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Abstract. This paper discusses the extension of established
Lagrangian mixing measures to make them applicable to data
extracted from a 2-D axisymmetric hurricane simulation. Be-
cause of the non-steady and unbounded characteristics of the
simulation, the previous measures are extended to a moving
frame approach to create time-dependent mixing rates that
are dependent upon the initial time of particle integration,
and are computed for nonlocal regions. The global measures
of mixing derived from finite-time Lyapunov exponents, rel-
ative dispersion, and a measured mixing rate are applied to
distinct regions representing different characteristic feautures
within the model. It is shown that these time-dependent mix-
ing rates exhibit correlations with maximal tangential winds
during a quasi-steady state, establishing a connection be-
tween mixing and hurricane intensity.

1 Introduction

The question of the interaction between different character-
istic regions of a hurricane, in particular the eye, eyewall,
and near-core, is considered of fundamental importance in
the study of structure and intensity,Frank and Ritchie(1999),
Frank and Ritchie(2001), Kossin and Eastin(2001), Kossin
and Schubert(2001), Schubert et al.(1999), Willoughby
(2001). In particular, mixing in the lower troposphere at the
eye-eyewall interface,Cram et al.(2007), Montgomery et al.
(2006), Persing and Montgomery(2003), has been proposed
to play an important role for intensification. The proposed
mechanisms are either direct and mechanical or indirect and
thermodynamic. Direct and mechanical mechanisms reduce
intensity as air with low absolute angular momentum from
the eye is stirred to the radius of maximum winds (RMW).
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Indirect and thermodynamic mechanisms stir air with high
entropy from the eye to the eyewall that will generate en-
hanced local buoyancy,Smith et al.(2005), Braun (2002),
Zhang and Yau(2002), leading to an enhanced energetic cy-
cle for the hurricane as a whole (e.g. as a modified heat cy-
cle). Maximum tangential winds (found in the eyewall gen-
erally atz≈1 km) will be used here as the principal measure
of intensity.

Mixing in hurricanes is often viewed in an Eulerian man-
ner, based on the instantaneous velocity fields. If the ve-
locity fields are time varying, the Eulerian structures may
not be representative of the actual particle motion. In re-
cent work in fluid dynamics, time dependent invariant mani-
folds, i.e. curves on which particle trajectories remain, have
been studied that partition the domain into distinct regions
and are visualized as local maxima of Lagrangian stretch-
ing fields,Haller (2002), Haller and Poje(1997), Haller and
Yuan(2000), Haller (2000), seeRutherford et al.(2010) for
a recent application to a 2-D hurricane-like vortex model.
Most of these studies are for time-varying 2-D velocity fields
in closed and bounded domains. An extension of the use of
these methods to the 3-D case is given byGreen et al.(2006).
In this paper we investigate a 2-D flow that is more compli-
cated because the domain is unbounded and there is an inflow
and outflow. Lagrangian structures associated with separa-
tion from boundaries have been identified byHaller (2004)
andSurana and Haller(2008), and generally differ from the
Eulerian separation points.

Statistical measures of Lagrangian mixing have been ap-
plied to 2-D fluid models byVoth et al. (2003) and An-
tonsen Jr. et al.(1996), but the mixing characteristics are
time-dependent only in the sense that they vary with the in-
tegration time. While this is sufficient for steady or periodic
velocity fields, in general time-varying velocity fields there
is also a significant dependence on the initial time at which
the trajectories are seeded. This holds for all statistical mea-
sures used so far, including relative dispersion, which has
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been used to diagnose atmospheric mixing byHuber et al.
(2001) in a limited way in a global circulation problem.

In this paper we apply Lagrangian techniques to study
mixing in the axisymmetric hurricane model ofRotunno
and Emanuel(1987). The model of the hurricane shows
the principal structures of 3-D hurricanes (e.g., eye, eyewall
updraft, near-surface inflow, and outflow jet), while resolv-
ing the 2D velocity fields in the radial and vertical direc-
tions. The advantages of axisymmetric models are that the
size of the problem is reduced and the geometry is simpler.
The structures found to be characteristic for the mixing pro-
cesses within an axisymmetric model may, with caution, be
extended to give clues about mixing within 3-D models or
reality. The model ofRotunno and Emanuel(1987) yields
time-dependent 2-D velocity fields that show complex spa-
tial and temporal variation about a quasi-steady state, leading
to a variety of dynamically interesting, time-dependent struc-
tures. The temporal complexity of the velocity fields makes
the extraction of coherent structures difficult, as structures
may have very short times of existence.

Given the complexity and time-dependent nature of the ve-
locity field in the Rotunno and Emanuel model, it is necces-
sary to develop a hybrid (local-global) approach to measur-
ing mixing rates. Local Eulerian flow structures are gener-
ally not valuable for characterizing mixing in the entire flow
if the structures do not exist in a coherent manner. However,
global measures of mixing are not suitable for this model ei-
ther, because much of the mixing occurs around the eyewall
updraft region, which is where the maximum winds occur.
Outer environment and eye behavior are very separate pro-
cesses from the mixing that occurs in and around the updraft,
hence diagnosing the mixing for the entire domain from a
single measure is not reasonable. Most current methods are
either local or global.

Local methods established in the Lagrangian frame study
particular features such as hyperbolic trajectories and their
stable and unstable manifolds, and track the effects of these
features. Global measures attempt to define a rate of mixing
that is representative of the entire system. To diagnose mix-
ing in a domain that has distinct mixing regions, which have
little interaction with other regions, we adapt both local and
global mixing diagnostics to quantify mixing between nonlo-
cal regions. The nonlocality of the regions requires extract-
ing mixing measures from ensembles of trajectories, which
makes these measures statistical in nature.

Our approach to solving the hurricane mixing problem will
be guided by considering time and space dependence of mix-
ing processes. The dynamically distinct regions of hurricanes
(e.g., the eye, the eyewall, near-core, etc.) require that the
space dependence of mixing properties follows a regional ap-
proach. The domain is partitioned into regions, and a mixing
rate is calculated for each region, giving a spatial dependence
to the mixing rates. For general time dependence, not only
variations in the integration time, but also variations in the
initial time have to be used to define the mixing rates. The

result is a time series of mixing rates computed for each spa-
tial region. The initial time-dependent mixing rates are then
compared with measures of intensity to establish correlations
between these characteristic quantities. The correlation anal-
ysis shows that the mixing rates computed for some of the
regions are sigificantly correlated with the maximum tangen-
tial winds.

A mixing rate is a measure of how quickly an initial tracer
in a fluid becomes homogenized. The homogenization pro-
cess has been studied for autonomous or time-periodic veloc-
ity fields in bounded and closed domains, and gives a mixing
rate for the entire system. This rate can be compared to other
rates derived from measures of advection or diffusion. Ad-
vective mixing concerns reversible transport dictated by the
structure of flow boundaries, while irreversible diffusive mix-
ing occurs through filamentation of the boundaries. The fast
convergence in integration time of advective measures makes
them more suitable for this model. Since the advective mea-
sures presented here follow from particle trajectories, the as-
sociated mixing rates are Lagrangian in nature, and measure
the interaction of features that move with the flow.

The outline of the paper is as follows. Section 2 gives an
overview of current Lagrangian mixing rates. In Sect. 3 we
describe the characteristics of the axisymmetric model that
is used for this study. The adaptation of current methods
to make them applicable to our non-steady and open fluid-
flow problem, along with the numerical methods used is de-
scribed in Sect. 4. The results of our study are presented in
Sects. 5–8. In Sect. 5 we show and discuss the Lagrangian
scalar fields. Section 6 gives a Lagrangian characterization
of the eye-eyewall interaction, and Sect. 7 shows how the
Lagrangian structures are related to low and high intensity
steady state approximations. In Sect. 8, we analyze corre-
lations between measures of intensity and mixing rates. A
discussion and conclusions are given in Sect. 9.

2 Overview of current Lagrangian methods

Lagrangian mixing measures have advantages over Eule-
rian measures for their applicability to time dependent fluid
flows. For time dependent flows, trajectories may cross Eu-
lerian boundaries, and diverge from instantaneous features
of the flow. Lagrangian techniques capture the total sepa-
ration of trajectories and provide structures that are invari-
ant under the flow. The local techniques quantify the local
rate of stretching of an initial area element. The locations
of highest stretching may be used to define invariant mani-
folds which give insight into the transport properties. These
techniques are useful for incompressible flows where the ve-
locity field varies slowly both in space and time. Some of
the local techniques currently in use are finite-time Lyapunov
exponents, (Haller, 2002; Haller and Poje, 1997; Haller and
Yuan, 2000), and direct Lyapunov exponents (Haller, 2001).
Distinguished hyperbolic trajectories have been studied by
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Haller (2001), Ide et al.(2002), andSalman et al.(2008).
Finite-size Lyapunov exponents have been used byArtale et
al. (1997), d’Ovidio et al. (2001), andGreen et al.(2006),
and applied in a study ofKoh and Legras(2002) to the strato-
spheric polar vortex. Relative dispersion was studied byHu-
ber et al.(2001) to diagnose transport in the troposphere.

