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Abstract. We present sensitivity tests for a global aerosol as-
similation system utilizing AERONET observations of AOT
(aerosol optical thickness) and AAE (aerosolÅngstr̈om ex-
ponent). The assimilation system employs an ensemble
Kalman filter which requires tuning of three numerical pa-
rameters: ensemble sizenens, local patch sizenpatch and in-
flation factorρ. In addition, experiments are performed to
test the impact of various implementations of the system. For
instance, we use a different prescription of the emission en-
semble or a different combination of observations.

The various experiments are compared against one-
another and against independent AERONET and MODIS/
Aqua observations. The assimilation leads to significant im-
provements in modelled AOT and AAE fields. Moreover re-
maining errors are mostly random while they are mostly sys-
tematic for an experiment without assimilation. In addition,
these results do not depend much on our parameter or design
choices.

It appears that the value of the local patch size has by far
the biggest impact on the assimilation, which has sufficiently
converged for an ensemble size ofnens= 20. Assimilating
AOT and AAE is clearly preferential to assimilating AOT at
two different wavelengths. In contrast, initial conditions or
a description of aerosol beyond two modes (coarse and fine)
have only little effect.

We also discuss the use of the ensemble spread as an error
estimate of the analysed AOT and AAE fields. We show that
a very common prescription of the emission ensemble (in-
dependent random modification in each grid cell) can have
trouble generating sufficient spread in the forecast ensem-
ble.

Correspondence to:N. A. J. Schutgens
(schutgen@aori.u-tokyo.ac.jp)

1 Introduction

Given the perceived inadequacies in current aerosol mod-
elling (Textor et al., 2006, 2007) it is important to develop a
framework for improving aerosol models. One way forward
is to introduce more sophisticated physics and chemistry into
these models (Ghan and Schwartz, 2007), but another ap-
proach is to develop aerosol assimilation systems. These as-
similation systems would serve several purposes. At first,
they would merely combine information from models and
observations to arrive at an improved estimate of the aerosol
fields. Next, they could be used to estimate various parame-
ters employed in these models (for instance, emission maps).
Finally, they could be used to assess model errors.

Aerosol assimilation is a fairly new field that has sofar fo-
cused mostly on the first application mentioned in the previ-
ous paragraph. Researchers have either assimilated satellite
observations (Collins et al., 2001; Yu et al., 2003; Generoso
et al., 2007; Zhang et al., 2008; Niu et al., 2008; Benedetti
et al., 2009; Sekiyama et al., 2009) or ground observations
(Yumimoto et al., 2008; Niu et al., 2008; Lin et al., 2008;
Tombette et al., 2009). Those observations were either AOT
(and AAE) (Collins et al., 2001; Yu et al., 2003; Generoso
et al., 2007; Zhang et al., 2008; Benedetti et al., 2009), LI-
DAR extinction or attenuation profiles (Yumimoto et al.,
2008; Sekiyama et al., 2009) or surface mass loads (Lin et al.,
2008; Tombette et al., 2009).

Among the previously mentioned papers, onlyLin et al.
(2008) and Sekiyama et al.(2009) used ensemble Kalman
filters (Evensen, 1994; Houtekamer and Mitchell, 1998;
Whitaker and Hamill, 2002). Recently, we have developed
a global aerosol assimilation system (Schutgens et al., 2009,
henceforth paper I) using the Local Ensemble Transform
Kalman filter (Hunt et al., 2007; Miyoshi and Yamane, 2007;
Szunyogh et al., 2008). In an ensemble Kalman filter, an
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ensemble of model simulations is used to conveniently rep-
resent the model prediction covariant. Among the advantages
of ensemble Kalman filters over other approaches are: ease
of implementation and realistic flow-dependent model pre-
diction covariance, see alsoKalnay et al.(2007). Also, en-
semble Kalman filters provide an error estimate of the anal-
ysis in the form of the ensemble spread. However, ensemble
Kalman filters require tuning of a few (generic) numerical pa-
rameters (e.g. the ensemble size and inflation factor) through
validation of multiple assimilation experiments. As far as
we know, no study of this sort has been published.Lin et al.
(2008) mentions an ensemble size of 50 and a value of the in-
flation paramter from 1 to 640.Sekiyama et al.(2009) used
an ensemble size of 20 and an inflation factor of 1.1. Neither
reports an attempt at exploring the parameter space of these
or other variables.

In this paper, we will attempt to tune several numerical
parameters important to our assimilation system by varying
their values in experiments and comparing the results to in-
dependent data. In addition, we have experimented with dif-
ferent versions of the assimilation system to see how results
depend on basic assumptions about the observations, the ini-
tial conditions and the number of aerosol modes used.

In Sect.2 we will describe the assimilation system as used
in paper I and the current paper. The range of the sensitivity
experiments we performed will be described in Sect.3, while
the experiments will be compared to each other in Sect.4.
Sections5 and6 provide independent validation of the ex-
periments with either AERONET or MODIS/Aqua observa-
tions. The effect of assimilating AAE observations (in addi-
tion to AOT) is shown in Sect.7. The impact of assimilation
on ensemble spread is discussed in Sect.8. A summary of the
paper and its conclusions can be found in the Conclusions.

2 The aerosol assimilation system

In paper I we introduced a new global aerosol assimilation
system and tested it using AERONET observations. Here
we will briefly review its components and some conclusions
of paper I. The system consists of a forward calculation of
global aerosol transport for 3 h, followed by an assimilation
of observations. The assimilation yields an improved esti-
mate of the aerosol distribution, which is then carried for-
ward for another three hours. This sequence is repeated for
as long as necessary.

Aerosol transport is calculated by the Spectral Radiation-
Transport Model for Aerosol Species (SPRINTARS v3.54)
(Takemura et al., 2000, 2002, 2005), an AGCM1 that in-
cludes aerosol physics for four major species: sulfate, car-
bon, seasalt and mineral dust. SPRINTARS is used at T42
resolution with 20σ -layers in the vertical. Meteorologi-

1Atmospheric General Circulation Model

cal fields are nudged towards NCEP/NCAR2 reanalysis data
(Kalnay et al., 1996). The implemented aerosol physics is
quite sophisticated and includes emission (and a limited sul-
phur chemical cycle), transport, wet and dry deposition pro-
cesses as well as feedbacks on clouds and the radiative bal-
ance. Emission of sulfate and carbon is based on emission
maps derived from various datasets. The emission of sea salt
and mineral dust depends on parametrisations that include
notably windspeed (seeTakemura et al.(2000) for more de-
tails).

The assimilation system is the Local Ensemble Transform
Kalman filter (LETKF) (Hunt et al., 2007; Miyoshi and Ya-
mane, 2007; Szunyogh et al., 2008) that employs an ensem-
ble of model calculations to represent the model prediction
covariance. In our case, this ensemble consists of simulations
by the same version of SPRINTARS but with different (ran-
domly modified) emissions. Although initial mixing ratios
of aerosols were also perturbed, this had little effect due to
the short residence times of aerosol in the atmosphere. Since
we will only assimilate AERONET data (Holben et al., 1998,
see also Fig.24) no variation of sea salt emission is included.
LETKF compares the model state at some time to available
observations and adjusts this state accordingly, taking esti-
mates of both model prediction error and observational er-
ror into account. During the assimilation, SPRINTARS four
major aerosol species are represented by two types, a fine
(carbons and sulfate) and a coarse aerosol mode (seasalt and
dust).

