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Abstract. As part of the OP3 field study of rainforest
atmospheric chemistry, above-canopy fluxes of isoprene,
monoterpenes and oxygenated volatile organic compounds
were made by virtual disjunct eddy covariance from a South-
East Asian tropical rainforest in Malaysia. Approximately
500 hours of flux data were collected over 48 days in April–
May and June–July 2008. Isoprene was the dominant non-
methane hydrocarbon emitted from the forest, accounting
for 80% (as carbon) of the measured emission of reactive
carbon fluxes. Total monoterpene emissions accounted for
18% of the measured reactive carbon flux. There was no ev-
idence for nocturnal monoterpene emissions and during the
day their flux rate was dependent on both light and tempera-
ture. The oxygenated compounds, including methanol, ace-
tone and acetaldehyde, contributed less than 2% of the total
measured reactive carbon flux. The sum of the VOC fluxes
measured represents a 0.4% loss of daytime assimilated car-
bon by the canopy, but atmospheric chemistry box modelling
suggests that most (90%) of this reactive carbon is returned
back to the canopy by wet and dry deposition following
chemical transformation. The emission rates of isoprene and
monoterpenes, normalised to 30◦C and 1000 µmol m−2 s−1

PAR, were 1.6 mg m−2 h−1 and 0.46 mg m−2 h−1 respec-
tively, which was 4 and 1.8 times lower respectively than the
default value for tropical forests in the widely-used MEGAN
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model of biogenic VOC emissions. This highlights the need
for more direct canopy-scale flux measurements of VOCs
from the world’s tropical forests.

1 Introduction

Trees assimilate carbon from the atmosphere through the
process of photosynthesis, as a result of which, tropical
forests are estimated to sequester up to 1.3 Pg of carbon an-
nually (Lewis et al., 2009). Some of this assimilated carbon
is released back into the atmosphere in the form of reactive
volatile organic compounds such as isoprene and monoter-
penes (Laothawornkitkul et al., 2009). Emissions of biogenic
volatile organic compounds (BVOC) therefore contribute to
the global carbon cycle. They can influence both atmospheric
composition and global climate in several key ways. First,
due to their high reactivity with respect to the hydroxyl rad-
ical (OH), BVOC emissions mediate the oxidative capacity
of the Earth’s atmosphere, possibly amplifying the persis-
tence of important greenhouse gases such as methane and
HCFCs (Granier et al., 2000; Lelieveld et al., 2002). Sec-
ondly, monoterpenes and sesquiterpenes are known to be pre-
cursors for biogenic secondary organic aerosol (BSOA) (e.g.,
Hallquist et al., 2009), which are radiatively active and hence
important in the global climate system. There is evidence
to suggest that isoprene may also contribute to BSOA for-
mation (Claeys et al., 2004; Paulot et al., 2009). Chamber
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studies have shown the aerosol yield from isoprene to be
small or negligible (Kroll et al., 2005, 2006; Kleindienst et
al., 2006; Ng et al., 2008), yet the globally high emission
rates of isoprene (500–750 Tg yr−1; Guenther et al., 2006)
indicate that its contribution to organic aerosol may be sig-
nificant (Zhang et al., 2007; Robinson et al., 2010), perhaps
through the formation of water soluble compounds such as
hydroxyhydroperoxides and epoxides (Paulot et al., 2009).
However, Kiendler-Scharr et al. (2009) have demonstrated
how isoprene emissions may actually suppress BSOA for-
mation in a plant chamber study and thus its role remains
unclear. Finally, in the presence of oxides of nitrogen, VOCs
mediate in the formation of photochemical pollutants such
as tropospheric ozone and peroxyacetyl nitrate (PAN) (e.g.,
Sillman, 1999; Hewitt et al., 2009). At high concentrations,
ozone can be directly toxic with detrimental impacts on hu-
man health, crops and forests (Fowler, 2008).

Despite the important roles played by VOCs in mediat-
ing atmospheric composition and climate, relatively little is
known about their emission rates from tropical forests. Cur-
rent estimates suggest that these regions may account for up
to half of all global BVOC emissions (Guenther et al., 2006),
yet this estimate is based on a limited number of field studies.
To date, the majority of these field observations have focused
on tropical forests in Amazonia (Zimmerman et al., 1998;
Helmig et al., 1998; Stefani et al., 2000; Rinne et al., 2002;
Kuhn et al., 2007; Karl et al., 2007; Muller et al., 2008; Karl
et al., 2009) and, to a lesser extent, regions of Africa (Klinger
et al., 1998; Greenberg et al., 1999; Serca et al., 2001).

In current global biogenic VOC emission models such as
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN G06) (Guenther et al., 2006), emissions of iso-
prene from the world’s tropical forests are, in part, based on
standardised emission rates calculated using measurements
conducted in Amazonia. This assumes a degree of unifor-
mity across all tropical forests, which has yet to be con-
firmed by independent observations and which would be sur-
prising, considering the variety of tree species in rainforests
(Pitman et al., 1999), and the very substantial interspecies
differences in BVOC emission rates amongst those species
that have been measured (Guenther, 1997). The influence of
seasonality, which has been shown to be significant in Ama-
zonia (Kuhn et al., 2002; Muller et al., 2008; Barkley et al.,
2009), but other important tropical forest regions have little
or no seasonality in their climate (e.g. Borneo), again requir-
ing model emission algorithms to be more region-specific.
As well as providing improved estimates of natural BVOC
emissions, region-specific measurements also benchmark the
BVOC chemical climatology from which land-use change
is causing deviations (Misztal et al., 2010a), with poten-
tially serious implications for regional air quality (Hewitt et
al., 2009). There is, therefore, an obvious need for more
landscape-scale flux measurements, especially in SE Asia
where to date no direct micrometeorological flux observa-
tions have been made.

Here we present both direct canopy-scale concentration
and flux measurements of a range of BVOCs (but not
methane) above a tropical rainforest in SE Asia and com-
pare the results to observations made in Amazonia and Africa
(Sect. 3.2.1). Our findings are discussed in relation to the me-
teorology and then used to optimise the light and temperature
algorithms of the MEGAN model for the tropical forests of
SE Asia (Sect. 3.2.2). Finally, the measured VOC fluxes are
related to co-located measurements of CO2 exchange and a
canopy carbon budget is calculated.

2 Methods

2.1 Site description and setup

Measurements were made as part of the OP3 (Oxidant and
Particle Photochemical Processes above a South-East Asian
Rainforest) project (Hewitt et al., 2010a) at the Bukit Atur
global atmosphere watch (GAW) station in the Danum Valley
region of Sabah, Malaysia (4◦58′49.33′′ N, 117◦50′39.05′′ E,
426 m above mean sea level). The aims and objectives of the
OP3 project are summarised by Hewitt et al. (2010a), who
also give a detailed site description and overview of the mea-
surements located at the GAW station. The flux footprint of
the tower encompassed areas of both primary and selectively
logged forest, with regions of both clear-felled-forest and oil
palm plantations found some distance beyond, well outside
the flux footprint. The selectively logged forest in the flux
footprint was logged in 1988 and has since been rehabilitated
by enrichment planting. Measurements were carried out over
two separate four week periods with phase 1 (OP3-I) taking
place during the months of April and May 2008 and phase
2 (OP3-III) occurring between June and July 2008. OP3-II
consisted of measurements at a nearby oil palm plantation
(Misztal et al., 2010a).

For analysis of VOC concentrations and fluxes, a high-
sensitivity proton transfer reaction mass spectrometer (PTR-
MS) (Ionicon Analytik GmbH: Lindinger et al., 1998)
equipped with three Varian turbo molecular pumps and
heated Silcosteel inlet was used in conjunction with an ultra-
sonic anemometer (Windmaster Pro, Gill Instruments, UK).
The anemometer and main gas sample line (PTFE, 1/2′′ OD,
0.36′′ ID and approximately 90 m in length) were fixed to a
2 m boom mounted on the northeast edge of the tower at a
height above ground level of 75 m. As the GAW tower is a
100 m tall open pylon-type tower located on a hill, the effec-
tive measurement height was estimated to be between 100–
150 m above the forest canopy below (Helfter et al., 2010).
The PTR-MS was housed inside an air-conditioned labora-
tory located at the base of the tower and sub-sampled from an
uncontrolled low pressure (60 kPa; flow rate 60 l min−1) inlet
line at a rate of 0.3 l min−1 via a short length (10 cm) of PTFE
tubing (1/8′′ OD, 0.03′′ ID). All tubing in the air conditioned
room was heated to 40◦C to prevent condensation. Visual
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inspection and good agreement between CO2 and H2O fluxes
measured with open and closed path sensors (sharing the
same line) (Siong et al., 2010) confirmed that no condensa-
tion occurred in the main inlet. Data from each sensor were
logged onto a single laptop computer in combination with
meteorological observations using a program written in Lab-
VIEW 8.5 (National Instruments, Austin, Texas, USA).

