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Abstract. A series of synthetic data experiments is per-
formed to investigate the ability of a regional atmospheric in-
version to estimate grid-scale CO2 fluxes during the growing
season over North America. The inversions are performed
within a geostatistical framework without the use of any prior
flux estimates or auxiliary variables, in order to focus on
the atmospheric constraint provided by the nine towers col-
lecting continuous, calibrated CO2 measurements in 2004.
Using synthetic measurements and their associated concen-
tration footprints, flux and model-data mismatch covariance
parameters are first optimized, and then fluxes and their un-
certainties are estimated at three different temporal resolu-
tions. These temporal resolutions, which include a four-day
average, a four-day-average diurnal cycle with 3-hourly in-
crements, and 3-hourly fluxes, are chosen to help assess the
impact of temporal aggregation errors on the estimated fluxes
and covariance parameters. Estimating fluxes at a tempo-
ral resolution that can adjust the diurnal variability is found
to be critical both for recovering covariance parameters di-
rectly from the atmospheric data, and for inferring accurate
ecoregion-scale fluxes. Accounting for both spatial and tem-
poral a priori covariance in the flux distribution is also found
to be necessary for recovering accurate a posteriori uncer-
tainty bounds on the estimated fluxes. Overall, the results
suggest that even a fairly sparse network of 9 towers collect-
ing continuous CO2 measurements across the continent, used
with no auxiliary information or prior estimates of the flux
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distribution in time or space, can be used to infer relatively
accurate monthly ecoregion scale CO2 surface fluxes over
North America within estimated uncertainty bounds. Simu-
lated random transport error is shown to decrease the qual-
ity of flux estimates in under-constrained areas at the ecore-
gion scale, although the uncertainty bounds remain realistic.
While these synthetic data inversions do not consider all po-
tential issues associated with using actual measurement data,
e.g. systematic transport errors or problems with the bound-
ary conditions, they help to highlight the impact of inver-
sion setup choices, and help to provide a baseline set of CO2
fluxes for comparison with estimates from future real-data
inversions.

1 Introduction

Improved estimates of regional-scale CO2 land-atmosphere
exchange are needed for the design and verification of carbon
management policies, as well as for the validation of process-
based models used to predict CO2 fluxes. Continuous CO2
fluxes cannot be directly measured at regional scales, and
have instead been inferred from atmospheric concentration
patterns using inverse modeling techniques. While earlier
global inversion studies had used atmospheric CO2 concen-
tration measurements sampled in the free troposphere at re-
mote or high-altitude locations to infer continental-scale CO2
fluxes (e.g. Gurney et al., 2002a; Baker et al., 2006), the re-
cent convergence of several factors has made it feasible to
estimate sub-continental scale CO2 fluxes in a regional in-
verse modeling framework (e.g. Peylin et al., 2005; Lauvaux
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et al., 2008; Schuh et al., 2010). These factors include contin-
uous ground-based measurements of atmospheric CO2 taken
at several North American and Eurasian sites (e.g. Bakwin
et al., 1998; Haszpra, 1999) that provide data with high
temporal (and, increasingly, high spatial) resolution to con-
strain carbon fluxes at finer scales. In addition, the contin-
uous measurement locations tend to be sited in continental,
low-altitude areas with strong biospheric activity, providing
more information about flux variability at sub-continental
scales relative to the measurements used in global inversions.
Finally, recent advances in regional atmospheric transport
modeling and the use of analyzed wind fields with high spa-
tial resolution make it feasible to take advantage of continu-
ous data from continental locations in regional inversions.

The use of continuous data in grid-scale CO2 inversions is
relatively new, and, therefore, many questions remain as to
the optimal approach for taking advantage of these large and
highly variable data streams. Synthetic data (a.k.a. “pseudo-
data”) experiments are useful in the design of inversions,
because they include a set of specified baseline fluxes with
which results can be compared, making it easier to diagnose
any potential biases in inferred fluxes under a number of dif-
ferent scenarios (e.g. Law et al., 2002, 2003, 2004; Carouge
et al., 2010a, b). Also, given a wide spread in inversion re-
sults, such as those from the North American Carbon Pro-
gram Regional Interim Synthesis (Cook et al., 2009), syn-
thetic data studies can help to isolate the impact of inversion
setup choices, as opposed to other sources of bias in inver-
sions, e.g. due to errors in the boundary conditions, or trans-
port models.

The interpretation of flux estimates in a synthetic data in-
version is simplified relative to a real data inversion in two
important ways. First, synthetic measurements are only in-
fluenced by fluxes occurring within the domain of study,
and therefore there is no need to specify boundary condi-
tions at the edge of the domain. Errors in boundary condi-
tions used in regional real-data inversions can bias flux es-
timates, particularly for smaller regions (e.g. Peylin et al.,
2005; G̈ockede et al., 2010). Second, the effect of atmo-
spheric transport model errors can be controlled by using the
same transport model to create the synthetic measurements
as is used to estimate fluxes in the inversion. The impact of
transport model errors on atmospheric inversions has been a
significant research focus for some time, principally at the
global scale (e.g. Gurney et al., 2002b; Baker et al., 2006).
However, transport model errors may be even more of a con-
cern for regional inversions, where the models’ ability to sim-
ulate small-scale variability in areas with high biospheric ac-
tivity and/ or complex terrain is relatively unknown (Geels et
al., 2004; Patra et al., 2008; Gerbig et al., 2009).

In addition to the simplifications associated with a syn-
thetic data inversion, the geostatistical inversion approach
(Michalak et al., 2004) further makes it possible to elimi-
nate the impact of the choice of a priori flux estimates on
inversions. Geostatistical inversions are Bayesian, but do not

prescribe a prior estimate of the flux distribution from bio-
spheric models and/or inventories. Therefore, this approach
provides a unique opportunity to assess the information con-
tent of the available atmospheric measurement data (Mueller
et al., 2008).

Geostatistical inversions, as well as some other recent in-
versions, also estimate fluxes directly on a grid at fine spa-
tial resolutions, thereby minimizing spatial aggregation er-
rors (e.g. Kaminski et al., 2001; Gourdji et al., 2008; Schuh
et al., 2009) that can occur when fixed flux patterns are im-
posed for large regions (e.g. Law et al., 2002; Peters et al.,
2007). These errors result because the inversion cannot ad-
just the flux patterns within specified regions, even though at-
mospheric observations are sensitive to sub-regional variabil-
ity. Aggregation errors can be temporal as well as spatial, a
topic explored in the current study. Temporal aggregation er-
rors occur when estimating a single flux, or flux adjustment,
over a time interval with significant intra-period variability,
which is of particular concern for regional inversions using
continuous data collected in areas with strong diurnal and
synoptic flux variability. While estimating spatially and tem-
porally finer scale fluxes helps to reduce aggregation errors,
computational costs also grow as the number of estimated
fluxes grows.