Global Lagrangian techniques provide representative mix-
ing characteristics of an entire domain, without exact extrac-
tion of structures, and are statistical in nature. Global mix-
ing measures have been applied to flows in bounded domains
without a dominant jet, and with with no general time depen-
dence. The global measures are related to the homogeniza-
tion of a tracer within the domain, and are usually extensions
of local measures to the entire domain. The measured mixing
rate determines how fast the tracer is homogenized, (Voth et
al., 2003). Another global mixing rate is defined through the
distribution of the values of finite-time Lyapunov exponents,
and is an extension of the local measure of advection to the
entire domain, seeAntonsen Jr. et al.(1996).

2.1 Measured mixing rate (MMR)

The mixing rate of a system can be measured by calculating
the rate at which an initial tracer becomes homogenized by
the flow. Let

x0 7→ φt
t0
(x0) (1)

be the flow map from timet0 to time t associated with a 2-
D non-steady velocity fieldv(x,t), that is, the solution of
ẋ = v(x,t) with initial conditionx(t0) = x0. If an initial tracer
is planted uniformly over a subdomain at timet0 and evolved,
then the variance of the tracer concentration should decay
over time as the tracer fills the entire domain. Ifρ0(x) is the
initial tracer density at timet0, andρ(t,t0,x) = ρ0(φ

t0
t (x))

the tracer density at timet , then the variance6ρ(t,t0) of ρ

should decay exponentially over time and thus can be mod-
eled by

6ρ(t,t0) = A0e
−r|t−t0| +A1, (2)

The relaxation constantr is called the measured mixing rate
(MMR), (Voth et al., 2003). The use of|t − t0| accounts for
both forward and backward time integration, which allows
comparison to other Lagrangian methods utilizing forward
and backward integration times. It is assumed here thatr

is representative of the entire system, and the initial tracer
profile is not important in a long enough integration time,
since the positions of fluid particles in a closed domain even-
tually become indistinguishable with respect to their initial
conditions. For the non-autonomous axisymmetric model,
we make this rate space and time dependent by varying the
initial spatial regionR in which trajectories are seeded, as
well as the initial timet0.

For R we choose regions in the eye, eyewall updraft, and
the boundary layer inflow, which are representative of par-
ticular features of the flow. These regions have very differ-
ent mixing properties, and different associated mixing rates.

Since the fluid in this model does not eventually become
homogenized, the mixing rate is a measure of how trajec-
tories characteristic of a certain feature disperse, e.g. become
advected through a jet. Trajectories that enter the eyewall
updraft exit the domain through the upper level outflow jet,
so there are many trajectories that exit the domain in finite
time, and there are large regions of the domain that trajec-
tories from the core will not enter. To accomodate this tra-
jectory behavior, a finite-time version of the mixing rate is
used here. Trajectories are advected for an integration time
such that they remain within the spatial domain. The mixing
rater(R,t0) then approximates the long time scalar variance
decay by the homogenization over a short time. We note that
for flows that do not eventually reach a homogenized state,
the degreeof homogenization,A1/(A0 +A1), can measure
how clustered the set remains as it is advected.

2.2 Finite-time Lyapunov exponents (FTLE’s) and La-
grangian coherent structures (LCS’s)

Lagrangian coherent structures (LCS’s) are finite-time invari-
ant manifolds which are advected by the flow. Particle trajec-
tories do not cross LCS’s, but diverge from them exponen-
tially in a direction not aligned with the LCS. LCS’s are de-
termined from the rate of maximal expansion of nearby tra-
jectories. A scalar measure of maximal stretching is provided
by the field of finite-time Lyapunov exponents (FTLE’s)
(Shadden et al., 2005). Consider an infinitessimal pertur-
bationx′

0 of the pointx0. After a timeT , the perturbation
becomes

x′(t0+T ) = φ
t0+T
t0

(x0+x0
′)−φ

t0+T
t0

(x0) (3)

=
dφ

t0+T
t0

(x0)

dx0
x0

′
+O(

∥∥x0
′
∥∥2

). (4)

To find the magnitude of the growth rate of the perturbation,
we drop theO(

∥∥x0
′
∥∥2

) term and take the Euclidean norm

∥∥x′(t0+T )
∥∥ =

√
〈x′

0,1x′
0〉 (5)

where the matrix

1 =
dφ

t0+T
t0

(x0)
∗

dx0

dφ
t0+T
t0

(x0)

dx0
(6)

(the asterisk denotes the transpose of a matrix or vector)
is symmetric and gives a finite time representation of the
Cauchy-Green deformation tensor. If

∥∥x0
′
∥∥ is held con-

stant, the maximal expansion occurs whenx′
0 is aligned

with the eigenvector corresponding to the largest eigenvalue,
λmax(1), of 1,

max
x0

′

∥∥x′(t0+T )
∥∥ =

√
λmax(1)‖x′

0‖

= exp(σ t0+T
t0

(x′
0)|T |)‖x′

0‖,
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where

σ
t0+T
t0

(x0) =
1

2|T |
logλmax(1) (7)

is the largest finite time Lyapunov exponent for the integra-
tion time T at the pointx0 at initial time t0. The FTLE
is computed forward(T >0) and backward(T <0) in time,
which allows detection of forward time repelling and attract-
ing material lines, respectively.

Lagrangian coherent structures (LCS’s) are structures
which maintain some particular property when advected with
the flow. An initial grid of seeded trajectories can be ad-
vected to produce a scalar field of Lagrangian values depen-
dent on initial-time. Since high FTLE values correspond to
large separation of trajectories, ridges of FTLE fields have
been defined as LCS’s corresponding to invariant manifolds
by Shadden et al.(2005). The extraction of ridges from a
time varying FTLE field is impractical, but the structures are
often obvious from visual inspection.

While the exact extraction of LCS’s is generally not pos-
sible, FTLE’s still give the total separation of trajectories
within a region, and the statistical distribution of FTLE val-
ues allows definition of global mixing rates.Antonsen Jr. et
al. (1996) have shown that for autonomous or time-periodic
velocity fields in closed and bounded domains, the variance
of a tracer coincides with the quantity

G(t,t0) =

∫
σ (1/2)e−σ tP(σ,t,t0)dσ , (8)

whereP(σ,t,t0) is the probability distribution function of
the FTLE values. For non-steady velocity fields in open do-
mains this coincidence cannot be expected, but by fixingt0,
the functionG(t) may show a similar exponential decay like
the tracer variance. Thus, assuming thatG(t) has the form

G(t) = A′

0e
−r ′

|t−t0| +A′

1, (9)

we can solve numerically forr ′ to obtain a predicted FTLE
mixing rate (FMR), (Antonsen Jr. et al., 1996). This rate
is meant to measure the advective mixing processes deter-
mined by initial trajectory separation, and does not account
for the diffusive processes that govern the long time mixing.
However, the integration time,T , used must be sufficiently
long so that the FTLE’s resolve LCS’s, and performing in-
tegrations in a moving time frame within a finite time range
imposes an upper bound onT . The optimal integration time
will be discussed in more detail in Sect. 5.

The FMR method was originally designed for closed
bounded domains and steady or time-periodic velocity fields,
see (Voth et al., 2003) for an application to a time-periodic
velocity field with chaotic trjectories. Since the axisymmet-
ric model has general time dependence, and important mix-
ing properties are localized in time and space, we adapt this
measure to include initial time dependence and initial space
dependence. The resulting time series of mixing rates are
then compared to the time series of the measured mixing
rates, and to measures of intensity.

2.3 Relative dispersion (RD)

Relative dispersion is based on the average displacement of
an ensemble of initially proximate trajectories from a mean
particle position,Huber et al.(2001). When an ensemble is
taken to be a well defined set of trajectories, relative disper-
sion can differentiate between sets of initial conditions that
have different mixing properties. For a setR with an ensem-
ble of initial conditionsx0 ∈ R, the root mean squared (RMS)
displacement of the ensemble of trajectories seeded at time
t0 in R is defined as

σ(t) = 〈‖x(t)−x(t)‖2
〉

1
2 , (10)

where〈.〉 denotes the average over the set, andx is the mean
particle position. The relative dispersionK(t) is defined by

K(t) =
1

2

d

dt
σ 2(t), (11)

andσ(t) shows a power law relationship fort → t0 due to the
presence of initial velocity correlations, (Huber et al., 2001),

σ(t) ∝ |t − t0|
γ . (12)

2.4 Relative dispersion from FTLE’s (FRD)

While FTLE’s and relative dispersion are similar measures of
trajectory separation, the FMR is not directly comparable to
the RD in their given forms. To allow a comparable mixing
rate, we define the RMS displacement of an ensemble of tra-
jectories in the direction of maximal expansion through the
FTLE values by

Dt
t0
(R) =

〈
exp(2σ t

t0
(x)|t − t0|)

〉1/2 (13)

∝ |t − t0|
γ ′

, (14)

which gives a powerγ ′ for t → t0. The FTLE based relative
dispersion (FRD) is then defined by

Kf (t) =
1

2

d

dt
D2(t), (15)

and is, for the integration timeT = t − t0, considered as a
function of the regionR andt0 The FRD can be considered as
an average stretching factor for an ensemble of trajectories.
In this paper we will use the FRD as a measure of relative
dispersion.