Throughout the measurement period the PTR-MS operat-
ing conditions were held constant to maintain anE/N ratio of
approximately 140 Td, which represented the best compro-
mise between the optimal detection limit for VOCs and the
minimisation of the impact of high relative humidity (Hay-
ward et al., 2002; Hewitt et al., 2003; Tani et al., 2004). Drift-
tube pressure, temperature and voltage were typically main-
tained at 0.165 kPa, 45◦C and 500 V respectively, which
gave a primary ion count in the range 6 to 8×106 ion counts
per second (cps). The sensitivity (Snorm) of the PTR-MS for
each atomic mass unit (amu,m/z) was calculated at regular
intervals using a gas standard (Apel-Riemer Environmental
Inc.), which contained methanol, acetonitrile, acetaldehyde,
acetone and isoprene at a nominal concentration of 1.0 ppmv
each as well as limonene at 0.18 ppmv. Volume mixing ra-
tios were calculated adopting the approach of Taipale et al.
(2008), where the operating conditions of the PTR-MS are
first standardised by normalizing the primary ion count to
1×106 cps and accounting for the first water cluster:

VMR =

(
I (RH+)norm

Snorm

)
(1)

In this equationI (RH+)norm is the normalised count rate
(ncps) of an individualm/zwhich is calculated using Eq. (2):

I (RH+)norm=106
(

RHi

M21+M37
−

RHzero

M21zero+M37zero

)
(2)

Here RHi represents the ion count signal at mass Mi (cps),
RHzero is the signal of the mass measured from the zero air
source,M21andM37 are the counts of the primary (H18

3 O+)
and reagent cluster ions H16

3 O+ H16
2 O+, respectively, while

M21zeroand M37zeroare the primary and reagent cluster ions
when measuring from the zero air source.

Monoterpenes fragment in the drift tube tom/z 81 and
137 in a humidity dependent process, hence their sensitiv-
ities were calculated as the sum of the two masses. For
those compounds not contained in the gas mixture, empir-
ical sensitivities were calculated based on the instrument-
specific transmission characteristics. The transmission curve
was calculated empirically in two stages, using two separate
approaches. For the compounds in the lowerm/zrange, trans-
mission coefficients were calculated using the approach of
Taipale et al. (2008) , utilising the compounds contained in
our on-site gas standard. For the higherm/zrange, where no
suitable compound was present in our standard, the classi-
cal transmission approach of Steinbacher et al. (2004) was
adopted using a range of liquid standards. These standards

included the higherm/z compounds xylene (m/z 107) and
camphor (m/z153) and the resulting transmission response
was compared with the former approach to yield empirical
sensitivities for the higherm/z’s. Calculating transmission
coefficients empirically undoubtedly increases the level of
uncertainty of the volume mixing ratios (vmrs), but this level
varies depending upon the approach adopted. The approach
of Taipale et al. (2008) is thought to lead to vmrs with an as-
sociated uncertainty of± 30% (e.g. Misztal et al. (2010b)),
whereas vmrs calculated using the Steinbacher et al. (2004)
approach can vary by as much as±100%. With this in mind,
empirically derived vmrs for the lowerm/zrange, e.g. acetic
acid and MVK+MACR, have a lower level of uncertainty
than those in the higherm/zrange e.g.m/z83 (hexanals) and
m/z85 (EVK). The remaining compounds presented in this
study were all contained within our gas mixture and there-
fore sensitivities were calculated directly and the uncertainty
much lower.

During OP3-I the multi-component gas standard was not
available. Consequently only isoprene could be calibrated di-
rectly, using a low mixing ratio gas standard (4.52 ppbv±5%)
(see Lee et al., 2006, for details). Subsequent analysis of
the two isoprene standards by GC-FID showed less than 2%
difference. Calibration for all other compounds measured
during the first campaign was based on the empirically de-
rived instrument specific transmission curve (Steinbacher et
al., 2004), relative to isoprene.

2.2 PTR-MS operation and flux calculations

Fluxes of individual VOC species were calculated using the
virtual disjunct eddy covariance technique (vDEC) (Karl et
al., 2002) as implemented previously (Langford et al., 2009,
2010; Davison et al., 2009). In order to provide both flux
data and information on the full VOC composition, the PTR-
MS was programmed to operate in two modes, flux and scan.
During the flux mode, 13 protonated masses were targeted
with a dwell time of 0.5 s per mass, as well as the primary
ion count (quantified indirectly from H18

3 O+ at m/z21) and
the first water cluster ion count (detected directly as H16

3 O+

H16
2 O+ at m/z 37) which were both measured with a 0.1 s

dwell time. This resulted in a total scan cycle time of 6.7 s
and the acquisition of∼224 data points (N) per 25-min flux
averaging period. The remaining 10 min of each hour were
used to obtain basic concentration information across the
mass spectrum (21–206 amu,m/zresolution=1 amu) (5 min),
and to monitor the instrument background (5 min), which
was subtracted during post processing. The instrument back-
ground was monitored by sampling ambient air that had
passed through a zero air generator, which comprised a glass
tube packed with platinum catalyst powder heated to 200◦C.

Attributing measured ion counts to individual VOC is dif-
ficult due to the limitations of the ion-mass filter, which can
only resolve ion counts with a resolution of one atomic mass
unit. Therefore unambiguous identification of individual
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VOCs is not possible with the PTR-MS instrument and con-
tributions from mass fragments or other compounds with
the same integer amu cannot be ruled out. In Table 1 we
therefore summarise both the measured masses and the com-
pounds most likely to contribute at each mass, as well as
formulae, dwell times, instrument sensitivities and detection
limits.

In order to account for the sampling delay induced by
the distance between inlet and instrument, and so synchro-
nise the PTR-MS data with that collected by the ultrasonic
anemometer, a cross-correlation function of vertical wind ve-
locity (w′) and scalar concentration (χ ′) was used with the
peak value chosen automatically over a 25 s time window.
This procedure was applied to each individualm/zmeasured
by the PTR-MS. Following this synchronisation, each 25-
min flux file was then subject to a quality assessment, as
described by Langford et al. (2010). Briefly, a two dimen-
sional coordinate rotation was applied. Data were rejected
during periods of non-stationarity and when the friction ve-
locity (u∗) fell below 0.15 m s−1. The latter criterion resulted
in the rejection of approximately 27% of the collected data,
while those that passed these criteria were ranked as either
high- or low-quality, based on the exact outcome of the sta-
tionarity test. The precision of each individual flux measure-
ment was calculated at the 99.7% confidence interval follow-
ing the procedure outlined by Spirig et al. (2005). This value
was then used as a proxy for the limit of detection of the flux
system and data that fell below this value were discarded.
Rejecting data below this threshold ensured that all flux data
presented in this manuscript were significantly different from
zero.

2.3 Validity of flux measurements and potential losses

In order to assess the validity of measurements made, sev-
eral analyses were undertaken. Firstly, the integral turbu-
lent statistics of the vertical wind velocity were evaluated by
comparison of the measured ratio of the standard deviation
of vertical wind component to friction velocity (σw/u∗) with
values obtained using the model of Foken et al. (2004), which
predictsσw/u∗ for a set of ideal conditions.

Following the assessment criteria used in the FLUXNET
program (Foken et al., 2004), over 90% of the collected data
were rated category 6 or better (i.e., suitable for general use)
and less than 1% of the data qualified for rejection with a rank
of class 9. This suggests that the turbulence encountered at
this site, although light, was sufficiently well developed for
the precise and accurate determination of fluxes and that flux
measurements at this high measurement height were not ad-
versely influenced by the effects of wake turbulence gener-
ated by the tower or surrounding topography (Helfter et al.,
2010).