The assimilated observations are AOT at 675 nm and AAE
derived from 440 and 870 nm, as observed by the AERONET
network in July 2005 (direct sun algorithm, version 2, lev.
2.0 data). These observations have been averaged over two
hours to increase their representativeness at the T42 resolu-
tion of SPRINTARS. Special care was taken in estimating
the observational error which results from two independent
contributions: a retrieval error (we assumed 0.015 for AOT)
and a representation error (5−10% for AOT, according to our
study in paper I).Zhang et al.(2008) suggest an extra error
contribution to the observational error because of likely er-
rors in the observation operator (due to assumptions on par-
ticle sizes, refractive indices and hygroscopic growth). Such
errors are, however, likely to introduce biases and not random
deviations and should not be included in observational error
estimates. We accept that this will lead to biases in aerosol
mixing ratios, that will likely reduce with further research.

In paper I, we validated our assimilation system by com-
paring its results to independent AERONET, SKYNET and
MODIS observations. The general conclusion was that the
system was capable of substantially improving aerosol simu-
lation of AOT and AAE. Our efforts focussed on the feasabil-
ity and impact of AOT assimilation. It was found, however,
that in regions strongly influenced by desert storms, AAE

2National Centers for Environmental Prediction and National
Center for Atmospheric Research, located in the USA

Atmos. Chem. Phys., 10, 6583–6600, 2010 www.atmos-chem-phys.net/10/6583/2010/



N. A. J. Schutgens et al.: Testing aerosol assimilation 6585

Table 1. Assimilation experiments used in this paper.

id nreg nens npatch ρ special comments

std 1 standard SPRINTARS different
emissions

R1E2free 1 20 no assimilation
R1E1P4 1 10 4 1.1
R1E2P2 1 20 2 1.1
R1E2P4 1 20 4 1.1 baseline
R1E2P6 1 20 6 1.1
R1E4P4 1 40 4 1.1
R1E2P4ρ03 1 20 4 1.03

R128E2free 1 20 no assimilation
R128E1P4 128 10 4 1.1
R128E2P2 128 20 2 1.1
R128E2P4 128 20 4 1.1
R128E2P6 128 20 6 1.1 λ < 0
R128E4P4 128 40 4 1.1 baseline
R128E2P4ρ03 128 20 4 1.03
R128E2P4ρ20 128 20 4 1.20 λ < 0
R128E2P4ρ30 128 20 4 1.30 crashed
R128E2P42AOT 128 20 4 1.1 AOT at 440, 870 nm λ < 0
R128E2P4IC 128 20 4 1.1 ensemble spunup
R128E2P43modes 128 20 4 1.1 SU, CA, coarse λ < 0

aerosol modes

assimilation is vital to obtain a correct distribution of fine
and coarse aerosols. We also considered the effect of emis-
sion levels on the assimilation, by scaling these differently
for three major SPRINTARS aerosol types (sulfate, carbon
and minreal dust). We found that these emission levels do
not greatly affect the assimilation. Of course, if there are
locally periods with no or few observations, no assimilation
will occur and large differences between experiments with
various emission levels will happen.

3 The sensitivity experiments

In this section, we will describe which sensistivity experi-
ments were performed and why. The why is important, not
only to understand some of the results later on but also be-
cause it is impossible to explore the full parameter space
available to us with limited computer resources. A list of
all experiments used in this paper can be found in Table1.
Our baseline experiments (to which we compare the other
experiments) used ensemble sizenens= 20, local patch size
npatch= 4 and inflation factorρ = 1.1. Note that in paper I,
we usednens= 40 and considered two different scalings for
the emission maps (calledE1 andE2). Here we only useE2
where the ensemble mean emisssion of sulfate, carbon and
dust is multiplied with factors of 0.5, 2 and 0.5 respectively.

The first parameter we will explore is the region sizenreg
which defines the size of region within the global grid in
which the same random modification factor (per member) is
applied to the emission inventories. Standard practice is to
set this prameternreg= 1, so each gridpoint has its own, in-
dependent modification. Our experiments lead us to believe
this is not necessarily an optimal choice, so we also consid-
erednreg= 128. In effect, this means that the same random
modification (but still different for each ensemble member)
is used throughout the whole grid. This will serve to increase
the spread within our ensemble (see also Sect.8). The choice
nreg= 128 should not be seen as overly restrictive. First, the
emission inventories for sulfate and carbon are to a large ex-
tent based on inventories for their gaseous precursors. With
nreg= 128 we effectively create an ensemble of inventories
derived with different conversion factors gas-aerosol. Sec-
ond, in LETKF the analysis is done locally. Although some
continuity is imposed, the analysis at two grid points sepa-
rated by a distance of 2npatch is mostly independent (allow-
ing the analysis to favour different conversion factors, so to
say).

The second parameter we will explore is the ensemble size
nens, which of course governs the accuracy with which the
model prediction covariant error is evaluated. Highernens
means higher accuracy but also higher CPU requirements.
Consequently we would likenensas small as possible.

www.atmos-chem-phys.net/10/6583/2010/ Atmos. Chem. Phys., 10, 6583–6600, 2010



6586 N. A. J. Schutgens et al.: Testing aerosol assimilation

The third parameter is the local patch sizenpatch. Dur-
ing the assimilation, only observations within a rectangular
box of size 2npatch+ 1, centered at the analysed gridpoint,
will be considered (the rectangular box is not a fundamen-
tal limitation of LETKF). Observations outside this box are
considered uncorrelated with the analysed gridpoint. In this
way, the effect of noise in the ensemble statistics due to its
limited size are mitigated.npatch is therefore related tonens.
In general larger ensembles will allow largernpatch, which
means more observations will be considered for the analyses
of a gridpoint. Consequently, we would likenpatch as large
as possible. Closely linked to the patch size is the horizontal
correlation length, which governs the observation localiza-
tion. We set this length scale to half the local patch size, so
2 in case ofnpatch= 4. (In this case, the rectangular box has
a size of 2500 km at the equator). Note that some ensem-
ble Kalman filters do not use observation localization, but
covariance localization instead.

The fourth parameter will be the inflation factorρ. In en-
semble Kalman filters, the forecast model covariance is often
multiplied with a factorρ > 1 for two reasons. One is that
for a limited ensemble (nens< ∞), the ensemble spread will
typically be underestimated andρ > 1 partially corrects for
this. The other reason is more fundamental: if the ensemble
becomes unrepresentative of the real model prediction error,
the assimilation will surely fail. Inflation is a simple tech-
nique to force the ensemble to include a sufficiently large
part of phase space and not collapse unto an irrelevant sub-
space (Rodgers, 2000).