The current work uses a series of synthetic data inversion
experiments to evaluate a regional geostatistical grid-scale
(1◦

×1◦) inversion for June 2004 over North America, using
the nine continuous CO2 observing towers operational in the
United States and Canada at that time. The primary objec-
tives of this study are threefold. First, we investigate the use
of available atmospheric measurements to infer reasonable
covariance parameters (both flux covariance and model-data
mismatch), as well as the impact of these inferred parame-
ters on the estimated fluxes. Second, we perform inversions
estimating fluxes at three different temporal resolutions rang-
ing from 3-hourly to 4-day averages, in order to evaluate the
impact of temporal aggregation errors on inversion results.
Third, we assess the information content of the limited atmo-
spheric network for 2004, by comparing inversion results to
the “true” fluxes at both the grid and aggregated eco-region
scale. The effect of random transport model error is addition-
ally explored throughout this study by adding random noise
with realistic magnitude to the synthetic measurements, and
then observing their impact on the inversion results.

2 Inversion method and components

This section summarizes the geostatistical inverse modeling
method, and the setup of each component of the inversion for
the analyses performed in this study.
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2.1 Geostatistical inverse modeling (GIM)

The GIM approach to CO2 flux estimation was developed to
help limit the influence of a priori assumptions on inversion
results (Michalak et al., 2004; Mueller et al., 2008; Gour-
dji et al., 2008). The approach is Bayesian, but, instead of
prescribing a prior estimate of the flux distribution, the GIM
approach uses: 1) a deterministic model of the trend that esti-
mates the relationship of CO2 flux to key covariates, and 2) a
prior covariance matrix that describes the expected variabil-
ity in flux departures from the trend, as a function of the sep-
aration distance in space and time between individual grid-
scale fluxes. The model of the trend can be as simple as a
single unknown mean flux across the domain, or can include
more complex components, such as a linear combination of
auxiliary variables related to CO2 flux processes (Gourdji et
al., 2008). The GIM equations are summarized below, and
readers are referred to Michalak et al. (2004), Mueller et
al. (2008), and Gourdji et al. (2008) for additional details.

The GIM approach entails minimizing the following ob-
jective function:

Ls,β =
1

2
(z−Hs)TR−1(z−Hs)+

1

2
(s −Xβ)TQ−1(s −Xβ)

(1)

where the vectorz (n×1) represents the atmospheric CO2
measurements (ppm), ands (m×1) is the vector of fluxes
(µmol/(m2 s)). H (n×m) describes the sensitivity of CO2
measurements to surface fluxes, as quantified from an at-
mospheric transport model, with units of ppm/(µmol/(m2 s)),
andHs therefore represents a vector of modeled CO2 obser-
vations. X is a known (m×p) matrix containing the flux
covariates in the model of the trend,β are (p×1) unknown
drift coefficients, andXβ is the model of the trend. The two
covariance matrices in the objective function,R (n×n) and
Q (m×m), balance the relative weight of the atmospheric
data and the model of the trend in estimating the fluxes.R is
the model-data mismatch covariance matrix, describing the
expected magnitude of discrepancies between observed (z)
and modeled (Hs) CO2 concentrations (due to measurement,
transport model, representation, and aggregation errors).Q
(m×m) is the a priori flux covariance matrix, characterizing
how flux deviations from the model of the trend (i.e.s−Xβ)
are correlated in time and space. The setup of each com-
ponent of the GIM objective function is further discussed in
Sects. 2.2 to 2.7.

The GIM problem involves estimating the fluxes,s, as well
as the drift coefficients,β (e.g. Michalak et al., 2004). Mini-
mizing Eq. (1) with respect to these variables yields a system
of linear equations:[

HQHT
+R HX

(HX)T 0

][
3T

M
=

[
HQ
XT

]
(2)

Fig. 1. Location of nine measurement towers used in the study, as
well as the domains for the two levels of high-resolution nesting
with the WRF winds. Outside of the 2 and 10 km resolution nests,
40km resolution winds were used for the remainder of the domain.
The background grid represents the flux estimation resolution of
1◦

×1◦.

that is solved for the matrices3 andM , which are then used
to define the a posteriori best estimates ofs andβ as:

ŝ = 3z (3)

β̂ =

(
XTQ−1X

)−1
XTQ−13z (4)

The best estimates of flux can alternately be expressed as
the sum of a deterministic model of the trend (Xβ̂) and a
spatiotemporally correlated stochastic component:

ŝ = Xβ̂ +QHT
(
HQHT

+R
)−1(

z−HX β̂
)

(5)

The a posteriori uncertainties of the grid-scale fluxes are
given by:

V ŝ = −XM +Q−QHT3T (6)

where this full covariance matrix represents a composite of
the uncertainty associated with the estimation of unknown
drift coefficients (β) in the model of the trend, the spatiotem-
poral variability of fluxes as represented inQ, and the over-
all constraint on fluxes as determined by the concentration
footprints, the model of the trend and the prior covariance
matrices.

2.2 Flux estimation resolution (s)

For all inversions, fluxes are estimated at a 1◦
×1◦ grid-scale

spatial resolution, with the domain including all land cells
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Fig. 2. Average monthly sensitivity of June 2004 measurements at
nine towers to all fluxes.

within the range of 10◦ − 70◦ N and 50◦ − 170◦ W, yield-
ing 2641 estimation regions (Fig. 1). Fluxes are estimated
from 1 June to 2 July 2004, in universal time (UTC) using
three different temporal resolutions: 3-hourly (henceforth
referred to as F3hr), a 4-day average diurnal cycle with 3-
hourly time increments (F4d-diurnal), and a flat 4-day aver-
age without any diurnal variability (F4d). These three tem-
poral resolutions make it possible to investigate the bene-
fit of directly estimating the diurnal cycle of fluxes, and,
conversely, the risk of temporal aggregation error associated
with estimating fluxes averaged over multiple days. Despite
the potential benefits associated with estimating finer-scale
fluxes, the number of estimated fluxes and associated com-
putational costs grow as the temporal resolution becomes
finer, as shown in Table 1. Additional details associated with
the setup for each temporal flux resolution are described in
Sects. 2.3 to 2.7.