The vDEC flux system was evaluated to establish flux
losses due to bandwidth limitation. High frequency flux
losses encountered due to the response time of the PTR-MS,

which cannot resolve fluctuations in the sub∼0.5 s range,
were estimated from Horst (1997) and found to be negli-
gible, and typically<2%. In contrast, the low frequency
flux losses, arising from insufficient averaging periods, were
more significant, as shown by Fig. 1. They axes in this fig-
ure show sensible heat fluxes calculated using averaging pe-
riods of increasing length from panels A (1 h) to D (2.5 h)
during the OP3 campaign. Thex axes show the same data
but the averaging periods are compiled of individual 30 min
data files matched together. A high pass filter was applied
to each 30 min file which ensured fluctuations from eddies
with a time period greater than 30 min could not contribute
to the flux measurement (Moncrieff et al., 2004). The slope
of the regression between the two sets of fluxes provides an
estimate of the flux missed due to the use of a 30 min averag-
ing period. The results show that eddies with a time period
of between 30 and 90 min increase the flux of sensible heat
(H) by ∼15%, while eddies with a period of 150 min carried
a further 6% of the flux. Assuming similarity and identical
frequency behaviour between sensible heat and VOC fluxes,
it is probable that VOC fluxes measured at the GAW site us-
ing 25 min averaging periods will underestimate the true sur-
face exchange by 15–20%. This relatively large contribution
from low frequency eddies probably reflects our high mea-
surement location and the values we report here are of a sim-
ilar magnitude to those reported by Langford et al. (2010) for
an analysis of data obtained from the comparibly high Tele-
com Tower in central London. In contrast to this analysis, an
investigation into the daytime energy budget closure at this
site suggests closure to within 5% based on 30 min flux val-
ues (Helfter et al., 2010). However, since the footprint of the
net radiation measurements was not ideal, this closure may
be slightly fortuitous.

Additional flux losses may be encountered due to the high
relative humidity encountered (60–90%), which can cause
condensation in sample lines, attenuating the signal of water
soluble compounds such as methanol. In order to evaluate
these losses, latent-heat fluxes (λE) were calculated using the
PTR-MS, which was first calibrated using data recorded by a
closed path infrared gas analyser (IRGA) ( LI-COR LI-7000,
Biosciences, Nebraska, US) in a method similar to that of
Ammann et al. (2006). The IRGA sub-sampled directly after
the PTR-MS from the same sample tube. PTR-MSλE fluxes
were then compared against the measurement of an open-
path IRGA (LI-COR LI-7500, Biosciences, Nebraska, US)
which was mounted directly below the 75 m sonic anemome-
ter during the OP3-III campaign (June–July 2008). As the
open-path instrument provides an in situ measurement of wa-
ter vapour concentrations, fluxes calculated using this sensor
are not subject to signal damping and therefore a direct com-
parison with PTR-MS fluxes can provide an estimate of flux
losses along the sample line. For a detailed description of the
IRGA setup and results, see Siong et al. (2010).
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Table 1. List of compounds measured during the OP3 campaigns, including their formula, dwell time, average sensitivity and detec-
tion limit. Detection limits were calculated based on the signal to noise ratio of measured ion counts following Karl et al. (2003)
(LOD=2×σbackground/sensitivity).

m/z Contributing compound(s) Formula Dwell time Average sensitivity Limit of Detection
[amu] [s] [ncps ppbv−1] [ppbv]

21 water isotope H18
2 O 0.1 s − −

33 methanol CH4O 0.5 s 11.6 1.2
37 water cluster (H2O)2 0.1 s − −

42 acetonitrile C2H3N 0.5 s 19.6 −

45 acetaldehyde C2H4O 0.5 s 22.8 0.1
59 acetone C3H6O 0.5 s 25.2 0.1

propanal
61 acetic acid C2H4O2 0.5 s 26.5 0.09
69 isoprene C5H8 0.5 s 1.6 0.2

furan
methyl butenol fragment

71 methyl vinyl ketone C4H6O 0.5 s 27.1 0.07
methacrolein

81 monoterpene fragment − 0.5 s 4.0 0.04
83 hexanal fragment − 0.5 s 30.3 0.04

cis−3−hexenol fragment
85 ethyl vinyl ketone C5H8O 0.5 s 30.3 0.06
137 monoterpenes C10H16 0.5 s 3.7 0.04
149 estragole C10H12O 0.5 s − −

205 sesquiterpenes C15H24 0.5 s − −

Figure 2 showsλE measured by PTR-MS and open-path
IRGA over an 11-day period. Measured fluxes agree rea-
sonably well (R2=0.56, p=<0.0001), but on average PTR-
MS fluxes are lower, suggesting a typical flux loss of around
<17%. This flux loss is much larger than direct compar-
isons between open and closed path IRGAλE fluxes, which
showed just a 1% underestimation, again resulting from the
long sample line (R2=0.93,p=<0.0001,y=0.9916x–0.9632).
It should be noted that the PTR-MSλE fluxes are in fact sam-
pled disjunctly, which, when coupled with the indirect cali-
bration against the closed-path IRGA may account for the
larger disparity between the measurement systems.

The high measurement location of 75 m atop a hill also in-
troduces the potential for flux divergence for the more reac-
tive compounds such as isoprene, caused by changes in both
convective mixing and isoprene chemistry across the day. We
therefore estimated the effect of both isoprene chemistry and
transport on the measurements made at our site.

In order to approximate the time taken between isoprene
emission and detection by our measurement system, we esti-
mated the mixing time to our measurement location using the
convective velocity timescale (τmix), calculated as a function
of time of day.

τmix =
z

w∗

(3)

wherez is the measurement height which was between 100
and 150 m above the average canopy top, here we use an ar-
bitrary value of 125 m andw∗ is equal to:

w∗ =

[
gz

Tv

FH

] 1
3

(4)

where,g is acceleration due to gravity (9.81 m s−2), Tv is po-
tential temperature, andFH is the kinematic heat flux. The
isoprene lifetime (τchem) was calculated using the isoprene
+ OH rate coefficient as a function of the ambient temper-
ature (measured at 30 m) and the OH concentration which
was directly measured at a height of 5 m at the base of the
GAW tower (Whalley et al., 2010). Figure 3 showsτchem
(blue line) andτmix (red line) which follow a similar pattern,
with shorter mixing times and isoprene lifetimes occurring
in the late morning and increasing steadily throughout the
afternoon. The net effect of these two processes on our mea-
surements of isoprene was calculated using the Damköhler
number (black line),

Da =
τmix

τchem
(5)

A Damköhler number of 1 or greater would indicate trans-
port times to exceed reaction times resulting in a total loss
of isoprene. Figure 3 shows theDa number to follow a dis-
tinct diurnal pattern, with the largest isoprene losses occur-
ring in the late morning and indicating a maximum 2% loss
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Fig. 1. An analysis of low frequency flux losses for sensible heat flux data(H) collected at the GAW site during the OP3 campaign. Solid
line shows the best linear fit and dashed line represents the 1:1 line.

Fig. 2. (A) Latent heat fluxes measured at the GAW site during the period of 4–14 July by open path IRGA (LICOR – 7500) and PTR-MS.
PTR-MS water vapour measurements recorded asm/z37 were calibrated against a closed path IRGA (LICOR – 7000) which sampled from
the same 70 m sample line as the PTR-MS.(B) indicates the amount of flux lost due to attenuation along the long sample inlet and can be
used to estimate a worst case scenario of VOC flux losses.

of isoprene. It should be noted that this calculation only con-
siders the chemical loss after the compounds exit the canopy
top and further chemical processing is likely to occur before
emissions escape the canopy.

These analyses suggest that VOC fluxes measured at this
site are underestimated due to a combination of insufficient

averaging periods, flux divergence and some signal attenua-
tion along the∼90 m sampling line. No corrections for these
flux losses were applied to the data presented in this study.
The estimated losses are small compared to the differences
between measured and estimated emissions (Sect. 3.2.2, be-
low).
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Fig. 3. The average boundary layer convective mixing velocity
timescale (τmix) and isoprene lifetime (τchem) for the period 2–
21 July 2008 above a tropical rainforest. The Damköhler number
(black line) indicates the amount of isoprene that would be lost
to chemical reaction before detection by our measurement system,
which was located at 100–150 m above the forest canopy top. Be-
cause the GAW tower is located on a hill it is not possible to give a
more precise measurement height.