These four parameters are generic parameters, in that all
ensemble Kalman filters, whether they assimilate aerosols or
something quite different, use them. Note that covariance
localization and observation localization both define a spatial
correlation length scale for the assimilation system.

Finally, we have conducted four experiments where we did
not modify the numerical parameters of LETKF, but intro-
duced more fundamental changes in the way the assimilation
works. These experiments were often devised after we had
studied the previous ones, to resolve some questions we had.
Since we usually assimilate observations of AOT and AAE,
we decided to conduct one experiment (R128E2P42AOT) in
which only AOT at multiple wavelengths (440 and 870 nm)
were assimilated. In principle, these observations have the
same information content as a single AOT and AAE, and
we expected similar results. We will later show that this
is only partly true. Also, we usually analyse a fine and a
coarse mode of aerosol during assimilation. The fine mode
consists of both sulfate and carbon aerosol whose scattering
properties show different dependance on wavelength. Conse-
quently their contribution to AAE is quite different (see also
Fig. 1 in paper I). Therefore, we conducted one experiment
(R128E2P43modes) where we analysed three modes: sul-
fate, carbon and coarse aerosol. We also considered the im-
pact of initial conditions on the assimilation. We usually start
the ensemble calculation from the same initial conditions but

Table 2. Geographic locations.

Location longitude latitude

North America 140 W–50 W 20 N–65 N
Europe & North Africa 25 W–65 E 00 N–65 N

with randomly perturbed aerosol mass mixing ratios. The
first assimilation occurs after three hours of SPRINTARS
calculation. But one might argue it is better to allow the
ensemble to evolve freely (i.e. without assimilation) for a
longer time, maybe the aerosol residence timescale, so that
the correct model covariances can develop. We will show
that this is rather inconsequential for the resulting ensemble
mean but does have some positive effect on the ensemble
spread (R128E2P4IC).

We will analyse the results of our experiments (conducted
for July 2005) in various ways. First, we will compare rel-
evant experiments amongst themselves, focussing our ef-
forts on two parts of the globe where a dense AERONET
network is in place, North America and Europe & North
Africa (including the Arabian pensinsula), see Table2. For
these areas, we calculate time- or area-averaged differences
in AOT and AAE for various experiments. In particular we
will use relative RMS differences of two fieldsf1 and f2

(
√

〈(f2−f1)2/f 2
1 〉) since the experiments without assimila-

tion show mostly a bias versus the baseline, while the other
assimilation experiments show mostly random deviations.
Time-averaged differences are calculated over the period 8–
27 July, to exclude potential initial effects.

Second, we will compare selected experiments to obser-
vations of AOT and AAE from six AERONET sites that
did not yield observations for the assimilation. This consti-
tutes a validation with independent observations. Thirdly,
we will compare spatial distributions of AOT as observed by
MODIS/Aqua in North America or Europe & North Africa
to selected experiments. This also constitutes a validation
with independent observations, although we caution against
placing too much faith in the MODIS observations over land
(we will return to this point later).

Finally, we will consider the ensemble spread and how it
is affected by assimilation and various parameter choices.

4 Comparison among the experiments

4.1 Experiments for region sizenreg = 128

We start by comparing experiments with varying ensemble
sizenens and patch sizenpatch for nreg= 128 to our baseline
experiment R128E2P4. The area-averaged differences with
other experiments are shown in Fig.1. It is obvious that as-
similation has a strong impact on simulated AOT, but we also
see that there are differences in the assimilated AOT due to
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Fig. 1. Location of all surface sites used in this study. Crosses:AERONET sites used for assimilation; blocks: AERONET sites used for
validation; The names of the validation sites are also indicated.

Fig. 1. Location of all surface sites used in this study. Crosses:
AERONET sites used for assimilation; blocks: AERONET sites
used for validation; The names of the validation sites are also indi-
cated.

parameter choices. However, the assimilation results con-
verge unmistakenly asnens increases, as is to be expected.
For North America, it would appear that even a small ensem-
ble of nens= 10 may be sufficient. We will later show that
also for Europe & North Africa,nens= 10 gives satisfying
results as long as one stays close to AERONET sites. The
impact ofnpatch is more significant, and, more importantly
does not show convergence (this we did not expect anyway).
As a matter of fact, the R128E2P6 experiment suffered an
instability (unrealistic increase in AOT during assimilation)
at some point, and so will not be considered any further (it is
possible this instability would not happen for a larger ensem-
ble). For North America, the differences between the base-
line andnpatch= 2 seem to grow in time, making it especially
important to fix this parameter. Note that such a phenomenon
is not seen for the ensemble size.

In Fig. 2 we compare time-averages of the difference be-
tween R128E2free, R128E1P4, R128E4P4 and R128E2P2
with the baseline for Europe & North Africa. We see, first,
that the effect of assimilation is felt throughout the larger part
of the domain. Furthermore, no matter the choice of parame-
ters, similar AOT fields result. Nevertheless, the effect of the
parameter valuenpatch is very pronounced in certain areas,
like West Africa for Europe & North Africa. Similar con-
clusions can be drawn for North America (since the results
for North America are very similar for differentnreg, we will
postpone discussion until the next subsection). Finally, we
note that the effect of parameter choices is only pronounced
away from the AERONET sites, in areas not covered by the
network, or near sites which do not contribute a lot of obser-
vations due to cloudiness or malfunction (many sites in the
north-west of North America and the very north of Europe &
North Africa).

14 N. A. J. Schutgens et al.: Testing aerosol assimilation

Fig. 2. Area-averaged differences [%] in AOT, fornreg = 128 experiments. TheR128E2P4 experiment is used as the reference. The
coloured lines refer to experiments for various ensemble sizes (E) andpatch sizes (P). Notice how the assimilation converges as ensemble
size increases. Also notice this is not the case for patch size, which has overall a bigger effect on the results.

Fig. 2. Area-averaged differences [%] in AOT, fornreg= 128 ex-
periments. The R128E2P4 experiment is used as the reference. The
coloured lines refer to experiments for various ensemble sizes (E)
and patch sizes (P ). Notice how the assimilation converges as en-
semble size increases. Also notice this is not the case for patch size,
which has overall a bigger effect on the results.

4.2 Experiments for region sizenreg = 1

Next we perform a similar analysis for the experiments with
region sizenreg= 1. In Fig.3 we show the area-averaged dif-
ferences between for experiments that where compared to the
baseline R1E2P4. In this case, the experiment fornpatch= 6
completed without problems. Note again the convergence of
the experiments with increasing ensemble size. Note also
that for Europe & North Africa, the impact of ensemble size
and patch size seems reduced compared to the experiments
for nreg= 128. Likely this is because the difference between
the free run R1E2free and the baseline R1E2P4 is smaller to
start with (compare to Fig.1).
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Fig. 3. Time-averaged differences [%] in AOT, fornreg = 128 experiments. The black & white dots represent AERONET sites.
Fig. 3. Time-averaged differences [%] in AOT, fornreg= 128 ex-
periments. The black & white dots represent AERONET sites.