2.3 Atmospheric transport (H)

Atmospheric transport models are necessary for CO2 inver-
sions in order to quantify the sensitivity of measured concen-
trations to surface fluxes, or the concentration footprints that
populate the atmospheric transport matrixH. The Stochastic
Time-Inverted Lagrangian Transport Model (STILT) model
(Lin et al., 2003) is used for the current study. STILT, which
has already been applied in several pilot studies aimed at con-
straining CO2 sources and sinks in the United States (Gerbig
et al., 2003, 2006; Lin et al., 2004; Matross et al., 2006), rep-
resents air arriving at observation locations as an ensemble
of particles that are transported backward in time. The parti-
cle velocities in STILT are in turn derived from meteorologi-
cal fields generated by gridded numerical weather prediction
models, in this case from the Weather Research & Forecast-

ing (WRF) model (Skamarock et al., 2005), version 2.2. For
this study, WRF v2.2 was configured to use three levels of
high resolution nesting: a 2-km resolution grid around the
three tallest measurement towers (LEF, AMT and WKT, see
Table 2 and Fig. 1), embedded in a 10-km resolution grid
over the northern Midwest, Gulf Region, and New England
extending to approximately 105◦ W, and then an outermost
40-km resolution grid covering the remainder of the overall
domain of the inversions.

At each measurement location, 10-day back-trajectories of
500 particles were generated using STILT every hour from
1 June to 8 July 2004. Concentration footprints, or sensi-
tivities, were then calculated at 3-hourly intervals back in
time, by integrating these particle trajectories over the North
American 1◦ ×1◦ grid as described in Lin et al. (2003). Fi-
nally, these high-resolutionH matrices were aggregated to
the temporal resolution of the concentration data, described
in Sect. 2.4, and the three flux temporal resolutions.

A map of the average sensitivity of measurements to fluxes
for June 2004, derived from the concentration footprints, is
shown in Fig. 2. As seen here, many parts of North America
are not well-constrained by the 9-tower measurement net-
work in 2004. These areas include northwest Canada and
Alaska, the southwestern and southeastern United States, and
parts of Central America. In contrast, the eastern temperate
forests and Midwestern agricultural areas have a stronger at-
mospheric data constraint.

2.4 Synthetic concentration time series (z)

One goal of this study is to assess the projected accuracy
of North American estimates of CO2 flux using a contem-
porary observation network. Therefore, synthetic data were
generated at the highest sampling elevation of the nine tow-
ers that were collecting continuous high-precision calibrated
CO2 measurements in North America in June of 2004 (Fig. 1,
Table 2). A full set of synthetic measurements without data
gaps from 1 June to 8 July were generated by multiplying
3-hourly CO2 surface flux estimates (s) from a biospheric
model by the atmospheric transport matrices (H).

The biospheric fluxes used in this study are taken from the
Carnegie Ames Stanford Approach terrestrial carbon cycle
model, as configured for the Global Fire Emissions Database
v2 project (henceforth referred to as CASA-GFEDv2; Ran-
derson et al., 1997; Van der Werf et al., 2006). CASA-
GFEDv2 was chosen because it is a well-accepted model
that has been used for specifying prior flux estimates in
several synthesis Bayesian inversion studies (e.g. Baker et
al., 2006; Peters et al., 2007), although the choice of bio-
spheric model is flexible here, given that the aim of a syn-
thetic data inversion is to assess the accuracy of the setup
relative to a given set of prescribed fluxes. The monthly-
average CASA-GFEDv2 Net Ecosystem Exchange (NEE)
values were temporally downscaled to a 3-hourly resolution
in order to test the ability of the inversion setup to accurately
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Table 1. Inversion characteristics for three flux temporal resolutions.

Case Flux resolution # of estimated fluxes Structure of
trend (X)

Structure of flux
covariance (Q)

F4d 4-day average (2641×8) = 21 128 One spatiotemporal
mean

Full spatiotemporal flux
covariance

F4d-diurnal 4-day average diur-
nal cycle (with 3-
hourly bins)

(2641×64) = 169 024 Eight spatial means
by 3-hourly bins

Full spatiotemporal flux
covariance across 4-day
periods, but not within
diurnal cycle

F3hr 3-hourly (2641×256) = 676 096 Eight spatial means
by 3-hourly bins

Full spatiotemporal flux
covariance across days,
but not within diurnal
cycle

Table 2. Measurement locations used in the inversions.

Tower Location Coordinates Height Maintained by Type

LEF Park Falls, Wisconsin 45.93 N, 90.27 W 396 m NOAA/GMD Tall
WKT Moody, Texas 31.32 N, 97.33 W 457 m NOAA/GMD Tall
BRW Barrow, Alaska 71.32 N, 156.60 W 10 m NOAA/GMD MBL
SBL Sable Island, Nova Scotia 43.93 N, 60.02 W 25 m Met Service Canada MBL
AMT Argyle, Maine 45.03 N, 68.68 W 107 m NOAA/GMD Short
ARM Norman, Oklahoma 36.62 N, 97.50 W 60 m US Dept. of Energy Short
CDL Candle Lake, Saskatchewan 53.99 N, 105.12 W 30 m Met Service Canada Short
FRD Fraserdale, Ontario 49.84 N, 81.52 W 40 m Met Service Canada Short
HFO Petersham, Massachusetts 42.54 N, 72.17 W 30 m Harvard University Short

recover diurnally-varying fluxes. This was accomplished us-
ing the method of Olsen and Randerson (2004), which is
based on net shortwave radiation and near-surface temper-
ature data from the NASA Global Land Data Assimilation
System (GLDAS; Rodell et al., 2004). These downscaled 3-
hourly CASA-GFEDv2 fluxes, shown in Fig. 3 at the aggre-
gated monthly scale, represent the “truth” to which inversion
results are compared.

The vector of modeled observations (i.e.Hs), obtained by
multiplying the “true” 3-hourly fluxes by the concentration
footprints, was first generated at the hourly resolution cor-
responding to the STILT particle releases for the nine tower
locations. Then, the synthetic observation vectors were av-
eraged to a 3-hourly timescale. Sensitivity tests were addi-
tionally performed for inversions using daily and 8-day av-
erage concentration vectors. These tests revealed that us-
ing higher temporal resolution observations yielded superior
flux estimates, consistent with Law et al. (2002), who found
that using 4-hourly measurements relative to more coarsely-
averaged observations helped to reduce biases over the Aus-
tralasian subcontinent when fluxes were estimated at a suffi-
ciently fine spatial resolution. As a result, only cases consid-
ering 3-hourly averaged observations are presented here.