3 Model overview

The axisymmetric, nonhydrostatic, cloud-resolving hurri-
cane model ofRotunno and Emanuel(1987) is integrated on
a staggered C grid using a fixed radial (3.75 km) and fixed
vertical (312.5 m) grid spacing at one-fourth the originally
published grid spacing. Ice physics are not simulated and
explicit convection is employed using a fixed precipitation
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Fig. 1. Radial velocity field(a) and vertical velocity field(b) at
t = 400 min. with boxes used for computing mixing rates in the
lower left of each image.

fall speed of 7 ms−1. Subgrid-scale turbulence is param-
eterized using a modifiedSmagorinsky(1963) formulation
with horizontal mixing length of 750 m. Radiation is sim-
ply represented by Newtonian relaxation to the initial basic
state potential temperature profile with a cooling rate capped
at 2 K day−1. A sponge layer is provided above the model
tropopause. Surface fluxes of momentum and enthalpy are
conducted with a bulk aerodynamic formulation with the ra-
tio of drag and enthalpy coefficients set to unity and the drag
allowed to vary with wind speed by Deacon’s formula,Roll
(1965). The initial sounding is that of 4× run byPersing and
Montgomery(2003). Data output is at a two-minute interval
starting with a time (day 13) when a quasi-steady intensity
(≈85 m s−1) is reached for the simulation.

The (u,w)-flow (in the radial/vertical plane of motion)
(shown in Fig. 1 att = 400 min) has several dominant charac-
teristics which are often separated by lines of high shearing.
The main feature is the axisymmetric eyewall. It appears

Fig. 2. Locations of boxes in the lower inner core.

as a slanted, vertically oriented structure that separates from
the sea surface at approximatelyr=20 km, and goes upward
to a maximum height ofz=15 km. Inside of the eyewall is
the eye which has very slow velocities. The eyewall updraft
takes trajectories upward and is separated from the eye by a
line of high vertical shearing. The boundary layer inflow is
the main source of material that enters into the updraft. As
material moves through the updraft, it enters the upper level
outflow, where it goes outward and leaves the domain. There
is also a midlevel inflow that brings material inward, but with
lower inflow velocity than the boundary layer inflow.

4 Numerical methods

Mixing rates are computed by adapting the techniques from
Sect. 2 to seeded sets of trajectories. Trajectories are ad-
vected in radius and height through a fourth order Runge-
Kutta method. Since the locations of seeded particles do not
become eventually homogenized throughout the entire do-
main and some trajectories leave the domain, the initial loca-
tions of particles become important.

Trajectories are seeded into initial boxes, which are rep-
resentative regions for different aspects of the flow (Fig. 2).
The boxes are placed in the low level inner core region of the
hurricane. The boxes approximately split the eye and eye-
wall updraft (Fig. 1b), with two boxes in the vertical direc-
tion used to distinguish boundary layer properties from other
low level properties. The split between the eye and eyewall
updraft boxes in the radial direction is placed at the approx-
imate location of the 1 m/s vertical wind contour. Two addi-
tional boxes are placed outside the eyewall to capture mixing
in the boundary layer inflow for the lower box, and convec-
tion in the near-core for the upper box.
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Trajectories are seeded in the initial boxes at a resolution
of 64 times model resolution in the radial direction and 8
times in the vertical direction, giving 256 by 50 total trajec-
tories for each box. The same resolution of trajectories is
used for the computation of the FTLE fields, which gives a
balance between clear ridges and computational expense.

The MMR requires the computation of a trajectory density,
which is measured for a given box as the ratio of the num-
ber of trajectories in the box at a given time divided by the
total number of initial trajectories starting in the given seed
box. For counting the number of final trajectories, we have
divided the entire domain into a 8 vertical by 20 horizontal
grid of boxes of the same size as the six representative boxes,
allowing trajectory movement into a domain of 16 km height
by 300 km radius. The variance is then computed from the
density in all final boxes.

For a fixed initial time, the mixing rates from the concen-
tration and from FTLE fields both follow an exponential de-
cay as a function of integration time. The mixing rate limit
A1 is determined by taking the minimum concentration vari-
ance over the finite integration time, and the initial value
A0+A1 is the initial variance. The MMRr is found by tak-
ing the log of the time-series6ρ(t)−A1, whereA1 is 90% of
the minimum value of6ρ(t), and the slope of the linear func-
tion is found using a linear least-squares best fit. The concen-
tration variance6ρ , log6ρ(t,t0), and the standard deviation
of the error for the best fit over the time interval(t0,t0+T )

are shown in Fig. 3 as functions ofT .
For the FMR, the initial valueA′

0+A′
1 is determined by

the initial FTLE distribution, while the limitA′
1 is again de-

termined by taking 90% of the minimum value ofG(T ) over
the integration times. The mixing rater ′ is determined in the
same manner as the MMR (Fig. 4).

The FRD is computed from the FTLE values in the six ini-
tial boxes to compute an effective RMS displacement. By
varying initial time, time-series of mixing rates can be com-
pared to time-series of maximum winds (shown below). The
integration time is also varied to view the short and long time
aspects of the dispersion. Initial time and integration time are
measured in minutes while all distances are in km.

5 Lagrangian fields

The Lagrangian fields were calculated for a variety of in-
tegration times to capture short and long time mixing pro-
cesses. Lines of high FTLE values in both the forward and
backward time fields mark a transition region between the
eye and eyewall (Figs. 5, 6). The FTLE’s do not distinguish
well between stretching and shear because they are computed
over a finite time, and concern only the maximal deformation
of a material area element. Shear in particular is associated
with the growth of line elements which are initially aligned
orthogonal to trajectories, while hyperbolicity pertains to the
growth orthogonal to trajectories of line elements aligned or-
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times in the vertical direction, giving 256 by 50 total trajec-
tories for each box. The same resolution of trajectories is
used for the computation of the FTLE fields, which gives a
balance between clear ridges and computational expense.

The MMR requires the computation of a trajectory density,
which is measured for a given box as the ratio of the num-
ber of trajectories in the box at a given time divided by the
total number of initial trajectories starting in the given seed
box. For counting the number of final trajectories, we have
divided the entire domain into a8 vertical by20 horizontal
grid of boxes of the same size as the six representative boxes,
allowing trajectory movement into a domain of16 km height
by 300 km radius. The variance is then computed from the
density in all final boxes.

For a fixed initial time, the mixing rates from the concen-
tration and from FTLE fields both follow an exponential de-
cay as a function of integration time. The mixing rate limit
A1 is determined by taking the minimum concentration vari-
ance over the finite integration time, and the initial value
A0+A1 is the initial variance. The MMRr is found by taking
the log of the time-seriesΣρ(t)−A1, whereA1 is 90% of the
minimum value ofΣρ(t), and the slope of the linear function
is found using a linear least-squares best fit. The concentra-
tion varianceΣρ, log Σρ(t, t0), and the standard deviation of
the error for the best fit over the time interval(t0, t0 +T ) are
shown in Figure 3 as functions ofT .

For the FMR, the initial valueA′
0 + A′

1 is determined by
the initial FTLE distribution, while the limitA′

1 is again de-
termined by taking 90% of the minimum value ofG(T ) over
the integration times. The mixing rater′ is determined in the
same manner as the MMR (Figure 4).

The FRD is computed from the FTLE values in the six ini-
tial boxes to compute an effective RMS displacement. By
varying initial time, time-series of mixing rates can be com-
pared to time-series of maximum winds (shown below). The
integration time is also varied to view the short and long time
aspects of the dispersion. Initial time and integration time are
measured in minutes while all distances are in km.

5 Lagrangian fields

The Lagrangian fields were calculated for a variety of in-
tegration times to capture short and long time mixing pro-
cesses. Lines of high FTLE values in both the forward and
backward time fields mark a transition region between the
eye and eyewall (Figures 5,6). The FTLE’s do not distinguish
well between stretching and shear because they are computed
over a finite time, and concern only the maximal deformation
of a material area element. Shear in particular is associated
with the growth of line elements which are initially aligned
orthogonal to trajectories, while hyperbolicity pertainsto the
growth orthogonal to trajectories of line elements alignedor-
thogonal to the trajectory motion. Trajectories originating in
the eyewall updraft reach a radius of 140 km in the outflow
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Fig. 3. Concentration varianceΣρ(t, t0) (a), log(Σρ(t, t0) − A1)
(b), and relative error (c) plotted versus integration timeT for the
6 mixing boxes with trajectories seeded att0 = 400 min. Other
initial times give similar decay structure but different quantitative
details.