3 Results and discussion

3.1 Ambient BVOC mixing ratios

Figure 4 shows the average diurnal mixing ratios of the nine
VOCs measured during the OP3 campaign and the results are
summarised in Table 2a. During the daytime, mixing ratios
for each compound were always above the calculated limit
of detection, with the exception of methanol andm/z’s 83
and 85, which we tentatively ascribe to hexanal and/orcis-
3-hexenol, and ethyl vinyl ketone (EVK), respectively. For
methanol, instrument background counts were generally high
but of a fairly constant amplitude. Consequently the detec-
tion limit for methanol was relatively high despite the high
sensitivity for this compound obtained in calibrations. Al-
though our concentration measurements of methanol were
always close to or below the detection limit, they are of a
similar magnitude to measurements made by GC-FID during
the campaign (Jones et al., 2010), hence their inclusion here.
Although estragole (Misztal et al., 2010b) and sesquiterpenes
were both targeted during the two campaigns, neither com-
pound was detected by our system.

Isoprene was the second most abundant compound ob-
served after methanol, accounting for approximately 30%
(as compound) of the total measured species. Mixing ra-
tios ranged between 0.17 and 3.4 ppbv with an average of
1.3 ppbv. Methacrolein (MACR) and methyl vinyl ketone
(MVK), which are measured at the same atomic mass unit
(amu) by the PTR-MS and consequently presented as the
sum of the two (MACR+MVK), ranged between 0.05 and

0.67 ppbv, with an average value of 0.25 ppbv. Isoprene oxi-
dation is the only known source of MACR and MVK; hence,
the ratio of (MACR+MVK) to isoprene can provide an in-
dication of the extent of isoprene oxidation. Average ra-
tios of 0.16 and 0.22 were observed for the first and second
campaigns, respectively. These findings are similar to ob-
servations by Kesselmeier et al. (2002) who reported above-
canopy ratios in Amazonia of 0.23 and 0.3 during the wet
and dry seasons respectively. Similarly, Kuhn et al. (2007)
reported a ratio of 0.3 for dry season measurements above
Amazonia. Following the method of Karl et al. (2004), the
average time taken between isoprene emission and detection
by our system was estimated at between 16–22 min (based
on the average midday [MVK+MACR]/[isoprene] ratio and
an assumed atmospheric lifetime for isoprene of 100 min).
Accordingly, isoprene mixing ratios were estimated to have
originated from within a maximum footprint length of 2.8–
3.9 km (based on an average wind speed of 3 m s−1). This
is slightly larger than the approximate footprint calculations
reported by Helfter et al. (2010) for OP3 under unstable
daytime conditions. This difference probably reflects the
fact that isoprene emissions may take some time to exit the
canopy and therefore undergo some chemical processing be-
fore exiting the canopy.

Figure 5 shows the [MVK+MACR]-to-[isoprene] ratio
over the course of a typical day. The ratio has a distinct pat-
tern, with a sharp decline observable at dawn as the nocturnal
ratio decreased from 0.26 to 0.1 in the early morning. This
relates to the response of the canopy to the increasing light
and temperature which drives the isoprene emissions and a
decrease in the transport time between canopy and the mea-
surement height. As the isoprene emissions are transported
away from the canopy they react to form more MVK+MACR
which gradually accumulates in the boundary layer and thus
the ratio increases steadily throughout the day before reach-
ing a stable nocturnal maximum, when the isoprene emission
and photochemistry shut off.

Monoterpene mixing ratios were relatively low, ranging
between 0.02 and 0.47 ppbv with an average of 0.17 ppbv,
which is approximately 50% lower than the average of mea-
surements made above Amazonia (Karl et al., 2007). Due to
limitations of the PTR-MS approach, the measurement can
only measure total monoterpene concentrations as this con-
centration is derived from a fragment that is common to the
different compounds. Measurements of speciated monoter-
penes were made by a dual-channel gas chromatograph with
a flame ionisation detector (GC-FID) and are reported else-
where (Jones et al., 2010). This instrument sampled air from
an inlet located 5 m above ground level at the base of the
GAW tower with a 1 h time resolution. Although the PTR-
MS and GC-FID were separated vertically by 70 m and there-
fore sampled different air masses, the GC-FID results indi-
cate that the monoterpene emissions at this site were domi-
nated byγ -terpinene and camphene (Jones et al., 2010).
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Fig. 4. Average diurnal profiles of VOC mixing ratios measured during the two intensive OP3 field campaigns which took place between
20 April–7 May (OP3-I) and 20 June and 20 July (OP3-III), 2008. Grey error bands show±1 standard deviation of averaged hourly values
and dotted lines show the limit of detection (LOD=2×σbackground/sensitivity).

Fig. 5. Average diurnal profile of the MVK+MACR:isoprene ratio
during OP3-III.

Acetone mixing ratios ranged between 0.46–1.10 ppbv,
with an afternoon maximum which typically occurred 1 to
3 h after the maximum in isoprene mixing ratios. Our mea-
sured values were similar to those reported above a tropi-
cal rainforest in Costa Rica (Karl et al., 2004) and approx-
imately half of those reported above regions of Amazonia
(Karl et al., 2007; Williams et al., 2001). Mixing ratios of
acetone were slightly higher during OP3-I than OP-III which
was also the case for acetic acid. Acetic acid mixing ratios
ranged between 0.22–0.5 ppbv, but in contrast to the trend in
acetone, peak values occurred in the early afternoon, closely
following the diurnal pattern in ambient air temperature. This
close relationship with temperature is typical for this com-
pound, particularly in remote locations (Martin et al., 1991;
Khare et al., 1999), but the observed values are slightly lower
than those reported elsewhere (Kuhn et al., 2002; Karl et al.,
2004).
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Table 2a.Summary of VOC mixing ratios (ppbv) measured during the two intensive OP3 campaigns.

Isoprene 6 Monoterpene Methanol Acetaldehyde Acetone MVK+MACR Acetic acid Hexanal EVK

OP3 I (Wet)
Mean 1.1 0.24 1.2 0.36 0.91 0.23 0.40 0.05 0.05
Median 0.95 0.22 1.2 0.34 0.90 0.18 0.38 0.05 0.05
Percentiles
−95th 2.8 0.55 1.9 0.64 1.3 0.67 0.58 0.09 0.07
−5th 0.28 0.06 0.42 0.16 0.50 0.04 0.28 0.02 0.04
σ 0.80 0.15 0.46 0.14 0.22 0.20 0.09 0.02 0.01
n 746 744 746 751 704 745 755 703 751

OP3 III (Early Dry)
Mean 1.4 0.14 1.5 0.54 0.70 0.26 0.31 0.06 0.06
Median 1.1 0.10 1.4 0.52 0.68 0.19 0.30 0.06 0.06
Percentiles
−95th 3.6 0.44 2.7 0.84 0.99 0.67 0.43 0.09 0.10
−5th 0.12 0.05 0.48 0.31 0.45 0.05 0.20 0.03 0.03
σ 1.2 0.15 0.67 0.16 0.16 0.20 0.07 0.02 0.02
n 1269 1290 1252 1369 1364 1374 1372 1382 1378

OP3 All data
Mean 1.3 0.18 1.4 0.48 0.77 0.25 0.34 0.06 0.06
Median 1.0 0.15 1.3 0.47 0.75 0.19 0.33 0.06 0.05
Percentiles
−95th 3.4 0.48 2.5 0.78 1.1 0.67 0.50 0.09 0.09
−5th 0.17 0.02 0.46 0.22 0.46 0.05 0.22 0.03 0.03
σ 1.1 0.16 0.62 0.18 0.21 0.20 0.09 0.02 0.02
n 2015 2034 1999 2120 2068 2119 2127 2085 2129

Table 2b. Summary of VOC fluxes (mg m−2 h−1) measured during the two intensive OP3 campaigns.

