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Abstract. The kinetic collection equation (KCE) has been where N (i,t) is the total number of droplets with mass
widely used to describe the evolution of the average dropletas a function of time. In Eq. (1), the time rate of change of
spectrum due to the collection process that leads to the dethe average number of droplets with masss determined
velopment of precipitation in warm clouds. This determin- as the difference between two terms: the first term describes
istic, integro-differential equation only has analytic solution the average rate of production of droplets of mgsdue to
for very simple kernels. For more realistic kernels, the KCE coalescence between pairs of drops whose masses add up to
needs to be integrated numerically. In this study, the validitymassx;,and the second term describes the average rate of
time of the KCE for the hydrodynamic kernel is estimated by depletion of droplets with massg due to their collisions and
a direct comparison of Monte Carlo simulations with numer- coalescence with other droplets.
ical solutions of the KCE. The simulation results show that In real life, the collision-coalescence is a stochastic pro-
when the largest droplet becomes separated from the smooftess but the KCE is a deterministic equation. For several
spectrum, the total mass calculated from the numerical solusuccessive realizations of the stochastic collection process
tion of the KCE is not conserved and, thus, the KCE is no(given set of probabilities and an initial distributiof(, 0)),
longer valid. This result confirms the fact that for kernels ap-we would expect to obtain slightly different outcomes for the
propriate for precipitation development within warm clouds, resulting droplet spectra. However, since Eq. (1) is determin-
the KCE can only be applied to the continuous portion of theistic, it can produce only one distribution once the collection
mass distribution. kernel and the initial distributiowv (i, 0) are specified, and its
solution is an average spectrum.

The average spectrum obtained from Eq. (1) and the en-
semble average obtained from different realizations of the
stochastic collection process are different. Bayewitz et

One of the most important mechanisms for the formation ofal' (1974) showed that the solution of the KCE and the ex-

. - . ected values calculated from the stochastic equation are
rain is the collision and coalescence of smaller droplets intd” d

larger ones. This process can be described by the integro(gqual only if the covariances are omitted from the probabilis-

differential kinetic collection equation (KCE) or stochastic tic model. Valioulis and List (1984) compared the numerical

collection equation, which in discrete form is expressed assolunon of the KCE with averages calculated from different

) realizations of the stochastic process obtained from a Monte
(Pruppacher and Klett, 1997): Carlo simulation for Brownian diffusion, a fluid shear and a

1 Introduction

IN(,1) differential sedimentation collision kernel. They showed that
ar 1) the solution of KCE matched well the true stochastic aver-

= oo ages from the Monte Carlo simulation provided that the total

NKG—j, )NG—j)HNG)=NGY K@, j)N() number of particles was large.

2/:1 j=1 Furthermore, the KCE assumes that the number of droplets

N (i,t) of massx;, is a continuous variable. In the case of
runawaygrowth, when a single droplet, much larger than the

Correspondence td.. Alfonso second largest droplet, becomes detached from the contin-
BY (lesterson@yahoo.com) uous part of the distribution, such assumption is no longer
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valid. At some point in the evolution of the mass spectrum The paper is organized as follows: the next section in-
there is a transition from a continuous one to one with acludes overview of previous results obtained for the prod-
continuous distributioplusa massive runaway droplet. Af- uct kernel. In Sect. 3, we validate the numerical algorithm
ter the runaway growth occurs, the total mass (refered to aso solve the KCE and compare the numerical solutions with
the liquid water content) is no longer conserved by the KCEanalytical ones available in the literature. The validation of
and the averages obtained from the deterministic differentiathe numerical criteria suggested by Inaba et al. (1999) for
Eq. () will differ from the expected values obtained from the the case of the hydrodynamic kernel is presented in Sect. 4.
stochastic collection process. Finally, in Sect. 5 we discuss the results and possible impli-
It is expected to obtain a runaway droplet if the kernel cations for cloud physics modeling.
K (x;,x;) increases sufficiently rapid witkk andx;. In as-
trophysical applications was demonstrated that the runawa
growth occurs if the two body coalescence kernel rises faste
than linearly in the mass of the heavier particle (Malyshkin Drake (1972) calculated the analytical solutions of the KCE
and Goldman, 2001).

