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Abstract. The ozonolysis ofα-pinene has been investi-
gated under dry and humid conditions in the temperature
range of 243–303 K. The results provided new insight into
the role of water and temperature in the degradation mech-
anism of α-pinene and in the formation of secondary or-
ganic aerosols (SOA). The SOA yields were higher at hu-
mid conditions than at dry conditions. The water induced
gain was largest for the lowest temperatures investigated (243
and 253 K). The increase in the SOA yields was dominated
by water (and temperature) effects on the organic product
distribution, whilst physical uptake of water was negligi-
ble. This will be demonstrated for the example of pinon-
aldehyde (PA) which was formed as a major product in the
humid experiments with total molar yields of 0.30±0.06
at 303 K and 0.15±0.03 at 243 K. In the dry experiments
the molar yields of PA were only 0.07±0.02 at 303 K and
0.02±0.02 at 253 K. The observed partitioning of PA as a
function of the SOA mass present at 303 K limited the effec-
tive vapour pressure of pure PAp0

PA to the range of 0.01–
0.001 Pa, 3–4 orders of magnitude lower than literature val-
ues. The corresponding mass partitioning coefficient was de-
termined toKPA=0.005±0.004 m3 µg−1 and the total mass
yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in
the gas-phase, whereas at 253 K and 243 K it exclusively par-
titioned into the particulate phase. PA could thus account at
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least for half of the water induced gain in SOA mass at 253 K.
The corresponding effect was negligible at 303 K because the
PA preferably remained in the gas-phase.

The yield of OH radicals, which were produced in the
ozonolysis, was indirectly determined by means of the yield
of cyclohexanone formed in the reaction of OH radicals with
cyclohexane. OH yields of theα-pinene ozonolysis were de-
termined to 0.67±0.17 for humid and 0.54±0.13 for dry con-
ditions at 303 K, indicating a water dependent path of OH
radical formation. For 253 and 243 K OH yields could be
estimated to 0.5 with no significant difference between the
dry and humid experiments. This is the first clear indication
for OH radical formation byα-pinene ozonolysis at such low
temperatures.

1 Introduction

Ozonolysis of large unsaturated compounds, such as
monoterpenes (C10H16) has been and still is of concern
when it comes to formation of atmospheric secondary or-
ganic aerosols (SOA) (Hallquist et al., 2009; Kanakidou et
al., 2005; Went, 1960). In addition, gas-phase chemistry
of alkenes in general and monoterpenes in particular have
been the subject of several studies as has been summarized
previously (Atkinson and Arey, 2003; Calvert et al., 2000).
From previous studies it is now obvious that the topic of
ozonolysis of terpenes has several aspects that merit further
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investigation (Donahue et al., 2005; Kanakidou et al., 2005).
In this respect both the gas and the particle phase have to
be considered for acquiring more firm conclusions on the
chemical degradation mechanism for monoterpenes (Jenkin,
2004). The environmental concerns related to particles are
today focused on climate and health issues (Pöschl, 2005).
Regarding climate, the Earth radiation budget is influenced
directly, by particle light scattering and absorption, and in-
directly by cloud formation interactions e.g. IPCC (2007).
The health effect of particles has been known for long but
is complex and can depend on particle size and composition
e.g. Brunekreef and Forsberg (2005); Schwarze et al. (2006);
Sioutas et al. (2005). In addition to the particulate phase the
environmental effects of the products remaining in the gas
phase are responsible for enhanced ground level ozone for-
mation and the production of noxious organic compounds,
such as organic peroxides and nitrates (Wayne, 1991). For
future projections, the magnitude of all these effects and their
interactions will depend on climate variables such as temper-
ature, relative humidity and mixing state of the atmosphere
that are all predicted to change in the future, e.g. Liao et
al. (2006). In the present study the focus is to explore the
temperature and humidity dependences of the ozonolysis of
one of the most abundant monoterpenes, i.e.α-pinene.

In the degradation of unsaturated compounds by ozone,
water has been suggested to influence both gas and particle
phase composition and distributions e.g. Bonn et al. (2002);
Jonsson et al. (2006); Ma et al. (2007); von Hessberg et
al. (2009); Wegener et al. (2007). One of the identified
major products fromα-pinene oxidation is pinonaldehyde.
This compound has been identified both in laboratory stud-
ies and in field measurements e.g. Calogirou et al. (1999);
Hatakeyama et al. (1989); Kavouras et al. (1998); Pio et
al. (2001); Yokouchi and Ambe (1985); Yu et al. (1999b).
It is a semivolatile compound with sufficient vapour pressure
to be present mostly in the gas phase at room temperature,
but at low temperatures it can contribute to the condensed
phase (Cahill et al., 2006; Hallquist et al., 1997; Plewka et
al., 2006). The mechanism forming pinonaldehyde from the
ozonolysis ofα-pinene is still under discussion (Johnson and
Marston, 2008). Pinonaldehyde has been detected under dry
and humid reaction conditions. The reaction of the stabilized
Criegee Intermediate (SCI) with water (reaction Scheme 1)
has been suggested to yield pinonaldehyde under humid con-
ditions (Alvarado et al., 1998).

However, previous studies have presented positive, nega-
tive and neutral dependence of pinonaldehyde production on
water concentration (Baker et al., 2001; Berndt et al., 2003;
Bonn et al., 2002; Warscheid and Hoffmann, 2001). These
discrepancies may be explained by experimental conditions
and will be discussed later with respect to the results pre-
sented here. Another product channel from the water re-
action with one of the two possible SCI, is giving pinonic
acid and water. Ma et al. (2007) showed a water depen-
dence on pinonic acid where the water effect disappears upon

addition of acetic acid acting as an effective SCI scavenger
(Ma et al., 2007). This is in line with a water dependent
route for pinonaldehyde since the water reaction is suggested
to give either pinonaldehyde and H2O2 or pinonic acid and
H2O. Another issue in water dependent routes from the ox-
idation of unsaturated compounds is the production of OH
radicals from the ozonolysis. The yield of OH radicals can
be large and previous studies have reported yields between
0.68–0.91 forα-pinene (Atkinson and Arey, 2003; Berndt et
al., 2003). For the OH production two possible reaction path-
ways have received attention in the literature (Anglada et al.,
2002; Hasson et al., 2003; Zhang and Zhang, 2005). One
is the production directly from rearrangement and decompo-
sition of the excited CI, while the other is the water reac-
tion with SCI producing hydroxy hydroperoxides that subse-
quently decompose, yielding OH radicals.

The production route to OH via excited CI should not de-
pend on water in contrast to the production from the hydroxy
hydroperoxide. For the ozonolysis of terpenes, previous ex-
periments show that there is no water dependence regarding
the OH yields (Aschmann et al., 2002; Atkinson et al., 1992;
Berndt et al., 2003). However, if all OH would be produced
from the non water dependent channel, via the excited CI,
the water dependent channels yielding pinonaldehyde and
pinonic acid would be limited to less than 0.32 to 0.09, de-
pending on reported yields of OH. It should be noted that
there is some indication that not all OH is produced directly
from the ozonolysis but from secondary chemistry, such as
any produced HO2 reacting with available O3 e.g. Atkinson
et al. (2004); Jenkin 2004). In addition, the water dependent
OH production was reinvestigated for small alkenes and in
that study, a positive dependence on OH formation was ob-
tained (Wegener et al., 2007). When it comes to aerosol pro-
duction Jonsson et al. (2006) revised the water dependence
on SOA formation from selected terpenes, which illustrates
its complex dependence on experimental conditions (Jonsson
et al., 2006). In addition, the aerosol formation and its water
dependence is coupled to details in the radical chemistry, e.g.
the OH radical yield (Jonsson et al., 2008b).