Fig. 3. Concentration variance6ρ(t,t0) (a), log(6ρ(t,t0)−A1)

(b), and relative error(c) plotted versus integration timeT for the 6
mixing boxes with trajectories seeded att0 = 400 min. Other initial
times give similar decay structure but different quantitative details.

thogonal to the trajectory motion. Trajectories originating in
the eyewall updraft reach a radius of 140 km in the outflow
in 120 min, where the outflow jet1 governs the mixing, and
the low level effects cannot be seen.

1 The cores of jets show low mixing regions (blue) in the FTLE
field as there is very little relative advection of neighboring trajec-
tories there. Jets are bounded by high shear regions, which lead to
large relative advection (red) and large FTLE values.
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Fig. 4. FTLE distrbution functionG(t, t0) (a), log(G(t, t0)−A1′)
(b), and relative error (c) plotted versus integration timeT for the
6 mixing boxes with trajectories seeded att0 = 400 min. Other
initial times give similar decay structure but different quantitative
details.
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Fig. 5. Forward (a) and backward (b) time FTLE fields integrated
20 minutes with an initial time of 400 minutes.

in 120 minutes, where the outflow jet1 governs the mixing,
and the low level effects cannot be seen.

There are several factors to consider in the choice of in-
tegration time. The integration time must be chosen long
enough so that the LCS’s are resolved, and so that the de-
cay functionsΣρ(t0, T ) andG(t0, T ) begin to show an ex-
ponential decay. Since the methods aim to capture advec-
tive mixing properties, integration time must be chosen short
enough so that diffusion is not dominant. Diffusion dom-
inates advection over long integration times, as manifolds
lengthen and become indistinguishable. In addition, the
strong time dependence of the velocity field causes the wrap-
ping of manifolds into a tangle, which makes the identifi-

1The cores of jets show low mixing regions (blue) in the FTLE
field as there is very little relative advection of neighboring trajec-
tories there. Jets are bounded by high shear regions, which lead to
large relative advection (red) and large FTLE values.

Fig. 4. FTLE distrbution functionG(t,t0) (a), log(G(t,t0)−A1′)

(b), and relative error(c) plotted versus integration timeT for the 6
mixing boxes with trajectories seeded att0=400 min. Other initial
times give similar decay structure but different quantitative details.

There are several factors to consider in the choice of in-
tegration time. The integration time must be chosen long
enough so that the LCS’s are resolved, and so that the decay
functions6ρ(t0,T ) andG(t0,T ) begin to show an exponen-
tial decay. Since the methods aim to capture advective mix-
ing properties, integration time must be chosen short enough
so that diffusion is not dominant. Diffusion dominates ad-
vection over long integration times, as manifolds lengthen
and become indistinguishable.
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Fig. 4. FTLE distrbution functionG(t, t0) (a), log(G(t, t0)−A1′)
(b), and relative error (c) plotted versus integration timeT for the
6 mixing boxes with trajectories seeded att0 = 400 min. Other
initial times give similar decay structure but different quantitative
details.
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Fig. 5. Forward (a) and backward (b) time FTLE fields integrated
20 minutes with an initial time of 400 minutes.

in 120 minutes, where the outflow jet1 governs the mixing,
and the low level effects cannot be seen.

There are several factors to consider in the choice of in-
tegration time. The integration time must be chosen long
enough so that the LCS’s are resolved, and so that the de-
cay functionsΣρ(t0, T ) andG(t0, T ) begin to show an ex-
ponential decay. Since the methods aim to capture advec-
tive mixing properties, integration time must be chosen short
enough so that diffusion is not dominant. Diffusion dom-
inates advection over long integration times, as manifolds
lengthen and become indistinguishable. In addition, the
strong time dependence of the velocity field causes the wrap-
ping of manifolds into a tangle, which makes the identifi-

1The cores of jets show low mixing regions (blue) in the FTLE
field as there is very little relative advection of neighboring trajec-
tories there. Jets are bounded by high shear regions, which lead to
large relative advection (red) and large FTLE values.

Fig. 5. Forward(a) and backward(b) time FTLE fields integrated
20 min with an initial time of 400 min.

In addition, the strong time dependence of the veloc-
ity field causes the wrapping of manifolds into a tangle,
which makes the identification of contigous manifold seg-
ments more difficult, and requires a more dense trajectory
seeding. Thus a longer integration time imposes computa-
tional limitations by requiring more (and longer) trajectory
computations.

Dominant flow features such as inflow, outflow and up-
draft jets govern much of the trajectory movement. High
separation often occurs when nearby trajectories split and
one enters a jet. LCS’s that are strongly hyperbolic cannot
exist near a dominant jet, making shearing LCS’s vital for
characterizing mixing. Fast trajectory flights enable shearing
LCS’s to be resolved more quickly than hyperbolic LCS’s,
promoting a shorter integration time.
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Fig. 6. Forward (a) and backward (b) time FTLE fields integrated
20 minutes with an initial time of 420 minutes.

cation of contigous manifold segments more difficult, and
requires a more dense trajectory seeding. Thus a longer inte-
gration time imposes computational limitations by requiring
more (and longer) trajectory computations.

Dominant flow features such as inflow, outflow and up-
draft jets govern much of the trajectory movement. High
separation often occurs when nearby trajectories split and
one enters a jet. LCS’s that are strongly hyperbolic cannot
exist near a dominant jet, making shearing LCS’s vital for
characterizing mixing. Fast trajectory flights enable shearing
LCS’s to be resolved more quickly than hyperbolic LCS’s,
promoting a shorter integration time.

6 Eye-eyewall interaction

An Eulerian eye-eyewall boundary at lowz-levels may be
defined as the spatial location that separates the strong up-
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Fig. 7. Backward time FTLE field integratedT = −20 min. for
initial times of420 minutes (a) and460 minutes (b). The red dots
mark the positions at timet = t0 of trajectories seeded on a uniform
grid at400 min.

ward motion of the eyewall from the weak vertical motion of
the eye, e.g. a representative contour of the vertical veloc-
ity field, however the strong variation of the velocity field in
space and time make such a structure discontinuous in time.
From a Lagrangian point of view, the eye-eyewall boundary
at low z-levels can naturally be defined as the place where
there is greatest separation of trajectories, with neighboring
trajectories residing in the slow velocity region of the eyeand
the fast velocity region of the eyewall. This boundary is re-
vealed as a distinguished LCS in the backward FTLE field
that persists over all initial times and for integration times of
20 min. and above, see Figure 7,8 (the LCS is marked in
Figure 8(b)).

The LCS aligns upward from the sea-surface at aboutr=15
km and extends vertically to a height of about 4 km, with
nearly the same slope radially outwards for all initial times.

Fig. 6. Forward(a) and backward(b) time FTLE fields integrated
20 min with an initial time of 420 min.

6 Eye-eyewall interaction

An Eulerian eye-eyewall boundary at lowz-levels may be
defined as the spatial location that separates the strong up-
ward motion of the eyewall from the weak vertical motion
of the eye, e.g. a representative contour of the vertical veloc-
ity field, however the strong variation of the velocity field in
space and time make such a structure discontinuous in time.
From a Lagrangian point of view, the eye-eyewall boundary
at low z-levels can naturally be defined as the place where
there is greatest separation of trajectories, with neighboring
trajectories residing in the slow velocity region of the eye and
the fast velocity region of the eyewall. This boundary is re-
vealed as a distinguished LCS in the backward FTLE field
that persists over all initial times and for integration times
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Fig. 6. Forward (a) and backward (b) time FTLE fields integrated
20 minutes with an initial time of 420 minutes.

cation of contigous manifold segments more difficult, and
requires a more dense trajectory seeding. Thus a longer inte-
gration time imposes computational limitations by requiring
more (and longer) trajectory computations.

Dominant flow features such as inflow, outflow and up-
draft jets govern much of the trajectory movement. High
separation often occurs when nearby trajectories split and
one enters a jet. LCS’s that are strongly hyperbolic cannot
exist near a dominant jet, making shearing LCS’s vital for
characterizing mixing. Fast trajectory flights enable shearing
LCS’s to be resolved more quickly than hyperbolic LCS’s,
promoting a shorter integration time.

6 Eye-eyewall interaction

An Eulerian eye-eyewall boundary at lowz-levels may be
defined as the spatial location that separates the strong up-
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Fig. 7. Backward time FTLE field integratedT = −20 min. for
initial times of420 minutes (a) and460 minutes (b). The red dots
mark the positions at timet = t0 of trajectories seeded on a uniform
grid at400 min.

ward motion of the eyewall from the weak vertical motion of
the eye, e.g. a representative contour of the vertical veloc-
ity field, however the strong variation of the velocity field in
space and time make such a structure discontinuous in time.
From a Lagrangian point of view, the eye-eyewall boundary
at low z-levels can naturally be defined as the place where
there is greatest separation of trajectories, with neighboring
trajectories residing in the slow velocity region of the eyeand
the fast velocity region of the eyewall. This boundary is re-
vealed as a distinguished LCS in the backward FTLE field
that persists over all initial times and for integration times of
20 min. and above, see Figure 7,8 (the LCS is marked in
Figure 8(b)).