Isoprene 6 Monoterpene Methanol Acetaldehyde Acetone MVK+MACR Acetic acid Hexanal EVK

OP3 I (Wet)
Mean 0.54 0.15 −0.02 0.01 0.007 −0.002 −0.005 0.004 0.004
Median 0.22 0.11 −0.05 0.02 0.009 −0.005 −0.006 0.006 0.005
Percentiles
−95th 2.2 0.62 0.30 0.11 0.12 0.08 0.05 0.05 0.05
−5th −0.12 −0.10 −0.34 −0.08 −0.09 −0.098 −0.061 −0.45 −0.035
σ 0.82 0.22 0.21 0.06 0.065 0.055 0.036 0.032 0.025
n 373 329 421 416 417 461 421 406 406

OP3 III (Early Dry)
Mean 1.2 0.29 −0.04 0.004 0.002 −0.002 −0.003 0.003 0.002
Median 0.76 0.21 −0.08 0.006 0.02 0.003 −0.01 0.005 0.004
Percentiles
−95th 4.0 0.92 0.51 0.13 0.12 0.091 0.058 0.034 0.032
−5th −0.38 −0.10 −0.60 −0.12 −0.081 −0.12 −0.059 −0.027 −0.03
σ 1.4 0.37 0.35 0.084 0.065 0.072 0.004 0.021 0.021
n 578 550 622 667 702 739 672 644 647

OP3 All data
Mean 0.93 0.24 −0.033 0.007 0.012 −0.002 −0.038 0.003 0.003
Median 0.46 0.16 −0.063 0.014 0.014 −0.002 −0.008 0.005 0.004
Percentiles
−95th 3.7 0.84 0.46 0.12 0.12 0.083 0.058 0.042 0.04
−5th −0.28 −0.11 −0.54 −0.11 −0.084 −0.11 −0.06 −0.035 −0.033
σ 1.3 0.33 0.3 0.073 0.065 0.066 0.037 0.026 0.023
n 951 879 1043 1083 1119 1200 1093 1050 1053
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Fig. 6a. Summary of the meteorology and main VOC fluxes during the first intensive OP3 field campaign (OP3 – I) which took place
during April and May, 2008. Wind speed and wind direction measurements were recorded by a senor (WXT-510 Weather Transmitter,
Vaisala) situated at 75 m on the GAW tower. Temperature was recorded at 30 m by an aspirated thermocouple and sonic anemometer, PAR
was measured from the roof of the GAW laboratory and sensible heat, friction velocity and VOC fluxes were all measured from the 75 m
platform of the GAW tower. VOC flux data recorded during periods of low turbulence (u∗< 0.15 m s−1) were rejected from the final analysis,
but are shown here as grey circles.

3.2 Surface-layer VOC fluxes

3.2.1 Isoprene and monoterpene surface-layer fluxes

Figures 6a and 6b show measured isoprene and total
monoterpene fluxes relative to the meteorological drivers
light, temperature, wind speed/direction, frictional velocity
and sensible heat flux, for both measurement phases and their
statistics are summarised in Table 2b. During these periods,
midday (10:00–14:00) temperature (at 30 m above ground)
ranged between 23–28◦C, and photosynthetically active ra-
diation (PAR) between 336–2027 µmol m−2 s−1, whereas at
night, temperatures fell to 22–24◦C. Sensible heat fluxes
were positive during the day, ranging between 200 and
400 W m−2, with occasional troughs associated with con-
vective cloud cover and rain events, as clearly seen on both
30 June and 5 July. Wind speed and friction velocities varied
between 0.6–4.7 m s−1 and 0.06–0.52 m s−1 (5th–95th per-
centiles), with particularly low values of both recorded at

night. Accordingly, VOC fluxes were generally only ob-
served between 09:00 and 17:00 and not at night.

Previous leaf-level measurements of monoterpenes made
in this region have shown temperature-dependent emissions
from some dipterocarp tree species (Dryanobalanops lance-
olata) (S. M. Owen, personal communication, 2010). These
emissions were thought to originate from damage to the cu-
ticular wax caused by herbivory and because the volatili-
sation of monoterpenes is dependent upon the ambient air
temperature, some emissions may be expected at night time.
However, during the night the measurement platform became
de-coupled from the canopy below, as observed from noctur-
nal cloud formation at the canopy top, below the measure-
ment height, and validated through LIDAR measurements of
the mixed layer height (Pearson et al., 2010). Subsequently,
any nocturnal emissions could not be captured by our mea-
surement system. As part of the OP3-III field campaign,
Ryder et al. (2010) utilised a second PTR-MS in conjunc-
tion with an automated winch system to measure vertical
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Fig. 6b. Summary of the meteorology and main VOC fluxes during the second intensive OP3 field campaign (OP3 – III) which took
place during June and July, 2008. Measurement instrumentation as above. VOC flux data recorded during periods of low turbulence
(u∗<0.15 m s−1) were rejected from the final analysis, but are shown here as grey circles.

profiles (1 m–32 m) of VOC mixing ratios within the for-
est canopy. The targeted compounds included isoprene and
monoterpenes and their source/sink distributions were de-
rived using inverse Lagrangian modelling. These data did
not show build up of either isoprene or monoterpenes inside
the canopy during the night and indicate that dark emissions
were negligible (Ryder et al., 2010). In contrast, early morn-
ing emissions of both isoprene and monoterpenes which were
driven by the rising sun and accumulated in the still shal-
low nocturnal boundary layer, were occasionally observed as
large spikes at around 08:00–09:00 during the break up of
this stable air. The LIDAR measurements confirm that after
sunrise the boundary layer quickly expanded. Therefore lit-
tle of the daytime fluxes were lost due to de-coupling from
the canopy.

Emissions of isoprene were the largest of all the mea-
sured VOCs, with an average midday flux (10:00–14:00
LT) of 1.9 mg m−2 h−1 for the entire 48-day period. This
value represented approximately 80% (as carbon) of all mea-
sured non-methane BVOC emissions from the forest canopy,
with the remaining 20% accounted for by emissions of to-

tal monoterpenes (18% as carbon) and oxygenated VOCs
(OVOC) (2% as carbon), including methanol, acetone and
acetaldehyde – see Sect. 3.2.3. The mean integrated daily
flux of isoprene was 6.0 mg m−2 d−1 and 12.9 mg m−2 d−1

respectively, for the OP3-I and OP3-III campaigns with an
average of 10.5 mg m−2 d−1 for all collected data (approx-
imately 500 h of data collected over 48 days). Here, miss-
ing night-time data were gap-filled with zero fluxes, consis-
tent with the light-sensitivity of the isoprene emissions. The
mean integrated daily fluxes for each phase are statistically
different at the 95% level (two-tailed t-test). The observed
increase in emission rates between the two campaigns was
consistent with a difference in integrated ambient air temper-
ature (0.3◦C) and PAR (3549 µmol m−2 s−1 PAR) for the av-
erage day, and normalising these emissions to standard con-
ditions (30◦C and 1000 µmol m−2 s−1 PAR), using the algo-
rithms of Guenther et al. (2006) described in the next section,
reduced the difference in standard emission rates between the
two campaigns to within 6%. A recent study has suggested
that isoprene-emitting vegetation in Amazonia experiences
a wide-scale leaf flushing which promotes new growth in
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Fig. 7. Wind roses of isoprene and monoterpene fluxes (top) measured during the two OP3 campaigns. The bottom plots show the same raw
flux data (light shading) and the base emission rate (solid shading) which is the raw flux normalised to standard conditions (30◦C (Canopy
temperature), 1000 µmol m−2 s−1) using the light and temperature algorithms from the MEGAN model (Guenther et al., 2006).

preparation for the coming dry season, resulting in an annual
shutdown of isoprene emissions (Barkley et al., 2009). Simi-
larly, Müller et al. (2008) have shown that isoprene emissions
can be between 2–5 times lower during the wet season. Sea-
sonality in Borneo is much less marked than in Amazonia;
and our measurements showed no evidence of a similar pro-
cess occurring at this site.

The average daytime ratio of monoterpene to isoprene
fluxes was 0.23±0.3 (standard deviation) and remained rela-
tively constant throughout the day, including the period when
early morning emissions were vented from the still shallow
nocturnal boundary layer. This relative constancy suggests
that nocturnal, light-independent emissions of monoterpenes
are negligible at this site, which is consistent with Owen
et al. (2002) and with the in-canopy profile measurements
made by Ryder et al. (2010) who did not detect monoter-
pene emissions from the darker understorey during the day
or night-time build-ups inside the canopy. Guenther et al.
(2008) summarise the monoterpene:isoprene emission ratios
observed in other tropical forests, with values typically found
to be∼0.15.

Polar plots of isoprene and monoterpene fluxes shown
in Fig. 7 (top two panels), indicate that canopy emissions
were spatially very heterogeneous, with observed fluxes
strongly skewed towards the south-east. Analysis of po-
lar plots for temperature and PAR shows a similar south-

east skew. This direction-dependent temperature effect was
accounted for by normalising measured fluxes to give the
base emission rate (BER; 30◦C (canopy temperature) and
1000 µmol m−2 s−1 PAR). The resulting polar plots of BER
(Fig. 7, bottom two panels) were less pronounced in the
south east, but still showed considerable variability in emis-
sion rates between wind sectors, with values ranging between
0.8 and 2.9 mg m−2 h−1 for isoprene and between 0.2 and
0.7 mg m−2 h−1 for monoterpenes. Average BERs during the
OP3 campaigns were 1.6 and 0.46 mg m−2 h−1 for isoprene
and monoterpenes, respectively.