Another key issue, in addition to water dependence in
the ozonolysis of terpenes, is the temperature dependence
(Heald et al., 2008). At low temperatures, the partitioning of
semivolatile compounds and the chemical degradation will
be different compared to room temperatures both influenc-
ing SOA formation. So far the number of temperature de-
pendent studies is limited (Jonsson et al., 2008a; Pathak et
al., 2007; Saathoff et al., 2009; von Hessberg et al., 2009)
and most information is from studies close to room tem-
perature (Berndt et al., 2003; Cocker et al., 2001; Griffin
et al., 1999; Hoffmann et al., 1997; Hoppel et al., 2001;
Iinuma et al., 2004; Johnson and Marston, 2008; Northcross
and Jang, 2007; Presto and Donahue, 2006; Shilling et al.,
2008). Forα-pinene, Pathak et al. (2007) presented a tem-
perature dependence of the aerosol mass fraction AMF (i.e.
a yield) in the range 273–313 K. They determined the AMF
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at a reference temperature (288 K) and ramped it to higher
temperatures in order to distinguish between changes in the
degradation mechanism and partitioning. The partitioning
increased with decreasing temperature as expected. How-
ever, the overall temperature dependence of the AMF be-
tween 288 K and 313 K was more or less neutral. This im-
plies that the negative dependence of the partitioning on the
temperature is counteracted by a positive dependence of the
chemical mechanism. Obviously, in that temperature range
the formation of less volatile products is favoured which en-
hance the AMF. Between 273 K and 288 K they reported in-
creasing AMF with decreasing temperature.

The results presented in this paper were obtained in a
number of experiments using the AIDA simulation chamber
dedicated to low temperature. A summary of all measure-
ments and the temperature dependence of the SOA yields
from the ozonolysis ofα-pinene and limonene are described
by Saathoff et al. (2009). That paper also provides param-
eters specifically useful for aerosol yield calculations in at-
mospheric models. The temperature dependence on the ki-
netics ofα-pinene with ozone and the volatility of produced
SOA are presented in Tillmann et al. (2009) and Jonsson et
al. (2007), respectively.

The focus of this paper is on the interplay of humidity and
temperature in the formation and partitioning of pinonalde-
hyde in relation to other simultaneous observations such as
aerosol water content, OH radical and SOA production. The
use of a Proton Transfer Reaction-Mass Spectrometer (PTR-
MS) and Aerosol Mass Spectrometer (AMS) enabled high
time resolution in selected molar or mass yield observations.
The presented results are used to further improve the un-
derstanding of the mechanism of the ozonolysis ofα-pinene
with emphasis on its dependence on water and temperature.

2 Experimental

Multiple experiments of the ozonolysis ofα-pinene were per-
formed at temperatures of 243 K, 253 K, 273 K, and 303 K
under dry and humid conditions. The experiments were per-
formed in the AIDA aerosol and cloud simulation chamber
of Forschungszentrum Karlsruhe (FZK) (Fig. 1). The AIDA
chamber is a cylindrical aluminium vessel of 84.5 m3 vol-
ume. It is mounted in a thermally insulating chamber with
walls of 200 mm polyurethane foam. The reactor can be ther-
mostated in a temperature range of 183–333 K. The facility
is surrounded by working platforms which render access to
various reactor flanges for sampling. The AIDA chamber,
the analytical techniques used and the experimental proce-
dures are described in detail elsewhere (Saathoff et al., 2003,
2009). Below we only describe the measurements of specific
importance for the work presented here.

α-Pinene and its oxidation products were measured at
a time resolution of 5 min using a high sensitivity Proton
Transfer Reaction-Mass Spectrometer (PTR-MS, IONICON,

Fig. 1. AIDA chamber with instrumentation. For this study data
provided by a Scanning Mobility Particle Sizer (SMPS), a Proton-
Transfer-Reaction-Mass Spectrometer (PTR-MS), and an Aerosol
Mass Spectrometer (AMS) were used. Further supporting instru-
ments were condensational particle counters (CPC), a differential
mobility analyzer (DMA), a tuneable diode laser system (TDL), a
fourier transform infrared (FTIR) spectrometer, a volatility tandem
mobility analyzer (VTDMA) and a frost point mirror hygrometer as
well as gas monitors for NO, NO2 and O3. The temperature in the
chamber was varied between 243 K and 303 K.

Innsbruck, Austria). This technique is extensively described
in the literature, e.g. Lindinger et al. (1998) and only some
important aspects of the measurements are described here.
In a drift tube held at anE/N ratio of 124 Td (E being the
electric field strength andN the buffer gas number density;
1 Td=10−17 cm2 V molecule−1) chemical ionization of VOC
is achieved by proton transfer from H3O+

·(H2O)n , (n=0, 1,
2), the so called primary ions. The protonation results in a
m/zsignal ofM+1, with M being the molecular mass of the
VOC besides some fragment ions. Allm/zsignals were nor-
malized to the signal intensity of the primary ions to account
for differences in the proton transfer capacity between the
different experiments.

The PTR-MS was calibrated forα-pinene, cyclohexanone
and verbenone, the latter served as a substitute for the com-
mercially unavailable oxidation product pinonaldehyde. The
calibration was performed by using diffusion sources oper-
ated in the low ppb mixing ratio range (Gautrois and Kopp-
mann, 1999). All data signals were background corrected us-
ing dry synthetic air. A gas standard was routinely measured
with the PTR-MS to check for constant operating conditions
during calibration and measurements. Them/zsignals evalu-
ated were 137 and 138 forα-pinene, corrected for an interfer-
ence from pinonaldehyde;m/z170, 169, 152, 151, 137 (mi-
nor contribution), 124, 123, 108 and 107 for pinonaldehyde
and m/z 100 and 99 for cyclohexanone. The 1σ uncertainty
of the calibration of theα-pinene and cyclohexanone mea-
surements are 7% and 10%, respectively. The uncertainty of
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the pinonaldehyde measurement is estimated to be 25% ac-
counting for the use of verbenone as a substitute for the cal-
ibration. The PTR-MS was connected to the chamber via a
6 mm PFA line (4 mm inner diameter) extending 40 cm into
the chamber. The sampling line had a filter held at cham-
ber temperature to remove and collect the aerosol particles
formed from theα-pinene/ozone reaction. The filter mount
was made of Silco-steel and housed a Teflon filter with a
nominal pore size of 200 nm (PTFE, 47 mm in diameter, Sar-
torius). Optionally, the filter could be bypassed to transfer
the vapour and the particulate phase through a 1/8′ PFA tub-
ing heated to 323 K. The inlet and the reaction chamber of
the PTR-MS were also kept at 323 K. The sample flow was
0.3 slm. The bypassing option of the filter was used in se-
lected experiments in order to measure a total of oxidation
products, including semivolatiles which reside in the particle
phase at the chamber conditions but evaporate at the tem-
perature of the sample line (323 K). Using this option gave
means to e.g. determine the total yields of pinonaldehyde at
low temperatures.

