnique.fr/chimere/ The tropospheric N® column
able during the whole period of 13 years considered, and noamounts simulated by CHIMERE were evaluated against the
all of the monitoring data are publicly accessible. Here weSCIAMACHY and GOME measurements in earlier studies
used the available monitoring data for London, Madrid, Mi- (Konovalov et al., 2005; Blond et al., 2007). In this study, the
lan, and Paris. model’'s domain covers all of Europe, the Mediterranean and
The data for London agglomeration are obtained fromthe Middle East with a horizontal resolution dfx1°. This
(i) UK National Air Quality Archive (www.airquality.co.  rather coarse resolution was chosen in view of computational
uk) and (ii) the London Air Quality Network vgww. costs of the study and also taking into account that the avail-
londonair.org.uk The data for Madrid and Milan are taken able multi-annual data of the EMEP emission inventory pro-
from the Airbase databasét{p://air-climate.eionet.europa. vided with the spatial resolution of 50 kn? did not allow
eu/databases/airbdsand the data for Paris have been pro- us to increase the resolution of our simulations considerably
vided by AIRPARIF fttp://www.airparif.asso.jr The mea-  using, e.g., a “nested domain” option. The simulations were
surements are carried out by means of the chemiluminesperformed with 12 vertical levels specified in hybrid coordi-
cence technique. In the cases of London and Paris, we weneates with the top of the CHIMERE vertical domain fixed at
provided with NG (NO+NQO,) measurements for all sum- 200 hPa pressure level. The multi-annual model runs are per-
mer seasons from 1996 to 2008. The availablexN@a-  formed with constant boundary conditions specified by us-
surements in Madrid span the period of only 8 years (2000-ing monthly average (“climatological”) values of the LMDZ-
2007), and only data of Nmeasurements for the period INCA2 model (Hauglustaine et al., 2004). Other specific fea-
from 1999 to 2007 were available for Milan. Note that even tures of the model configuration are the same as described in
the limited records of measurements in Madrid and Milan Konovalov et al. (2008). The simulated N©@olumns were
were important to consider in view of interesting nonlinear sampled consistently with the measurement-based daily NO
features detected in our analysis (see Sect. 4.1). columns at the times of satellite overpasses. They were then
To insure the consistency of the surface data with the satelaveraged over three summer months and convoluted in the
lite measurements, the raw hourly data (both from the modesame way as the SCIAMACHY data (see Bj.
and measurements) have first been averaged over the period CHIMERE was run independently for each summer sea-
from 10:00to 11:00 LST. Next, the daily data were processedson starting on 24 May with the same initial and boundary
to get the seasonally averaged (over three summer monthgpnditions. Anthropogenic emissions are based on the so-
daily mean NQ (or NOy) concentrations. Taking into ac- called “expert” annual data of the EMEP emission inven-
count that many days were not provided with data, someory (UNECE, 2009) for the years 1996-2007. The data
common criterion was needed for the selection of monitorswere obtained from the EMEP web site on ax&D kn?
Here we chose to consider only those monitors that providedyrid in August 2009. As 2008 emission data were not avail-
data for at least 60 days in each summer of the consideredble, they are filled in by a linear interpolation between years
period. This criterion is a result of a subjective trade-off be- 2007 and 2010 (for the latter a “projection” was available).
tween quality and amount of the monitoring data. In view A base multi-annual run of CHIMERE was performed with
of the goal of our analysis, we opted to disregard measureeonstant NQ emissions (corresponding to the year 2001),
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Table 1. The air quality monitors selected for this study.

City Monitor’s name Monitor’s type
(location)
London London Bexley suburban
London N. Kensington urban background
London Elthem urban background
Rochester rural
Ealing-Town Hall urban background
Hackney-Clapton urban background
Madrid ES0116 urban traffic
ES0117 urban traffic
ES0123 urban traffic
ES1162 industrial suburban -8 8 24 40° 56°
Milan IT1017 suburban background p— ’ ’ ! F——
IT1088 suburban background 00 10 20 25 30 40 50 70 150
IT1174 rural background trop. NO, col. [molec/cm?]x10'5: CHIMERE : Jun-Aug 2003
IT1203 suburban background
ITO732 suburban background
ITO774 rural background
Paris Issy urban
Paris18 urban
Paris12 urban
Aubervilliers urban
Versailles suburban
Vitry urban
St.-Denis urban
Paris7 urban
Montgeron urban
Bobigny urban