Wetherill (1990) concluded that the KCE only models the for polynomials of the formk (x;, x;) = C(x; x x;). The time

: ; -~ evolution of the second moment (with respect to the droplet
continuous part of the spectrum. Since no such particle 'Sdistribution) Mo(t). is given by:
taken into account by the KCE, some matter escapes from the ' ’ '
system and the total mass calculated from the KCE decreas%2 ") = M>(to)
with time. Alfonso et al. (2008) simulated the evolution of 1—-CMsy(ro)t
a droplet spectrum assuming a kernel tha_t was proportionail:Or the discrete cas, is defined as:
to the product of the masses of the colliding droplets. The
mass of the largest (runaway droplet) was estimated usin Na o
a Monte Carlo algorithm, and compared with the runawayM2(t) =Y XPNG.1) 3
droplet mass obtained by subtracting the mass of the contin- i=1
uous spectrum (obtained from the analytical solution of theFrom Eg. (2), itis clear thal/> is undefined when
KCE) from the initial mass of the system, resulting in very _
good agreement. As the largest droplet continues to grow =[CMa(10)] )
by accretion of smaller droplets; the mass (or liquid waterThe timer = t, when the deterministic KCE predicts a diver-
content) of the continuous spectrum predicted by the KCEgence ofM, and a decrease of the first momeft; (total
further decreases. mass or liquid water content) is called thel point The

Analytical expressions for thealidity time of the KCE ~ decrease of the total masé; after the gel point for a ker-
only exists for very simple kernels, such as constant, thenel proportional to the product of the mass&sx;, x;) =
sum of the massesB(x;+x;) the product of the masses ((x; x x;), is obtained from the analytical solution:
C(x; x x;) and their combination (e.g. polynomials). There N
are no analytical solutions of the KCE when more realistic y; 1y — v, a7 exp(—iT) ®)
kernels are considered. As the KCE is generally taken as ir@+1
the governing equation to model stochastic growth in cloud
models, it is very important to estimate the validity time of

the KCE for kernels relevant to cloud physics. derived by Scott (1968) for a monodisperse initial condition.
In Alfonso et al. (2008), the numerical criteria suggested |, Eq. (5, 6),N andwp correspond to the initial number and

by Inaba et al. (1999), to calculate thalidity timefor the volume of droplets, respectively. We simulate a cloud vol-
KCE was compared with the analytical results obtained by, q equal to 1 cf containing 100 droplets\g) of 14 um
Drake (1972) and Tanaka and Nakazawa (1994), with gooqn radius @o=1.1494<10-8 cr). The value proposed by
agreement. Inaba et al. (1999) proposed that the stochaq;;-Ong (1974) was assumed f@F=5.49x 10 cm? g—2s~1

tic property of the system becomes distinct around the bethen Eq. (4) leads to = 1379's (Witth(to)zngo). Thié

ginning of rur_1a\(vay growth. At that pgint, the ratio of the value of the breakdown time, can be compared with the time
standard deviation for the largest particle mass over all thg, o the total mass (or liquid water content)

realizations to the averaged value from all the realizations,
reaches a maximum.

The main goal of this study is to demonstrate that the nu-
merical criteria suggested by Inaba et al. (1999) can be used
to estimate the validity time of the KCE for kernels relevant With N(i,7) calculated from (5, 6) starts to decrease. Fig-
for the development of precipitation within warm clouds, by ure 1 shows that the total mass is no longer conserved after
comparing the numerical solutions of the KCE with results 13005, in agreement with the value of 1379 s obtained
from Monte Carlo simulations. from Eq. (4).

An overview of previous results

&)

T= CNov(Z)t (6)

e8]

Mi(t)=") x(i)N(i,1) ™

i=1
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Fig. 1. Time evolution of the liquid water content (first mo- Fig. 2. The ratio (defined in Eq. 8) as a function of time, for
ment of the distribution) for the product kerneK(gy)=Cxy, the product kermnek(x,y)=Cxy(C =5.49x10'%cm3 g=2s71). Note
C=5.49x100cm3g—2s71), calculated from the analytical solu- that STD(MLl)/MLl reaches a maximum when the runaway

tion of the KCE. droplet appears.