An aerosol mass spectrometer (Aerodyne Q-AMS) was
operated to measure the aerosol chemical composition. The
AMS was connected to the AIDA chamber via a short ther-
mostated stainless steel tube in order to minimise losses in
the sampling line. The AMS working principles and modes
of operation are explained in detail elsewhere (Jayne et al.,
2000; Jimenez et al., 2003). For the extraction of chemically
resolved mass concentrations of individual species the AMS
raw data are typically evaluated with standard assumptions
as described by Allan et al. (2004). In brief this approach
makes use of the reproducibility of mass spectral patterns
of typical inorganic aerosol components such as ammonium,
sulfate and nitrate. Subtracting from a measured mass spec-
trum the contributions of inorganic constituents and the con-
tribution of gas phase sample, which is exclusively composed
of N2, O2, and gases with mixing ratios in the ppm range,
one obtains the mass spectrum of the organic aerosol. Due
to the non selective ionization with electron impact at 70 eV
used in the AMS and the high fragmentation induced, further
identification of individual molecules in a complex organic
component is not possible. Nevertheless the total organic
content can be measured sensitively, quantitatively, and with
high time resolution. Measurements of particulate water with
the AMS are subject to a number of possible interferences.
The ions used for water measurements are at mass to charge
ratiosm/z18 (H2O+), 17 (OH+), and 16 (O+). Possible in-
terferences from other ions at these masses such as NH+

2 at
m/z16 and NH+3 at m/z17 can be accounted for. The same
is true for O+ from gas phase O2. Remaining possible in-
terferences arise from gas phase water, sulfate and organics.
The gas phase water signal is a function of the absolute hu-
midity and was determined by measurements of particle free
air from the freshly prepared chamber for each experiment.
Since no sulfate was detected in the experiments this gener-
ally possible interference was not applicable for the chamber

experiments. The remaining possible interference is the pro-
duction of H2O+ during the ionization of organic oxygenated
material. The contribution of organics to the signal ofm/z18
was derived from the experiment at 303 K and 0% RH under
the assumption that no water is present in the particle phase.
We derived a (m/z 18)/(m/z44) ratio of 0.69 withm/z44 be-
ing a representative for oxidized organics. Note that the stan-
dard ratio applied for ambient AMS measurements equals 1.
With this adjustment to the fragmentation pattern the par-
ticulate water mass concentration in the dry experiments at
303 K and 253 K is 0–1 µg m−3 independently of the total
mass loading in the different sections of the experiment. The
ratio (m/z18)/(m/z44)=0.69 was used for all experiments as-
suming that the overall fragmentation patterns of the organic
aerosol components with respect tom/z18 and 44 are inde-
pendent of temperature, RH and mass loading. This may be
an oversimplification of the system. Nevertheless by com-
paring within one temperature and at similar mass loadings
it is possible to semiquantitatively detect particulate water by
this approach.

Capillary Electrophoresis (CE, Agilent Technologies,
Santa Clara, CA, USA) coupled to an Electrospray Ionization
Ion Trap Mass Spectrometry (ESI-ITMS, Esquire 3000 plus,
Bruker, Germany) was used for quantification of pinonic acid
in the particle phase sampled with Teflon filters and quartz
backup filters. A detailed description of the CE/ESI-ITMS
method can be found elsewhere (Iinuma et al., 2004). The
identification of pinonic acid was based on the comparison of
a migration time and them/zvalues of a detected [M−H]−

ion to that of an authentic standard. Calibration was per-
formed before a series of sample analysis. A linear regres-
sion coefficient for pinonic acid standard was better than
0.99.

Particle number size distributions were obtained using a
scanning mobility particle sizer (DMA 3071, TSI) and a con-
densation particle counter (CPC 3010, TSI) where the sam-
pling took place via stainless steel tubes ranging 35 cm into
the AIDA chamber. For the purpose of this study the vol-
ume concentrations estimated from the mobility measure-
ments were converted to mass concentrations of SOA using
a density of 1.25 g/cm3 (Saathoff et al., 2009).

Ozone was generated by a silent discharge generator (Se-
mozon 030.2, Sorbios) in concentrations of about 3% in a
5 SLM flow of pure oxygen (99.998%, Linde). The obtained
concentration was measured by UV absorption with a com-
mercial monitor (O3-41M, Environment) giving a time res-
olution of 1 min. Theα-pinene (99%, Aldrich) was evapo-
rated up to pressures of∼4 hPa into a 1 L glass bulb and ei-
ther diluted or flushed directly into the chamber with 10 SLM
synthetic air for 3 minutes. Cyclohexane (99.5%, Merck),
500 ppm, was used as an OH scavenger to suppress the
degradation of theα-pinene by OH radicals generated by its
ozonolysis (Atkinson et al., 1992). Before an experiment the
evacuated AIDA chamber was filled with dry or humidified
synthetic air (low hydrocarbon grade, Basi). In the next step
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Fig. 2. Typical experiment performed in a sequence of single ad-
ditions of α-pinene and ozone to the chamber. The experiment
was conducted at dry conditions, a temperature of 303 K and with
500 ppm cyclohexane added as OH-scavenger. Data were analysed
for the whole experiment in order to get average quantities for the
given temperature and the humidity. Data were analysed for each
section in order to get gas-phase yields and partitioning as a func-
tion of the particle mass load.

cyclohexane and ozone were added followed by the sequen-
tial injections ofα-pinene. Mixing within the AIDA chamber
was achieved by a fan within less than 5 min. The subse-
quent additions ofα-pinene gave an incremental increase of
SOA mass (and of oxidation products) covering a range of
several hundred µg m−3 (Fig. 2). In later stages ozone was
refilled to keep it in 3–10 fold excess. Consequently, each
experiment (at oneT and RH) consisted of a sequence of
sub-experiments as a result of the subsequent additions of
α-pinene, which are denoted experiment sections. From sec-
tion to section the total consumption ofα-pinene increases
and therewith the concentration of the particle mass.

3 Results and discussion

3.1 SOA mass

The SOA concentration produced fromα-pinene ozonolysis
was measured at several temperatures in the presence and
absence of water vapour. Figure 3 shows theobservedSOA
mass concentrations as a function of the consumedα-pinene
mass concentrations. This type of plot is called a growth
function. If the SOA mass is corrected for wall loss, the
slope in each point of the growth curve gives the actual mass
fractional yield. The SOA growth functions in Fig. 3 are
classified by temperature (colour) and RH (open: dry and
filled symbols: humid). Curvature and discontinuities in the
growth curves arise from the sequential procedure of the ex-
periments as explained in the experimental section and are
shown in Fig. 2. By comparing the respective humid and
dry experiments separately, it is evident that at decreasing

Fig. 3. Growth curves for theα-pinene ozonlysis for different tem-
peratures and at low (open symbols) and high relative humidity
(filled symbols). Curvature and discontinuities are caused by the
section character of the experiments as shown in Fig. 2.α–Pinene
was measured by PTRMS, aerosol concentration was derived from
SMPS-data.

temperatures more SOA mass is produced from the same
amount of precursors reacted. The details on the tempera-
ture dependence of SOA yields including a thorough aerosol
model analysis are presented in a separate paper (Saathoff et
al., 2009). For the present paper one concludes that more
SOA mass was produced from the same amount ofα-pinene
in the humid cases as compared to dry conditions. As shown
in Fig. 3 this is most pronounced in the experiments at lower
temperatures, whereas at 303 K the SOA mass produced un-
der dry and humid conditions are only slightly different. The
smaller effect of humidity at 243 K in comparison to 253 K
may partly be due to the fact that in the dry case the absolute
humidity was about 40 ppm (RH≈10%), somewhat higher
than in the dry cases at 253 K and 303 K (≤10 ppm, com-
pare Table 1a). In addition, with decreasing temperatures an
increasing fraction of compounds which are semivolatile at
room temperature are likely to contribute to SOA mass ir-
respectively of the humidity. Moreover, lower temperatures
may disable reaction channels and thus shift product branch-
ing ratios. The higher SOA yield in the presence of water
could in general be the result of water dependent channels
which produce low vapour pressure products or due to an
increasing absorption of water at increasing RH. Both possi-
bilities are discussed in the following.