while annual EMEP emission data are used for other speciegig_ 2. Tropospheric N@ columns derived from SCIAMACHY
(NMVOC, CO and SQ). measurementga) in comparison with the corresponding NO
As an illustration of the CHIMERE performance, Fig. 2 columns simulated by CHIMEREb). The data shown are averages
shows the mean summertime values of N€®lumns simu-  over three summer months of 2003.
lated by CHIMERE in comparison with corresponding val-
ues derived from SCIAMACHY measurements. The model
tends, on the whole, to slightly underestimate the retrievals3 Method
from satellite measurements, but such underestimation is not
important for this study, because we consider variations of3-1 Combining the measured and simulated N@
NO, columns in a relative scale. Stronger differences be- columns
tween the simulated and measured NE&lumns in sev-
eral Middle East countries and Spain are probably indica-WWe assume that the dependence ofoNfdlumns on NQ
tive of missing NQ sources, as discussed in Konovalov et emissions can be approximated by a linear relationship:
al. (20064, b).
Taking into account the limited spatial resolution of the C(#;) ~ Cp(t;) + o (t;) E(t;) 2
satellite data, the emission estimates for a given megacity
are assumed to be representative of an are& ®25(see  whereC (1) is the seasonally averaged NEolumn amount
Fig. 1). That s, the size of an urban agglomeration resolvedyyer g given megacity for a yearC, (1) is the “background”
in satellite measurements is assumed to be typically in theyo, column amount which is not related to emissions from
range from 200 to 300 km. Note that the N€missiontrend  the given megacityE(;) is the seasonally averaged NO
estimates obtained in this study (see Sect. 4.1) do not depengimission rate and (#;) is the sensitivity of the N@columns
in any way on this definition which is only used for interpre- o changes of the NQemissions, which is assumed to be
tation and validation of our results. independent on the NOemissions themselves. Having in
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NOy emissions. The changes in biogenic emissions are dis-
regarded; as it was argued in Konovalov et al. (2008), they
are much slower (at least in Europe) than changes in anthro-
pogenic emissions. The contribution of anthropogenic emis-
sions outside of a given agglomeration to Nédlumns over
B the agglomeration is neglected.
Validity of the linear approximation in Eq. (2) was con-
— firmed by a model test run which yielded an almost per-
fect linear relationship between N@missions scaled in the
L range typical for the trends retrieved in this study and,NO
7 : : columns calculated for all of the megacities considered (see
+ .+ + London: modeling results . .
0.4 — B Leridars lifear it | Fig. 3). Another model run was performed to estimate the
/1a A a Moscow: modeling results contribution of anthropogenic NOemissions outside of a
F I B Moscow: linear fit given agglomeration to N9columns over the agglomera-
. O O O Istanbul: modeling results tion. In this run, the anthropogenic emissions in the megac-
% ——  — Istanbul: linear fit ity regions specified in Fig. 1 were put to zero. As a re-
0 ' T ' T T | sult, it has been estimated that the “external” part of,NO
0 04 0.8 1.2 columns over the megacities is typically less than 15 per-
NOy emission scaling factors cent. A corresponding bias in the estimated emission trend
in a megacity depends on the trends in Némissions in

Fig. 3. A model-based test confirming the assumption about a lin-the surrounding regions. If the emission changes are similar
ear dependence of NOcolumns on NQ emissions in megacity IN both the megacity and surrounding regions, then the ef-
regions: the N@ emission rates for the year 2001 have been scaledfect of the external part of the NGcolumn amount should
within the estimated range of N@mission changes in correspond- be rather negligible. In fact, both the EMEP emission in-
ing megacities from 1996 to 2008. The results are shown for threeventory (Vestreng et al., 2009) and inverse modeling results
megacities (London, Moscow and Istanbul) representing diﬁerent(Konova|ov et al., 2008) suggest there are no strong differ-
geographical regions. The intercept reflects the “background¥ NO gnces in NQ emission changes between most of the regions
amounts which are not dependent on anthropogenig &tissions  qnsidered here and their surroundings. A check of the self-
in the considered megacities. consistency of our estimates for all the megacities regions
has been performed: that is, the linear emission trend esti-

mind this linear approximation (2), we estimate the normal-mates obtained in this study were employed in the model to

1.2+

0.8

normalized NO» columns

ized annual emission rates as follows: simulate NQ columns which were then used as input data in
C, (1) — Cim (1) Eq. (3) instead of the satellite data, and the Ilnear tre_nds in

Et)/Eo= 3) the simulated N@ columns were compared with the linear
YCn (i) E=Eg — Com () trends in the original data from satellites. This test yielded

where the indexes"” and “m” denote the observed and mod- an expected positive result, the difference between the lin-
elled data, respectivel¥;) is the emission rate for the refer- ear trends in the measured and simulated M@umns also
ence year (2001), andis the correction factor used to com- being, on average, about 15 percent.
pensate for systematic differences between the simulated and Note that the inter-annual variations of N@missions
observed N@ columns. The magnitude ¢f is evaluated as  (E(t;)/Eo) can, in principle, be estimated directly from the
the ratioC, / C,, for the year 2001. measured N@ columns as the& (¢;)/ Co ratio, whereCy is

By employing the chemistry transport model in the con- the NG, columns in the reference year. Figure 4, where the
text of Eq. @) for inversion of the relation (2), we attempt relative variations of the measured N@olumns are shown
to account for those variations in N@olumns that are due on the same scale as variations of the yN&nission esti-
to meteorological variability and to estimate that part of the mates, gives an idea about the differences between the two
NO_ columns over a megacity that is not associated with lo-approaches, and it also shows other quantities involved in
cal anthropogenic NQemissions. It is particularly impor- Eq. ). It can be seen that the difference in the temporal
tant to try to “filter-out” the changes in NfOcolumns asso-  evolution of the measured NGcolumns and the emission
ciated with multi-annual meteorological variability such as, estimates is not large on average, but can be significant in
e.g., the North Atlantic Oscillation (see, e.g., Eckhardt et al.,some cases. In particular, the magnitudes of the linear trends
2003). This approximation allows us to take into accountin NOy emissions are considerably larger than those i NO
also the changes in the Ndifetime associated with the as- columns in several Western European megacities (Berlin,
sumed changes of emissions of volatile organic compound&ondon, Milan and Paris), and also in Bagdad, Tehran and
(VOC). The background Ngxolumn amounts(y,, (1), were  Moscow. The impact of the background N©olumns on
evaluated in a special model run with zero anthropogeniche estimates of Nemission trends is rather negligible in
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Fig. 4. The combined time series of satellite déta- Cy) for tropospheric N@ columns in comparison with the NQolumns simulated

by CHIMERE with constant NQ emissiong2— C,;) and with zero anthropogenic emissions{8},,,). The time series of NQemission
estimates (4 E) are also shown. Magnitudes of slopes of linear fits are related to values of corresponding characteristics in 1996. Uncertainty
range is given in terms of the 68.3 percentile (one sigma).

