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Received: 19 January 2010 – Published in Atmos. Chem. Phys. Discuss.: 5 March 2010
Revised: 7 July 2010 – Accepted: 7 July 2010 – Published: 5 August 2010

Abstract. The kinetic collection equation (KCE) has been
widely used to describe the evolution of the average droplet
spectrum due to the collection process that leads to the de-
velopment of precipitation in warm clouds. This determin-
istic, integro-differential equation only has analytic solution
for very simple kernels. For more realistic kernels, the KCE
needs to be integrated numerically. In this study, the validity
time of the KCE for the hydrodynamic kernel is estimated by
a direct comparison of Monte Carlo simulations with numer-
ical solutions of the KCE. The simulation results show that
when the largest droplet becomes separated from the smooth
spectrum, the total mass calculated from the numerical solu-
tion of the KCE is not conserved and, thus, the KCE is no
longer valid. This result confirms the fact that for kernels ap-
propriate for precipitation development within warm clouds,
the KCE can only be applied to the continuous portion of the
mass distribution.

1 Introduction

One of the most important mechanisms for the formation of
rain is the collision and coalescence of smaller droplets into
larger ones. This process can be described by the integro-
differential kinetic collection equation (KCE) or stochastic
collection equation, which in discrete form is expressed as
(Pruppacher and Klett, 1997):

∂N(i,t)

∂t
= (1)

1

2

i−1∑
j=1

K(i −j,j)N(i −j)N(j)−N(i)

∞∑
j=1

K(i,j)N(j)
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whereN(i,t) is the total number of droplets with massxi

as a function of time. In Eq. (1), the time rate of change of
the average number of droplets with massxi is determined
as the difference between two terms: the first term describes
the average rate of production of droplets of massxi due to
coalescence between pairs of drops whose masses add up to
massxi,and the second term describes the average rate of
depletion of droplets with massxi due to their collisions and
coalescence with other droplets.

In real life, the collision-coalescence is a stochastic pro-
cess but the KCE is a deterministic equation. For several
successive realizations of the stochastic collection process
(given set of probabilities and an initial distributionN(i,0)),
we would expect to obtain slightly different outcomes for the
resulting droplet spectra. However, since Eq. (1) is determin-
istic, it can produce only one distribution once the collection
kernel and the initial distributionN(i,0) are specified, and its
solution is an average spectrum.

The average spectrum obtained from Eq. (1) and the en-
semble average obtained from different realizations of the
stochastic collection process are different. Bayewitz et
al. (1974) showed that the solution of the KCE and the ex-
pected values calculated from the stochastic equation are
equal only if the covariances are omitted from the probabilis-
tic model. Valioulis and List (1984) compared the numerical
solution of the KCE with averages calculated from different
realizations of the stochastic process obtained from a Monte
Carlo simulation for Brownian diffusion, a fluid shear and a
differential sedimentation collision kernel. They showed that
the solution of KCE matched well the true stochastic aver-
ages from the Monte Carlo simulation provided that the total
number of particles was large.

Furthermore, the KCE assumes that the number of droplets
N(i,t) of massxi, is a continuous variable. In the case of
runawaygrowth, when a single droplet, much larger than the
second largest droplet, becomes detached from the contin-
uous part of the distribution, such assumption is no longer
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valid. At some point in the evolution of the mass spectrum
there is a transition from a continuous one to one with a
continuous distributionplusa massive runaway droplet. Af-
ter the runaway growth occurs, the total mass (refered to as
the liquid water content) is no longer conserved by the KCE
and the averages obtained from the deterministic differential
Eq. (1) will differ from the expected values obtained from the
stochastic collection process.

It is expected to obtain a runaway droplet if the kernel
K(xi,xj ) increases sufficiently rapid withxi andxj . In as-
trophysical applications was demonstrated that the runaway
growth occurs if the two body coalescence kernel rises faster
than linearly in the mass of the heavier particle (Malyshkin
and Goldman, 2001).