The validity time obtained from (4) can be confronted with

S . or larger thanMi/ 3 appears. As hypothesized by Inaba et
e slmalon shggeted b ol . (1999) and banel (1990, s benavor of STOY, 1 ndctes
They calculated the ratio of the standard deviation for thethe stochastic property becomes distinct when the runaway

: o rowth begins.
largest particle mass over all the realizations, to the averagg g

. o =~ In Alfonso et al. (2008), the maximum of the statistics (8)
value evaluated from different realizations of the stochastic . . .
algorithm: was estimated from Monte Carlo simulations for the product

kernel and compared with the values calculated from Eq. (4).
Mpys= STD(MLl)/MLl. (8) The stochastic collection calculation was performed using
the Monte Carlo method of Gillespie (1976), with the species

The standard deviation (STD@M)) for the mass of the  accounting formalism proposed by Laurenzi et al. (2002). As

IFz)arreg:Ssi;r?.roplet is calculated for each time by using the €X.an be observed in Fig. 2, in the vicinity MLl/M;B: 1

the ratio STIZQMLl)/MLl increases and reach a maximum
( Ny ) atr=1335s, very close to the analytical estimate (1379 s) ob-

Z(Mh—MLl)Z (9)  tained from Eq. (4).
i=1 These arguments raise the question about the applicability

whereM; 1 is the ensemble mean of the mass of the Iargesf)_f tth’ stiUstlcls delscrlbed byl EC('j' (?])’ t_o estimate the validity
droplet over all the realizations given by: time for kernels relevant to cloud physics.

1
STD(M ;1) = F

r

N,
M= NLZMil (10) 3 Numerical integration of the KCE and comparison
ri=1 with analytical solutions

hereN, is the number of realizations of the Monte Carlo al-
gorithm andM; , is the largest droplet for each realization.
Inaba et al. (1999) found tha ;1 s was maximum in the

In order to validate the statistics (8) for the hydrodynamic
kernel, the KCE needs to be integrated numerically, and
o 23 _ the solution obtained from the deterministic Eq. (1) com-
vicinity of MLl/MT = 1(whereMy is the total mass of pared with the averages calculated from the stochastic Monte
the system). This is consistent with the results of TanakaCarlo algorithm. The numerical integration of Eq. (1) was
and Nakazawa (1994), who demonstrated that for a kernegperformed using the Adams-Bashfort-Moulton predictor-
proportional to the product of the masses, the KCE is validcorrector method (Alfonso et al., 2009). For the finite differ-
until the stage when a particle with a mass comparable teence scheme, droplet mass in the numerical grid is expressed
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Fig. 3.  Size distributions obtained from analytical so- Fig- 4.~ Time evolution of the liquid water content
lution of the KCE for the product kernelK(x,y)=Cxy, (first moment of the distribution) for the product kernel
(C=5.49x100cm3 g 2s71), versus size distributions from (K(xy)=CxyC=5.49<10'%cmPg ?s71),  calculated ~ from

numerical solution for two times € 1000, 1300 ). the numerical solution of the KCE.

4 Estimation of the validity time of the KCE for the

as multiples of the mass of the initial A& monomer .
hydrodynamic kernel

droplet. In order to check the performance of the finite differ-

ence method, the KCE was integrated numerically with theThe development of precipitation in warm clouds is typicall
monodisperse initial conditiov(1,0) = 100 cnt2 for the P precip ypically

product kemelK(x.y)=Cxy (C = 5.49 100 cmd g2 1), modeled by the collisions and coalescence between droplets,

: . ! using a hydrodynamic kernel that takes into account the fact
and the numerical results compared with the analytical solu- 2 ,
. ) R . . that droplets with different masses @ndm’and correspond-
tions of the size distribution. Figure 3 shows the comparison.

. ) . . e =""Ing radii,  andr’) have different settling velocities, which
of analytical and numerical solutions of the size distributions . . o
are functions of their masses. Furthermore, droplets with dif-

after 1000 and 13005, highlighting the very good COMreSPONterent radii ¢ andr"), will collide according with a varying
dence between them.

L o , .
When gelation occurs, mass conservation is expected tefﬂmency of collision €(r,r)).Such hydrodynamic kernel

break down in a finite time, there existd'g called gelation has the form:

time such that (which is equal tofor the product kernel) K(m m') — (r —I—r/)z‘V(m) _ V(m') E(r r') (12)
My(t) = M1(0) fort < Ty (1)) ,
and whereV (m) andV (m ) are the terminal velocities of droplets

with massesn andm respectively, and the values of the
My(1) < M1(0) for 1 > T, collision efficienciesE (r,r') were taken from Hall (1980).