The LCS aligns upward from the sea-surface at aboutr=15
km and extends vertically to a height of about 4 km, with
nearly the same slope radially outwards for all initial times.

Fig. 7. Backward time FTLE field integratedT = −20 min. for
initial times of 420 min(a) and 460 min(b). The red dots mark the
positions at timet = t0 of trajectories seeded on a uniform grid at
400 min.

of 20 min. and above, see Fig. 7, 8 (the LCS is marked in
Fig. 8b).

The LCS aligns upward from the sea-surface at about
r=15 km and extends vertically to a height of about 4 km,
with nearly the same slope radially outwards for all initial
times. It is aligned horizontally and located slightly above
the sea-surface forr > 15 km. Although it is found from
only a 20 min integration time, it is invariant for much longer
times, and persists over the complete period of analysis of
the quasi-steady state intensity. In Fig. 7a and b, the posi-
tions of trajectories seeded on a uniform grid at 400 min are
displayed after 20 and 60 min, superimposed on the back-
ward FTLE fields at initial times oft0 = 420 and 460 min,
respectively. The figures show that trajectories in the eye
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It is aligned horizontally and located slightly above the sea-
surface forr > 15 km. Although it is found from only a
20 minutes integration time, it is invariant for much longer
times, and persists over the complete period of analysis of
the quasi-steady state intensity. In Figure 7(a) and (b), the
positions of trajectories seeded on a uniform grid at 400 min-
utes are displayed after 20 and 60 minutes, superimposed on
the backward FTLE fields at initial times oft0 = 420 and
460 minutes, respectively. The figures show that trajectories
in the eye have little movement relative to the LCS, while
updraft trajectories show strong movement transverse to the
LCS. This transverse motion makes the ridge Lagrangian
with nearby trajectories quickly leaving it.

In Figure 8 we show both the forward and backward FTLE
fields att0 = 400 minutes, with the 1 m/s Eulerian vertical
wind contour superimposed, which may be considered as an
Eulerian eye-eyewall boundary. At this time the wind con-
tour is aligned along the LCS; at other times (not shown) it is
aligned across the LCS. Seeding trajectories along the LCS
(not shown) reveals that trajectories travel transverse tothe
LCS without crossing, but may cross the Eulerian wind con-
tour.

7 Steady state approximations

The velocity fields reside in a quasi-steady state for a pe-
riod of several hours, between about 400-800 minutes. Dur-
ing this time period of 400 minutes the maximum tangential
winds remain in a range of 75 to 88 m/s, where they oscillate
rapidly, but in an aperiodic nature. Aside from the differ-
ences in intensity, the velocity fields show structural differ-
ences in the periods of high maximum tangential winds and
lower maximum tangential winds.

The model gives strong time dependent velocity fields,
even in a relatively steady state of intensity, leading to dif-
ferent structures for different initial times. The presence of
a secondary convective region outside of the main updraft
changes the structures associated with the updraft, and is im-
portant for changes in the eyewall near-core flux.

In atmospheric studies, time independent velocity fields
are often used to approximate time-dependent flows if the
time dependence is small enough that trajectories approxi-
mately follow velocity streamlines, see e.g. Dunkerton et
al. (2009). Although the time-dependence of this model is
too high to infer Lagrangian behavior from Eulerian stag-
nation points, we make Eulerian approximations associated
with high and low wind speeds, and relate them to short-
time effects. We compute two composite-averaged velocity
fields from the quasi-steady state period, refered to as strong
and weak composites (Figure 9), which are representative of
the phases with strong and weak maximum tangential winds,
respectively. The strong (weak) composite is computed by
averaging over the instantaneous velocity fields that generate
maximum tangential winds at the highest20% (lowest20%)
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Fig. 8. Forward (a) and backward (b) time FTLE fields att0 = 400
minutes with 1 m/s vertical wind contour. The persistent LCS is
marked in (b).

of maximum tangential winds for the entire time interval of
400-800 minutes. The vertical component of the strong com-
posite shows a single strong updraft, while the vertical wind
field of the weak composite shows a dual updraft structure,
but with weaker updraft velocities. The radial velocity fields
show a more defined outflow jet for the strong composite.

The composite fields can be considered as time inde-
pendent velocity fields. The forward and backward FTLE
ridges for a time independent velocity field correspond
to finite-time, and thus shorter in length, versions of the
unstable and stable manifolds of hyperbolic fixed points.
Since the velocity field maintains high or low velocities for
only a few minutes, invariant structures can only be resolved
over a similarly short integration time, and can be viewed
as markers for finite-time coherent structures of the full
velocity fields. The composite velocity fields yield very
different Lagrangian structures, specifically at low levels

Fig. 8. Forward (a) and backward(b) time FTLE fields att0 =

400 min with 1 m/s vertical wind contour. The persistent LCS is
marked in(b).

have little movement relative to the LCS, while updraft tra-
jectories show strong movement transverse to the LCS. This
transverse motion makes the ridge Lagrangian with nearby
trajectories quickly leaving it.

In Fig. 8 we show both the forward and backward FTLE
fields att0 = 400 min, with the 1 m/s Eulerian vertical wind
contour superimposed, which may be considered as an Eu-
lerian eye-eyewall boundary. At this time the wind contour
is aligned along the LCS; at other times (not shown) it is
aligned across the LCS. Seeding trajectories along the LCS
(not shown) reveals that trajectories travel transverse to the
LCS without crossing, but may cross the Eulerian wind con-
tour.

7 Steady state approximations

The velocity fields reside in a quasi-steady state for a period
of several hours, between about 400–800 min. During this
time period of 400 min the maximum tangential winds re-
main in a range of 75 to 88 m/s, where they oscillate rapidly,
but in an aperiodic nature. Aside from the differences in in-
tensity, the velocity fields show structural differences in the
periods of high maximum tangential winds and lower maxi-
mum tangential winds.

The model gives strong time dependent velocity fields,
even in a relatively steady state of intensity, leading to dif-
ferent structures for different initial times. The presence of
a secondary convective region outside of the main updraft
changes the structures associated with the updraft, and is im-
portant for changes in the eyewall near-core flux.

In atmospheric studies, time independent velocity fields
are often used to approximate time-dependent flows if the
time dependence is small enough that trajectories approx-
imately follow velocity streamlines, see e.g.Dunkerton et
al. (2009). Although the time-dependence of this model is
too high to infer Lagrangian behavior from Eulerian stag-
nation points, we make Eulerian approximations associated
with high and low wind speeds, and relate them to short-
time effects. We compute two composite-averaged velocity
fields from the quasi-steady state period, refered to as strong
and weak composites (Fig. 9), which are representative of
the phases with strong and weak maximum tangential winds,
respectively. The strong (weak) composite is computed by
averaging over the instantaneous velocity fields that generate
maximum tangential winds at the highest 20% (lowest 20%)
of maximum tangential winds for the entire time interval of
400–800 min. The vertical component of the strong com-
posite shows a single strong updraft, while the vertical wind
field of the weak composite shows a dual updraft structure,
but with weaker updraft velocities. The radial velocity fields
show a more defined outflow jet for the strong composite.

The composite fields can be considered as time indepen-
dent velocity fields. The forward and backward FTLE ridges
for a time independent velocity field correspond to finite-
time, and thus shorter in length, versions of the unstable and
stable manifolds of hyperbolic fixed points. Since the veloc-
ity field maintains high or low velocities for only a few min-
utes, invariant structures can only be resolved over a simi-
larly short integration time, and can be viewed as markers
for finite-time coherent structures of the full velocity fields.
The composite velocity fields yield very different Lagrangian
structures, specifically at low levels outside of the updraft,
which may affect the path of particles entering the updraft
from the BL inflow. The outflow jet takes a straighter path
in the strong composite FTLE field. At the boundary layer,
the weak composite FTLE field shows high values where the
boundary layer inflow meets the eyewall updraft, allowing
fewer trajectories to enter the eyewall. The secondary up-
draft at 35 km takes some of the boundary layer trajectories
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Fig. 9. Weak composite radial (a) and vertical (b) velocity fields, and strong composite radial (c) and vertical (d) velocity fields.

outside of the updraft, which may affect the path of particles
entering the updraft from the BL inflow. The outflow jet
takes a straighter path in the strong composite FTLE field.
At the boundary layer, the weak composite FTLE field
shows high values where the boundary layer inflow meets
the eyewall updraft, allowing fewer trajectories to enter the
eyewall. The secondary updraft at 35 km takes some of the
boundary layer trajectories through a region with several
LCS’s in the forward and backward FTLE fields of both
composite fields (Figure 10), and moves them upward into
the region just outside of the eyewall, before a downdraft
takes them inward to the eyewall updraft. Mixing rates
for the composite fields are generally higher for the strong
composite field, for both forward and backward integrations,
showing that higher intensity coincides with greater mixing.
The FRD shows higher values in the boundary-layer inflow
region due to the presence of a series of LCS’s that cause

trajectories to be transported into the eyewall updraft, or
recirculation within an eddy that forms during low velocity
times in the near-core region.