3.2 Water absorption

Regarding the SOA concentrations determined from mea-
sured size distributions (SMPS data) the water effect could
also be attributed to physical partitioning of water into the
aerosol particles as opposed to any direct influence on the
chemical degradation. AMS measurements provide infor-
mation that enables estimates on the relative contribution of
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Table 1. Molar Yields of Pinonaldehyde.

A) Average yields of pinonaldehyde as function of humidity and temperature

Exp. T Relative Water Gas phase molarχ2 of Total Molar Yield
No.a [K] humidity [%] [ppm] yield of PAf the linear fit Nb of PAc,f

SOA05-1 303.2 44-43 18 590–18 170 0.196±0.001 181 203
0.30±0.06SOA05-13 303.2 48–41 20 258–17 430 0.191±0.002 75 89

SOA05-2 303.3 0.02 10 0.069±0.002 70 87 0.07±0.002
SOA06-6 273.0 74–71 4450–4227 0.044±0.001 16 106 n.d.
SOA05-8 253.0 69–66 854–819 ≤ 0.01 3 86 n.d.
SOA05-7 252.9 0.17 2 ≤ 0.01 1.9 105 0.02±0.01
SOA05-9 243.1 72–70 365-355 ≤ 0.01 0.1 47 0.15±0.02
SOA05-10 243.1 8 40 ≤ 0.01 0.4 71 n.d.

B) Section yields of pinonaldehyde as a function of organic mass loadMorg
at 303 K and 44% relative humidity from experiments SOA05-1 and SOA05-13

Section Gas phase molar yield of PAf r of linear fitd Nb Morg[µg m−3]e

SOA05-1
1 0.29±0.03 −0.89 16 11.3
2 0.26±0.13 −0.82 6 20.5
3 0.19±0.02 −0.95 28 45.0
SOA05-13
1 0.28±0.02 −0.74 17 16.3
2 poor correlation −0.25 19 33.8
3 0.41±0.11 −0.69 10 68.8
4 0.18±0.02 −0.91 19 113.8
5 0.15±0.02 −0.83 15 171.3

a Further information on the experimental conditions of the individual experiments is given by Saathoff et al. (2009).
b Number of data points regarded.
c The term total molar yield comprise the sum of aerosol and gas phase yield.
d Correlation coefficient.
e Maximum amount of organic aerosol mass present in that experimental section (ρ = 1.25 g cm−3).
f Provided errors are the 1σ -precisions.
n.d.: not determined.

organics and liquid water to the observed increase in SOA
production. Figure 4, presents AMS data on the mass ra-
tio of water to organics (w/org) as function of the mass load
of SOA at 303 K and 253 K under dry (open symbol) and
humid conditions (filled symbol). The scatter of the data
at SOA mass loads<30 µg m−3 arises from division of two
small numbers with substantial errors at small aerosol con-
centrations. For SOA mass loads>30 µg m−3 it is evident
from the data presented in Fig. 4 that particulate water is de-
tectable in the humid cases, while it is zero under dry condi-
tions. Moreover, at low SOA loads the water fraction seems
to be larger at 303 K but decays with increasing SOA con-
centration. This decrease of the water fraction can be under-
stood from the fact that the aerosol mass load in the AIDA
was increased stepwise to more than 150 µg m−3 and thus
increasing amounts of less-polar semivolatiles absorb into
the aerosol particles. At low temperature (253 K) a constant
water to organic ratio of 0.03 is observed. Hence, the rela-
tive composition of the SOA does not change with increasing

aerosol mass load. This is in accordance with the assumption
that most of the compounds which are semivolatile at 303 K
(e.g. pinonaldehyde) partition at 253 K into the particulate
phase even at small particle mass loads. The observed wa-
ter content of the aerosol can be compared to independently
determined hygroscopic growth factors (HGF) of SOA gen-
erated from the oxidation ofα-pinene. The HGF is the ratio
of the diameter of the particle in equilibrium at a certain rela-
tive humidity to the diameter of a corresponding dry particle.
Varutbangkul et al. (2006) determined the HGF ofα-pinene
SOA to be 1.02 at 293 K and 50% R.H., corresponding to
a volume fraction of water of 6.1%. Applying a density of
1.25 g cm−3 to the organic fraction results in a mass fraction
of water of 0.05, which is in accordance with the water to
organic ratio of 0.1–0.03 at 303 K and 44% RH measured in
the present study. Consequently, at 303 K water uptake could
account for the slightly higher increase in SOA mass under
humid conditions shown in Fig. 3. At 253 K and 68% RH
the SOA mass production increased the most in comparison
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Fig. 4. Mass ratio of water to organics (w/org) as function of the
mass load of SOA at 303 K and 253 K (colour) under dry (open
symbols) and humid conditions (filled symbols) as derived by AMS.

to the corresponding dry experiment and even for this case
the water to organic mass ratio was only 0.03. In conclusion,
the physical water uptake of the aerosol at that temperature
contributes only minor to the SOA mass under humid condi-
tions. The influence of water and temperature on the degra-
dation path ofα-pinene dominates the increase of SOA mass.

3.3 Pinonaldehyde

Water dependent reaction channels in the production of non-
or semivolatile products may contribute to the observed in-
creased SOA formation under humid conditions. As shown
by reaction Scheme 1 pinonaldehyde (PA) is proposed to be
produced from SCI reacting with water and consequently
may exhibit a water dependence. PA is regarded as a
semivolatile compound with a significant vapour pressure
at ambient temperatures (Hallquist et al., 1997). However,
PA may contribute to the condensed phase at lower temper-
atures and can serve as an indicator for other less volatile
compounds formed by the water reaction with the SCI, e.g.
pinonic acid (Ma et al., 2007).

In order to derive gas-phase molar yields, the observed PA
mixing ratios were plotted vs. the consumption ofα-pinene,
as is shown in Fig. 5. Overall linear relationships were es-
tablished for the respective conditions, i.e. temperature (dif-
ferent colours) and humidity (filled and open symbols). The
slopes corresponding to those relationships are theaverage
gas-phase molar yields (YPA) of PA for the respective RH
and temperature. The PA yields obtained are summarised
in Table 1a with the corresponding number of data points
(N ) and theχ2 value of the linear fit. For the experiments
at 303 K, the PA yield is a factor of 3 higher for humid
conditions,YPA=0.191±0.002, compared to dry conditions,
YPA=0.069±0.002. For the humid cases the average gas-
phase molar yields decrease rapidly with decreasing temper-

Fig. 5. Pinonaldehyde mixing ratios measured in the gas phase vs.
the consumedα-pinene for the temperature (colour coded lines and
points) and humidity regimes (open symbols: dry and filled sym-
bols: humid conditions). The data points present standard measure-
ments with particle filter in-line and OH scavenger as described in
the experimental section.