Wetherill (1990) concluded that the KCE only models the
continuous part of the spectrum. Since no such particle is
taken into account by the KCE, some matter escapes from the
system and the total mass calculated from the KCE decreases
with time. Alfonso et al. (2008) simulated the evolution of
a droplet spectrum assuming a kernel that was proportional
to the product of the masses of the colliding droplets. The
mass of the largest (runaway droplet) was estimated using
a Monte Carlo algorithm, and compared with the runaway
droplet mass obtained by subtracting the mass of the contin-
uous spectrum (obtained from the analytical solution of the
KCE) from the initial mass of the system, resulting in very
good agreement. As the largest droplet continues to grow
by accretion of smaller droplets; the mass (or liquid water
content) of the continuous spectrum predicted by the KCE
further decreases.

Analytical expressions for thevalidity time of the KCE
only exists for very simple kernels, such as constant, the
sum of the masses,B(xj+xj ) the product of the masses
C(xi ×xj ) and their combination (e.g. polynomials). There
are no analytical solutions of the KCE when more realistic
kernels are considered. As the KCE is generally taken as
the governing equation to model stochastic growth in cloud
models, it is very important to estimate the validity time of
the KCE for kernels relevant to cloud physics.

In Alfonso et al. (2008), the numerical criteria suggested
by Inaba et al. (1999), to calculate thevalidity time for the
KCE was compared with the analytical results obtained by
Drake (1972) and Tanaka and Nakazawa (1994), with good
agreement. Inaba et al. (1999) proposed that the stochas-
tic property of the system becomes distinct around the be-
ginning of runaway growth. At that point, the ratio of the
standard deviation for the largest particle mass over all the
realizations to the averaged value from all the realizations,
reaches a maximum.

The main goal of this study is to demonstrate that the nu-
merical criteria suggested by Inaba et al. (1999) can be used
to estimate the validity time of the KCE for kernels relevant
for the development of precipitation within warm clouds, by
comparing the numerical solutions of the KCE with results
from Monte Carlo simulations.

The paper is organized as follows: the next section in-
cludes overview of previous results obtained for the prod-
uct kernel. In Sect. 3, we validate the numerical algorithm
to solve the KCE and compare the numerical solutions with
analytical ones available in the literature. The validation of
the numerical criteria suggested by Inaba et al. (1999) for
the case of the hydrodynamic kernel is presented in Sect. 4.
Finally, in Sect. 5 we discuss the results and possible impli-
cations for cloud physics modeling.

2 An overview of previous results

Drake (1972) calculated the analytical solutions of the KCE
for polynomials of the formK(xi,xj ) = C(xi ×xj ). The time
evolution of the second moment (with respect to the droplet
distribution),M2(t), is given by:

M2(t) =
M2(t0)

1−CM2(t0)t
(2)

For the discrete caseM2 is defined as:

M2(t) =

Nd∑
i=1

x2
i N(i,t) (3)

From Eq. (2), it is clear thatM2 is undefined when

τ = [CM2(t0)]
−1 (4)

The timet = τ , when the deterministic KCE predicts a diver-
gence ofM2 and a decrease of the first moment,M1 (total
mass or liquid water content) is called thegel point. The
decrease of the total massM1 after the gel point for a ker-
nel proportional to the product of the masses,K(xi,xj ) =

C(xi ×xj ), is obtained from the analytical solution:

N(i,t) = N0
(iT )i−1

i0(i +1)
exp(−iT ) (5)

T = CN0v
2
0t (6)

derived by Scott (1968) for a monodisperse initial condition.
In Eq. (5, 6),N0 andv0 correspond to the initial number and
volume of droplets, respectively. We simulate a cloud vol-
ume equal to 1 cm3, containing 100 droplets (N0) of 14 µm
in radius (v0 =1.1494×10−8 cm3). The value proposed by
Long (1974) was assumed forC = 5.49×1010 cm3 g−2 s−1,
then Eq. (4) leads toτ = 1379 s (withM2(t0)=x2