We also present time-averaged differences for North
America for several experiments withnreg = 1, in Fig. 4.
Again, we see that differences due to varyingnpatchare most
pronounced away from the AERONET sites. Experiment
R1E4P4 is not shown as the differences are typically below
20%. For Europe & North Africa, the differences are located
in similar areas as fornreg= 128 but smaller.

4.3 Effect of region size

Later, we will show thatnpatch= 4 is a decent choice for the
patch size. For this value, what can we say about the ef-
fect of region size on the assimilation? Figure5 shows the
time-averaged differences between R1E4P4 and R128E4P4
(the area-averaged differences are remarkably constant, after
a week or so). For North America, these differences are on
the order of the differences for thenens= 10 experiments dis-
cussed earlier. For Europe & North Africa,nreg has a similar
impact as patch size. Again we see that the largest differ-
ences are away from the AERONET sites. Clearly, it is not
possible to decide in favour of either of these two experi-
ments based on this comparison, but they seem not to differ
too much in ensemble mean AOT.

4.4 Effect of inflation

Fornreg= 128,nens= 20 andnpatch= 4 we conducted exper-
iments withρ=1.03,1.10 (the baseline), 1.20 and 1.30 (The
experiment withρ = 1.03 was also repeated fornreg = 1).
The experiment forρ = 1.30 developed an instability: the so-
lution of the Kalman equation contained unrealistically large
mixing ratios. In Fig.6 we show the area-averaged dif-
ferences between the remaining experiments and the base-
line. The experiment withρ = 1.20 resulted in quite unre-
alistic AOT after some time. For Europe & North Africa,

16 N. A. J. Schutgens et al.: Testing aerosol assimilation

Fig. 4. Area-averaged differences [%] in AOT, fornreg = 1 experiments. TheR1E2P4 experiment is used as the reference. The coloured
lines refer to experiments for various ensemble sizes (E) and patch sizes (P). Notice how the assimilation converges as ensemble size
increases. Also notice this is not the case for patch size, which has overall a bigger effect on the results.

Fig. 4. Area-averaged differences [%] in AOT, fornreg= 1 exper-
iments. The R1E2P4 experiment is used as the reference. The
coloured lines refer to experiments for various ensemble sizes (E)
and patch sizes (P ). Notice how the assimilation converges as en-
semble size increases. Also notice this is not the case for patch size,
which has overall a bigger effect on the results.

R128E2P4ρ03 and R128E2P4 are actually very close and
the time-averaged differences are very small. For North
America we see larger differences that, moreover, grow in
time. Since inflation is done by multiplying the model co-
variance matrix every time assimilation is performed, grow-
ing differences for varyingρ is not really surprising. From
Fig.7 it is clear these differences are located in West Canada,
just as in the case of the patch size (see Sect.4.1). They are
likely an edge-effect (note there are no AERONET sites fur-
ther North).

Atmos. Chem. Phys., 10, 6583–6600, 2010 www.atmos-chem-phys.net/10/6583/2010/
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Fig. 5. Time-averaged differences [%] in AOT, fornreg = 1 experiments. The black & white dots represent AERONET sites.Fig. 5. Time-averaged differences [%] in AOT, fornreg= 1 experiments. The black & white dots represent AERONET sites.
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Fig. 6. Time-averaged differences [%] in AOT, fornens = 20, npatch = 4 experiments. The black & white dots represent AERONET sites.Fig. 6. Time-averaged differences [%] in AOT, fornens= 20,npatch=4 experiments. The black & white dots represent AERONET sites.
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Fig. 7. Area-averaged differences [%] in AOT, for variousρ experiments. TheR128E2P4 experiments is used as the reference.
Fig. 7. Area-averaged differences [%] in AOT, for variousρ exper-
iments. The R128E2P4 experiments is used as the reference.

4.5 Various other experiments

We now come to an interesting section, where we will com-
pare several experiments in which we didn’t change the nu-
merical parameters of the assimilation system, but some ba-
sic assumptions on how it should work. The nature of these
experiments has already been descibed in quite some detail
before (Sect.3). Here we only present the area- and time-
averaged differences with the baseline R128E2P4. Area-
averaged differences of AOT are shown in Fig.8. The
R128E2P42AOT experiment suffered an instability (about
which later more). The R128E2P43modes experiment, on
the other hand, is very similar to the baseline (so no time-
averaged differences are shown). The most remarkable

www.atmos-chem-phys.net/10/6583/2010/ Atmos. Chem. Phys., 10, 6583–6600, 2010
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Fig. 8. Time-averaged differences [%] in AOT, forρ = 1.03 and 1.10 experiments. The black & white dots represent AERONET sites.
Fig. 8. Time-averaged differences [%] in AOT, forρ = 1.03 and 1.10
experiments. The black & white dots represent AERONET sites.

experiment is R128E2P4IC which initially shows very large
differences but then rapdily converges unto the baseline. This
is most obvious for Europe & North Africa, but it can also be
seen for North America (before 25 July, after that we see an
increase of differences that we have seen for several other
experiments as well). The reason for this convergence is
twofold: 1) from 2 July onward both experiments use iden-
tical emission maps and the residence time of aerosol in the
free atmosphere is short (∼ 1 week at most); 2) assimilation
forces the experiments closer. The differences in AAE be-
have similarly to those in AOT and are not shown.

The time-averaged differences of R128E2P4IC for Eu-
rope & North Africa do not reveal anything interesting, but
for North America (see Fig.9) there are localized differences,
again in West Canada.

The instability in the R128E2P42AOT experiment was
quite unexpected: in principle both it and the baseline ex-
periment use identical information. This is borne out by the
initial development of both experiments which is very simi-
lar, especially when compared to the other experiments. The
instability occurs during the assimilation when the analysed
mixing ratios for coarse aerosol become locally unphysically
large. Although the model transports these large aerosol
loads without problems, subsequent assimilation phases trig-
ger additional instabilities in the fine mode. The instability
dissappears when a larger ensemble (nens= 40) is used, and
seems to point to an issue with the accuracy of the model co-
variant. We will later show that even for this larger ensemble
size, the resulting AAE for two AERONET sites is inferior
to the baseline experiment. From the limited experiments we
have at our disposal, we surmise that convergence of the filter
depends not only on the numerical parameters introduced in
Sect3, but also on the type of assimilated observations. The
main difference between these two sets of observations are
the correlations (see Fig.10) among the observations. Due
to the non-linear transformation between AOT and AE, it is
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Fig. 9. Area-averaged differences [%] in AOT, for various experiments. TheR128E2P4 experiment is used as the reference.
Fig. 9. Area-averaged differences [%] in AOT, for various experi-
ments. The R128E2P4 experiment is used as the reference.

expected that even for an exact covariant (i.e. infinite ensem-
ble size) the two experiments will differ, as the ensemble
mean observations represent slightly different atmospheric
state vectors.