the cases of London and the Ruhr region (more specificallyulated in megacities of France, Germany and Great Britain:
if this impact were disregarded, then the resulting change irthere is also a contribution of long-term meteorological vari-
the linear NQ emission trends would be less than 10 percentability, but it remains unknown whether or not such variabil-
of their values) and the difference is mainly due to the trendsity is reproduced in our simulations adequately. In any case,
in the modelled N@ columns (se&,,, in EqQ.3). In contrast,  the impact of trends in the background NElumns on our
the role of the background NGrolumns is dominant in the results is quite negligible.

cases of Bagdad and Tehran. In the other cases, the contri-

butions of all factors to the differences between the trends The f?Ct that the |n:]er-annuz|al vanatl(;)ns '(;1 ;c)he rr:weasu(;etlj
in NOy emission estimates and in measured,N©lumns NO columns are rather poorly reproduced by the mode

are about equally important. Additional analysis has re-can be explained by considerable uncertainties in both the

vealed that the trends in the simulated data are mainly due tmheas#red and s!mulated Iﬂ@l?ll:]mr;'s. Taking into accoqnt
changes in emissions of volatile organic compounds (VOC)._t at the L_mcertamty range of the Jinear trends _(see Fig. 4)
Specifically, the model shows that a decrease of VOC emis!S larger in the case of the satellite data than in the cases
sions (which, according to the EMEP inventory, took place in of sm;]ulatlogs n |8 out ‘?f 12.re%|ons, I candbe cloncluded
Western Europe during the considered period) is associateffiat the random fuctu_atlons In the measure 20 umns
mainly with an increase of tropospheric NQpresumably &€ larger than those in the simulations. However, this ob-
due to a decrease in OH concentration). Note, however thatervation does not necessarily mean that the satellite data

the effect of VOC emission changes alone does not explairf"re more uncerta_ln. Values of the 5|mulated_ and measured
positive trends of the background N@olumn amount sim- NOz columns are in a rather good agreement in the reference
year (2001) in most cities, except for Istanbul, Madrid, and
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wherei is the temporal index (e.g. the year numbergre

| Tnput data: annual NO, emission estimates |

T errors, and; ={1,..., . In our casey are the natural log-
| Linear fit to the input data arithms of emission estimates obtained from B). (et us
v make three simple assumptions, which seem to be reasonable
Nonlinear:itf:ofresiduals by aneural network in the considered situation. First, the noise is uncorrelated
Finding the optimal constraint for weight coefficients of the neural (White)’ so that< gigi>= 0 for anyi ;é j’ and< 82 >= 0-2’
network: the golden section search method J . ! ..
where the angled brackets denote averaging over a statistical
Neural network training (optimizing the weight ensemble. Second,satisfies the normal distribution. And
coefficients) : the downhill simplex method . . .
third, the changes of the real valuere smooth in compari-
terations T — N F—— son with the level of noisex{,1 — 2x; +x;_1)? < o for any
out (validation) error i. This condition implies that we can disregard any single
measurement without losing essential (available) information
il about the trend.
Outputs: nonlinear trend of NO, emission estimates; Our goa| is to obtain a series of estimated VaMgSUCh
inter-annual (relative) changes of NO_ emissions 2 2 i .
that (x.; — x;)“<o < for anyi. It should be emphasised that

we neither impose any “external” a priori constraints to a

Fig. 5. Flow chart illustrating major steps of the algorithm for esti- trend, nor do we assume any definite level of uncertainties
mation of a nonlinear trend in a NGmission time series. in the input data.

3.2.2 Description of the algorithm
Tehran, where the simulated N@olumns are much lower

than the measurement-based ones probably due to strongfyhe basic steps of our algorithm are the following (see
underestimated Nemission rates (Konovalov et al., 2006a, Fig. 5). First, we use use a three-layer feed-forward network
b). with a sigmoid transfer function in combination with a lin-
If the chemistry transport model were perfect, the inverseear regression for approximation of the unknown nonlinear
modelling approach employed in this study would definitely trend:
lead to more accurate results than the direct approach. This N
is the main reason for our choice. It should be kept in mind, . ; .
however, that the estimates obtained by the inverse mod-* (W)_ﬁ0+ﬁll+];)wlkgk’
elling may be affected by possible unspecified model errors, 1 a
and that the “direct” method (used, for example, by Richter gy = - ,
et al., 2005, van der A et al., 2008; Kim et al., 2009) can L1explwaii +w3r)
also enable a reasonable estimate of the Bi@ission trends  whereg, andpg; are coefficients of a linear regressionare
in large urban agglomerations. In a general case, both apweight coefficients of a neural network, antis the num-
proaches can be subject to some systematic errors which ager of neurons (see, e.g., Nelson et al., 1991; Bishop, 1995).
difficult to estimate (otherwise they could be corrected). TheThe linear regression is fitted by the standard least-squares
detailed analysis of the differences between these two apmethod directly to the input data), while the neural net-
proaches goes beyond the scope of this paper. work is used to approximate only a residual (nonlinear) part
The natural logarithmse(= In(E)), of the estimates de- in variability of y. By definition, the coefficientvs is set
fined by Eq. 8) are used as input data for our analysis. A lin- to be zero; that is, itV =0, the neural network is not used,
ear fit of these data gives an exponential fit for the emissionsind the estimated trend is strictly linear. Neural networks
E, which optimally approximates the evolution of the emis- are employed here because they are commonly considered
sions, assuming a constant relative rate of their inter-annuas universal approximators. Specifically, it has been shown