0N0). This
value of the breakdown time, can be compared with the time
when the total mass (or liquid water content)

M1(t) =

∞∑
i=1

x(i)N(i,t) (7)

with N(i,t) calculated from (5, 6) starts to decrease. Fig-
ure 1 shows that the total mass is no longer conserved after
1300 s, in agreement with the value ofτ = 1379 s obtained
from Eq. (4).
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Figure 1. Time evolution of the liquid water content (first moment of the distribution) 

for the product kernel (K(x,y)=Cxy, C=5.49×10
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Fig. 1. Time evolution of the liquid water content (first mo-
ment of the distribution) for the product kernel (K(x,y)=Cxy,
C = 5.49×1010cm3 g−2 s−1), calculated from the analytical solu-
tion of the KCE.

The validity time obtained from (4) can be confronted with
the estimation suggested by Inaba et al. (1999), and obtained
by using a statistical code for modeling planetary accretion.
They calculated the ratio of the standard deviation for the
largest particle mass over all the realizations, to the average
value evaluated from different realizations of the stochastic
algorithm:

ML1,S = STD(ML1)
/
ML1. (8)

The standard deviation (STD(ML1)) for the mass of the
largest droplet is calculated for each time by using the ex-
pression:

STD(ML1) =

√√√√ 1

Nr

(
Nr∑
i=1

(
M i

L1−ML1
)2)

(9)

whereML1 is the ensemble mean of the mass of the largest
droplet over all the realizations given by:

ML1 =
1

Nr

Nr∑
i=1

M i
L1 (10)

hereNr is the number of realizations of the Monte Carlo al-
gorithm andM i

L1 is the largest droplet for each realization.
Inaba et al. (1999) found thatML1,S was maximum in the

vicinity of ML1

/
M

2/3
T = 1(whereMT is the total mass of

the system). This is consistent with the results of Tanaka
and Nakazawa (1994), who demonstrated that for a kernel
proportional to the product of the masses, the KCE is valid
until the stage when a particle with a mass comparable to
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Figure 2. The ratio β (defined in Eq. 7) as a function of time, for the product kernel 

K(x,y)=Cxy, (C=5.49×10
10 

cm
3
 g

-2
 s

-1
). Note that STD(ML1)/ML1  reaches a maximum 

when the runaway droplet appears. 

 

 

 

 

 

 

Fig. 2. The ratio (defined in Eq. 8) as a function of time, for
the product kernelK(x,y)=Cxy(C = 5.49×1010cm3 g−2 s−1). Note

that STD(ML1)
/

ML1 reaches a maximum when the runaway

droplet appears.

or larger thanM2/3
T appears. As hypothesized by Inaba et

al. (1999), this behavior of STD(ML1)
/
ML1 indicates that

the stochastic property becomes distinct when the runaway
growth begins.

In Alfonso et al. (2008), the maximum of the statistics (8)
was estimated from Monte Carlo simulations for the product
kernel and compared with the values calculated from Eq. (4).
The stochastic collection calculation was performed using
the Monte Carlo method of Gillespie (1976), with the species
accounting formalism proposed by Laurenzi et al. (2002). As

can be observed in Fig. 2, in the vicinity ofML1

/
M

2/3
T = 1,

the ratio STD(ML1)
/
ML1 increases and reach a maximum

atτ=1335 s, very close to the analytical estimate (1379 s) ob-
tained from Eq. (4).

These arguments raise the question about the applicability
of the statistics described by Eq. (8), to estimate the validity
time for kernels relevant to cloud physics.