Fig. 3. “True” CASA-GFEDv2 fluxes, aggregated to the monthly
scale.

Finally, for inversions that simulate the effect of trans-
port model error, three sets of inversions using different
realizations of uncorrelated errors added to the synthetic
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Fig. 4. Seven ecoregions (modified from Olson, 2001) used for
analyzing inversion results at spatially aggregated scales. Stars rep-
resent nine measurement locations.

measurements were conducted. The variance of these er-
rors remains the same across realizations, and corresponds
to the expected magnitude of model-data mismatch seen in
real measurements for each tower, as discussed in Sect. 3.1.

2.5 Use of night-time measurements

Due to stable conditions, night-time measurements taken
from shorter towers within the nocturnal boundary layer pro-
vide little information about fluxes at large scales (Haszpra,
1999). In addition, meteorological fields used in transport
models have difficulty in reliably simulating the height of the
night-time planetary boundary layer (PBL), or the sharp gra-
dient across it, which can lead to biased flux estimates from
inversions using night-time measurements from within the
PBL (Geels et al., 2007). For example, Gerbig et al. (2008)
found biases of up to 50% in night-time PBL height in a study
using high-resolution winds from the European Centre for
Medium-Range Weather Forecasts (i.e. ECMWF, available
from http://data.ecmwf.int/data/); comparison of the high
resolution WRF wind fields (T. Nehrkorn, personal commu-
nication) used in this study with wind profiler PBL-height
measurements yielded a similar conclusion.

Given their local footprints, the use of night-time near-
surface measurement data in regional inversions could lead
to higher aggregation errors near the towers, relative to those
for afternoon measurements sampling well-mixed air. In ad-
dition, biases in night-time PBL height would affect future
real-data inversions. For these reasons, only afternoon mea-

surements were included here for the five “Short” towers (see
Table 2) that are consistently within the nocturnal boundary
layer. For these towers, which are all in the Eastern or Cen-
tral Standard Time zones, “afternoon” was considered to be
18:00–24:00 UTC. In contrast, all 24 h of atmospheric data
were included in the inversions for the four tall (≥400 m) or
marine boundary layer towers (“Tall” or “MBL” in Table 2).
At these towers, observations sample relatively well-mixed
air throughout the diurnal cycle, and therefore night-time
measurements are assumed to be better-represented by the
WRF/ STILT model relative to those at Short towers. This
was qualitatively confirmed by comparing the diurnal cycle
of actual observations at the tallest sampling levels of these
towers to those from transported CASA-GFEDv2 fluxes.

Two sensitivity tests were performed to evaluate the choice
of including night-time data for Tall and MBL towers and ex-
cluding them for Short towers. First, night-time data were in-
cluded for the Short towers, such that 24 h of measurements
were used for all sampling locations. Second, night-time data
were excluded for the Tall/MBL towers, such that only after-
noon measurements were used for all nine towers. (For the
MBL towers, afternoon values were shifted to reflect local
time zones.) Overall, such experiments help to assess biases
associated with the use of night-time measurements, relative
to the potential additional constraint on fluxes they can pro-
vide.

2.6 Model of the trend (Xβ)

A very simple model of the trend is applied in the current
study for all inversions, analogous to those used in Micha-
lak et al. (2004) and Mueller et al. (2008), where no addi-
tional auxiliary environmental variables are included in the
model of the trend. As discussed in Sect. 2.1, the flux esti-
mates (̂s) are a composite of the inferred trend (Xβ̂) and a
spatiotemporally-correlated stochastic component, such that
any flux variability seen through the atmospheric observa-
tions but not captured by the trend can be still be recovered
through the stochastic component of the best estimate. For
the F4d inversions,X is represented as a vector of ones, such
that the corresponding drift coefficient (β) represents the
mean value in space and time of fluxes across all grid-cells.
For the two temporal resolutions resolving the diurnal cycle
(F4d-diurnal and F3hr), theX matrix is instead structured to
allow for eight spatial means defined for each 3-hourly bin
of the diurnal cycle. Longitudinal gradients that could cap-
ture the changing day/ night gradient across the continent for
different UTC time intervals were also considered for these
inversions, but ultimately not included because they did not
improve flux estimates.

2.7 Covariance matrices (Q and R)

Model-data mismatch errors are assumed uncorrelated in
space and time, yielding a diagonal matrixR, as is typical
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in most inversion studies. A different variance was used
for each measurement tower, based on results from initial
tests showing significantly reduced errors in inferred fluxes
as compared to an inversion using only two separate vari-
ances for Tall/MBL and Short towers.

In contrast to the diagonal structure ofR, the covariance
matrix Q contains off-diagonal entries describing the spa-
tial and/or temporal correlation of the flux deviations from
the model of the trendXβ. The estimated fluxes for this
study are sorted first in space, and then in time. Therefore,
if only spatial covariance were considered,Q would be a
block diagonal matrix, with each block describing the cor-
relation between grid-scale fluxes for each time period of the
inversion. (Because of the simple models of the trend used
in this study (Sect. 2.6), the flux deviations in the diagonal
blocks ofQ represent residuals from a constant mean, and
therefore these blocks describe the covariance of the fluxes
themselves.) When temporal covariance is additionally con-
sidered, the off-diagonal blocks inQ contain diagonal entries
describing the correlation among grid-cells with themselves
over time. Finally, if cross spatial-temporal covariance is in-
cluded, the off-diagonal blocks inQ become full, and they
describe the spatial covariance between fluxes across differ-
ent time periods.

In the current study, preliminary tests showed that includ-
ing full spatiotemporal covariance between grid-scale fluxes
helped to recover accurate uncertainty bounds for recov-
ered fluxes, especially at spatially and temporally aggregated
scales. (A subset of this analysis is presented in Table 5.)
Therefore, cross spatial-temporal covariance was included in
Q for all flux temporal resolutions. However, for the two
flux resolutions resolving the diurnal cycle, spatial-temporal
covariance is only assumed for the same 3-hourly interval
across days or periods, but not within the diurnal cycle. For
example, grid-scale fluxes from 00:00–03:00 UTC are corre-
lated with fluxes from 00:00–03:00 UTC in neighboring days
or periods, but not with fluxes from 03:00–06:00 UTC.

The correlation structure inQ is modeled using a covari-
ance function that varies in space and time as a function of
separation distance. Here, as in Michalak et al. (2004), we
use an isotropic exponential decay model:

Q
(
hx,ht

∣∣∣ σ 2
Q,l,τ

)
= σ 2

Qexp

(
−

hx

l

)
exp

(
−

ht

τ

)
(7)

wherehx andht are the separation distances between grid
cells in space and time, respectively,l is the spatial correla-
tion range parameter,τ is the temporal correlation range pa-
rameter, andσ 2

Q is the asymptotic variance of fluxes at large
separation distances. The correlation lengths for an exponen-
tial model are approximately 3l and3τ .