®)

changes. (Hornik et al., 1989) that given a sufficient number of neu-
rons, a multi-layer feed-forward network can approximate
3.2 Estimation of a nonlinear trend any smooth function with any given accuracy. Neural net-
works are extensively used in air pollution studies for ap-
3.2.1 Formulation of the general problem proximation of unknown relationships between the observed

quantities and forecasting (see, e.g. Gardner and Dorling,
The estimation of the nonlinear trend in N@mission times  1998; Konovalov 2002, 2003; Lary et al., 2004; Hooyberghs,
series is a particular case of a general problem of estimatio2005; Argiriou, 2007; Feister et al., 2008).

of a nonlinear trend of a natural Charactel’isti(by a nOisy Second, we follow the Bayesian probabi”stic approac[’h
time series of its measurements (or estimates), which is commonly used in inverse modeling and data as-

similation studies and is applied here to the estimation of
yi=xi+e&,i€ly (4) weight coefficients of the neural network. Specifically, using
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Bayes’s theorem, we get the following a posteriori probabil- with different numbers of neurons are frequently insignifi-

ity distribution function pdf) for the weight coefficients. cant. Thus we define the optimal number of neurons in a dif-
ferent way. Specifically, we find the estimates of the trends
L (y; — Xei (W))? with all values of N in the range from 0 to n/6. The upper
pWly) ocexp[—; 202 Pa(W) ®  jimitfor N (which is, in our case, equals 2) is determined by
=

the consideration that the number of fitted parameters cannot
where p,(w) is the a prioripdf. Here we constrain a priori be larger than a half of the number of data points (taking into
only the maximum magnitude of the componentswthat  account our assumption that each second data point can be

is, regarded as “excessive”). We choose the smallest valje of
such that a corresponding nonlinear trend (if it is detected)

pa(W)=cons(>0) if |w|<wmax is significantly different from a linear trend but is not signif-

PaW)=0 if |w|> wmax (7) icantly different from trends obtained by the larger numbers

of neurons. Evaluation of the statistical significance level (in
wherewmax is a parameter estimated as described below, anderms of 68.3 percentile) is based on the uncertainty analysis
|w| is the absolute value of any weight coefficient used in thedescribed below. While minimizing the number of neurons,
neural network. In other words, the a priori probability of we also minimize the risk of overfitting. On the other hand,
|lw| is assumed to be a constant (larger than zery ffis we try to make sure that the network is not underfitted; that
less (or equal) thawmax and zero otherwise. The magnitude is why we test networks with different numbers of neurons.
of this constant is not important: formally, it can be deter- If N optimized in such a way equals zero (this may be, for
mined by demanding that the total probability is unity. In instance, whemmax=0 for anyN considered), the retrieved
principle, we could specify the a prigudf in different ways.  trend is linear.
The rectangular shape of the a pripdf was chosen as a re- Oncewmay is optimized,x, is estimated again, but this
sult of preliminary experiments with both artificial and real time employing the whole time series. Technically, the
data: it was found that this simple structure enables both efoptimization of wmax is carried out by means of the one-
ficient noise filtering and high sensitivity of the algorithm to dimensional golden section search method (Press et al.,
actual nonlinearities in input data. The maximum likelihood 1992). The optimization of the weight coefficients of the

estimate ofv can then be found as follows: neural network is achieved in the embedded cycle by the
; Nelder-Mead simplex algorithm (Press et al., 1992).
W=arg min[Z()’i _xei)z} lw € [~ wmax, Wmas 8) The noise level is estimated as follows:
i=1 1 A .
o?~ ;le()’i — Xei (W|wmax= Bmax))?. (10)

Third, we use the leave-one-out method of cross validation
in order to find the optimal value abmax. The idea is to  Note that such an estimated noise level takes into account
minimize the difference between a given measurement an@nly a random (varying) part of errors in the input dag, (

an approximation which is built without using this measure- assuming that the probability distribution of such errors is
ment. Specifically, using again Bayes’s theorem and assumstationary. In the case of NQemission estimates defined
ing a uniform a priori forvmax, we obtain the following prob- by Eq. (3),0 is determined by uncertainties both in satel-

ability distribution ofwmax: lite data and model errors. Note also thais estimated af-
ter having determined the best estimate of weighting coeffi-
I (i — Xei (W))? 9 cients; this estimate does not influence the optimization pro-
P (Wmax(y) o< €xp _; 202 © " Cedure specified by Egs. (5)—(9). The estimate of the noise