3 Numerical integration of the KCE and comparison
with analytical solutions

In order to validate the statistics (8) for the hydrodynamic
kernel, the KCE needs to be integrated numerically, and
the solution obtained from the deterministic Eq. (1) com-
pared with the averages calculated from the stochastic Monte
Carlo algorithm. The numerical integration of Eq. (1) was
performed using the Adams-Bashfort-Moulton predictor-
corrector method (Alfonso et al., 2009). For the finite differ-
ence scheme, droplet mass in the numerical grid is expressed

www.atmos-chem-phys.net/10/7189/2010/ Atmos. Chem. Phys., 10, 7189–7195, 2010
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Figure 3. Size distributions obtained from analytical solution of the KCE for the product 
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Fig. 3. Size distributions obtained from analytical so-
lution of the KCE for the product kernelK(x,y)=Cxy,
(C = 5.49×1010cm3 g−2 s−1), versus size distributions from
numerical solution for two times (t = 1000, 1300 s).

as multiples of the mass of the initial 14µm monomer
droplet. In order to check the performance of the finite differ-
ence method, the KCE was integrated numerically with the
monodisperse initial conditionN(1,0) = 100 cm−3 for the
product kernel K(x,y)=Cxy (C = 5.49×1010 cm3 g−2 s−1),
and the numerical results compared with the analytical solu-
tions of the size distribution. Figure 3 shows the comparison
of analytical and numerical solutions of the size distributions
after 1000 and 1300 s, highlighting the very good correspon-
dence between them.

When gelation occurs, mass conservation is expected to
break down in a finite time, there exists aTg, called gelation
time such that (which is equal toτ for the product kernel)

M1(t) ≡ M1(0) for t < Tg (11)

and

M1(t) <M1(0) for t > Tg

Simultaneously, a sudden growth of the second moment is
to be expected (see Eq. 2). The first and second moments
of the mass distribution were calculated from Eqs. (7) and
(3), respectively, from the numerical solution of the KCE,
to check whether the proposed numerical scheme provides a
good estimate of the exact gelation time. Figure 4 displays
the results for the time evolution of the liquid water content
(first moment), indicating that it is no longer conserved after
aroundt = 1300 s, in agreement with the analytical value of
the breakdown time obtained from Eq. (4). There is a sud-
den growth of the second moment near the breakdown time,
confirming the expected “blow-up” behavior ofM2(t) (see
Eq. 2).
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Figure 4. Time evolution of the liquid water content (first moment of the distribution) 

for the product kernel (K(x,y)=Cxy, C=5.49×10
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Fig. 4. Time evolution of the liquid water content
(first moment of the distribution) for the product kernel
(K(x,y) = Cxy,C=5.49×1010cm3 g−2 s−1), calculated from
the numerical solution of the KCE.

4 Estimation of the validity time of the KCE for the
hydrodynamic kernel

The development of precipitation in warm clouds is typically
modeled by the collisions and coalescence between droplets,
using a hydrodynamic kernel that takes into account the fact
that droplets with different masses (m andm′and correspond-
ing radii, r and r

′

) have different settling velocities, which
are functions of their masses. Furthermore, droplets with dif-
ferent radii (r andr

′

), will collide according with a varying
efficiency of collision (E(r,r ′)).Such hydrodynamic kernel
has the form:

K(m,m
′

) = π
(
r +r

′
)2∣∣∣V (m)−V (m

′

)

∣∣∣E(r,r
′

) (12)

whereV (m) andV (m
′

) are the terminal velocities of droplets
with massesm and m

′

respectively, and the values of the
collision efficienciesE(r,r

′

) were taken from Hall (1980).
These collision efficiencies are good for the purpose of our
work, however, the modifications to Hall’s collection effi-
ciencies proposed in Kerkweg et al. (2003) can be considered
in follow up studies.