8 Time series analysis

The dependence of the mixing rates on the initial time gives
time series that can be analyzed to establish correlations be-
tween different quantities. The MMR, FMR and FRD were
all computed for different integration times for the sequence
of initial times.

For a quasi steady-state hurricane, the connection between
intensity and mixing rates is not obvious, especially when the
rates are determined by an integration time that lasts longer
than a complete period from high to low maximum winds,

Fig. 9. Weak composite radial(a) and vertical(b) velocity fields, and strong composite radial(c) and vertical(d) velocity fields.

through a region with several LCS’s in the forward and back-
ward FTLE fields of both composite fields (Fig. 10), and
moves them upward into the region just outside of the eye-
wall, before a downdraft takes them inward to the eyewall
updraft.

Mixing rates for the composite fields are generally higher
for the strong composite field, for both forward and back-
ward integrations, showing that higher intensity coincides
with greater mixing. The FRD shows higher values in the
boundary-layer inflow region due to the presence of a series
of LCS’s that cause trajectories to be transported into the eye-
wall updraft, or recirculation within an eddy that forms dur-
ing low velocity times in the near-core region.

8 Time series analysis

The dependence of the mixing rates on the initial time gives
time series that can be analyzed to establish correlations be-
tween different quantities. The MMR, FMR and FRD were
all computed for different integration times for the sequence
of initial times.

For a quasi steady-state hurricane, the connection between
intensity and mixing rates is not obvious, especially when the
rates are determined by an integration time that lasts longer
than a complete period from high to low maximum winds,

where the mixing rate value is assigned to the initial time of
integration.

The FMR is fit to an exponential decay function, but the
curve of the FTLE distribution function does not show a de-
cay for t − t0≤10 min, Fig. 4a. After 10 min, the FMR can
be computed by fitting an exponential decay curve to the re-
maining data, Fig. 4b. The optimal integration time varies
for each box, and for initial times. The mixing functions best
fit exponential functions at integration times between 20 and
80 min, see Fig. 3c for the error made in the best fit of the
MMR.

In Voth et al.(2003), the MMR has been compared to the
FTLE mixing rates for closed domains in time periodic ve-
locity fields, with the FTLE rate being measured at 10 times
higher than the measured mixing rate. By allowing initial tra-
jectories to be dispersed into the domain without exiting the
domain, the FMR and MMR can be considered as short-time
versions of mixing rates within a closed domain. For short
time intervals, different initial conditions can lead to signif-
icant differences in the mixing rates, as neighboring boxes
can show mixing rates differing by a factor of 10. However,
rates in the same box are mostly within a factor of 2, and the
FMR is not always higher. The differences in the variations
of the mixing rates found byVoth et al. (2003) and in our
study are likely due to our restriction on integration time and
due to the nonclosedness of our domain.
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Fig. 10. Weak composite forward (a) and backward (b) FTLE fields, and strong composite forward (c) and backward (d) FTLE fields,
integrated for 20 minutes.

where the mixing rate value is assigned to the initial time of
integration.

The FMR is fit to an exponential decay function, but the
curve of the FTLE distribution function does not show a de-
cay fort − t0 ≤ 10 minutes, Figure 4 (a). After 10 minutes,
the FMR can be computed by fitting an exponential decay
curve to the remaining data, Figure 4 (b). The optimal inte-
gration time varies for each box, and for initial times. The
mixing functions best fit exponential functions at integration
times between 20 and 80 minutes, see Figure 3(c) for the er-
ror made in the best fit of the MMR.

In Voth et al. (2003), the MMR has been compared to the
FTLE mixing rates for closed domains in time periodic ve-
locity fields, with the FTLE rate being measured at 10 times
higher than the measured mixing rate. By allowing initial tra-
jectories to be dispersed into the domain without exiting the

domain, the FMR and MMR can be considered as short-time
versions of mixing rates within a closed domain. For short
time intervals, different initial conditions can lead to signif-
icant differences in the mixing rates, as neighboring boxes
can show mixing rates differing by a factor of 10. However,
rates in the same box are mostly within a factor of 2, and the
FMR is not always higher. The differences in the variations
of the mixing rates found by Voth et al. (2003) and in our
study are likely due to our restriction on integration time and
due to the nonclosedness of our domain.

The FRD, Figure 11 (a), with curve fitting error, shown
in Figure 11 (b) is fit to a power law (14) for integration
times of 20 minutes to 100 minutes. For integration times
of 20 minutes to 40 minutes, the RMS displacement, inkm,
is well fit by the power law, as a portion of the initial set en-
ters the updraft, while other trajectories become temporarily

Fig. 10. Weak composite forward(a) and backward(b) FTLE fields, and strong composite forward(c) and backward(d) FTLE fields,
integrated for 20 min.

The FRD, Fig. 11a, with curve fitting error, shown in
Fig. 11b is fit to a power law (14) for integration times of
20 min to 100 min. For integration times of 20 min to 40 min,
the RMS displacement, in km, is well fit by the power law, as
a portion of the initial set enters the updraft, while other tra-
jectories become temporarily entrained in eddies in the near-
core above the inflow. Trajectories in the near-core region
typically reach the outflow in less than 1 h, which provides a
reason for a poor power law fit for integration times longer
than 1 hour, as trajectories in the outflow show little sepa-
ration. For longer integration times, an exponential fit may
be more appropriate, (Huber et al., 2001), but does not re-
veal the short-time fluctuations that are characteristic of the
time-dependence of this model.

The differences in mixing rates across different boxes for
a variety of integration times indicate that the initial boxes
do divide the domain into dynamically distinct regions with
different mixing properties. In particular, the eye has rela-
tively small trajectory movements compared to the other re-
gions, and all mixing rates are lower in this region. The up-
draft jet has little separation even with long trajectory flights
over short time intervals, and also gives low mixing rates.
The highest mixing rates occur at the boundary-layer inflow,
where separation from the sea surface and transport of some
trajectories into the updraft give a high separation of trajec-
tories.

The time dependent mixing rates can be tested for corrrela-
tion against each of the extrema of theu, v, andw winds. All
of the mixing rates give higher values when there is higher
averaged trajectory separation over a time interval of inte-
gration, but the winds are given instantaneously. High parti-
cle velocities and velocity gradients at an initial time would
indicate high initial separation, but may not correlate to high
Lagrangian rates assigned to the same initial time. The struc-
tural differences in the strong and weak composite FTLE
fields (Fig. 10) indicate that different mixing properties and
different structures in the wind fields may coincide with dif-
ferences in intensity. Correlations of mixing rates to a time
lag of maximum winds can indicate the existence of struc-
tures which precede or be an effect of higher intensity. La-
grangian structures are an effect of the(u,w)-velocity field
from previous times in a backward time integration, or future
times in a forward time integration. The relation of the La-
grangian structures and mixing rates to instantaneous winds
will now be examined.

The maximum tangential winds are taken here as the main
indicator of intensity. The azimuthal velocity component is
not used for computing trajectories, but is coupled to the
radial and vertical velocity component through a system of
PDE’s. The tangential wind is not periodic, but oscillates
between relatively high and relatively low values.
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Fig. 11. Log-log plots of the RMS displacement versus integration
timeT for FRD (a), and error estimates (b).

entrained in eddies in the near-core above the inflow. Trajec-
tories in the near-core region typically reach the outflow in
less than 1 hour, which provides a reason for a poor power
law fit for integration times longer than 1 hour, as trajectories
in the outflow show little separation. For longer integration
times, an exponential fit may be more appropriate, (Huber et
al., 2001), but does not reveal the short-time fluctuations that
are characteristic of the time-dependence of this model.

The differences in mixing rates across different boxes for
a variety of integration times indicate that the initial boxes
do divide the domain into dynamically distinct regions with
different mixing properties. In particular, the eye has rela-
tively small trajectory movements compared to the other re-
gions, and all mixing rates are lower in this region. The up-
draft jet has little separation even with long trajectory flights
over short time intervals, and also gives low mixing rates.
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Fig. 12.Autocorrelations of maximal tangential winds (blue), max-
imal outflow winds (red), and maximal updraft winds (black).

The highest mixing rates occur at the boundary-layer inflow,
where separation from the sea surface and transport of some
trajectories into the updraft give a high separation of trajec-
tories.

The time dependent mixing rates can be tested for corrrela-
tion against each of the extrema of theu, v, andw winds. All
of the mixing rates give higher values when there is higher
averaged trajectory separation over a time interval of inte-
gration, but the winds are given instantaneously. High parti-
cle velocities and velocity gradients at an initial time would
indicate high initial separation, but may not correlate to high
Lagrangian rates assigned to the same initial time. The struc-
tural differences in the strong and weak composite FTLE
fields (Figure 10) indicate that different mixing properties
and different structures in the wind fields may coincide with
differences in intensity. Correlations of mixing rates to atime
lag of maximum winds can indicate the existence of struc-
tures which precede or be an effect of higher intensity. La-
grangian structures are an effect of the(u,w)-velocity field
from previous times in a backward time integration, or future
times in a forward time integration. The relation of the La-
grangian structures and mixing rates to instantaneous winds
will now be examined.