level is further used to assess the uncertainties in results by
The principal point here is that the estimatg is obtained  means of the Monte Carlo method. Specifically, we sample
without using a corresponding measuremgnBased onthe  the errorsg;, from the normal distribution witlr defined by
third assumption formulated in Sect. 3.2.1, we consider theEq. (10). Technically, such sampling is performed by means
differences between; andx,; as a manifestation of noise. of the Box-Muller method for generating random deviates
By finding the maximum of this distribution, we estimate with a normal distribution (Press et al., 1992). In the prob-
wmax. If the estimated value abmax is zero, then it means lem considered in this study, we have to take into account
that either the trend is linear or the nonlinearity is too weakalso the uncertainty of the convolution scalg,and thus we
in comparison with the noise level. also randomly change this factor within the estimated uncer-
In principle, a similar procedure could also be used to op-tainty range (see Sect. 2.1). This uncertainty is taken into
timize the number of neurongd]. However, in practice, itis account even if the algorithm yields only a linear trend. Ac-
also necessary to take into account that the uncertainties afordingly, the Monte Carlo experiment consists of the fol-
estimatesy,; obtained with a larger number of neurons are lowing steps. First, a random perturbation from the lognor-
larger. Besides, the differences between estimates obtainedal distribution is added to the optimal valuespf Second,
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the.algorithm. specified by Eq)C(9) is_ applie.d to the NG Table 2. Estimates (*) of the trends in NOemission and N©
emission estimates (see Eq. 3) obtained with the perturbegyymns for several urban agglomerations (in percent per year).

value ofs.. Third, the errors are added to the trerdes-

timated with the perturbeg}, and the estimation procedure

‘ ) 4 Cities NG emission trends Trends in NO
defined by Eqs.5)—(9) is repeated. These steps are iterated columns from
(with the fixed optimalN) many times (in this study, 300). satellites
Finally, given a set of samples ®f generated in the Monte This study EMEP
Carlo expenment, we flnd'(by. means of a simple iterative Bagdad 3.914421) —062 (0.31) 1.594:0.97)
procedure) the interval which includes at least 68.3 percent Barcelona 3.34 £1.04) —0.01(0.37)  3.05£0.78)
of the sampleg,. Berlin —5.25 @1.51) —3.37 @0.15) —3.63 &0.86)

Note that the procedure described above enables estima- 'stanbul 2.00€1.01)  1.72£040)  1.340.81)
tion of only that part of the uncertainties in our results, which =29 ~447(LOT) —4.13¢£0.27)  ~2.86 €0.89)
y pa g ) s Madrid 1.75@1.19) —0.47 ¢0.32)  1.77 £0.95)

are associated with random fluctuations in the input data. wmilan —1.41 ¢1.10) —3.48&:0.19)  0.41£0.77)
Estimation of uncertainties associated with any unidentified Moscow 1.88 £1.62) 3.72¢0.37) 0.50 £1.61)
drifts in the satellite and model data is much more difficult ;ﬁﬂfregion(**) % Eﬁgg; Y gg-‘z“z‘; e &g-gg;
and goes beyond of the scope of this paper. We expect, how- S—Petersburg  0.06 (+1.52) 2.65-036) —0.96 (-1.06)
ever, that the total impact of all potential sources of uncer- Tehran 4.47 @1.50) —0.63 £0.51)  3.47£1.07)

tainties on our estimates can be manifested in the comparison

of the retrieved emission trends with independent measure#) The reported values represent the relative linear trends (calculated by means of an
ments (see Sect. 4.2). exponential fit to the data) in average anthropogenic emission rates for three summer

months (June to August). The summertime emission estimates based on the EMEP
We characterise trends by the rate of inter-annual changesnnual data were obtained by means of the CHIMERE emission interface. Values
. . . . . provided in brackets are estimates of uncertainties of the linear fit in terms of the 68.3
Takmg into account that the algomhm described above is aprercentiIe. The megacity regions for which the statistically significant differences are
plied in this study to the |og-transformed N®mission esti- found between our estimates and the EMEP inventory are marked in bold. (**) the
. . h ion is defined d th ter of E: .
mates (see the last paragraph in Sect. 3.1), the relative rate §f"" 9o s defined aroundtthe center of Essen

inter-annual changes,, is calculated (in percent) as follows:

dencies. The noise level corresponds to that in a real time

series of the emission estimates (specifically, for Moscow).

The uncertainty intervals for the estimated rate of inter-1t can be seen that in spite of the large noise, our algorithm

annual changes are derived from the statistical distributiorhas managed to retrieve properly at least the qualitative non-

of §, obtained in the Monte-Carlo experiment. linear features of the “true” variations. Although these tests
The nonlinearity of the trend is considered as statisticallydo not provide a proof of validity of our method, they never-

significant if there are at least two different periods such thattheless show in an illustrative way that the method is capable

the corresponding uncertainty intervals of the rates of inter-to retrieve realistic trend estimates even from very noisy time

annual changes do not intersect. In other words, the trenderies.

of NOy emissions is nonlinear if there are statistically sig-

nificant variations of the rate of emission changes, because a

linear trend is characterized by a constant rate. 4 Results

8ei = [€XP(xip1 —xi) — 1] x 100(%); i=1,..n—1 (11)

3.2.3 Testing examples 4.1 NOy emission trend estimates
Before applying it to the real data, the algorithm was testedOur estimates of trends in NCGemissions in the urban ag-
with artificial time series representing both “ideal” and glomerations considered in this study in comparison with
“noisy” cases. The examples of application of our algorithm similar trends calculated with the EMEP data are presented
to artificial time series are presented in Fig. 6. In both casesin Figs. 7 and 8. Additionally, values of linear trends in our
we defined the “true” smooth changes shown in the left plotsemission estimates in comparison with those derived from
by red crosses. Similar to the case with real data, the artificiathe EMEP data are listed in Table 2. Note that the emis-
data were log-transformed before application of the trend ession data based on the EMEP inventory, which are compared
timating algorithm. It can be seen that when the noise isbelow with the observation based emission trends, represent
absent, the algorithm yields almost ideal fits. Some inaccu-annual emission data processed by the standard CHIMERE
racies are the result of constraining the neural network painterface to yield the daily average emissions for the summer
rameters using the cross-validation method. In essence, thgeason only.
uncertainties in the ideal case are due to the sparseness of Statistically significant nonlinearities are detected in five
data points in the time series. megacities (Bagdad, Madrid, Milan, Moscow and Paris).
The red crosses in the right plots of Fig. 6 show the dataSpecifically, for Madrid and Moscow we got positive
obtained after the noise was added to the same ideal depechanges in the 1990s and negative changes in more recent
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Fig. 6. Examples of application of the nonlinear trend estimation algorithm to artificial time séaiesythe “ideal” cases where the input
data are determined by smooth nonlinear functions(nd) cases where the input data are determined by the same nonlinear functions but
with added random perturbations. The results are obtained with two neurons in the netwaek (The uncertainties are evaluated in terms