In the first of two simulations performed for the hydro-
dynamic kernel we consider a system corresponding to a
cloud volume of 1 cm3 and a bidisperse droplet distribution:
50 droplets of 14 µm in radius, and another 50 droplets of
17.6 µm in radius. We have calculated the behavior of the
ratio ML1,S (Eq. 8) evaluated from 1000 realizations of the
Monte Carlo algorithm, and we have solved the KCE with a
finite difference scheme to calculate the time evolution of the
total liquid water content. Figure 6 shows that the liquid wa-
ter content (or total mass) of the system from the integration

Atmos. Chem. Phys., 10, 7189–7195, 2010 www.atmos-chem-phys.net/10/7189/2010/
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Figure 5. Time evolution of the second moment of the distribution for the product 

kernel (K(x,y)= Cxy), calculated from the numerical solution of the KCE. 

 

Fig. 5. Time evolution of the second moment of the distribution
for the product kernel (K(x,y)= Cxy), calculated from the numerical
solution of the KCE.
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Figure 6. Time evolution of total liquid water content calculated from the numerical 

solution of the KCE for the hydrodynamic kernel (dashed line) and the statistics 

1 1( )L LSTD M M  (solid line) estimated from the Monte Carlo algorithm. The simulations 

were performed for the hydrodynamic kernel with a bidisperse initial condition 
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Fig. 6. Time evolution of total liquid water content calculated from
the numerical solution of the KCE for the hydrodynamic kernel

(dashed line) and the statistics STD(ML1)
/

ML1 (solid line) esti-

mated from the Monte Carlo algorithm. The simulations were per-
formed for the hydrodynamic kernel with a bidisperse initial condi-
tion N(1;0)=50 andN(2;0)=50.

of the KCE is no longer conserved after 800 s. This time
is very close to the time when the statisticsML1,S deter-
mined from the Monte Carlo realizations, reaches its max-
imum (850 s). This result confirms the fact that total mass
calculated assuming a continuous droplet distribution starts
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Figure 7. Time evolution of the statistics 1 1( )L LSTD M M  (thick solid line) estimated for 
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Fig. 7. Time evolution of the statistics STD(ML1)
/

ML1 (thick

solid line) estimated for 1000 realizations of the Monte Carlo al-
gorithm and the results of the Z-test (thin solid line with crosses).
The simulations were performed for the hydrodynamic kernel with
a bidisperse initial conditionN(1;0)=50 andN(2;0)=50.

to decrease around the time when the runaway droplet ap-
pears.

For the total droplet concentration, the Z-test was imple-
mented to check whether the solution obtained from the de-
terministic KCE and the averages over 1000 realizations of
the Monte Carlo method are equal. The null hypothesis
would be H0: 〈N〉 = N , where〈N〉is the true stochastic av-
erage calculated using the Monte Carlo method andN is the
average concentration calculated from the KCE. The results
of the test of the hypothesis are displayed in Fig. 7. As ex-
pected, at a 5% significance level, the null hypothesis H0:
〈N〉=N , is rejected after the time when the statisticMLS,1
reaches its maximum (around 800 s).

In a second simulation, the initial number of droplets was
set equal to 200 (N(1;0)=100 andN(2;0) = 100). The time
evolution of the total liquid water content and the statistics
(8) for this case are displayed in Fig. 8. Again there is a
good correspondence between the time of theML1,S maxi-
mum (430 s) and the gelation time obtained from the numer-
ical solution of the KCE (415 s).

The remarkable fact is that in Figs. 6 and 8, the 2 curves
displayed in each figure were obtained independently from
the numerical solution of the deterministic KCE (Eq. 1) and
from the average over 1000 realizations of the Monte Carlo
process, respectively. The results clearly indicate that the
statistics (8) can be used as a good indicator of the validity
time (gelation time) of the KCE when realistic kernels are
used. This is an important issue since the KCE is generally

www.atmos-chem-phys.net/10/7189/2010/ Atmos. Chem. Phys., 10, 7189–7195, 2010
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Figure 8. Same as Fig. 6 but with the initial condition (1;0) 100N =  and (2;0) 100N = . 