The maximum tangential winds are taken here as the main
indicator of intensity. The azimuthal velocity component is
not used for computing trajectories, but is coupled to the
radial and vertical velocity component through a system of
PDE’s. The tangential wind is not periodic, but oscillates
between relatively high and relatively low values.

Autocorrelation values of maximal tangential winds for
time lags above 6 minutes, computed within the quasi-steady
time window, are always below .5 (Figure 12), showing little
predictability within the velocity fields during this time win-
dow. Correlations of maximal wind values of the separate
velocity components to each other are even less than .2.

The correlations of mixing rates to maximum tangential

Fig. 11. Log-log plots of the RMS displacement versus integration
timeT for FRD (a), and error estimates(b).

Autocorrelation values of maximal tangential winds for
time lags above 6 min, computed within the quasi-steady
time window, are always below .5 (Fig. 12), showing little
predictability within the velocity fields during this time win-
dow. Correlations of maximal wind values of the separate
velocity components to each other are even less than .2.

The correlations of mixing rates to maximum tangential
winds (some correlations above .7) is far greater than to the
extrema of radial (correlations below .5) or vertical (correla-
tions below .4) winds.

The oscillations of the maximum tangential winds occur
over time intervals of between 20 and 40 min. A 40 min in-
tegration time is below the period of two oscillations, and is
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Fig. 11. Log-log plots of the RMS displacement versus integration
timeT for FRD (a), and error estimates (b).

entrained in eddies in the near-core above the inflow. Trajec-
tories in the near-core region typically reach the outflow in
less than 1 hour, which provides a reason for a poor power
law fit for integration times longer than 1 hour, as trajectories
in the outflow show little separation. For longer integration
times, an exponential fit may be more appropriate, (Huber et
al., 2001), but does not reveal the short-time fluctuations that
are characteristic of the time-dependence of this model.

The differences in mixing rates across different boxes for
a variety of integration times indicate that the initial boxes
do divide the domain into dynamically distinct regions with
different mixing properties. In particular, the eye has rela-
tively small trajectory movements compared to the other re-
gions, and all mixing rates are lower in this region. The up-
draft jet has little separation even with long trajectory flights
over short time intervals, and also gives low mixing rates.
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Fig. 12.Autocorrelations of maximal tangential winds (blue), max-
imal outflow winds (red), and maximal updraft winds (black).

The highest mixing rates occur at the boundary-layer inflow,
where separation from the sea surface and transport of some
trajectories into the updraft give a high separation of trajec-
tories.

The time dependent mixing rates can be tested for corrrela-
tion against each of the extrema of theu, v, andw winds. All
of the mixing rates give higher values when there is higher
averaged trajectory separation over a time interval of inte-
gration, but the winds are given instantaneously. High parti-
cle velocities and velocity gradients at an initial time would
indicate high initial separation, but may not correlate to high
Lagrangian rates assigned to the same initial time. The struc-
tural differences in the strong and weak composite FTLE
fields (Figure 10) indicate that different mixing properties
and different structures in the wind fields may coincide with
differences in intensity. Correlations of mixing rates to atime
lag of maximum winds can indicate the existence of struc-
tures which precede or be an effect of higher intensity. La-
grangian structures are an effect of the(u,w)-velocity field
from previous times in a backward time integration, or future
times in a forward time integration. The relation of the La-
grangian structures and mixing rates to instantaneous winds
will now be examined.

The maximum tangential winds are taken here as the main
indicator of intensity. The azimuthal velocity component is
not used for computing trajectories, but is coupled to the
radial and vertical velocity component through a system of
PDE’s. The tangential wind is not periodic, but oscillates
between relatively high and relatively low values.

Autocorrelation values of maximal tangential winds for
time lags above 6 minutes, computed within the quasi-steady
time window, are always below .5 (Figure 12), showing little
predictability within the velocity fields during this time win-
dow. Correlations of maximal wind values of the separate
velocity components to each other are even less than .2.

The correlations of mixing rates to maximum tangential

Fig. 12.Autocorrelations of maximal tangential winds (blue), max-
imal outflow winds (red), and maximal updraft winds (black).

the maximum integration time that yields significant correla-
tion of mixing rates to maximum tangential winds. The rates
converge to an exponential or power law after a short time in-
terval, and begin to show correlation after an integration time
of 10 min. The best fit to the power law for relative dispersion
occurs for integration times of 18 to 40 min, long enough to
resolve structures but less than the period of 2 oscillations.

The mixing rates are functions of initial time for each of
the six boxes. The different initial boxes give very different
mixing rates, with higher mixing rates occuring in the boxes
that have the highest velocities. The boundary layer inflow
and eyewall updraft boxes show the highest correlations to
maximum tangential winds (Figs. 13, 14), for both forward
and backward integration time.

Trajectories can be integrated forward or backward in
time, giving Lagrangian fields (i.e. MMR, FMR, FRD) that
show repelling structures (forward integration), or attract-
ing structures (backward integration). For correlating a La-
grangian quantity to intensity, the forward time integration
gives Lagrangian fields that result from future velocities,
while backward time integration gives fields that result from
past velocities. The wind field at an initial time is predicted
by the backward time field at that time, and predicts the for-
ward time field at that initial time. Backward time integration
showed higher correlation with the wind fields than forward
time integration for most boxes with high correlation.

Correlating the Lagrangian fields to a time lag (Lagrangian
fields trailing velocities) or lead (velocities trailing La-
grangian fields) of the velocity field shows how the La-
grangian structures and maximum winds are predictive of
each other (Figs. 13, 14). Predicting hurricane intensity (on
admittedly very short time scales) by mixing rates can be
accomplished by showing a correlation between a backward

Atmos. Chem. Phys., 10, 6777–6791, 2010 www.atmos-chem-phys.net/10/6777/2010/



B. Rutherford et al.: Lagrangian mixing in an axisymmetric hurricane model 6789B. Rutherford et al.: Lagrangian mixing in an axisymmetric hurricane model 13

winds (some correlations above .7) is far greater than to the
extrema of radial (correlations below .5) or vertical (correla-
tions below .4) winds.

The oscillations of the maximum tangential winds occur
over time intervals of between 20 and 40 minutes. A 40 min-
utes integration time is below the period of two oscillations,
and is the maximum integration time that yields significant
correlation of mixing rates to maximum tangential winds.
The rates converge to an exponential or power law after a
short time interval, and begin to show correlation after an in-
tegration time of 10 minutes. The best fit to the power law
for relative dispersion occurs for integration times of 18 to
40 minutes, long enough to resolve structures but less than
the period of 2 oscillations.

The mixing rates are functions of initial time for each of
the six boxes. The different initial boxes give very different
mixing rates, with higher mixing rates occuring in the boxes
that have the highest velocities. The boundary layer inflow
and eyewall updraft boxes show the highest correlations to
maximum tangential winds (Figures 13,14), for both forward
and backward integration time.

Trajectories can be integrated forward or backward in
time, giving Lagrangian fields (i.e. MMR, FMR, FRD) that
show repelling structures (forward integration), or attract-
ing structures (backward integration). For correlating a La-
grangian quantity to intensity, the forward time integration
gives Lagrangian fields that result from future velocities,
while backward time integration gives fields that result from
past velocities. The wind field at an initial time is predicted
by the backward time field at that time, and predicts the for-
ward time field at that initial time. Backward time integration
showed higher correlation with the wind fields than forward
time integration for most boxes with high correlation.

Correlating the Lagrangian fields to a time lag (Lagrangian
fields trailing velocities) or lead (velocities trailing La-
grangian fields) of the velocity field shows how the La-
grangian structures and maximum winds are predictive of
each other (Figures 13,14). Predicting hurricane intensity
(on admittedly very short time scales) by mixing rates can be
accomplished by showing a correlation between a backward
time integration lag, since a function of previous information
would correlate to future information.

The FMR shows some correlations to maximal tangential
winds above .7, and shows the best correlation of any rate
for the BL inflow (Figure 14(b)). The MMR does not show
correlation as high as the other rates, but shows some corre-
lation for the shortest integration time of 20 minutes (Figures
14, 15(a)). The MMR is dependent on the final position of
trajectories, and not only on the separation of trajectories.
Over longer integration times, this could make the MMR
more sensitive to movement caused by gravity waves.