Simultaneously, a sudden growth of the second moment id Nese collision efficiencies are good for the purpose of our
to be expected (see Eq. 2). The first and second momenfé{ork’_ however, th(_e modifications to Hall's collection (_efn-
of the mass distribution were calculated from Egs. (7) andCencies pfopos‘?d in Kerkweg et al. (2003) can be considered
(3), respectively, from the numerical solution of the KCE, I follow up studies. _
to check whether the proposed numerical scheme provides a N the first of two simulations performed for the hydro-
good estimate of the exact gelation time. Figure 4 displaysiynamic kernel we consider a system corresponding to a
the results for the time evolution of the liquid water content cloud volume of 1 crhand a bidisperse droplet distribution:
(first moment), indicating that it is no longer conserved after®9 droplgts of ,14 um in radius, and another 50 dr.oplets of
aroundr =1300s, in agreement with the analytical value of 1716 um in radius. We have calculated the .beh.aV|or of the
the breakdown time obtained from Eq. (4). There is a sugFatio My s (Eq. 8) evaluated from 1000 realizations of the

den growth of the second moment near the breakdown timeMonte Carlo algorithm, and we have solved the KCE with a
confirming the expectedbow-ug’ behavior of Ma(t) (see finite difference scheme to calculate the time evolution of the

Eq. 2 total liquid water content. Figure 6 shows that the liquid wa-
g. 2). . .
ter content (or total mass) of the system from the integration
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Fig. 5. Time evolution of the second moment of the distribution

for the product kernel{(x,y)= Cxy), calculated from the numerical Fig. 7. Time evolution of the statistics ST 1) / M1 (thick
solution of the KCE. solid line) estimated for 1000 realizations of the Monte Carlo al-
gorithm and the results of the Z-test (thin solid line with crosses).
The simulations were performed for the hydrodynamic kernel with
a bidisperse initial conditiov (1;0)=50 andn (2; 0)=50.

1.8E-006 == 2.5 ==

1.6E-006 ==

to decrease around the time when the runaway droplet ap-
pears.

For the total droplet concentration, the Z-test was imple-
mented to check whether the solution obtained from the de-
terministic KCE and the averages over 1000 realizations of
the Monte Carlo method are equal. The null hypothesis
would be Hy: (N) = N, where(N)is the true stochastic av-
erage calculated using the Monte Carlo method &inid the
average concentration calculated from the KCE. The results
of the test of the hypothesis are displayed in Fig. 7. As ex-
pected, at a 5% significance level, the null hypothesis H
(N)=N, is rejected after the time when the statisfics 1
s — 1 r T T 1 T T reaches its maximum (around 800s).

v se0) b o In a second simulation, the initial number of droplets was
set equal to 200X (1;0)=100 andN (2;0) = 100). The time
Fig. 6. Time evolution of total liquid water content calculated from evolution of the total liguid water content and the statistics
the numerical solution of the KCE for the hydrodynamic kernel (8) for this case are displayed in Fig. 8. Again there is a
(dashed line) and the statistics S(IZ\DLl)/MLl (solid line) esti- good correspondence between the time of Mg s maxi-
mated from the Monte Carlo algorithm. The simulations were per-mum (430 s) and the gelation time obtained from the numer-
formed for the hydrodynamic kernel with a bidisperse initial condi- ical solution of the KCE (415 s).
tion N (1;0)=50 andN (2, 0)=50. The remarkable fact is that in Figs. 6 and 8, the 2 curves
displayed in each figure were obtained independently from
the numerical solution of the deterministic KCE (Eqg. 1) and
of the KCE is no longer conserved after 800s. This timefrom the average over 1000 realizations of the Monte Carlo
is very close to the time when the statistits 1 s deter-  process, respectively. The results clearly indicate that the
mined from the Monte Carlo realizations, reaches its max-statistics (8) can be used as a good indicator of the validity
imum (850s). This result confirms the fact that total masstime (gelation time) of the KCE when realistic kernels are
calculated assuming a continuous droplet distribution startsised. This is an important issue since the KCE is generally

1.4E-006 =1

LWC (g/cm3)
STD(M,)M,,

1.2E-006 =1
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Fig. 8. Same as Fig. 6 but with the initial conditiavi(1;0)=100

andN (2;0) =100. Fig. 9. Evolution of the total concentration calculated from the
numerical solution of the KCE for the hydrodynamic kernel with
bidisperse initial conditions. The initial total number of droplets is

considered as the governing equation for stochastic collec200 per cn.

tion growth. The results displayed in Figs. 6 and 8 also con-

firm the breakdown of the KCE for the hydrodynamic ker- -

nel. In view of these problems, we propose that the statisticdV"en the runaway droplet forms, and the statistigs, s ob-