During the period between OP3-I and OP3-III Owen et
al. (2010) made leaf-level measurements of isoprene and
monoterpene emissions from the 25 most dominant over- and
understorey tree species located within the flux footprint of
the GAW tower. These species were sampled in situ and
in triplicate using 3 controlled environment leaf cuvettes,
which were set to 30◦C and a PAR value of either 500 or
1000 µmol m−2 s−1, depending on whether the leaves were
shaded or sunlit. The inflowing air was scrubbed to remove
pre-existing VOCs whereas the CO2 and humidity were al-
lowed to follow the ambient conditions. The outflowing
air was sampled onto tubes packed with Tenax and Carbo-
trap and were stored at 4◦C until analysis by GC-MS could
take place in the UK. These measurements contributed to a
larger database of SE Asian forest emission rates compiled
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Table 3. Isoprene and monoterpene flux measurements from the world’s tropical forests and their typical ratios (monoterpene/isoprene). All
values are in units of mg C m−2 h−1. Where available, errors show±1 standard deviation.

Location Season Method Isoprene 6 Monoterpene Ratio Reference

Borneo, SE Asia L Wet vDEC 0.48± 0.72 0.13± 0.19 0.27 Langford et al., this study
Borneo, SE Asia E Dry vDEC 1.04± 1.3 0.25± 0.33 0.24 Langford et al., this study
Malaysia, SE Asia Dry LL 1.1 − − Saito et al. (2008)
Amazon, Brazil E Dry MB 2.7 0.24 0.23 Zimmerman et al. (1998)
Amazon, Peru E Dry MLG 7.2 0.45 0.06 Helmig et al. (1998)
Amazon, Brazil L Wet EC, REA 2.1 0.23 0.11 Rinne et al. (2002)
Amazon, Brazil L Dry vDEC 7.3± 2.7 1.5± 1.1 0.21 Karl et al. (2007)
Amazon, Brazil L Dry MLG 10.2± 3.5 2.2± 0.7 0.22 Karl et al. (2007)
Amazon, Brazil L Dry MLV 11.0± 0.9 3.9±1.1 0.35 Karl et al. (2007)
Amazon, Brazil E Dry REA 2.1± 1.6 0.39± 0.43 0.19 Kuhn et al. (2007)
Amazon, Brazil E Dry SLG 3.4± 3.6 0.38± 0.58 0.11 Kuhn et al. (2007)
Amazon, Brazil − REA 1.1 0.2 0.18 Stefani et al. (2000)
Amazon, Brazil − BM 1.9 0.16 0.08 Greenberg et al. (2004)
Amazon, Brazil − BM 4.7 0.20 0.04 Greenberg et al. (2004)
Amazon, Brazil − BM 8.6 0.54 0.06 Greenberg et al. (2004)
Amazon, Brazil Dry EC 0.4 – 1.5 − − Müller et al. (2008)
Amazon, Brazil Wet EC 0.1 – 0.3 − − Müller et al. (2008)
French Guyana, Dry CBL 6.1 − − Eerdekens et al. (2009)
Suriname
Costa Rica Wet REA 2.2 − − Geron et al. (2002)
Costa Rica Dry DEC 2.2 0.29 0.13 Karl et al. (2004)
Congo, Africa − A−REA 0.9 − − Greenberg et al. (1999)
Congo, Africa − LL 0.8 − 1 − − Klinger et al. (1998)
Congo, Africa − REA 0.46− 1.4 − − Serca et al. (2001)

EC = Eddy covariance; vDEC = Virtual disjunct eddy covariance; DEC = Disjunct eddy covariance; (A)-REA = (Airborne) Relaxed eddy accumulation; SLG = Surface layer
gradient; MB = Mass Budget; MLG = Mixed layer gradient; MLV = Mixed layer variance; LL = leaf level extrapolation; BM box = modelling; CBL = Convective boundary layer
budgeting.

between 2000 and 2008, based on field-work in and around
the Danum Valley area in 2000 and 2004, and from Dipte-
rocarp rainforest species growing in the Yunnan Province,
China, in 2003 and 2005. The database emission factors were
used with vegetation survey data for different sample plots in
the forest around the GAW tower for biomass weighted emis-
sion extrapolations for the plots. Thus best bottom-up esti-
mates of canopy emissions were obtained for different sam-
ple plots with values ranging from 0.9 to 2.3 mg m−2 h−1 for
isoprene and from 0.2 to 1.0 mg m−2 h−1 for total monoter-
penes (Owen et al., 2010), which were in agreement with our
direct canopy-scale flux measurements.

Although the extrapolated leaf-level measurements are on
average larger than the measured fluxes, they are still well
within the range of emission rates observed between wind
sectors. The close agreement between canopy-scale fluxes
and leaf-level measurements suggests that, although the tree
species composition of the flux footprint is spatially hetero-
geneous, up-scaling of leaf level measurements can still yield
representative results for this area.

Table 3 summarises the isoprene and monoterpene fluxes
measured during the OP3 campaigns relative to previous
findings from Amazonia, Africa and South East Asia. Our
measurements of isoprene compared very closely to leaf-
level estimates made from a dipterocarp forest on mainland
Malaysia (Saito et al., 2008) and to observations above re-
gions of the Congo, but were at the extreme lower end of
observations from Amazonia. In contrast, our measurements
of total monoterpene fluxes are somewhat larger than those
previously reported for other tropical forests.

3.2.2 Comparison of isoprene and monoterpene fluxes
with modelled fluxes

Emissions of isoprene from the flux footprint were simulated
using the leaf-level light and temperature algorithm from the
G06 emission model of Guenther et al. (2006). In the origi-
nal G06 algorithm the fitting coefficients (Eqs. 5–9 of Guen-
ther et al., 2006) are based on observations reported from
five independent studies (Monson et al., 1994; Sharkey et al.,
1999; Geron et al., 2000; Hanson and Sharkey, 2001; Petron
et al., 2001), all of which report measurements from tem-
perate plant species. In light of this, the coefficients used

www.atmos-chem-phys.net/10/8391/2010/ Atmos. Chem. Phys., 10, 8391–8412, 2010



8404 B. Langford et al.: Fluxes of VOCs above a SE Asian tropical rainforest

Table 4. Summary of the coefficients used to drive the MEGAN model. Standard coefficients are based upon studies of temperate plant
species, whereas fitted coefficients relate to the measured flux data obtained during OP3-III over a tropical rainforest.

G06 Standard Coefficients G06 Fitted Coefficients

Coefficients Isoprene 6 Monoterpenes Isoprene 6 Monoterpenes

CT1 (Eq. 5) 95 95 142 95
CT2 (Eq. 5) 230 230 232 230
po (Eq. 7) 200 200 200 200
Tmax (Eq. 8) 313 313 316.1 312.9
x1 (Eq. 6) 0.004 0.004 0.006 0.006
x2 (Eq. 6) 0.0005 0.0005 0.0004 0.00025
x3 (Eq. 7) 0.0468 0.0468 0.0702 0.0702
x4 (Eq. 9) 2.034 2.034 3.051 2.058
x5 (Eq. 8) 0.6 0.6 0.52 0.47
BER 1.65 0.4 2.5 0.5

R2 0.47 0.44 0.50 0.45
M 0.56 0.51 0.43 0.37

in the G06 algorithm were optimised for the emissions data
reported in this paper by minimising the normalised mean
square error (M) between observed and modelled data using
a quasi-Newton Raphson iterative method (Microsoft Excel
2003, Microsoft Corporation, Redmond, WA, USA):

M =

(
E0−Ep

)2

E0 ·Ep

(6)

HereEo is the observed emission,Ep is the predicted emis-
sion and over bars denote mean values. The performance
of the model is rated by theM score, which is a function
of bias magnitude, bias variance and intensity of association
(Guenther et al., 1993) and decreases with increasing model
performance. In order to constrain the optimisation to envi-
ronmentally realistic conditions, each coefficient was given
a tolerance of±50%, with the exception of the temperature
maximum (Tmax) which was restricted to±1% to avoid unre-
alistically high or low temperatures. Table 4 lists the standard
coefficients presented by Guenther et al. (2006) and the new
optimised coefficients based on the results of this study.