 

 

 

 

Fig. 8. Same as Fig. 6 but with the initial conditionN(1;0)=100
andN(2;0) = 100.

considered as the governing equation for stochastic collec-
tion growth. The results displayed in Figs. 6 and 8 also con-
firm the breakdown of the KCE for the hydrodynamic ker-
nel. In view of these problems, we propose that the statistics
(8) can be used to test the validity of the numerical meth-
ods used to solve the KCE in numerical cloud models, since
the non-conservation of mass is an intrinsic property of the
gelling-kernels after the runaway droplet is formed, and not
a problem of the numerical algorithms used to integrate the
KCE.

The results of the simulations presented here support the
conclusion that the validity time depends on the initial spec-
trum and the type of collision kernel considered. For the
bidisperse initial conditions used in this work, the validity
time for the KCE with the hydrodynamic kernel decreases
as the total concentration increases (a factor of two increase
in concentration leads to a decrease from 850 to 415 s in
the validity time) Malyshkin and Goldman (2001) showed
a similar result, but for the simpler multiplicative kernels
K(x,y)=C(xy)α.

5 Discussion and conclusions

In this paper, we evaluate the applicability of the ratio
ML1,S =ST D(ML1)

/
ML1 for the largest droplet determined

from realizations of the Monte Carlo method, to calculate the
validity time of the KCE for the hydrodynamic kernel, which
is relevant to cloud physics. This evaluation was carried out
by a direct comparison with numerical solutions of the deter-
ministic KCE. The total mass calculated from the numerical
solution of the KCE starts to decrease at the moment in time
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Figure 9. Evolution of the total concentration calculated from the numerical solution of 
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Fig. 9. Evolution of the total concentration calculated from the
numerical solution of the KCE for the hydrodynamic kernel with
bidisperse initial conditions. The initial total number of droplets is
200 per cm3.

when the runaway droplet forms, and the statisticsML1,S ob-
tained from Monte Carlo simulations reaches its maximum.

For the bidisperse initial conditions and the hydrodynamic
kernel, the validity time decreases as the initial total droplet
concentration increases, in agreement with the results ob-
tained in other modeling studies with much simpler kernels.
We confirm the fact that the KCE only describes the contin-
uous droplet spectrum (Wetherill, 1990), and that a transfer
of mass occurs from the continuous spectrum to the runaway
droplet resulting in a decrease of the total mass predicted by
the KCE after the maximum ofML1,S =ST D(ML1)

/
ML1

is reached. The concentration of droplets when the runaway
droplet forms can be as large as 183 cm−3 (see Fig. 9), which
is far larger than the threshold value of 100 cm−3 obtained by
Valioulis and List (1984) in an early study of stochastic com-
pleteness of the KCE.

Another question is the possibility of existence of runaway
drops, since the collisional and spontaneous breakup modes
could tend to fragment them. For the simulations presented
in this paper the answer is positive, since the largest drops
at the start of the runaway growth have a size between 25–
40 µm in radius. For example, in the simulation for the prod-
uct kernel (K(x,y) = Cxy), at τ = 1315 s the largest droplet
(gel) has a radius of then 38 µm. For the two simulations with
the hydrodynamic kernel (with initial droplet concentration
of 100 and 200 cm−3) the runaway drop sizes were 28.5 and
36.9 µm respectively, which are also smaller than the typical
breakup drop size.
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The numerical criterion from the Monte Carlo realizations,
of a maximum in the ratioML1,S =ST D(ML1)

/
ML1 can

also be useful to check the precision of the numerical meth-
ods to solve the KCE, since the non-conservation of mass,
after the runaway droplet is formed, is an intrinsic property
of the KCE (which only describes the continuum spectrum).
Then, for a valid numerical scheme to solve the KCE, we
aim to detect the occurrence of gelation: the decrease of the
total mass after the runaway droplet is formed, together with
a sudden growth of the second moment of the distribution
(Eq. 2).

The results of our study are relevant to cloud modeling,
since they can be used to check the reliability of the numeri-
cal methods implemented to solve the KCE, and to have es-
timates of the validity times of the KCE for the initial condi-
tions under consideration.
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