of the 68.3 percentile.

years. Aninteresting nonlinearity which indicates the growth significance levels. Accordingly, our results should be un-
of the rate of the negative trend in recent years is also foundlerstood in the probabilistic sense as the most probable (but
for Paris. Most probably, the latest tendencies in Madrid,not necessarily true) estimates derived from the given sets of
Moscow, and Paris are related to the increase of the fractiomoisy data under the assumptions specified in the Sect. 3.2.1.
of modern cars equipped with catalytic converters. In con-However, in most cases some nonlinear tendencies in the in-
trast, the statistically significant negative trend in Milan in put data are visible to naked-eye inspection (see red crosses
the period from 1996 to 2002 was followed by some increasdn Fig. 7); in particular, the most obvious cases are Bagdad
of emissions (although this increase is not statistically signif-and Madrid. Taking this into account, we believe that our es-
icant). In Bagdad, the statistically significant positive trend timates are sufficiently meaningful and can be considered by
is detected since 2003; it can be suggested that this increasxperts together with other relevant data (from, e.g., bottom-
of NOx emissions is associated with economical changes irup emission inventories).

Iraq triggered by the events of the year 2003. Nonlinearities are not detected in the other regions, and

We would like to emphasize that the trend estimates shouldherefore linear trends are evaluated (see Table 2 and Fig. 8).
be considered together with their uncertainties. Because ofin particular, strong negative trends are detected in Berlin,
the strong noise in input data, we work with a rather low level London, and the Ruhr agglomerationg.2+1.5,—4.5+1.1,
of statistical significance (0.683): the nonlinearities revealed—4.04+1.3 percent per year, respectively). In contrast, posi-
in this study would not be significant at the 0.90 or 0.95 tive trends are found in Barcelona and Tehran£3.® and
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4.5+1.5). Note that a strong positive trend (&) in NO _ o _ _

columns over Tehran in the period from 1996 to 2006 wasFig. 8. The same as in Fig. 7 but for the megacity regions where sta-
reported earlier by van der A et al. (2008), based on the analtistically significant nonlinearities in inter-annual emission changes
ysis of a different product of retrieval of NGrolumns from ~ 2r€ not detected.

the GOME and SCIAMACHY measurements. h h | . h Kinds of d | h
The EMEP data are, at least, in qualitative agreemen{ e Ruhr agglomeration. Both kinds of data also suggest that

with our estimates in most European megacities (exce tforhe NG, emissions in Moscow during the period from 1996
P 9 P to 2004 have increased by about 20 percent.

Barcelona and S.-Petersburg) and also in Istanbul. Note : !
In contrast, our analysis does not confirm the strong de-

that the EMEP data for some cities show irregular inter- . . . .
. .crease of N emissions in Milan and the adjoining urban
annual changes which are probably artefacts of changes in

methodology used in the EMEP inventory for different years igrglogl erri[;%Tt:EE;ZS%OZ’ei‘:’ tﬂ:i(:'hcetid \?v)f;rtgfeﬁ(l;ﬂeizi:ensvﬁg\-/e
(R. Wankniiller, personal communication, 2009). An exam- Y- 99 P

ple is a “jump” of the EMEP emissions in 2006 in Paris, been underestimated in the EMEP data for the Spanish cities.

Changes in the EMEP data for Moscow also do not alwayslntgrestmgly, the EMEP. dgta for Madrid show,.nevertheless,
; o . o . “~a kind of nonlinearity similar to that revealed in our analy-
look quite realistic; in particular it is difficult to explain

o . is. The fact that the EMEP data for Bagdad and Tehran are
why the NG emissions slightly decreased between 2004 andzonstant indicate that EMEP did not have sufficient informa-

2005 but suddenly strongly increased (by more than 10 per-.on about emissions changes in these megacities, and thus
cent) between 2005 and 2006. Nonetheless, both the EMEE ™. : . 9 Lo gacities, and t