4.6 Preliminary conclusions

From our results so far, a few conclusions may be drawn.
The first is that an ensemble sizenens= 20 seems to be suf-
ficient for an accurate assimilation. The second is that, al-
though other parameters (nreg andnpatch) affect the results
more strongly thannens, spatial patterns in assimilated AOT
are fairly similar, especially when compared to the free run
of the ensemble. It would appear that, especially close to
the AERONET sites, the exact value ofnreg and npatch or
ρ is not very important. Thirdly, spinning-up the ensem-
ble prior to the assimilation or allowing more freedom in the
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Fig. 10. Time-averaged differences [%] in AOT, for the spinup experiment. The black & white dots represent AERONET sites.
Fig. 10. Time-averaged differences [%] in AOT, for the spinup ex-
periment. The black & white dots represent AERONET sites.
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Fig. 11. Correlations among co-located observations for theR128E2P4 andR128E2P4 2AOT experiments. Unsurprisingly, strong corre-
lations exist when using AOT at two wavelengths.

Fig. 11. Correlations among co-located observations for the
R128E2P4 and R128E2P42AOT experiments. Unsurprisingly,
strong correlations exist when using AOT at two wavelengths.

representation of AAE (R128E2P43modes) really seems to
have no big impact. Finally, it appears prudent to choose
decorrelated co-located observations over correlated.

5 Comparison with AERONET observations

In this section, we will compare results of the various assim-
ilation experiments to AERONET observations at individual
sites. We will use several sites around the world (Ames,
CCNY, Le Fauga, Minsk, Cinzana, BAHRAIN) that did not
provide observations for the assimilation. This comparison
therefore uses independent data and can be considered a val-
idation. The same sites, see Fig.24, were also used in paper I
and were chosen as they are in proximity to other AERONET
sites that provided plentiful observations to the assimilation
(we do not consider the Darwin site here for reasons ex-
plained in paper I, Karlsruhe was excluded as it has only
observations during two weeks of July 2005).

In Fig. 11we show AOT observed at these sites and simu-
lated in various experiments. It is obvious that for these sites,
the impact of numerical parameter values and other choices

is rather minimal. This is certainly so, if we take the tempo-
ral variation in AERONET observations into account. In all
cases, the assimilation improves on the standard experiment.
We remind the reader that the assimilation experiments use
different emission maps than the standard SPRINTARS sim-
ulation (see also paper I).

For nreg= 1, both ensemble size and patch size appears
to have little impact on the assimilation at these sites. Al-
though in general, R1E1P4 and R1E2P2 deviate a bit from
R1E2P4, R1E2P6 and R1E4P4 (that are all very similar) the
differences are usually not significant. An exception is the
Cinzana site, for which we show AOT and AAE in Fig.12.
Here it seems clear that the better experiment is R1E4P4, and
that in particular R1E2P2 gives inferior results.

Fornreg= 128, we similarly find that the numerical param-
eter values ofnens andnpatch do not affect the assimilation
much, except at Cinzana, see Fig.13. The only firm conclu-
sion that one can draw is that R128E1P4 is clearly inferior
to the other experiments. Notice also how R128E2P6 yields
similar results to R128E2P4, until just before it experiences
the instability.

A comparison for two independent AERONET sites of as-
similation results as a function ofnreg is shown in Fig.14.
Although the differences are never very big, it seems that
nreg= 128 nevertheless yields better results, especially at the
Cinzana site. We do note a strange sudden change in AOT
at the Ames site for R128E4P4 (its counterpart R1E4P4 is
much smoother), however this may actually be realistic given
the rapid changes in AERONET AOT at this time. For the
other sites, AOT is more or less similar.

Next, we turn to thenreg= 128,nens= 20,npatch= 4 ex-
periments for various values of the inflation parameterρ. In
general, this parameter has little impact on assimilation, with
a few noteworthly exceptions. In Fig.15 we show AOT at
Cinzana and Le Fauga. The similarity between the exper-
iments is readily seen. However, it would appear that for
ρ = 1.20, some episodes (Cinzana on 7 July and Le Fauga
on 16 July) are better simulated. It is possible that the
larger inflation here partially overcomes limitations due to
SPRINTARS model errors. Unfortunately, theρ = 1.20 ex-
periment later on developes an instability with unrealistically
high AOT.

Finally, we discuss the various other experiments
we conducted: R128E2P4IC, R128E2P43modes and
R128E2P42AOT. Once more, we are struck by how lit-
tle impact these choices seem to have on the results.
As before, the Cinzana site provides the starkest con-
trasts. In Fig.16 we see some initial AOT differences
for experiments R128E2P4IC and R128E2P42AOT, while
R128E2P43modes is indistinguishable from the baseline
R128E2P4. Of course, R128E2P42AOT developed an in-
stability at some point, but before that AOT is very similar
to the other experiments. Interestingly, this is not the case
for AAE. It would seem that the baseline experiment yields
a better AAE than R128E2P42AOT, and this remains true
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Fig. 12. AOT and AAE at selected AERONET sites for various experiments. In red the standard SPRINTARS simulation. In dark blue,
experiments fornreg= 128, in light blue, experiments fornreg= 1. Also shown are actual observations (green squares).

even if we double the ensemble size (and remove the insta-
bility) in the latter experiment.

5.1 Preliminary conclusions

Comparison of the assimilation experiments with indepen-
dent AERONET observations shows that the analysis is very
robust and does not depend sensitively on parameter choices.
The validation for the Cinzana site suggests that the re-
gion size affects the minimum ensemble size (nens= 40 for
nreg= 1 but nens= 20,40 for nreg= 128). Again, the patch
size seems to have the bigger impact, with results from the
Cinzana site suggestingnpatch= 4 or 6 is required. Inflation
factors do not seem to matter much, as long asρ<1.2. Due
to the short residence time of aerosol, spinning up the en-
semble without assimilation seems not to have much effect.
It is preferable to assimilate AAE instead of multiple AOTs,
since it allows for a stable assimilation and more accurate
AAE fields.

6 Comparison with MODIS/Aqua

We now attempt to compare our assimilation experiments to
MODIS/Aqua (coll. 5) observations at AOT at 550 nm. Not
all our experiments calculated AOT at 550 nm, so we de-
cided to use AOT at 675 nm and extrapolate logarithmically
to 550 nm, using the AAE for 870/440 nm. Incurred errors
are very small. A much bigger issue is how exactly to com-
pare MODIS observations to these experiments. Both the
temporal and spatial sampling are very different for MODIS
and SPRINTARS. In addition, MODIS observations are not
always available due to cloudiness, or may have been con-
taminated by small clouds. Finally it is known to be very
difficult to retrieve satellite AOT over land (we will mention
some problematic cases later on).

We would prefer to compare our experiments to MODIS
observations at different times and see whether the assimi-
lation improves on the evolution of spatial patterns in AOT.
Although we have attempted this, not much could be learned
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Fig. 13. AOT and AAE at Cinzana for various experiments with
nreg= 1. Also shown are actual observations (green squares).
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Fig. 14. AOT and AAE at Cinzana for various experiments with
nreg= 128. Also shown are actual observations (green squares).

from it for two reasons. One reason is that our experiments
are very similar, demanding a highly reliable MODIS AOT
to make a meaningful comparison. The other reason is that
more often than not cloudiness prevented MODIS from succ-
sesfully retrieving AOT at exactly those locations where the
simulations differed most.