Scheme 1. Water dependent reaction path for the formation of
pinonaldehyde in the ozonolysis ofα-pinene.

atures, from 0.19 to below detection limit. AtT ≤253 K less
than 1 ppb PA is found in the gas phase for both humid and
dry conditions, and gas-phase yields are≤0.01. The tem-
perature effect on the gas phase molar yield of PA could be
caused by a temperature dependent branching in the reaction
mechanism or a pronounced partitioning of the semivolatile
PA towards the particulate phase. Gas-to-particle partition-
ing of organic semivolatile species is dependent on tempera-
ture but also on the actual available particle mass (mostly to
the organic fraction). Under warm conditions the gas-phase
concentrations of PA were high enough to enable analysis
of the gas phase molar yield for each section of the exper-
iments, therewith the gas phase yields were obtained as a
function of the SOA mass load (in extension to theaverage
molar yield presented in Table 1a and Fig. 5). For each sec-
tion molar yields for PA were derived using the relative mea-
surements of PA andα-pinene, i.e. the observed PA mixing
ratio is plotted vs. the mixing ratio ofα-pinene as shown for
example in Fig. 6. The modulus of the slope in Fig. 6 directly
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Fig. 6. Determination of the molar yield of pinonaldehyde from
PTR-MS gas-phase measurement within a section of an experiment.
The negative of the slope gives the approximate gas-phase molar
yield. The respective fit parameters are given in Table 1b.

provides the molar yield of PA. The correlation between the
mixing ratio ofα-pinene and the product PA are close to lin-
ear with a tendency to level off somewhat for large turnovers,
i.e. long reaction times. However, the overall effect is small
within each section and was neglected in the evaluation pro-
cedure. The derived gas-phase molar yields of all sections
at 303 K are given in Table 1b. It should be noted that wall
losses for PA were determined from a long term observation
of PA after complete consumption ofα-pinene at 303 K and
44% RH. Within 15 h the PA mixing ratio decreased with
a wall loss rate of only 130 ppt h−1 and was therefore ne-
glected in the calculation of the molar yields. From the sec-
tional yields measured at 303 K an overall decrease in gas-
phase molar yields was noted with increasing particle load
providing means to estimate PA partitioning and correspond-
ing vapour pressure. Any absorption of a semivolatile com-
pound can be described by use of a partitioning coefficient
Ki as given by Eq. (1) (Seinfeld and Pandis, 1998):

Ki =
Yi,aerosol

Yi,gasMorg
=

RT

MW omγip
0
i

(1)

ThereinYi,aerosolandYi,gasare the molar yields of compound
i in the aerosol and in the gas phase, respectively.Morg de-
notes the organic mass concentration of the aerosol,MW om

is the mean molecular mass of the aerosol constituents,R the
ideal gas constant,T the temperature,γ i the activity coeffi-
cient andp0

i is the saturation vapour pressure of compoundi.
If Yi,aerosolis expressed byYi,gas andYi,total, whereinYi,total
denotes the total molar yield of compoundi, Eq. (1) can

Fig. 7. Gas-phase molar yield as function of the organic aerosol
mass concentration at 303 K and humid conditions. The linear fit
to the data assumes a constant activity coefficient of pinonaldehyde
γPA over the range of observation. From the slope and the intercept
of the regression line overall yieldαPA and vapour pressurep0

PAof
pure pinonaldehyde are derived as described in the text.

be transformed, such that 1/Yi,gas is a linear function of the
available particle mass concentrationMorg:

1

Yi,gas
=

RT

MWomγip
0
i Yi,total

·Morg+
1

Yi,total
(2)

Figure 7 shows the relationship of 1/YPA,gasvs. Morg apply-
ing the sectional yield data recorded in Table 1b. Using this
linear relationship one can extract further physical properties
for PA and its partitioning. In order to derive a total molec-
ular yield YPA.total from the intercept we have to know the
average molecular weightMW om of the products. A value
of 180 g mol−1 was calculated from the weighted average
molecular masses of the aerosol components detected from
the ozonolysis ofα-pinene as presented by Yu et al. (1999a).
Using 180 g mol−1 for MW om we derive a total molecular
yield YPA.total of 0.30± 0.06. The error provides the standard
deviation of the non error weighted linear regression param-
eters derived from Fig. 7.

The product (γPA × p0
PA) is calculated to be (3.0±1.5)

× 10−3 Pa. According to Seinfeld and Pankow (2003)γi

has typical values between 0.3 and 3, accordingly the ef-
fective vapour pressure of PAp0

PA should be in the range
of 0.01 to 0.001 Pa at 303 K, which is distinctively lower
than the value of 8.4 Pa reported in the literature (Hallquist
et al., 1997). The corresponding partitioning coefficient
Ki of PA (KPA) at 303 K would be 0.005±0.004 m3 µg−1,
with a total mass yieldαPAtotal=0.37±0.08 of PA (αPA.total=

YPA.total · MPA/Mα−Pinene.). Odum et al. (1996) used
a two product model of a non-volatile oxidation prod-
uct (1) and a semivolatile oxidation product (2) for the
ozonolysis of α-pinene to fit their data of SOA yields.
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The parameters of their semivolatile proxy (2) (α2=0.326
and K2 = 0.004m3µg−1) are in good agreement with
our independently derived values of PA (αPAtotal=0.37,
KPA=0.005 m3µg−1). As a consequence PA seems to be a
good candidate to match the semivolatile proxy (2) in the
α-pinene ozonolysis. This requires an effective vapour pres-
sure of PA (γPA×p0

PA) substantially lower than assumed so
far. In other chamber studies and field measurements PA was
also often found in a significant fraction in the condensed
phase demonstrating that PA can contribute to aerosol mass
even at ambient temperatures (Plewka et al., 2006; Yu et al.,
1999a). In our studyγPA has to be in the order of 10−3,
to achieve such a low effective vapour pressure considering
the previously measuredp0

PA of 8.4 Pa. Such low activity
coefficients would normally imply specific chemical interac-
tions e.g. adduct formation. Stabilized criegee intermediates
(SCI) have been suggested to form adducts with carbonyl
compounds to yield secondary ozonides (SOZ) (Bonn et al.,
2002). A reaction of e.g. a C10-SCI with PA would yield
a C20-SOZ that will have a significant lower vapour pres-
sure than pure PA. The observed effective vapour pressure of
PA would thus be reduced. In fact, the sectional experimen-
tal procedure adopted in the present study will enhance the
probability of C10-SCI to react with PA since initially pro-
duced PA will be present as reactive SCI are produced in the
subsequent steps ofα-pinene additions. SOZ are known to
be thermally labile yielding the corresponding acids and car-
bonyl compounds e.g. PA (Story et al., 1968). Furthermore,
experiments dedicated to low temperatures would enhance
the lifetime of the SOZ so that they can partition to the par-
ticulate phase. The measurements with a filter in line held at
experimental temperature retains the particulate SOZ. With-
out the filter in line the respective SOZ formed from PA with
a Criegee Radical would thermally decompose in the heated
sampling line of the PTRMS inlet and PA would be detected.
Assuming formation of SOZ could explain the observations
from low temperature with and without the filter in the sam-
pling line as well as the low effective vapour pressure deter-
mined at 303 K. However, quenching of SCI with water may
reduce the importance of the proposed SOZ formation under
humid conditions. Therefore other reversible adducts of PA
in gas or particle phase cannot be excluded.