. . the information provided by satellites is really unique in this
data and our estimates show strong downward tendencies in
Berlin, London, Milan (until 2003), Paris (until 2006), and
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London: 6 NOy monitors: 1996-2008 In the case of Longon (seg F?g. 9), 'Fhe Iinegr trend in simu-
14 L L l ' l ! I 14 lated NQ, concentrations coincides with that in the measure-
+ + % measuraments (1) ments. Although this coincidence is likely occasional, a good
i model: linear trend (2) L . .
5 NV emissions: linear trend (3) w agreement between the simulated and measured trends in
B N S London was, nevertheless, expected taking into account that
*g @ the NQ, emission trend in London estimated in this study
3 E is very close to that in the EMEP. Also for Great Britain as
8 x a whole, changes in NCemissions in the EMEP inventory
) e were found to be in accordance to inverted ones in our previ-
Z 3 ous study (Konovalov et al., 2008).
(S % In the case of other cites (see Fig. 10), the quantitative
T £ agreement is not as good, but still rather satisfactory, at least
% . in the cases of Paris and Milan. Remaining discrepancies
< can be explained not only by uncertainties in our emission
estimates but also by insufficient spatial coverage of the sur-
0.6 | ' | ' | ' I 0.6 face measurements and by model errors. In the context of
1996 2000 2004 2008 the given study, it is important to consider if the surface mea-
year surements manifest any evidences of nonlinearities i NO
trends (%/yr): 1996-2008 emission trends. For this purpose, we have performed two
(;) 'j-gfg-g model runs based on our estimates of linear and nonlinear
E?’; :4‘0;0'0 trends in NQ emissions, respectively. The idea of validation

of the revealed nonlinearities is to compare linear trends eval-
Fig. 9. Comparison of (1) air quality monitoring data in London uated for two halves of the considered period of the surface
g. > P quaiity g measurements and to investigate, whether or not the results

with (2) simulations based on the relative linear trend inyN@is- f th i h bett ith ind dent
sions. The trend estimated as an exponential fit to emission esti OM the noniineéar approach agree betier with Independen

mates derived from satellite data is also shown (3). The range ofPServations. _ o
uncertainties reported along with values of trends is estimated as [N particular, the linear trends of surface concentrations in
the standard deviation of the slope of the linear fit. Paris are evaluated separately for the periods of 1996-2002

and 2002-2008. The magnitudes of the negative trends in
both the measured and simulated concentrations in the sec-
Note that if NQ emission estimates were derived directly ond period are much larger than those in the first period. The

from the measured Nf£xolumns (as discussed in Sect. 3.1), differences are statistically significant (outside of the total
the linear NQ emission trends would be statistically dif- uncertainty range) in both cases. In contrast, the simulations
ferent from the linear trends in the EMEP data in London, based on the linear estimate of the N@mission changes
Moscow and Ruhr agglomeration (see Table 2), while thedo not demonstrate a statistically significant difference be-
inverse modeling approach yields no significant differencestween the two periods. Importantly, there is a quantitative
with the EMEP one for these cities. With the direct approach,agreement (within the uncertainty range) between the mea-
the agreement could become significantly better only in thesured and simulated trends in surface concentrations in Paris.
case of Berlin, where our estimates show a stronger negativilote that, as an additional test, we applied our algorithm di-
trend than the EMEP data. rectly to surface N observations in Paris. As a result, we

found an accelerating negative nonlinear trend, which is in
4.2 Validation of derived NO emission trend estimates  agreement with the trend obtained with satellite data within

with independent measurements its uncertainty limits.

Inthi . . . hether the deri NG The available measurements in the Milan agglomeration
nthis section, we investigate whether the derived Ne@is- show that the linear trend in the period from 1996 to 2003

sion trends and their nonlinear features are manifested also ify, ¢ significantly different from that in the period from 2003
mfdep_enc_ienttsur(fjacte mealsutrﬁ ms nts. We u;%c_i our estimatgs >n0g: the first period was characterized by a statistically
of emission trends fo scale e base case Bissions in significant negative trend, while the second period shows a

the CHIMERE grid cells attributed to a given agglomerationafositive (although statistically insignificant) trend. Similar

(see F'gi 1). The model concentrations were compared Withe atures are demonstrated by simulated concentrations ob-

.the spatial average of the measured concentrations NOM3ined with the nonlinear emission trend estimates, except

ized by thelr temporal average (over a_II years con&dered}hat the trend in the second period is statistically signifi-

a'F each site. The results of the comparison are presented Tant. The difference between the trends calculated for the

Figs. 9 and 10. two periods with the linear NQemission trend estimates is
not statistically significant.
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| Madrid:|4 NOx rrlwnitors: I2000-2007 14 Milaln: 6 NO¥ monitolrsr 199912007 -
13 1 ! 1 \ 13 i 1 1 L . | )
+ + + measurements (1) T + frrgizzrrre];?::a(:t)rend 2)
1 O O O model: nonlinear trend (2) r - i A A A " I: i ! 403 L
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= 1.2 . e ; 122 =1 — - — emissions: nonlinear trend (4) e
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1) 0.3+3.0 -3.840.9 (1) -8.343.2 2.2+2.6
(2) 3.1£1.2 -0.6+0.8 () -4.2+1.5 3.4+0.7
(3) 2.840.9 2.1+0.8 (3) -1.4+2.0 -0.1+0.6
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Fig. 10. Comparison of (1) air quality monitoring data with simulations based on (2) nonlinear and (3) linear trends eii&3ion
estimates derived from satellite measurements. The nonlinear (4) and linear 5®rhi€sion trends used in simulations are also shown.
The reported uncertainties of the piece-wise linear trends are evaluated as the standard deviation of the slope of the corresponding linear fits