In the end, we decided to average AOT for both MODIS
and the experiments over 8–27 July. Note that the experi-
ments provide AOT every three hours, while MODIS only
once a day. To deal with potential skewing of our average
due to cloudiness, we demanded that at least 50% of the days
should have a valid observation for the average to be calcu-
lated.

In Fig.17we show results over North America for MODIS
and the experiments std, R128E2P4 and R1E2P6. First, we’d
like to note that AOT over the ocean may not be accurate at
all, since we have no observations there to assimilate, and
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Fig. 15. AOT at Cinzana and Ames for experiments R1E4P4 and
R128E4P4. Also shown are actual observations (green squares).
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Fig. 16. AOT at Cinzana and Le Fauga for experiments R1E4P4-
ρ1.03, R128E4P4 and R128E4P4-ρ1.20. Also shown are actual
observations (green squares).

moreover did not create an ensemble emission map for sea
salt. Limiting ourselves to AOT over land and high AOT over
the ocean (supposedly outflows), we see that assimilation
definitely improves AOT. Over the east coast, Central USA,
over Hudson bay and Southern Califonia and Baya Califor-
nia AOT is raised to levels more in line with MODIS AOT.
The big outflow in front of the coast of Nova Scotia and New-
foundland can unfortunately not be compared to MODIS data
due to cloudiness.

We also see two conspicuous differences between the ex-
periments and MODIS. First, there appears to be a “trough”
in simulated AOT at and to the south of the AERONET sta-
tions at Boulder and Sevilleta. MODIS does not show these
low values. On the contrary, just to the South-East of Sevil-
leta there appears to be an area of high AOT. Just to the
west of the trough, over Nevada, MODIS also shows elevated
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Fig. 17. AOT and AAE at Cinzana for various experiments. Also
shown are actual observations (green squares).

AOT. Yet when we compare AERONET and MODIS obser-
vations for sites like Railroad valley, Sevilleta and Boulder,
we see that MODIS greatly overestimates AOT (see Fig.18).
We have not inspected all other sites, but a fair number of
them anyway (Bratts Lake, GSFC, Halifax, KONZA EDC,
MD Science centre, Missoula, MVCO, Prospect Hill, SERC,
Sioux Falls, Walter Branch, Waskesiu). It seems that for
sites in Canada and East America MODIS and AERONET
generally agree (although there are instances where MODIS
overestimates AOT). Finally, the main difference between
R128E2P4 and R1E2P6 is the increased AOT that the latter
experiment shows in the North West of North America, note
that this is also were we saw the largest deviations among
experiments in Sect.4.

A comparison for Europe & North Africa can be seen in
Fig. 19. The large dust storms over the Arabian pensin-
sula are greatly decreased due to assimilation. In Africa,
the center of dust AOT shifts from the center in the standard
SPRINTARS run to the west, although the intensity differs
for R128E2P4 and R1E4P6. MODIS seems to favour the lat-
ter experiment. There are a few isolated dust storms visible in
MODIS AOT that are absent in all simulations (over the Suez
canal, over Niger & Chad and off the West coast near Dakar).
They are likely very local phenomena and would require a
denser network of AERONET sites to be correctly simulated
(in 2009 there are more sites in North Africa than in 2005).
The large pollution over North Europe can unfortunately not
be verified due to cloudiness. It appears the end of July when
many sites in Northern Europe did not yield observations.
Consequently this is essentially a free run of the ensemble,
be it with initial conditions determined from previous as-
similations. The high MODIS AOT for Spain (higher than
the analysis) is rather odd, since most Spanish AERONET
sites show reasonable agreement with MODIS (the excep-
tion is Palencia). There are however instances when MODIS
strongly overestimates AOT and we suspect this influences

the mean greatly. Finally, just as for North America, we
found a couple of sites where MODIS systematically over-
estimates AOT: Palencia and SEDE-BOKER.

6.1 Preliminary conclusions

The assimilation clearly improves spatial distributions of
AOT, however due to insufficiencies in MODIS observations
and the high spatial variability in observed aerosol, it is dif-
ficult to prefer one experiment over another. Over Africa, far
away from the AERONET sites, thenreg= 1 experiments ap-
pear to agree more with the observations than thenreg= 128
experiments.

7 Does assimilation lead to improved AAE?

In paper I, we showed that the inclusion of AAE observations
potentially has a big impact on resulting AAE fields. This
was shown by comparing assimilation experiments without
and with AAE as observation (in addition to AOT). At the
desert sites Cinzana and BAHRAIN, we saw a significant re-
distribution of aerosol species to better match the indepen-
dent AERONET observations. However, for European and
American sites, the effect of including AAE was not so ob-
vious. Here we revisit this issue again.

For these American and European sites, the standard sim-
ulation often provided a better approximation of AAE than
the assimilation experiments. This suggested that assimilat-
ing AAE did not positively affect the results. However, one
has to keep in mind that the standard simulation and these as-
similation experiments were conducted with different emis-
sion maps. So it is more reasonable to compare AAE from
the assimilation experiments to AAE from the free run (these
experiments use the same emission maps). Figure20 shows
AAE for various experiments and we can see that not only
at BAHRAIN and Cinzana assimilation improves on AAE.
Also for Ames and CCNY there seem to be small improve-
ments. Only for Le Fauga and Minsk is it debatable whether
AAE has improved due to assimilation. Note that for the
last four sites, AOT is generally low< 0.1 and we can con-
sequently expect high errors (> 0.3) in both AAE used for
the assimilation (from nearby sites) and in the independently
observed AAE.

To appreciate the impact of AAE assimilation we show
the time-averaged difference in AAE for two experiments
from paper I,A1E2 andA2E2 (the first experiment only as-
similated AOT while the second experiment assimilated both
AOT and AAE.). This difference may be interpreted as the
impact of assimilating AAE observations on the simulated
AAE (Fig. 21). We see that AAE is reduced in the ma-
jor desert areas, their outflows but also over e.g. continental
America.
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Fig. 18. AOT over North America for MODIS Aqua observations and several experiments.Fig. 18. AOT over North America for MODIS Aqua observations and several experiments.
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Fig. 19. Observed AOT at Boulder for AERONET and MODIS
Aqua. Also shown is the standard SPRINTARS’ AOT. MODIS
clearly overestimates AOT for this site.

8 Ensemble spread and the impact of assimilation

Now that we have compared the ensemble mean of AOT and
AAE, we will discuss the ensemble spread. Initially, this
spread is due to the assumed spread in initial conditions, but
as time progresses the spread in emission scenarios becomes
the dominant factor. Carbon, sulfate and dust emissions were
independently perturbed by multiplying the original emis-
sion with a random factor drawn from log-normal distribu-

tions (to ensure positivity) as shown in Fig.23, (comparison
of the A2E1 andA2E2 experiments in paper I suggests the
non-Gaussian nature does not negatively affect the assimi-
lation). More-over, when observations are assimilated, this
will also affect the ensemble spread.