Multiple variance parameters (σ 2
Q) were initially consid-

ered for different times of the day for those inversions resolv-
ing the diurnal cycle (i.e. F4d-diurnal and F3hr), because the
underlying “true” CASA-GFED fluxes are significantly more

variable during the day-time compared to the night. How-
ever, the use of multiple variance parameters resulted in only
small changes to the inferred fluxes, and in some areas biased
the results. Therefore, for simplicity, only one flux variance
parameter was used for each inversion.

Covariance parameters were estimated from the atmo-
spheric data using the Restricted Maximum Likelihood
(RML) approach, described in detail for atmospheric appli-
cations in Michalak et al. (2004) and Mueller et al. (2008).
More specifics on the covariance parameter optimization for
bothR andQ are included below in Sect. 3.1.

3 Covariance parameter optimization

This section describes the approach taken to estimate covari-
ance parameters in this study, as well as an analysis of the
inferred parameters.

3.1 Setup for testing RML optimization with
atmospheric data

To infer unbiased fluxes with accurate uncertainty estimates,
it is important to correctly specify the flux covariance pa-
rameters (Gerbig et al., 2006), as well as the model-data
mismatch variances. The RML approach provides a way to
statistically optimize these parameters using the atmospheric
data in an inverse setup (henceforth referred to as RML-
Inv). If the recovered covariance parameters can be shown to
yield accurate flux estimates, then this approach eliminates
the need to use proxy methods for estimating covariance pa-
rameters. While this approach was previously demonstrated
in Michalak et al. (2004) to perform well with synthetic data
experiments for the global scale, it is investigated here for
regional inversions using continuous data.

To estimate covariance parameters with the atmospheric
data, the RML-Inv approach minimizes the negative log-
likelihood of the available atmospheric observations with re-
spect to the covariance parameters (θ ), which include the
three flux covariance parameters inQ (σ 2

Q, l and τ ) and
the nine model-data mismatch variances inR (one for each
tower). The corresponding objective function is (Kitanidis,
1995):

L = ln
∣∣∣HQHT

+R
∣∣∣+ ln

∣∣∣∣(HX)T
(
HQHT

+R
)−1

HX
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+

[
zT

((
HQHT

)−1
−

(
HQHT

)−1
HX

·

(
(HX)T

(
HQHT

)−1
HX

)−1

(HX)T
(
HQHT

)−1
)

z

]
(8)

To test performance, parameters inferred using RML-Inv for
each flux temporal resolution are compared to reference val-
ues, derived using the underlying true fluxes, as described
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Table 3. Inferred parameters using RML-Krig and RML-Inv for the a priori flux covariance matrix (Q). RML-Inv parameters were estimated
using observations with and without simulated transport error. The cell shading indicates the factor by which RML-Inv parameters differ
from the RML-Krig, a.k.a. reference, values:

(no fill)
= 2× 2× to 4× 3× to 4× >4×

Q F4d F4d-diurnal F3hr

RML-Inv RML-Inv RML-Inv

RML-Krig Perfect Trans. RML-Krig Perfect Trans. RML-Krig Perfect Trans.
trans. error trans. error trans. error

σ2
Q (µmol/(m2 s))2 1.0 97.1 25.8 11.1 35.5 27.3 13.4 24.3 20.7

l (km) 610 0 57 809 389 363 601 661 528
τ (days) 6.8 2.6 6.9 80.7 9.2 9.6 8.6 2.7 3.5

Table 4. “True” and RML-Inv inferred variances by tower for the model-data mismatch matrix (R). Both “True” and RML-Inv results are
shown as calculated using observations with and without simulated transport error. The cell shading indicates the factor by which RML-Inv
parameters differ from the “true”, or reference, values:

(no fill)
= 2× 2× to 3× 3× to 4× >4×

R F4d F4d-diurnal F3hr

(ppm2) “True” RML-Inv “True” RML-Inv “True” RML-Inv

Perfect Trans. Perfect Trans. Perfect Trans. Perfect Trans. Perfect Trans. Perfect Trans.
trans. error trans. error trans. error trans. error trans. error trans. error

LEF 10.7 13.8 2.7 7.9 2.2 4.7 0.1 2.7 0.0 1.8 0.0 1.9
WKT 5.0 18.0 2.3 15.7 0.7 10.5 0.1 7.9 0.0 10.1 0.0 8.8
SBL 6.2 10.6 0.1 5.6 2.7 7.3 0.1 5.0 0.0 4.6 0.0 4.3
BRW 0.2 1.3 0.0 1.1 0.1 1.2 0.0 1.1 0.0 1.1 0.0 1.2
ARM 3.5 14.9 0.1 13.1 1.2 12.4 0.4 10.3 0.0 11.1 0.0 11.2
HF 15.6 34.4 5.2 25.7 8.8 24.4 6.8 17.7 0.0 23.5 2.2 23.2
AMT 9.5 23.4 3.9 17.6 4.8 21.5 1.3 14.9 0.0 11.6 0.3 13.4
FRD 3.4 11.7 0.0 7.4 2.4 11.1 0.0 7.1 0.0 8.8 0.0 8.6
CDL 2.9 3.6 0.0 1.0 1.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0

below. In addition, the impact of using RML-Inv parameters
on estimated fluxes is investigated in Sect. 4.

Because this is a pseudo-data setup, the covariance param-
eters forQ can also be estimated by implementing RML di-
rectly on the “true” underlying CASA-GFEDv2 fluxes (s).
This approach will henceforth be referred to as RML-Krig,
where “Krig” refers to the kriging setup of RML; see Mueller
et al. (2008) and Gourdji et al. (2008) for details. Here, the
RML objective function becomes:

LQ =
1

2
ln|Q| +

1

2
ln

∣∣∣XTQ−1X
∣∣∣

+
1

2

[
sT(Q−1

−Q−1X
(
XTQ−1X)−1XTQ−1

)
s
]

(9)

Because RML-Krig does not use the atmospheric measure-
ments, the RML-Krig parameters are not affected by the sim-
ulation of transport error.