In the case of Madrid, both simulations based on theresentativeness of available surface ,N@easurements in
nonlinear emission trend estimates and the measurementdadrid (because the measurements are mainly performed at
demonstrate significantly different linear trends for the two traffic sites) and an undetected positive trend (about 3 percent
(slightly overlapping) periods of 5 years: 2000-2004 andper year) of NQ emissions from other sources (not apparent
2003-2007. And again, the nonlinear N@mission trend  at traffic sites).
leads to much better agreement of simulations with the mea- As a caveat, note that the quantitative results (WhICh are

surements than the linear N@mission trend. However, rather encouraging) should be considered with care in view

there are significant quantitative differences between thef the limited amount of surface measurement data available
trends in the simulated and measured concentrations. Theggr this study and also possible model errors, which may

differences could be explained by insufficient spatial rep-pe due, in particular, to insufficient spatial resolution and
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possible uncertainties in VOC emission data. As it was al- It is found that most of the urban agglomerations consid-
ready mentioned in Sect. 2, the resolution of the model usedred exhibit statistically significant (in terms of 68.3 per-
in this study was limited not only by consideration of com- centile) linear trends in NQemission, ranging from-5.2
putational costs but also by the resolution of available multi- (in Berlin) to +4.5 (in Tehran) percent per year, with strong
annual emission data. The difference between the resolutionegative trends dominating in several Western European ag-
of the EMEP data (5850 kn?) and that of our model grid  glomerations and positive trends outside of Western Europe.
(1°x 1°) is small in comparison with the resolution required, As an exception, positive linear trends are also detected in
ideally, for adequate modeling on urban scales. Indeed, &panish cities (in Barcelona and Madrid). This illustrates
control multi-annual model run performed with the resolu- a general picture of emission control measures having been
tion of 0.5 x0.5° has not revealed any considerable differ- efficient for most of Western Europe, while increasing ur-
ences in the evolution of NOconcentrations in compari- banization and/or traffic increases emissions especially in
son with corresponding simulations presented in this papeMiddle-East cities. The agreement between the trends es-
Another caveat concerns possible inaccuracies of M@a-  timated in this study and calculated with the EMEP data is
surements performed by chemiluminescence analyzers dueest in London and the Ruhr agglomeration, while the dis-
to possible interference of non-N@eactive nitrogen (Ng agreement is strongest in Tehran, where the EMEP data do
species (Dunlea et al., 2007). As it is discussed by Kono-nhot exhibit any significant changes.

valov et al. (2008), this interference may lead to some bias Statistically significant nonlinearities of NOemission

of a linear trend in the measured N©@oncentrations, but it trends are revealed in 5 megacity regions (Bagdad, Madrid,
is unlikely that such a bias exceeds 10 percent. It seems alsililan, Moscow and Paris). Specifically, for Madrid and
very unlikely that the measurement inaccuracies may be reMoscow we found positive changes in the 1990s and neg-
sponsible for the strong nonlinearities of the trends inkNO ative changes in more recent years. An accelerating negative
measurement data in Madrid, Milan and Paris, particularlytrend was found for Paris. In contrast, the statistically signif-
because NQat these urban sites is not yet fully oxidized, icant negative trend in Milan in the period from 1996 to 2002
and thus the measurement inaccuracy is relatively small.  is not detected in later years.

Taking into account all the results presented in this sec- Results of model runs using the obtained estimates of
tion, we can conclude that surface measurements manifegmission changes are found to be consistent with indepen-
evidences of nonlinearities in N@mission trends, in agree- dent data of air quality monitoring in London, Milan and
ment with the results retrieved from satellite data with our Paris. It is found that nonlinear trends are more consistent
nonlinear trend analysis. Using the results from a linearwith near surface measurements than the corresponding lin-
emission trend analysis leads to poorer agreement betweegar trends in Madrid (where some quantitative inconsistency
modelled NQ and independent measurements. was expected because of low spatial representativeness of the

available measurements), Milan and Paris. This justifies the
attempt to perform a more complex trend analysis including
also nonlinear trends.

On the whole, the results of this study confirm that satel-
lite measurements are a source of highly useful information
on multi-annual N@ emission changes, and it demonstrates

Stthe feasibility of using a simple inverse modelling method

largest urban agglomerations in Europe and the Middle Ea associated with the nonlinear trend analysis for quantifying

for a 13 years period (1996—2008). The study is based on th : . . ’
. . . . ese changes in megacity regions. This approach may be
synergetic use of the satellite data and simulations performe ; . .
especially useful for densely populated regions in develop-

with a chemistry transport model. It involves an analysis . . ; ; . L
. . : .~ —ing countries where dynamic changes in economic activities
of different degrees of complexity ranging from evaluation

of linear trends in the time series of N@olumns derived may be accompanied by corresponding (nonlinear) variations

. S . in air pollutant emissions but where alternative information
from satellite measurements to the estimation of nonlinear._ . o

! o . : . ) is insufficient.
trends in NQ emission estimates obtained with an inverse

modelling method. The challenging part of the study is the ocknowledgements. B. Konovalov acknowledges the support by
nonlinear trend estimation which is performed by means ofihe Russian Foundation for Basic Research (grant No. 08-05-00969)
an original algorithm enabling filtering out noisy fluctuations and Russian Academy of Sciences (in the framework of the Pro-
caused by measurement and model errors from the retrievegramme for Basic Research “Physics of Atmosphere; Electrical
time series of the N@Qemission estimates. The algorithm Processes, Radiophysical Methods of Research”). The authors ac-
uses artificial neural networks for fitting the unknown trend knowledge the support of the European Commission through the

and a probabilistic approach along with the cross-validationFPé GEOmon Integrated project (the contract number FP6-2005-
technique for estimation of its optimal parameters. Global-4-036677) and through the Seventh Framework Programme

(FP7/2007-2013) under grant agreement no. 212095 (CITYZEN).

5 Conclusions

The data for tropospheric NOcolumns amounts derived
from long-term GOME and SCIAMACHY satellite measure-
ments are used to estimate trends inNhissions in the 12
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