Since our ensemble simulation allows us to calculate a
flow-dependent model prediction covariant, the ensemble
spread may be interpreted as an error estimate of the analysis,
given uncertainties in emission scenarios and observations
(assimilation schemes that assume the covariant may not be
used in this way). Since we currently have no way of estimat-
ing emission uncertainties, it seems best to assume that the
emission ensemble yields significantly larger spreads in AOT
than the typical observational errors of AERONET. Upon as-
similation, this ensemble spread should then decrease, indi-
cating the increased accuracy of the simulated AOT fields.

In Fig. 22 the top panels show the relative spread in AOT
for the free runs R1E2free and R128E2free, averaged over
the period 8–27 July. We see that the different variations
of emission scenarios cause different standard deviations in
AOT, with nreg = 128 having a substantially larger spread
(for comparison, the estimated observational error in AOT is
5–10%). This relative spread depends mostly on the spread
within the emission ensemble. Notice also that over ocean,
the spread is very small as we do not perturb the emission of
sea salt (over remote oceans the spread in AOT is not zero
as the ensemble members will have slightly different wind-
fields).
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Fig. 20. AOT over Europe & North Africa for MODIS Aqua observations and several experiments.Fig. 20. AOT over Europe & North Africa for MODIS Aqua observations and several experiments.

The bottom panels in Fig.22 show the ratio of ensemble
spread of AOT for the baseline and free run experiments.
This can be interpreted as the change in ensemble spread
due to assimilation. In the right panel (nreg= 128), assim-
ilation tends to decrease the spread around AERONET sites
and the outflows asscoiated with those regions. Over ocean,
the spread does not change, since we do not assimilate ob-
servations there. Only over Alaska and Canada do we see
an increase in AOT spread due to assimilation. In both the
R128E2P4ρ03 and R128E2P4IC experiments this increase
of spread does not occur. Smaller inflation factors naturally
lead to smaller spread, while the experiment with spun-up
ensemble only includes spread due to the emission ensemble
and not due to different initial conditions. It must also be
noted that all three experiments R128E2P4, R128E2P4ρ03
and R128E2P4IC are very similar in their prediction of
where the spread significantly decreases.

In the lower left hand panel (nreg = 1) we see large ar-
eas where the spread increases due to assimilation. Again,
this is due to inflation, and the increase strongly reduces for
ρ = 1.03 (but stays above 1). Also, the area where the spread
significantly decreases is rather small. Fornreg= 1, the orig-
inal spread in the ensemble (R1E2free) is simply too small
to allow much improvement due to assimilation of observa-
tions! This conclusion does not change if we increase the
spread in the emission ensemble (see Fig.23) from 1 to 2.

Interestingly, the deviations between assimilation experi-
ments and their baseline usually are on the order of the base-
line ensemble spread or much smaller. In this sense, the
assimilation experiments can be considered identical, again
suggesting robustness of our results.

However, if we want to use the assimilation system to as-
sess not only AOT and AAE but also their errors, it is im-
portant that the ensemble spread should not increase due to
e.g. inflation. Assimilating (good) observations should im-
prove our knowledge of the aerosol fields, that is: decrease
the ensemble spread. Fornreg= 128, this would suggest us-
ing a low inflation parameterρ = 1.03 and a spin-up of the
ensemble prior to assimilation.

9 Conclusions

In this paper, we discuss a variety of sensitivity experiments
for the global aerosol assimilation system which we first de-
scribed in paper I (Schutgens et al., 2009). These sensitivity
experiments are necessary to establish the robustness of the
assimilation result and to tune certain numerical parameters
that govern the efficiency and/or accuracy of our assimilation
scheme. To our knowledge, this is the first time such sen-
sitivity experiments are discussed in the context of aerosol
assimilation.
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Fig. 21. AAE at selected AERONET sites for various experiments. In red the standard SPRINTARS simulation. In dark blue, experiments
for nreg = 128, in light blue, experiments fornreg = 1. The free ensemble run fornens = 128 is shown in black. Also shown are actual
observations (green squares).

Fig. 21.AAE at selected AERONET sites for various experiments. In red the standard SPRINTARS simulation. In dark blue, experiments for
nreg= 128, in light blue, experiments fornreg= 1. The free ensemble run fornens= 128 is shown in black. Also shown are actual observations
(green squares).
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Fig. 22. Effect of assimilating AAE observations on AAE simulation. Shown is the time-averaged (8–24 July) difference between the
experimentsA1E2andA2E2 from paper I.

Fig. 22. Effect of assimilating AAE observations on AAE simula-
tion. Shown is the time-averaged (8–24 July) difference between
the experimentsA1E2andA2E2from paper I.

Our assimilation system is based on the global aerosol
transport model SPRINTARS and the Local Ensemble Trans-
form Kalman filter (LETKF). In the present paper it uses
AERONET observations, but we have also used observations
from MODIS and the SKYNET and CSHNET ground net-
works. At the present, we prefer to focus on the AERONET
observations as it is the most reliable, accurate and world-
wide observation set.

The very first conclusion to be drawn is how little these
(parameter) choices seem to affect the resulting aerosol
fields. Naturally, different values lead to different analyses
but the relative differences are only very large when AOT is
very small or when one considers areas far away from the ob-
servational network. For these areas, it seems more reason-
able to call our aerosol fields forecasts than analyses, since
AOT at these places is only affected through analyses per-
formed somewhere else.

The second conclusion is that, among the parameter values
we explored, the optimal choice is a region sizenreg= 128,
an ensemble sizenens= 20 , a local patch sizenpatch= 4 and
an inflation factorρ = 1.03. For these values, fast and stable
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Fig. 23.Top panels show the relative ensemble spread in AOT for thenreg = 1 and 128 free run experiments. Bottom panels shows the ratio
of ensemble spread in AOT for the baseline and free run experiments. The white line is the contour of value 1 (indentical spread).

Fig. 23. Top panels show the relative ensemble spread in AOT for thenreg= 1 and 128 free run experiments. Bottom panels shows the ratio
of ensemble spread in AOT for the baseline and free run experiments. The white line is the contour of value 1 (indentical spread).
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Fig. 24. The lognormal distributions that yield the random factors to modify SPRINTARS standard emission scenarios. In all cases the
standard deviation is 1. Distributions(a) and(c) are used in this paper. In paper I,(b) was also used.

Fig. 24. The lognormal distributions that yield the random factors
to modify SPRINTARS standard emission scenarios. In all cases
the standard deviation is 1. Distributions(a) and(c) are used in this
paper. In paper I,(b) was also used.

assimilation experiments whose results compare well to in-
dependent observations are possible. Also, the spread in the
ensemble may then be used as an indication of the analysis
error.

At reduced accuracy, assimilation experiments fornens=

10 seem feasible (although the results wil not have converged
properly). This of course significantly affects required com-
puter resources (atnens= 20 the forward calculation of the
ensemble takes up the majority of our computational re-
sources). It is of significant interest that the local patch size
actually has a bigger impact on the assimilation than ensem-
ble size.