The FRD shows negative correlation of -.6684 to maximal
inflow winds (a negative of the extreme minimum of theu
field) for the BL inflow box with a forward time integration
of 20 minutes and a 4 minutes time lag, which shows that
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Fig. 13. Correlations of mixing rates for the BL inflow box lagged
by t to maximal tangential winds with (a) 20 min. and (b) 30 min.
integration time for FMR (red), FRD (black), and MMR (blue).
Filled circles indicate correlation above a 99% confidence thresh-
old, while open circles indicate correlations above 95% but below
99% confidence.

enhanced mixing is correlated with the enhancement of the
BL inflow. The BL inflow has more hyperbolic structures
than the other regions, which may make FTLE’s better suited
as a mixing measure in this region, which can be seen in high
correlations for the FRD and FMR (Figure 13). The eyewall
updraft box also shows negative correlation for the FMR to
maximal tangential winds with a forward time integration of
20 or 30 minutes (Figure 13).

Higher velocities are generally associated with higher
mixing rates, which may precede or trail higher intensities.
A lead or lag of mixing rates to velocities is then appro-
priate to capture the effects of mixing. In many cases, the
correlation improved when the Lagrangian rates were lagged
against the maximum winds. The Lagrangian structures are

Fig. 13. Correlations of mixing rates for the BL inflow box lagged
by t to maximal tangential winds with(a) 20 min. and(b) 30 min.
integration time for FMR (red), FRD (black), and MMR (blue).
Filled circles indicate correlation above a 99% confidence thresh-
old, while open circles indicate correlations above 95% but below
99% confidence.

time integration lag, since a function of previous information
would correlate to future information.

The FMR shows some correlations to maximal tangential
winds above .7, and shows the best correlation of any rate for
the BL inflow (Fig. 14(b)). The MMR does not show correla-
tion as high as the other rates, but shows some correlation for
the shortest integration time of 20 min (Figs. 14, 15a). The
MMR is dependent on the final position of trajectories, and
not only on the separation of trajectories. Over longer inte-
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Fig. 14. Correlations of mixing rates for the BL inflow box (a)
and eyewall updraft box (b) lagged byt to maximal tangential
winds with 20 min. backward integration time for FMR (red), FRD
(black), and MMR (blue). Filled circles indicate correlation above a
99% confidence threshold, while open circles indicate correlations
above 95% but below 99% confidence.

then predictive of maximum tangential winds. Correlation of
0.6 or higher is present for a lag of up to 10 minutes, which is
about half of a period of oscillation of the maximum tangen-
tial winds. The highest correlations occur for 2 to 6 minutes
lags, which means that the initial time of integration for the
Lagrangian fields is at a time where the maximum tangential
winds are increasing, but before the local maximum occurs.

9 Conclusions

Lagrangian mixing for the complex velocity fields of the ax-
isymmetric hurricane model of Rotunno and Emanuel (1987)
has been studied. The inner core region was shown to have
Lagrangian structures that vary over time, and play a promi-
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Fig. 15. (a) Normalized MMR for 20 minutes backward integration
time in eyewall updraaft (blue), and maximum tangential winds de-
layed 10 minutes (red). (b) FRD for 20 minutes backward integra-
tion time against maximum tangential winds delayed 4 minutes for
the BL inflow, with linear best fit and norm of residuals.

nent role for mixing in the region, which is related to hurri-
cane intensity. We have produced mixing rates that correlate
to maximum winds, and can be used for a short time predic-
tion of the maximum winds. The mixing rates computed in
our study are an extension of mixing rates of Antonsen Jr.
et al. (1996) and Huber et al. (2001) established for closed
regions or time-periodic velocity fields. In particular, our
rates depend on initial time, integration time, time lag, and
two spatial coordinates. Various measures of maximal Eule-
rian intensity have been extracted from theu, w, andv wind
fields, and compared to the time-dependent mixing rates. A
correlation analysis showed that the rates have highest cor-
relation to the maximum tangential winds. The conclusions
drawn are that episodes of enhanced mixing between the low-
level eye and eyewall preceed short-time enhancements of in-

Fig. 14. Correlations of mixing rates for the BL inflow box(a)
and eyewall updraft box(b) lagged byt to maximal tangential
winds with 20 min. backward integration time for FMR (red), FRD
(black), and MMR (blue). Filled circles indicate correlation above a
99% confidence threshold, while open circles indicate correlations
above 95% but below 99% confidence

gration times, this could make the MMR more sensitive to
movement caused by gravity waves.

The FRD shows negative correlation of -.6684 to maximal
inflow winds (a negative of the extreme minimum of theu

field) for the BL inflow box with a forward time integration
of 20 min and a 4 min time lag, which shows that enhanced
mixing is correlated with the enhancement of the BL inflow.
The BL inflow has more hyperbolic structures than the other
regions, which may make FTLE’s better suited as a mixing
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Fig. 14. Correlations of mixing rates for the BL inflow box (a)
and eyewall updraft box (b) lagged byt to maximal tangential
winds with 20 min. backward integration time for FMR (red), FRD
(black), and MMR (blue). Filled circles indicate correlation above a
99% confidence threshold, while open circles indicate correlations
above 95% but below 99% confidence.

then predictive of maximum tangential winds. Correlation of
0.6 or higher is present for a lag of up to 10 minutes, which is
about half of a period of oscillation of the maximum tangen-
tial winds. The highest correlations occur for 2 to 6 minutes
lags, which means that the initial time of integration for the
Lagrangian fields is at a time where the maximum tangential
winds are increasing, but before the local maximum occurs.

9 Conclusions

Lagrangian mixing for the complex velocity fields of the ax-
isymmetric hurricane model of Rotunno and Emanuel (1987)
has been studied. The inner core region was shown to have
Lagrangian structures that vary over time, and play a promi-
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the BL inflow, with linear best fit and norm of residuals.

nent role for mixing in the region, which is related to hurri-
cane intensity. We have produced mixing rates that correlate
to maximum winds, and can be used for a short time predic-
tion of the maximum winds. The mixing rates computed in
our study are an extension of mixing rates of Antonsen Jr.
et al. (1996) and Huber et al. (2001) established for closed
regions or time-periodic velocity fields. In particular, our
rates depend on initial time, integration time, time lag, and
two spatial coordinates. Various measures of maximal Eule-
rian intensity have been extracted from theu, w, andv wind
fields, and compared to the time-dependent mixing rates. A
correlation analysis showed that the rates have highest cor-
relation to the maximum tangential winds. The conclusions
drawn are that episodes of enhanced mixing between the low-
level eye and eyewall preceed short-time enhancements of in-

Fig. 15. (a) Normalized MMR for 20 min backward integration
time in eyewall updraaft (blue), and maximum tangential winds de-
layed 10 min (red).(b) FRD for 20 min backward integration time
against maximum tangential winds delayed 4 min for the BL inflow,
with linear best fit and norm of residuals.

measure in this region, which can be seen in high correla-
tions for the FRD and FMR (Fig. 13). The eyewall updraft
box also shows negative correlation for the FMR to maxi-
mal tangential winds with a forward time integration of 20 or
30 min (Fig. 13).

Higher velocities are generally associated with higher
mixing rates, which may precede or trail higher intensities.
A lead or lag of mixing rates to velocities is then appro-
priate to capture the effects of mixing. In many cases, the

correlation improved when the Lagrangian rates were lagged
against the maximum winds. The Lagrangian structures are
then predictive of maximum tangential winds. Correlation
of 0.6 or higher is present for a lag of up to 10 min, which
is about half of a period of oscillation of the maximum tan-
gential winds. The highest correlations occur for 2 to 6 min
lags, which means that the initial time of integration for the
Lagrangian fields is at a time where the maximum tangential
winds are increasing, but before the local maximum occurs.

9 Conclusions

Lagrangian mixing for the complex velocity fields of the ax-
isymmetric hurricane model ofRotunno and Emanuel(1987)
has been studied. The inner core region was shown to have
Lagrangian structures that vary over time, and play a promi-
nent role for mixing in the region, which is related to hurri-
cane intensity. We have produced mixing rates that correlate
to maximum winds, and can be used for a short time predic-
tion of the maximum winds. The mixing rates computed in
our study are an extension of mixing rates ofAntonsen Jr.
et al. (1996) andHuber et al.(2001) established for closed
regions or time-periodic velocity fields. In particular, our
rates depend on initial time, integration time, time lag, and
two spatial coordinates. Various measures of maximal Eule-
rian intensity have been extracted from theu, w, andv wind
fields, and compared to the time-dependent mixing rates. A
correlation analysis showed that the rates have highest cor-
relation to the maximum tangential winds. The conclusions
drawn are that episodes of enhanced mixing between the low-
level eye and eyewall preceed short-time enhancements of in-
tensity, and thus favor the interpretation that new local gener-
ation of buoyancy at the eyewall lead to enhanced thermody-
namic cycling of the hurricane heat engine. In principle, the
mixing could have been responsive of short-term fluctuations
of intensity in response to enhanced flow gradients, or mix-
ing could have directly spun down tangential winds through
angular momentum mixing, but since mixing precedes such
episodes, neither of these explanations can be favored by the
present results. Further work will use a canonical correlation
analysis to find correlations between the mixing rates as well
as the maximal winds. The methods presented here will also
be extended to a three-dimensional hurricane model.
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