For experiments at 243–253 K, the gas-phase molar yields
of PA were below detection limit, and it was suspected that
PA partitions strongly towards the condensed phase. The
temperature dependence of the partitioning coefficientKi

can be expressed using the Clausius Clapeyron relationship
for the temperature dependence of vapour pressurep0

i (T )

of the pure componenti and assuming thatMW om andγ i

do not change with temperatures. Equation (3) describes the
corresponding temperature dependence forKi

Ki (T ) = Ki (TRef)
T

TRef
exp

(
1Hvap

R

(
1

T
−

1

TRef

))
(3)

whereT is the actual temperature,TRef the reference temper-
ature,1Hvapis the heat of vaporisation for PA andR the ideal
gas constant. Combining Eq. (1) and (3) we derived a tem-
perature and SOA mass concentration dependent gas phase
molar yield of PA by:

Yi,gas(T ) =
Yi,total(TRef)

1+
RT Morg

MW omγip
0
i (TRef)

exp
(

1Hvap
R

(
1
T

−
1

TRef

)) (4)

Using the average molar PA yield measured at 273 K for hu-
mid conditions and the calculated total molar yield and sat-
uration vapour pressure of PA, (γPA ×p0

PA), at TRef=303 K,
the heat of vaporization (1Hvap) was estimated from Eq. (4)
to be (65±37) kJ mol−1 as compared to (75.5±5.6) kJ mol−1

measured by Hallquist et al. (1997) and (24±9) kJ mol−1 de-
termined by Saathoff et al. (2009). Gas phase molar yields
at 253 K calculated by Eq. (4) are below 1% for SOA mass
concentrations larger than 50 µg m−3 in agreement with the
measurements. The measurements of PA at temperatures
≤253 K, when PA is suspected to fully remain in the con-
densed phase, were performed by removing the particle filter
from the sampling line, allowing PA to evaporate. This was
done during one humid experimental section at 243 K, and
during two dry sections at 253 K. By assuming that PA was
quantitatively transferred into the gas phase when the aerosol
was heated up, this gives thetotal molar yield of PA. For
humid and cold conditions the observed PA yield was 0.15,
about half of the total molar yield of 0.3 at 303 K for humid
conditions. In the dry and cold case a very low total PA yield
of 0.02 was determined, which is distinctively smaller but
still of the same order as in the warm, dry case (0.07). These
results are also given in Table 1a.

The contribution of PA to the water effect on total SOA
yield was estimated. For the experiments at low tempera-
tures the water effect on SOA mass was most effective at
253 K (Fig. 3, green curves). We will use the total yields of
PA determined under humid conditions at 243 K (0.15) and
the gas-phase yields at 303 K (0.3) as lower and upper lim-
its, respectively, assuming that the total yield of PA at 253 K
is somewhere in between. In order to compare to the SOA
mass growth curve, the molar yields of PA are converted into
mass yields (α). This results inαPAtotal=0.19 for the lower
limit andαPAtotal=0.37 for the upper limit, respectively. Since
α’s are total yields and not dependent on gas-to-particle par-
titioning, they are independent of the amount of SOA pro-
duced. In the growth curve picture (Fig. 3) they are straight
lines through the origin whereαPAtotal is determined by the
slope. By adding the straight lines calculated as the lower
and upper limit to the SOA growth curve of thedry case at
253 K and comparing the results to thehumidSOA growth
curve, we achieve an estimate of the upper and lower limit of
the PA contribution to low temperature SOA mass produc-
tion in humid case. In the lower limit, PA alone can already
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Fig. 8. Mutual constraints of the formation of OH and pinonalde-
hyde where CI denotes for Criegee Intermediate; SCI for Stabilized
Criegee Intermediate; PAc for Pinonic Acid and PA for Pinonalde-
hyde. Details of the reaction sequences following S2 can be seen
in Scheme 1 and Scheme 2. Determined branching ratios valid for
303 K at humid conditions are given in brackets.

explain 56% of the humidity induced gain of the SOA mass
production at 253 K. The remaining increase of 44% must
result then from other water dependent product channels giv-
ing either other semi-volatiles condensing at 253 K or non-
volatile products. Using the upper limit ofαPAtotal attributes
all of the yield increase to PA and leaves no extra freedom
for additional compounds to contribute to the observed water
effect on SOA yields.

The increase in SOA mass by the presence of water is less
distinct at 243 K than at 253 K. While most experiments con-
ducted under dry conditions were carried out at water mix-
ing ratios≤10 ppm, the dry case at 243 K contained 40 ppm
of water in comparison to 370 ppm of water in the respec-
tive humid case. It can be speculated that the water depen-
dent channels already become active for trace amounts of
water, i.e. at 40 ppm. On the other hand the similarities be-
tween the humid SOA growth curve at 253 K and both SOA
growth curves at 243 K suggest that the aerosol production
has achieved its maximum at this point forα-pinene ozonol-
ysis. The observed maximum results in a mass conversion
factor of 1.05. Assuming a maximum theoretical mass con-
version factor of 1.26 (Saathoff et al., 2009) for the reaction
of α-pinene to its oxidized products, we end up with a deficit
of 1.26–1.05=0.21 which is either due to wall losses of the
particles or the less volatile vapours, or due to chemical pro-
duction of small molecules like CO which also arise from the
ozonolysis.

To summarize the water effect and the pinonaldehyde
contribution to the effect on SOA the presence of water at
each temperature clearly favours reactions channels in the
α-pinene ozonolysis in which PA is formed. The decreased
gas-phase yield of PA in the humid cases at low temperatures
is mainly due to partitioning into the particle phase. There-
fore PA increasingly contributes to SOA mass going down

Fig. 9. Mixing ratio of cyclohexanone vs. theα-pinene consump-
tion. The slopes of the straight lines are proportional to the OH
yield of theα-pinene+ozone reaction.

Scheme 2. Pathways suggested for the reaction of water with the
stabilised Criegee Intermediate (SCI).

to low temperatures and induces a humidity dependence on
SOA yields. Nevertheless, the lower total PA yields at low
temperatures suggest that the reaction pathways producing
PA are decreasing in importance with decreasing tempera-
ture.

The molar yields of PA determined at ambient tempera-
ture were compared to the literature data (see Table 3). As
can be seen in Table 3 there are plenty of experiments at
a wide range of different experimental conditions with RH
often not specified. Taking the literature data obtained from
humid experiments (RH>4%) in the presence of an OH scav-
enger provides a molar yield of PA in the range of 0.06–0.34.
Our value under humid conditions of 0.30±0.06 is in support
of the higher end of the given range. Experiments carried out
in absence of an OH scavenger (Hatakeyama et al., 1989;
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Table 2. Cyclohexanone and OH yields.