We also suggest that a commonly used emission ensemble,
wherein the emission is independently and randomly modi-
fied in each grid cell (nreg= 1), generates too small an AOT
spread in the free run experiment (it is often comparable
to observational accuracies). Consequently the uncertainty
in AOT due to uncertainties in emissions will be underesti-
mated. Therefore, we suggest a different emission ensemble
(nreg= 128) which assumes perfect correlation of the modi-
fication factors for the grid cells. We would also like to men-
tion that (unpublished) experiments, where we assimilated
MODIS observations and validated results with AERONET
sites worldwide, showed thatnreg= 128 is the better choice.

Our tests also revealed that observational datasets with
identical information (AOT and AAE versus AOT at two dif-
ferent wavelengths) do not necessarily yield the same results.
It seems prudent to use observations that are not highly cor-
related. Furthermore, describing the analysed aerosol with
more than two modes (fine and coarse) when only two in-
dependent pieces of information (AOT and AAE) are assimi-
lated does not yield better results. Finally, it seems that initial
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conditions have little effect on the analysis beyond a time-
scale of about a week.

To what extent may our results be generalised to other
ensemble assimilation systems for aerosol? Clearly, this
question can only be adequately answered through compara-
tive studies. But here we wish to present some arguments
that the present paper provides results generic enough to
guide the construction of similar assimilation systems. First,
the numerical parameters discussed in this paper are suffi-
ciently generic, allowing that localization is either performed
in model space (covariant localization) or observation space
(observation localization, this paper). Second, although dif-
ferent models may differ in their AOT fields, the structure of
their covariant matrices (under perturbation of emissions) is
dominated by transport and should be fairly similar. Third,
although the spatial and temporal sampling of the observa-
tions may also affect the numerical parameters, recent ex-
periments with MODIS observations suggests otherwise. Fi-
nally, unlike weather prediction models, aerosol models do
not exhibit chaotic behaviour (if the meteorology is fixed).
Hence also the overall robustness of our results for different
parameter values.

During our study a dilemma became very obvious: if one
assimilates reliable AERONET data, the validation is ham-
pered by lack of sufficiently accurate and widely available
independent data. On the other hand, when one assimilates
satellite data, one is faced with less reliable observations for
the assimilation while being able to use all AERONET sites
for validation. Especially over land, MODIS observations
were sometimes widely off mark with respect to AERONET,
frustrating our attempts at validation. Assimilating such ob-
servations would pose a great challenge indeed and require,
at the very last, a thorough pre-assimilation vetting of those
observations, see e.g.Zhang and Reid(2006). We are cur-
rently in the proceess of developing such vetting procedures
for MODIS. At the same time, we hope that newer satellites
(such as GOSAT) that utilize UV wavelengths (where sur-
face albedo is much reduced) for aerosol retrievals over land
will make assimilation of aerosol over land much easier.
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Generoso, S., Bréon, F., Chevallier, F., Balkanski, Y., Schulz, M.,
and Bey, I.: Assimilation of POLDER aerosol optical thick-
ness into the LMDz-INCA model: implications for the artic
aerosol burden, J. Geophys. Res., 112, D02311, doi:10.1029/
2005JD006954, 2007.

Ghan, S. and Schwartz, S.: Aerosol properties and pro-
cesses, B. Am. Meterorol. Soc., 88, 1059–1083, doi:10.1175/
BAMS-88-7-1059, 2007.

Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Set-
zer, A., Vermote, E., Reagan, J. A.,Kaufman, Y., Nakajima, T.,
Lavenu, F., Jankowiak, I., and Smirnov, A.:AERONET – A fed-
erated instrument network and data archive for aerosol character-
ization, Remote Sens. Environ., 66, 1–16, 1998.

Houtekamer, P. and Mitchell, H.: Data assimilation using an ensem-
ble Kalman filter technique, Mon. Weather Rev., 126, 796–811,
1998.

Hunt, B., Kostelich, E., and Szunyogh, I.: Efficient data assim-
ilation for spatiotemporal chaos: a Local Ensemble Transfom
Kalman Filter, Physica D, 230, 112–126, 2007.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.,
Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R.,
and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B.
Am. Meterorol. Soc., 77, 437–471, 1996.

Kalnay, E., Miyoshi, T., Yang, S., and Ballabrera-Poy, J.: 4D-Var or
ensemble Kalman filter?, Tellus, 59A, 758–773, 2007.

Lin, C., Wang, Z., and Zhu, J.: An Ensemble Kalman Filter for
severe dust storm data assimilation over China, Atmos. Chem.
Phys., 8, 2975–2983, doi:10.5194/acp-8-2975-2008, 2008.

Miyoshi, T. and Yamane, S.: Local Ensemble Transform Kalman
filtering with an AGCM at a T159/L48 resolution, Mon. Weather
Rev., 135, 3841–3861, 2007.

Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H.,
and Wang, Y. Q.: Data assimilation of dust aerosol observations
for the CUACE/dust forecasting system, Atmos. Chem. Phys., 8,
3473–3482, doi:10.5194/acp-8-3473-2008, 2008.

Rodgers, C.: Inverse methods for atmospheric sounding: theory and
practice, vol. 2 of Atmospheric, Oceanic and planetary physics,
World Scientific, 2000.

Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima,
T.: Applying an ensemble Kalman filter to the assimilation of
AERONET observations in a global aerosol transport model, At-
mos. Chem. Phys., 10, 2561–2576, doi:10.5194/acp-10-2561-

www.atmos-chem-phys.net/10/6583/2010/ Atmos. Chem. Phys., 10, 6583–6600, 2010



6600 N. A. J. Schutgens et al.: Testing aerosol assimilation

2010, 2010.
Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data

assimilation of CALIPSO aerosol observations, Atmos. Chem.
Phys., 10, 39–49, doi:10.5194/acp-10-39-2010, 2010.

Szunyogh, I., Kostelich, E., Gyarmati, G., Kalnay, E., Hunt, B.,
Ott, E., Satterfield, E., and Yorke, J.: A local ensemble trans-
form Kalman filter data assimilation system for the NCEP global
model, Tellus, 60A, 113–130, doi:10.1111/j.1600-0870.2007.
00274.x, 2008.

Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Hig-
urashi, A., and Nakajima, T.: Global three-dimensional simula-
tion of aerosol optical thickness distribution of various origins, J.
Geophys. Res., 105, 17853–17873, 2000.

Takemura, T., Nakajima, T., Dubovik, O., Holben, B., and Kinne,
S.: Single-scattering albedo and radiative forcing of various
aerosol species with a global three-dimensional model, J. Clim.,
15, 333–352, 2002.

Takemura, T., Nozawa, T., Emori, S., Nakajima, T., and Nakajima,
T.: Simulation of climate response to aerosol direct and indirect
effects with aerosol transport-radiation model, J. Geophys. Res.,
110, D02202, doi:10.1029/2004JD005029, 2005.

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer,
S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener,
F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Gi-
noux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang,
P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A.,
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