In order to derive “true” model-data mismatch variances
in R, an approach other than RML-Krig must be applied us-
ing the true fluxes transported forward to the measurement
locations. In the current study, fluxes are estimated at the na-
tive spatial resolution of the true fluxes (i.e. 1◦

×1◦). There-
fore, there is technically no spatial aggregation error, and for
cases that do not consider simulated random transport error,
the model-data mismatch variances inR are exclusively de-
termined by temporal aggregation error. These errors can
be directly calculated as the variance of the difference be-
tween two synthetic data vectors: the observations used in
the inversion (generated using 3-hourly fluxes), and a second
set of observations generated using fluxes pre-averaged to
coarser timescales (i.e. the 4-day or 4-day diurnal cycle) and
then multiplied by aggregated transport matrices (H). Tem-
poral aggregation error is technically zero in this study when
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Table 5. Percent of true fluxes falling within two standard deviations of the a posteriori grid-scale monthly flux estimates. Results are shown
without added transport errors for the three flux temporal resolutions, two sets of covariance parameters, and with and without assumed
temporal flux covariance inQ.

Reference parameters RML-Inv parameters

Spatial Spatiotemporal Spatial Spatiotemporal
covariance only covariance covariance only covariance

F4d 66% 88% 100% 100%
F4d-diurnal 80% 96% 98% 99%
F3hr 49% 93% 63% 95%

estimating 3-hourly fluxes, although a floor of 0.01 ppm2 is
set for the model-data mismatch variance in all inversions
using this flux resolution.

For inversions that consider transport model errors, the
variance of the noise added to the measurements is added
to the temporal aggregation error variance to arrive at the
“true” total model-data mismatch variance. The variances
of the added noise were determined per tower in the follow-
ing manner. RML-Inv was first used to estimateQ and R
parameters with actual atmospheric measurements for June
2004. Then, the difference between these “real data” model-
data mismatch variances and the RML-Inv inferred temporal
aggregation errors (with synthetic data) were taken as a mea-
sure of the magnitude of residual model-data mismatch for
each tower, most of which is likely attributable to transport
model error. This procedure was repeated for each of the ex-
amined flux resolutions, and then these inferred differences
by tower were used as the variance of the random noise added
to the synthetic measurements for the transport error analy-
ses.

3.2 Comparison of reference covariance parameters by
flux temporal resolution

The RML-Krig Q parameters and the “true”R covariance
parameters are shown in Tables 3 and 4 for each of the ex-
amined flux resolutions. Because these parameters were in-
ferred using the true underlying fluxes, they are henceforth
referred to as reference values, for later comparison with the
RML-Inv parameters inferred with the synthetic measure-
ments. However, first we compare the reference parameters
themselves across flux temporal resolutions.

The RML-Krig Q parameters show that the spatial corre-
lation ranges (l) are not substantially different across tem-
poral resolutions, but that the overall variance (σ 2

Q) of the
fluxes decreases as the estimated temporal resolution be-
comes coarser. This is expected, as more of the short-term
variability in the spatial flux distribution is averaged out. The
temporal correlation range (τ ) is much longer for the 4-day
diurnal cycle relative to the other timescales, although this
is most likely an unreliable value given that the calculated

correlation length is much longer than the one-month time
period of analysis.

The “true” model-data mismatch variances inR for inver-
sions without transport error represent temporal aggregation
errors, and they become higher, as expected, as the flux tem-
poral resolution becomes coarser. This is the essence of ag-
gregation error, where averaging out the “true” temporal vari-
ability in the fluxes and then transporting them forward to the
sampling locations cannot properly reproduce the measured
concentrations. For a given temporal resolution, these aggre-
gation errors also tend to be higher for towers in highly active
biospheric regions (e.g. LEF, AMT and HF), where temporal
variability in nearby fluxes has a strong influence on mea-
sured concentrations. The “true” model-data mismatch with
simulated transport error is increased by the magnitude of
the random noise added to the measurements, which varies
from a standard deviation of about 0.5 ppm for CDL to about
5 ppm for AMT.

3.3 Results of RML-Inv optimization

Estimated RML-Inv parameters forQ andR are also shown
in Tables 3 and 4. The RML-Inv values for inversions with
transport error represent the average parameters inferred us-
ing three realizations of random noise. Although RML-Inv
parameters are compared here with the RML-Krig values (for
Q) and “true” model-data mismatch variances (forR) to as-
sess the relative ability of the atmospheric data to recover
covariance parameters, the ultimate concern is the impact of
these parameters on the inversions, results of which are pre-
sented in Sect. 4.

The correspondence between the inferred RML-Inv pa-
rameters and the reference values, as seen in Tables 3 and
4, is found to be strongly dependent on the flux temporal
resolution. For the F3hr case, RML-Inv is able to recover
covariance parameters within a factor of two for the flux
variance (σ 2

Q), spatial correlation range (l) and seven of the
nine model-data mismatch variances with perfect transport.
In contrast, for the F4d case, most of the recovered RML-
Inv covariance parameters differ by more than a factor of
four, particularly the flux variance (σ 2

Q). The F4d-diurnal
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Fig. 5. Root Mean Square Error (RMSE) between estimated and
“true” grid-scale fluxes, aggregated to monthly averages, for inver-
sions with two sets of covariance parameters and three flux temporal
resolutions. Bars show the RMSE for inversions without transport
error, and the white dots show the RMSE for inversions conducted
with three different realizations of simulated transport error. The
baseline RMSE, as described in Sect. 4.2, represents the value as-
sociated with inferring a perfect flat mean monthly flux across the
continent.

case exhibits intermediate performance between the other
flux resolutions.

The flux variance parameter (σ 2
Q) is higher than the refer-

ence value for all temporal resolutions. This is most likely
due to the fact that the majority of towers are sited in bio-
spherically active regions, which have above-average flux
variability as compared to the continent as a whole. Surpris-
ingly, the addition of simulated random transport error helps
to bring the flux variance closer to the reference value, but
this may be due to the transport errors obscuring some of the
“true” flux variability that would otherwise be seen through
the measurement data.

Overall, estimating covariance parameters with the atmo-
spheric data and the coarse flux resolution (F4d) appears to
yield consistently unreliable parameter estimates, whereas
the RML-Inv approach with the other two temporal resolu-
tions yields results that are more consistent with the reference
values. The impact of these inferred parameter estimates on
inversion results in explored in the next section.

4 Inversion experiments

This section describes the setup and results of inversions used
to test the impact of covariance parameter optimization meth-
ods, flux temporal resolutions, and other inversion assump-
tions and data choices.