Model variables such as PAR and temperature (past and
present) were supplied from the in situ measurements made
at the GAW station. Before use, the ambient air tempera-
ture measurements were first converted to give the canopy
leaf temperatures required by the model using the resistance
analogy described by Nemitz et al. (2009). Leaf tempera-
tures during the afternoon were up to 2◦C higher than air
temperature. Base emission rates describing isoprene and
monoterpene emissions under constant (standard) conditions
of temperature and PAR were inferred from the measured
fluxes as described above. Our analysis assumes, as do all
previous such analyses, that the BER is constant through-
out the day. However, there are indications that BER varies

throughout the day and this finding is explored more fully
elsewhere (Hewitt et al., 2010b). We therefore used the peak
in the average diurnal cycle of BER measured at this site,
which occured at around midday. Figure 8 shows the sim-
ulated fluxes of isoprene (panel a) and monoterpenes (panel
b) relative to the observed emissions over a 10-day period
(2–12 July 2008).

Model estimates using the standard coefficients compare
reasonably well with measured values, confirming temper-
ature and light to be the primary drivers of observed emis-
sions. On occasion, peak fluxes do not agree temporally
between measured and modelled values. On 9 and 11 July,
measured VOC fluxes peak in the morning, 2–3 h earlier than
the modelled output. This is most likely the result of venting
of the nocturnal boundary layer, described in Sect. 3.2.1. On
other days (8 and 10 July), the peaks match temporally but
are underestimated by the model. As the measured fluxes are
integrated across the whole flux footprint, which covers an
area of several square kilometres (Helfter et al., 2010) emis-
sions respond to fluctuations in light and temperature across
that footprint, which are not fully captured by our point mea-
surements of PAR and temperature. In addition, the tree
species composition in the footprint around the tower is very
variable. Lowering the point of flux measurement closer to
the canopy and thus reducing the flux footprint might im-
prove model performance and result in a closer fit to the
data, as demonstrated by measurements above an oil palm
plantation reported by Misztal et al. (2010a), but at the cost
of spatial representativeness. It should be noted that diur-
nal variation in the BER could not explain this discrepancy,
since we use the peak value in the average diurnal pattern of
BER, which coincides with midday. If we used the BER at
any other time of day the discrepancy would be further in-
creased.
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Fig. 8. Isoprene and monoterpene fluxes (grey line) measured by the
virtual disjunct eddy covariance technique during the OP3-III field
campaign. The blue line shows the model output when configured
using the standard G06 coefficients and the red line shows the same
output generated with empirically fitted parameters. Both sets of
parameters, including basal emission rates normalised to 30◦C and
1000 µmol m−2 s−1 are listed in Table 3.

Optimisation of the standard G06 coefficients resulted in
new, site specific, light and temperature curves, which are
shown in Fig. 9. For isoprene, the temperature response (γ T),
shown in panel A, doubles the normalised emission rates at
peak values compared with the standard G06 response. The
shape, higherTmax and increased emission rate of the fit-
ted response is consistent with laboratory measurements of
tropical plant species (Ficus virgataandFicus microcarpa)
made by Oku et al. (2008). In contrast, optimisation of the
temperature response based on monoterpene fluxes showed
no deviation from the standard G06 response. Panel B shows
the light response (γ P) of the fitted coefficients alongside the
standard G06 light response. The fitted response of isoprene
and monoterpenes are very similar, with emission rates fol-
lowing a steeper gradient at lower PAR values and saturating
from 500 µmol m−2 s−1 of PAR onwards. This light response
curve is very similar to those derived from laboratory mea-
surements of oil palm (Wilkinson, 2006), a biofuel crop very
common to the region, but not present within the GAW tower
flux footprint, but differs significantly from sub-tropical tree
species. For example, controlled environment measurements
of isoprene emissions by Lerdau and Keller (1997) showed

Fig. 9. The temperature(A) and light(B) response of the G06 al-
gorithm. Dashed lines show the G06 response using standard co-
efficients which are based on temperate species only (in (A), the
dashed line is directly below the blue line). Solid lines show the
G06 response for isoprene (red) and monoterpenes (blue) using new
coefficients which were obtained by fitting the algorithm response
to measured fluxes above a tropical rainforest in Malaysian Bor-
neo. In each response, past light and temperature values were set
to: T24=297, T240=297, PAR24=360, PAR 240=375.

emission rates from sub-tropical tree species to increase with
light intensity up to 2500 µmol m−2 s−1 PAR. It should be
noted that the optimised light and temperature curves pre-
sented here are for canopy-scale emissions and therefore they
should only be applied to canopies with a similar structure.

Implementation of the optimised light and temperature
response curves described above resulted in only a slight
improvement in model performance, which suggests that
the standard response curves of the G06 algorithm to per-
form adequately for both temperate and tropical vegetation,
if the BER is adjusted. The BER appears to be the most
important parameter, and failure to accurately characterise
this can result in very large under- or over-estimations of
canopy emission rates. For example, applying the default
isoprene BER for tropical forests contained within MEGAN
(6.6 mg m−2 h−1; value modified by the appropriate land
cover type for the Danum valley region, see Hewitt et al.
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(2010a), Sect. 2.4), a parameter based on measurements
made over the Amazonian rainforest, to regions of Borneo
would result in a>4 times overestimation of the emission
rate. Similarly, applying the default total monoterpene emis-
sion rate (0.8 mg m−2 h−1) would result in an overestimation
of >70%.

In addition to the activities described above, which utilise
the leaf-level light and temperature algorithms of MEGAN,
isoprene and monoterpene fluxes were also simulated us-
ing the parameterised canopy environment emission algo-
rithm (PCEEA), which is a simplified single-layer canopy-
scale representation of the multi-layer model. This version
of MEGAN uses a modified set of algorithms to describe the
canopy-scale isoprene emission response to light and tem-
perature. These algorithms are based on simulations from
the detailed MEGAN canopy environment (CE) model for
warm, broad leafed forests and account for factors such as
light and temperature attenuation through the canopy. The
PCEEA model is intended to reduce the computational ex-
pense of running MEGAN in conjunction with a detailed CE
model. When applied at the global-scale it can calculate iso-
prene emissions to within 5% of the full MEGAN model, but
may exceed 25% when applied at specific locations and times
(Guenther et al., 2006).

Our application of the PCEEA model gave a poorer fit with
the observations for both standard (R2

= 0.42, M = 0.62)
and fitted coefficients (R2

= 0.43, M = 0.52) when com-
pared to using the standard leaf-level G06 algorithms. Im-
portantly, the PCEEA model does not utilise information on
the previous light and temperature conditions (24–240 h).
Therefore, it appears that at this site, it is more important to
include details of the previous environmental conditions than
to include information on the structure of the canopy and its
attenuation of light and temperature, at least if this is done in
this simplified way. However, it should be noted that using
a detailed canopy environment model may well result in an
improved fit, yet the implementation and validation of such a
model would go well beyond the scope of the current paper.

Our findings highlight the need for more direct canopy-
scale flux measurements of VOCs above the world’s tropical
forests to allow for further evaluation and constraint of mod-
els such as MEGAN.

3.2.3 Fluxes of other BVOCs

Fluxes of seven other BVOCs including methanol, acetone,
acetaldehyde and acetic acid were measured during the two
phases of the OP3 campaign; their average diurnal profiles
are plotted alongside those of isoprene and monoterpenes in
Fig. 10 with the results summarised in Table 2b. In addi-
tion to the canopy emissions of isoprene and monoterpenes
discussed above, positive fluxes of acetaldehyde, acetone,
hexanal and/or cis-3-hexenol, and EVK, were also observed.
Average emission fluxes of acetaldehyde and acetone were
of a similar magnitude and range, but emissions of ace-

tone were larger during June and July relative to April and
May, whereas acetaldehyde fluxes were slightly larger dur-
ing April and May. Fluxes of hexanal and EVK were ap-
proximately half that of acetone and acetaldehyde, averaging
20 µg m−2 h−1, but mixing ratios of these two compounds
were either very close to or below the limit of detection and
therefore the fluxes of these compounds are not discussed
further.