Temperature Humidity Absolute Cyclohexanone OH OH
Regime Water [ppm] yieldc yielda yieldb

303 K wet (44% R.H.) 19500 0.354±0.002 0.67 0.71
303 K dry (0% RH) 10 0.286±0.001 0.54 0.57
273 K wet (70% RH) 4380 0.418±0.002 (0.79)
253 K wet (68% RH) 850 0.276±0.002 (0.52)
253 K dry (0% RH) 2 0.229±0.001 (0.43)
243 K wet (71% RH) 360 0.233±0.002 (0.44)
243 K dry (10% RH) 40 0.254±0.002 (0.48)

a OH yields were calculated assuming a branching ratio of (0.53±0.06) for the channel of the OH+cyclohexane reaction leading to cyclohexanone according to Berndt et al. (2003).
Values in brackets assume a constant branching ratio of 0.53 also for lower temperatures. The uncertainty of the OH yields is about 25%.
b Values are lower limits. The branching ratio for the channel of the OH + cyclohexane reaction leading to the sum of cyclohexanone + cyclohexanol according to Atkinson et
al. (1992) was used to calculate the OH yields.
c Provided errors are the 1σ -precisions.

Warscheid and Hoffmann, 2001) have higher molar yields of
PA (0.23–0.53) arising from the reaction ofα-pinene with
OH radicals being produced during the ozonolysis (Atkinson
and Arey, 2003). Literature data for dry conditions are in-
conclusive. Warscheid and Hoffmann (2001) found a lower
value while Berndt et al. (2003) observed a higher value at
dry compared to humid conditions. The trend with humidity
observed by Warscheid and Hoffmann (2001) is in agreement
with our observation however their values are larger because
of the absence of a scavenger. Our value determined under
dry conditions (0.07) is at the lower end of the molar yield
range obtained of all studies, conducted under dry and hu-
mid conditions, in the presence of an OH scavenger. We sug-
gest that a humidity independent reaction path exists for the
ozonolysis ofα-pinene with a molar PA yield of 0.07 and a
humidity dependent path beside, which adds up to a molar
PA yield of∼0.3 at RH=40–50%.

3.4 OH radical formation

To get further insight into the mechanism of PA formation the
production of OH radicals was also considered. A simplified,
conceptual reaction scheme of the ozonolysis ofα-pinene is
shown in Fig. 8, based on several previous studies (Anglada
et al., 2002; Atkinson and Arey, 2003; Zhang and Zhang,
2005). As outlined in Fig. 8 the OH yield in the ozonoly-
sis ofα-pinene puts a certain constraint to the PA yield. OH
radicals can be produced from two main routes via CI (S1) or
SCI (S4) of which S4 would be dependent on presence of wa-
ter. In addition, HO2 is possibly formed during the multistep
degradation of the CI (S5), e.g. Atkinson and Arey (2003);
Jenkin (2004). HO2 can be converted to OH by the presence
of the large O3 concentrations (S7), which were typically ap-
plied in many laboratory studies. But the importance of the
HO2 channel is difficult to access. Basically, the molar yield
of OH and PA should not sum up to more than unity, as long
as S5 is unimportant.

The estimates on the OH yield were based on the cyclo-
hexanone production from the OH initiated oxidation of cy-
clohexane, acting as OH scavenger. The consumption of
cyclohexane could not be measured directly with necessary
accuracy, due to too small changes in relation to the rela-
tively large concentration of cyclohexane (500 ppm). Under
the applied conditions of excess cyclohexane, the formation
of cyclohexanone is a direct measure of the OH formation,
since cyclohexane will scavenge most of the OH radicals,
and cyclohexanone will not react further with OH. As shown
in Fig. 9, the correlation of the mixing ratio of cyclohexanone
with the consumption ofα-pinene is linear in all cases. The
slopes of the linear fits to the data give the cyclohexanone
yields perα-pinene consumed and are listed in Table 2. The
cyclohexanone yields as a function of humidity and temper-
ature are all in a range of 0.23–0.42 (Table 2), but show con-
siderable variation although the precision of the single deter-
minations are high (compare Fig. 9).

In order to derive absolute values of the OH yield there
is a need for an accurate number on the branching ratio of
the reaction OH+cyclohexane into cyclohexanone (the sec-
ond most stable product, cyclohexanol, could not be detected
because of an interference with cyclohexane). Such branch-
ing ratios are currently only available for room temperature
(Atkinson et al., 1992; Berndt et al., 2003). For example,
Berndt et al. (2003) measured the cyclohexanone branch-
ing ratio at room temperature to be 0.53±0.06. By apply-
ing the data from Berndt et al. (2003) to the 303 K data one
obtains an absolute OH yield of 0.67±0.17 under humid con-
ditions (cf. Table 2). This value agrees exactly with the OH
yield in theα-pinene ozonolysis also observed by Berndt et
al. (2003), however is lower than the OH yield of 0.80 as rec-
ommended by IUPAC (IUPAC, 2005). The OH yield under
dry conditions at 303 K is 0.54±0.13, thus smaller by about
20% compared to humid conditions. The uncertainty of the
cyclohexanone yields is about 11%. If we consider the un-
certainty of the branching ratio of 12% as given by Berndt et
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Table 3. Molar pinonaldehyde yields from the ozonolysis ofα-pinene compared to other studies.

T [K] RH [%] Gas phase mo-
lar yield of PA
[%]

Initial α-Pinene
[ppb]

OH-Scavenger Remarks Reference

303±1 n.s. < 0.51±0.06 1000 n.s Sum of all
aldehydes produced ex-
cept HCHO

Hatakeyama et
al. (1989)

297±2 n.s. 0.19±0.04 1000 Cyclohexane Hakola et
al. (1994)

296±2 ∼ 5 0.143±0.024 1000 Cyclohexane Alvarado et
al. (1998)

306–
308

n.s. 0.06–0.19 45.1–65.1 2-Butanol SOA concentration:
38.8–65.1 µg m−3

(NH4)2SO4-seeds

Yu et
al. (1999a)

296±2 5–50 0.164±0.029 1000 Cyclohexane,
2-Butanol

2-Butanol and Cyclo-
hexane results in iden-
tical PA yields No hu-
midity dependence

Baker et
al. (2001)

296±2 ∼ 60 0.53±0.05 350 None Warscheid
and Hoffmann
(2001)

296±2 < 1 0.23±0.05 350 None Warscheid
and Hoffmann
(2001)

295 High 0.32±0.04 46–670 Cyclohexane Flow tube (high surface
to volume ratio)

Berndt et
al. (2003)

295 Low 0.42±0.05 46–670 Cyclohexane Flow tube (high surface
to volume ratio)

Berndt et
al. (2003)

292 4.1 0.19–0.34 186 Cyclohexane SOA concentration:
417 µg m−3

Lee et
al. (2006)

303.2 48–41 0.30±0.06 17.3 Cyclohexane SOA concentration:
16.3 µg m−3 (at the end
of 1st section)

This study

303.3 0.02 0.07±0.02 21.0 Cyclohexane SOA concentration:
10.5 µg m−3 (at the end
of 1st section)