4.1 Inversion setups and diagnostics

After the covariance parameter optimization analysis, a se-
ries of inversions was run to test the impact on inferred fluxes
and uncertainties of a) varying the temporal flux resolution
(shown in Table 1), b) using inferred RML-Inv vs. the refer-
ence covariance parameters, and c) including simulated ran-
dom transport error. All combinations of a), b) and c) yielded
24 inversions, i.e. 2 sets of covariance parameters for each of
3 flux temporal resolutions, once with perfect transport and
three times with different realizations of random transport er-
ror. In addition, sensitivity tests were run for the inversions
with no transport model error to test the impact of excluding
cross spatial-temporal covariance inQ, and the inclusion or
exclusion of night-time data.

The a posteriori flux estimates from all inversions, as
well as the true CASA-GFEDv2 fluxes, were averaged to
a monthly timescale in order to compare results at a scale
relevant for carbon-cycle science. The inferred grid-scale
fluxes were compared using two quantitative metrics. First,
the root mean square error (RMSE) (e.g. Law et al., 2002)
between the true and estimated fluxes was calculated at the
native 1◦ ×1◦ spatial resolution for all land grid-cells across
the continent (Fig. 5). Second, the accuracy of the estimated
a posteriori uncertainties (from Eq. 6) was evaluated by cal-
culating the percent of 1◦×1◦ true fluxes that fall within two
standard deviations of the estimated fluxes (Table 5). Ideally,
95% of fluxes should fall within this interval. Values sig-
nificantly below 95% indicate an underestimation of the true
a posteriori uncertainties. The results of this second metric
are compared for inversions with and without cross spatial-
temporal covariance inQ, in order to examine the impact of
accounting for temporal covariance on the recovered flux un-
certainties.

Inversion results were also compared qualitatively by ex-
amining the spatial patterns of inferred fluxes to those of the
true fluxes (Figs. 6, 7, and 8). Finally, monthly fluxes and
uncertainties were aggregated to seven ecoregions (Fig. 4)
as well as to the North American continent (Fig. 9). These
ecoregions are loosely defined based on the work of Olson
(2001), and represent large, mostly contiguous, regions with
similar climate, land cover and land use. An area-weighted
RMSE at the ecoregion scale was also calculated.

4.2 Results of grid-scale diagnostics

Figure 5 shows the grid-scale RMSE’s for the six inversions
with no transport error (using two sets of covariance param-
eters and grouped by the three examined flux resolutions).
With the reference covariance parameters, there is little dif-
ference in continental grid-scale RMSE among the three flux
resolutions, although the 3-hourly resolution shows a slight
advantage. Using the RML-Inv parameters, inversion per-
formance degrades for coarser estimation timescales, con-
sistent with the fact that the recovered RML-Inv covariance
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Fig. 6. Monthly grid-scale fluxes estimated from F4d inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthly
averages(a, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard deviations(b, e), and locations of significant
sources and sinks at 1σŝ and 2σŝ (c, f).

Fig. 7. Monthly grid-scale fluxes estimated from F4d-diurnal inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthly
averages(a, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard deviations(b, e), and locations of significant
sources and sinks at 1σŝ and 2σŝ (c, f).

parameters became farther from the reference values as
fluxes were temporally aggregated (Sect. 3.3). If the in-
version were to infer the exact mean monthly flux across
the continent with no spatiotemporal variability, the RMSE
would be 0.72 µmol/(m2 s). Therefore, all inversions, except
for the F4d case with RML-Inv parameters, perform better
than this baseline value.

The RMSE corresponding to the three realizations of sim-
ulated transport error for each inversion setup are also shown
in Fig. 5. The grid-scale fluxes (results not shown) from these
inversions show that transport error has the effect of damp-
ing down the variability in the inferred flux signal. For the
two timescales with temporal aggregation error (i.e. F4d and
F4d-diurnal), this has a positive impact on the RMSE, with
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Fig. 8. Monthly grid-scale fluxes estimated from F3hr inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthly
averages(a, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard deviations(b, e), and locations of significant
sources and sinks at 1σŝ and 2σŝ (c, f).

Fig. 9. Estimated fluxes from inversions with no transport error using RML-Inv covariance parameters, aggregated to monthly average
ecoregion (Fig. 4) and continental scales. Error bars represent 95% uncertainty bounds. Estimated fluxes from inversions using three
different realizations of transport error are also shown for each temporal resolution. Uncertainty bounds are not shown for these inversions
for simplicity, but were similar in magnitude to their equivalents with no transport error.

the difference being more pronounced with the RML-Inv pa-
rameters due to the improvement in quality of the covariance
optimization for these cases. In contrast, for the F3hr case,
simulated transport error has a minimal impact on the grid-

scale RMSE. While these results are promising, it is not clear
whether this result would hold true with more realistic sys-
tematic, non-random transport errors.
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The fraction of true fluxes lying within two standard de-
viations (Eq. 6) of the estimated fluxes is presented at the
monthly timescale for the inversions with no transport error
in Table 5, for both covariance parameter optimization meth-
ods, and with and without temporal covariance included in
Q. The inclusion of temporal covariance is found to be im-
portant for obtaining accurate a posteriori uncertainties when
using the reference covariance parameters for all flux resolu-
tions. The same result holds using the RML-Inv parame-
ters with the 3-hourly flux resolution, whereas for the F4d-
diurnal and F4d cases, accurate grid-scale uncertainties can
be obtained even with spatial-only covariance if RML-Inv
parameters are used, due to the large estimated flux variance
parameter inQ. Results with simulated transport error are
not shown in Table 5, although the same conclusions hold.
Overall, these results highlight that accounting for both spa-
tial and temporal flux covariance yields accurate a posteriori
uncertainty bounds at the grid-scale much more reliably than
accounting for only spatial correlations.

4.3 Inferred grid-scale spatial patterns

Grid-scale maps of monthly-averaged flux estimates are
shown in Figs. 6, 7 and 8 for inversions performed with the
three flux resolutions and two sets of covariance parameters,
without any simulated random transport error. For compar-
ison, the true monthly-averaged fluxes are shown in Fig. 3.
Overall, the inversions detect correct large-scale patterns of
sources and sinks, with significant sinks recovered from the
eastern United States to northwest Canada and Alaska. As
expected, the inferred fluxes show significantly less overall
variability relative to the true fluxes, due to the sparse atmo-
spheric network and the absence of auxiliary environmental
variables within the trend (e.g. Gourdji et al., 2008).