Previous studies over tropical forests have shown the bidi-
rectional exchange of organic acids between canopy and at-
mosphere (Kuhn et al., 2002; Karl et al., 2004). Our mea-
surements are consistent with these findings, with deposition
fluxes observed for acetic acid during morning and early af-
ternoon as well as small emission fluxes at certain times. De-
position velocities were in the range of 1–3 mm s−1, which
is similar to those reported over the Amazonian rainforest
by Kuhn et al. (2002) during the wet season. Correlations
between instantaneous measurements of fluxes and ambient
mixing ratios did not clearly show a compensation point as
has been previously reported in leaf-level studies. However,
it is likely that other sinks exist in the canopy (such as ad-
sorption to leaf surfaces), which would affect the relationship
between fluxes and concentrations. These findings should be
treated with some caution as measurements of acetic acid by
PTR-MS can be affected by memory effects in the inlet sys-
tem and drift tube (de Gouw and Warneke, 2007).

Canopy profile measurements of methanol mixing ratios
made by Ryder et al. (2010) showed elevated values close
to the forest floor and their modelling of source/sink dis-
tributions indicates the forest floor to act as a source for
methanol at certain times. Previous studies have shown
methanol to be emitted during the decomposition of leaf ma-
terial (Fall, 2003). However, our canopy scale flux measure-
ments showed periods of both emission and deposition, with
small net deposition. Previous studies in Amazonia have
also shown both positive and negative fluxes of methanol,
but the net exchange has always been reported as posi-
tive (Karl et al., 2004). The net deposition of methanol at
this site, combined with its small deposition velocity, sug-
gests that photo-oxidation is its primary source and results
from the CiTTyCAT chemistry box model model indicate a
methanol formation rate above the forest canopy of 1.7×105

molecules cm−3 s−1 , equivalent to about 0.6 ppbv day−1.
The net exchange of MACR+MVK was negligible, with

both positive and negative fluxes observed during each cam-
paign. Positive fluxes were more common in the morning,
whereas negative fluxes tended to be observed in the af-
ternoon. This flux pattern may relate to the interplay be-
tween chemical sources/sinks and boundary layer dynamics.
The net flux is the balance between the chemical production
above and below the measurement height. During the first
half of the day the boundary layer is shallower and most
of the chemical formation happens below the measurement
height, while in the afternoon most of the formation occurs
above the canopy.
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Fig. 10.Average diurnal profiles of VOC fluxes measured during the two intensive OP3 field campaigns which took place between 20 April–
7 May (OP3-I) and 20 June and 20 July (OP3-III), 2008. Greyed bands show±1 standard deviation of averaged hourly values.

3.3 Net ecosystem exchange of carbon

Tropical forests assimilate carbon during the daytime and
studies have shown that they currently act as a net carbon sink
(Grace and Rayment, 2000). However, the carbon assimi-
lated during the daytime is offset somewhat by the emission
of VOCs from both the forest canopy and forest floor. We
estimated this daytime offset by analysing total VOC emis-
sions (all VOC measured during OP3; see Table 2b for list)
with respect to concurrently measured CO2 fluxes obtained
during the OP3-III campaign (20 June–20 July 2008). Fig-
ure 11 shows the average diurnal profile of CO2 fluxes and
total VOC exchange occurring above the forest canopy. In-
tegrated CO2 fluxes yield a daytime (08:00–18:00) net car-
bon sink strength of 3120 mg C m−2 d−1. Total VOC emis-
sions, which had an integrated flux of 13.2 mg C m−2 d−1

represented 0.4% of this (as carbon). The carbon offset from
VOC fluxes above this SE Asian rainforest is lower than val-
ues reported above an Amazonian forest (1.2−3.7 %; Kuhn
et al., 2007; Karl et al., 2004), but this may be attributable
to the limitations of the measurement system, which was de-
coupled from the canopy at night (see above) and unable to
resolve nocturnal CO2 emissions due to respiration. Conse-

quently our estimates of net ecosystem exchange (NEE) are
for daytime only and guaranteed to be an overestimate. For a
more detailed discussion of CO2 fluxes recorded during this
campaign see Siong et al. (2010).

VOC emissions represent a loss of reactive carbon from
the canopy, which after emission, will be photochemically
processed and some of this carbon may therefore be de-
posited back to the canopy and hence the amount of car-
bon escaping the ecosystem is less than the measured VOC
flux. For completness of carbon accounting, we ran the
CiTTyCAT box model of atmospheric chemistry (Wild et
al., 1996; Evans et al., 2000; Donovan et al., 2005; Hewitt
et al., 2009; Pugh et al., 2010), including detailed isoprene
chemistry (Taraborrelli et al., 2009), in the boundary layer
above the flux footprint, to trace the fate of carbon emitted
as VOCs. The model also includes detailed monoterpene
chemistry (Jenkin, 1996; Stockwell et al., 1997), however the
lumping of species within these schemes leads to a carbon
loss of around 10% in the model. Therefore monoterpene
emissions were neglected in these calculations to conserve
carbon. For details on the CiTTyCAT model set-up see Pugh
et al. (2010).
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Fig. 11. Averaged diurnal profiles of CO2 and total VOC (sum of
isoprene, monoterpenes, methanol, acetaldehyde, acetone, acetic
acid, MVK+MACR, hexanal and EVK fluxes) fluxes measured
above a SE Asian tropical rainforest during the period of 20 June–
20 July 2008. During the night time the measurements were de-
coupled from the forest canopy and therefore data shown during
that period are not representative of the exchange occuring at the
canopy top. Error bars and green bands show±1 standard devia-
tion of mean averaged values.

Isoprene was emitted following the diurnal cycle defined
by the MEGAN algorithm (Guenther et al., 2006). The 24 h
average emission rate was 6.88×1010 molecules cm−2 s−1

(0.28 mg m−2 h−1). The only other emitted species was
NO, at a constant rate of 6.53×109 molecules cm−2 s−1

(5.5 µg m−2 h−1). A deposition velocity of 1.5 cm s−1 for
MACR and MVK was adopted, following the findings of
Pugh et al. (2010). Wet deposition (after Real et al., 2008,
S-WET2 scheme) was also employed. The model does not
include the formation of secondary organic aerosol, however
the yields for isoprene are only a few percent (Hallquist et
al., 2009). A carbon budget was calculated over the final four
days of an eight-day model run, tracing the ultimate destina-
tion of the carbon emitted as isoprene. The model run indi-
cated that the bulk of the reactive carbon emitted from the
canopy is rapidly returned to the canopy in the near vicin-
ity of the point of emission through both wet (60%) and dry
(27%) deposition processes. A small fraction (<4%) of the
aldehydes, acids, nitrates and peroxides formed through pho-
tochemical reactions persist to be either further oxidised or
deposited on a longer timescale, but only 9% (0.04% of day-
time NEE) of the emitted reactive carbon escapes the land-
scape in the form of CO2. This fraction is somewhat lower
than the global average, which is thought to range between
23–55% (Goldstein and Galbally, 2007) and can be explained
by the higher rates of wet and dry deposition found in the
tropics.

4 Summary and conclusions

Direct canopy-scale measurements of VOC fluxes above a
SE Asian tropical rainforest showed that isoprene was the
dominant compound emitted, accounting for 80% (as car-
bon) of the total measured reactive carbon fluxes. Typi-
cal daytime fluxes ranged between 0.2 and 4.4 mg m−2 h−1

(10:00–14:00; 5th and 95th percentiles), which, when nor-
malised to standard conditions (30◦C; 1000 µmol m−2 s−1

PAR), gave an average base emission rate of 1.6 mg m−2 h−1.
This value was found to be 4.1 times smaller than the default
standard emission rate used in the MEGAN model for trop-
ical forests. With the exception of BER, optimisation of the
empirical coefficients describing the temperature and PAR
response used within MEGAN did not significantly improve
the fit between measured and modelled data, lending confi-
dence to the global application of these coefficients.

Total monoterpenes accounted for 18% of the reactive
carbon fluxes, ranging between−0.1 and 1.0 mg m−2 h−1

(10:00–14:00; 5th and 95th percentiles) with an average base
emission rate of 0.46 mg m−2 h−1. This value was 70% lower
than the standard emission rate for monoterpenes used in the
MEGAN model for tropical forests. Combined with the evi-
dence from in-canopy measurements, these data demonstrate
that monoterpenes were not emitted at night and during the
day they were found to be dependent on both light and tem-
perature.

The fluxes of other VOCs including the OVOCs, methanol,
acetaldehyde and acetone, accounted for<2% of the total
reactive carbon flux. In total, the sum of the measured re-
active carbon fluxes offset the daytime daytime assimilated
carbon of the forest canopy by 0.4%, but atmospheric box
modelling suggests that most (90%) of this reactive carbon
is returned back to the canopy by wet and dry deposition fol-
lowing chemical transformation.
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