This study

n.s. not specified

al. (2003), we end up with an uncertainty of the OH yields
of about 25%. Atkinson et al. (1992) determined the branch-
ing ratio for the sum of cyclohexanone and cyclohexanol and
obtained an overall yield of 0.5. By applying this branching
ratio to the current cyclohexanone measurements one can es-
timate a lower limit of the OH yields. These lower limits

are 0.71 in the humid and 0.57 in the dry case at 303 K (Ta-
ble 2). At 296 K Atkinson et al. (1992) determined values
of 0.85±0.06 and 0.82±0.06 for 4% RH and 35% RH, re-
spectively. As a consequence the total molar PA yield of
0.3±0.06 at 303 K under humid conditions is commensu-
rable with the molar OH yield of 0.67±0.13 based on our
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measurement and the branching ratio for cyclohexanone of
Berndt et al. (2003). The branching ratio of path S2 in Fig. 8
into SCI can be estimated to 0.46, if we assume that path S1,
the decomposition of the excited CI, is given by the OH yield
in the dry case, which is 0.54 (see below). The SCI to react to
PA (0.3±0.06) and OH (0.13±0.03) would still leave some
room for the formation of pinonic acid (Fig. 8, S6), which
is known to be formed in small but significant yields (Ma et
al., 2007). The CE/ESI-ITMS analysis of the front and back
filters sampled during an ozonolysis experiment at 303 K un-
der humid conditions leads to a lower estimate of the pinonic
acid molar yield of 0.08. This molar yield is compatible with
the determined branching ratios for S2, S3 and S4 consid-
ering their uncertainties. Regarding OH yields at low tem-
peratures the corresponding temperature dependence of the
product branching ratio for the reaction of OH+cyclohexane
is unknown. Still it is evident from the current measurements
that there must be substantial OH formation in the ozonoly-
sis ofα-pinene, even at the lowest temperature of 243 K. The
OH yields given in Table 2 for temperatures≤273 K are cal-
culated assuming a constant branching ratio of 0.53 (Berndt
et al., 2003) for cyclohexanone in the OH+cyclohexane reac-
tion.

4 Implication for degradation mechanism ofα-pinene

The implication of the presented results on the degradation
mechanism ofα-pinene is basically to confirm suggested re-
action steps and evaluate their temperature dependence. The
temperature and humidity dependence on the OH yield indi-
cates that there is a significant OH production in the absence
of water. Assuming that the branching into cyclohexanone
in the reaction OH+cyclohexane does not significantly de-
pend on temperature, our observations suggest a negligible
temperature dependence on the OH yield from ozonolysis of
α-pinene under dry conditions. In addition the dry and hu-
mid cyclohexanone yields, used as proxies for the OH yield,
seem to converge for the experiments conducted at low tem-
peratures to about 0.25, which is only 15% smaller than the
OH yield at 303 K in the dry case. This could be caused
by the relatively low absolute water concentrations at these
low temperatures for dry and humid conditions (compare Ta-
ble 2). The OH produced at dry conditions and for all exper-
iments done at low temperature should therefore originate
from the decomposition of the excited CI via the hydroper-
oxide channel (S1). This is then the first result showing no
temperature dependence on this channel. The results from
the humid experiments give support to the suggested water
reaction with the SCI as shown in reaction Scheme 2 which
is a detail of S2 in Fig. 8. In reaction Scheme 2 five pathways
suggested for the reaction of water with the SCI are shown
(a–d) (Anglada et al., 2002; Hasson et al., 2001).

As shown in Table 1a the total PA yield, suggested to orig-
inate from channel (a) in reaction Scheme 2, is decreasing
by a factor of two from 303 K to 243 K. The OH production
from channel (c) (or (e)) can be estimated by subtracting the
OH formation contribution from the decomposition of the ex-
cited CI, i.e. the hydroperoxide channel at dry conditions. At
303 K the OH yield from channel (c)+(e) is then estimated
to 0.13±0.03. However, this channel of OH production dis-
appears completely when going down to low temperatures.
It demonstrates that channel (c) and (e) have larger nega-
tive temperature dependencies than channel (a), which is the
channel responsible for the production of PA. However, the
absolute temperature dependence on channel (a) is not clear.
It is rather complex to evaluate this since the absolute wa-
ter concentration difference between dry and humid is not as
large at low temperatures (40 vs. 370 and 2 vs. 870 ppm).
However, there is still a significant difference in PA produc-
tion for dry and humid conditions. This is also valid for the
overall SOA yields obtained at low temperatures where the
experiments at 253 K shows larger differences between dry
and humid than the corresponding experiments at 243 K. It
should be noted that the experiments at low temperatures are
slower in the overall kinetics and a delay in aerosol produc-
tion was observed (Saathoff et al., 2009). Clearly, there is
also a need for a more profound understanding of the wa-
ter competing reactions with SCI to aid for interpretation
of these ozonolysis experiment. It has been suggested that
e.g. aldehydes, acids or alcohols can react with SCI, see e.g.
Docherty et al. (2005). These are all expected products in
the ozonolysis of alkenes and at low temperatures, were the
absolute water concentrations are rather low, these products
may compete with water in reacting with the produced SCI.
In the atmosphere this is not an issue since water is by far the
most abundant trace gas and will be the major reaction path-
way for any produced SCI. In addition, a large fraction of the
overall reaction products are still expected from decomposi-
tion of the excited CI in line with the presented result on dry
yield of OH radicals in the present experiments and the result
by e.g. Docherty et al. (2005).

5 Summary and conclusions

The ozonolysis ofα-pinene has been investigated and the
mechanism has been evaluated with respect to the effect of
water at different temperatures. As expected and described
by Saathoff et al. (2009), the yield of SOA increased with
deceasing temperatures, but in addition the presence of wa-
ter lead to an increase of SOA. The difference between the
dry and the humid experiments was greatest at 253 K and the
effect was minor at 303 K. The large water effect at 253 K
can be attributed to the water dependence of the production
of semivolatile products such as PA. It was demonstrated that
significantly more PA was formed, if water was available as
expected from the suggested chemical mechanism (Anglada
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et al., 2002; Jenkin, 2004). Moreover PA was observed in
substantial fractions in all humid experiments. At 303 K PA
was found in the gas phase, but it increasingly partitioned
into the particle phase with increasing mass load of organic
particles. At 253 K and 243 K PA was only found in the con-
densed phase, and for 253 K PA was estimated to contribute
to at least 56% of the water induced increase in SOA for
humid conditions. Only a small portion of the water effect
could be assigned to physical uptake of water and thus, as
for example shown for PA, the dominant part must be due to
water effecting the organic product distribution.

The PA is formed via the SCI and decay of the excited
CI is the major route to OH radical formation. Thus OH
formation should constrain the maximum PA formation. In
this context, the yield of cyclohexanone was determined,
which originated from the OH initiated oxidation of the OH
scavenger cyclohexane. On basis of these measurements and
knowledge about the yield of cyclohexanone from degrada-
tion of cyclohexane, OH yields could be derived. The OH
yields were commensurable with the PA yields observed.
The presence of water at high temperatures increased the
amount of cyclohexanone. Consequently, it was indirectly
shown that OH formation from the ozonolysis ofα-pinene
is dependent on the water available. Thus, our observations
support mechanisms suggested earlier which state that OH
production has two pathways: the hydroperoxide and the
hydroxy hydroperoxide channel. At 303 K the ratio of these
channels was about 1 to 3 with favour of the hydroperoxide
channel. At low temperatures only the hydroperoxide
channel was active with an approximate OH yield of 50%.
Clearly, these absolute numbers at low temperatures should
be taken with caution since they are based on the room
temperature yield of cyclohexanone from OH + cyclohexane
reaction. However, it is clear that the ozonolysis ofα-pinene
will contribute with a significant part to OH radicals also at
low temperatures.

Edited by: J. B. Burkholder
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