(8) can be used to test the validity of the numerical meth_tamed from Monte Carlo simulations reaches its maximum.
ods used to solve the KCE in numerical cloud models, since For the bidisperse initial conditions and the hydrodynamic

the non-conservation of mass is an intrinsic property of thekernel, the validity time decreases as the initial total droplet

gelling-kernels after the runaway droplet is formed, and notconcentration increases, in agreement with the results ob-

a problem of the numerical algorithms used to integrate thd@ined in other modeling studies with much simpler kernels.
KCE. We confirm the fact that the KCE only describes the contin-

yous droplet spectrum (Wetherill, 1990), and that a transfer
of mass occurs from the continuous spectrum to the runaway
droplet resulting in a decrease of the total mass predicted by
the KCE after the maximum o#/,1 s=STD(My1)/ M1

is reached. The concentration of droplets when the runaway

The results of the simulations presented here support th
conclusion that the validity time depends on the initial spec-
trum and the type of collision kernel considered. For the
bidisperse initial conditions used in this work, the validity

time for the KCE with the hydrodynamic kernel decreases

as the total concentration increases (a factor of two increasgr?pllet formti cartwhbetss Iar:gledas |183<:;'r§soee ﬁFlgb-t9)_, Wg'g h
in concentration leads to a decrease from 850 to 415s > & 'argerthan he threshold value o aned by

the validity time) Malyshkin and Goldman (2001) showed Valioulis and List (1984) in an early study of stochastic com-

a similar result, but for the simpler multiplicative kernels pleteness of the_KC!E. e .
K(y)=CxyF. Another question is the possibility of existence of runaway

drops, since the collisional and spontaneous breakup modes
could tend to fragment them. For the simulations presented
in this paper the answer is positive, since the largest drops
at the start of the runaway growth have a size between 25—
. o .40 um in radius. For example, in the simulation for the prod-
In this paper, we evaluate the applicability of the ratio |, . kernel K (x,y) = Cxy), att = 1315s the largest droplet

Mp1.5=ST D(ML1) /M, for the largest droplet determined (gel) has a radius of then 38 um. For the two simulations with
from realizations of the Monte Carlo method, to calculate thethe hydrodynamic kernel (with initial droplet concentration

validity time of the KCE for the hydrodynamic kernel, which - ¢ 199 and 200 cmd) the runaway drop sizes were 28.5 and

is relevant to cloud physics. This evaluation was carried outyg g um respectively, which are also smaller than the typical
by a direct comparison with numerical solutions of the deter'breakup drop size.

ministic KCE. The total mass calculated from the numerical
solution of the KCE starts to decrease at the moment in time

5 Discussion and conclusions
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The numerical criterion from the Monte Carlo realizations, Gillespie, D. T.: A general method for numerically simulating the
of a maximum in the ratiCMLl,s=STD(ML1)/ML1 can stochastic time evolution of coupled chemical reactions, J. Com-
also be useful to check the precision of the numerical meth- put. Phys., 22, 403-434, 1976.
ods to solve the KCE, since the non-conservation of masstiall. W. D A detailed microphysical model within a two-
after the runaway droplet is formed, is an intrinsic property fjlmensmnal dynamic fram_ework: Model description and prelim-
of the KCE (which only describes the continuum spectrum), _Nary results, J. Atmos. Sci., 37, 2486-2507, 1980. = ==
Then, for a valid numerical scheme to solve the KCE welnaba’ S. Tanaka, H., Ohtsuki, K., and Nakazawa, K.: High-

L . ! accuracy statistical simulation of planetary accretion: |. Test of
aim to detect the occurrence of ge'at,"’”: the decrease of .the the accuracy by comparison with the solution to the stochastic
total mass after the runaway droplet is formed, together with coagulation equation, Earth Planet. Space, 51, 205-217, 1999.
a sudden growth of the second moment of the distributionkerkweg, A., Wurzler, S., Reisin, T., and Bott, A.: On the cloud
(Eq. 2). processing of aerosol particles: An entraining air-parcel model

The results of our study are relevant to cloud modeling, with two-dimensional spectral cloud microphysics and a new for-
since they can be used to check the reliability of the numeri- mulation of the collection kernel, Q. J.R. Meteorol. Soc., 129,
cal methods implemented to solve the KCE, and to have es- 1-18, 2003.

timates of the validity times of the KCE for the initial condi- Laurenzi, I. J., Bartels, S. L., and Diamond, S. L.: A general
tions under consideration. algorithm for exact simulation of multicomponent aggregation,

J.Comput. Phys., 177, 418-449, 2002.
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