The F4d inversions (Fig. 6) perform least well in captur-
ing the true grid-scale spatial patterns. Fluxes estimated us-
ing the reference covariance parameters remain close to their
mean value for the continent with little spatial variability. In
addition, high normalized errors exist near the WKT, ARM
and SBL measurement towers, most likely due to temporal
aggregation errors near the sampling locations. High errors
are also seen in northwest Canada, where the strong sinks in
this region fall outside of the areas well-constrained by the
atmospheric measurements (Fig. 2). With the RML-Inv pa-
rameters, the opposite problem occurs such that there is un-
realistic spatial variability in the recovered fluxes associated
with the artificially high flux variance parameter inQ. These
results are consistent with those presented in Sect. 3.3, con-
firming that estimating fluxes directly at highly aggregated
temporal scales is not an optimal setup for regional inver-
sions.

The F4d-diurnal inversions (Fig. 7) show more realistic
spatial variability in the fluxes. Sources are now properly re-
covered in Central America, while normalized errors are re-
duced in all areas. Also, fluxes recovered using both sets of

covariance parameters yield consistent results with reason-
able grid-scale spatial patterns. This indicates that, although
the covariance parameters for the F4d-diurnal case inferred
using the atmospheric data (RML-Inv) differed from the ref-
erence covariance parameters in some cases (Tables 3 and 4),
the RML-Inv parameters can still be used to recover fluxes of
comparable quality to those obtained using idealized covari-
ance parameters. The a posteriori uncertainties are more af-
fected by the use of RML-Inv parameters than the fluxes, as
reflected in the lower normalized errors and fewer significant
sources and sinks relative to the inversion using the reference
parameters.

The F3hr inversions (Fig. 8) also yield realistic spatial
variability, especially when using the reference parame-
ters. With the RML-Inv parameters, the spatial variability
is slightly reduced, although as with the F4d-diurnal case,
inferred fluxes are similar using the two sets of parameters.
Also, given the more realistic recovered uncertainties with
this resolution as compared to the other cases (Table 5), the
largest number of significant sources and sinks are recovered
at the grid-scale with the RML-Inv parameters for this case.

Overall, this comparison of the grid-scale flux maps
demonstrates that an inversion that directly estimates the di-
urnal cycle of the fluxes (i.e. F4d-diurnal and F3hr) can re-
cover reasonably accurate grid-scale spatial patterns across
the continent using only a 9-tower measurement network.
Also, as previously shown in Fig. 5, the quality of inferred
fluxes is preserved even when covariance parameters are esti-
mated from the available atmospheric data, and not assumed
known a priori. Inversions that estimate fluxes at coarser
timescales (i.e. F4d) that average out the diurnal cycle do
not perform nearly as well, consistent with the covariance
parameter conclusions presented in Sect. 3.3.

4.4 Results at ecoregion scale

Figure 9 presents estimated fluxes and their uncertainties
from the inversions using covariance parameters inferred
with the atmospheric observations (RML-Inv), aggregated a
posteriori to the monthly-average ecoregion (Fig. 4) and con-
tinental scales. The RML-Inv parameters were used, because
this is most consistent with what would be possible in future
real-data inversions. Also, results using the reference covari-
ance parameters are very similar at this aggregated scale to
those presented in Fig. 9.

At the ecoregion scale, the inversions resolving the diurnal
cycle (F4d-diurnal and F3hr) are seen to yield more accurate
fluxes, which is also confirmed by the RMSE’s at this ag-
gregated scale (0.03, 0.04 and 0.16 µmol/(m2 s) for the F3hr,
F4d-diurnal, and F4d cases, respectively). The relative per-
formance of inversions using the three temporal resolutions
is particularly evident in the better-constrained ecoregions,
such as the Temperate Broad & Mixed-leaf Forest (TBMF)
and Boreal Forest (Bore), where temporal aggregation er-
ror has the larger impact on fluxes due to their proximity to
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the towers and strong flux variability. In addition, the F3hr
and F4d-diurnal inversions also infer more realistic ecore-
gion fluxes in the far-field, e.g. in the Tropics (Trop) and
the Desert and Xeric Shrubland (DeXS). In contrast, the F4d
case yields aggregated fluxes that remain close to the mean
continental flux across all ecoregions. This last result is inter-
esting in that high grid-scale spatial variability for this case
(seen in Fig. 6) did not translate into large differences in spa-
tially aggregated ecoregion scale fluxes.

For the F3hr and F4d-diurnal cases, the 95% uncertainty
bounds capture the true flux for all or most ecoregions. Also,
an analysis of inversions for these cases that were performed
with and without accounting for temporal covariance be-
tween fluxes (results not shown) confirms that accounting for
this correlation a priori is necessary for recovering accurate
uncertainty bounds at the monthly ecoregion scale. In con-
trast, the quality of inferred fluxes and uncertainties is lower
for the F4d case regardless of spatial-temporal covariance as-
sumptions, with only three of seven aggregated fluxes falling
within two standard deviations of the true ecoregion flux in
Fig. 9. Overall, these results show that realistic a posteriori
uncertainties can be recovered by the inversion at aggregated
ecoregion scales, in addition to grid-scales (Table 5), as long
as the diurnal cycle is estimated in the inferred fluxes, and
both spatial and temporal correlation are considered in the a
priori flux covariance matrix.

As expected, the addition of transport error degrades the
quality of inferred ecoregion scale fluxes for all temporal res-
olutions, with the inferred values being closer to the mean
continental flux, as seen in Fig. 9. The impact is greater
for inversions that resolve the diurnal cycle (F3hr and F4d-
diurnal), perhaps because these cases were originally better
able to resolve ecoregion-scale variability in a setup with-
out transport model error. In addition, for under-constrained
areas (e.g. Tropics (Trop) and Desert and Xeric Shrubland
(DeXS)), random noise may obscure the diffuse signal from
these areas more than in the near-field of the tower locations.
Despite the fact that random transport errors are shown here
to degrade inversion quality, uncertainty bounds for the cases
resolving the diurnal cycle are still realistic for most eco-
regions (results not shown).

At the North American continental scale, inferred fluxes
from all temporal resolutions, with and without transport er-
ror, are reasonably close to the true net flux (a difference
of ≤0.25 µmol/(m2 s)). Consistent with previous results, the
F4d case performs the least well, with the continental sink
being statistically significantly different from the true value.
However, for all cases, as demonstrated by the narrower un-
certainty bounds at the continental scale, results confirm that
fluxes can be inferred more precisely at the continental scale
than at smaller spatial scales.

Overall, the ecoregion-scale results confirm the impor-
tance of estimating the diurnal cycle of fluxes directly. This is
particularly true in the near-field of the tower locations due to
temporal aggregation errors, but it also appears to help con-

strain fluxes in the far-field. Random transport errors degrade
the ecoregion-scale flux signal towards the continental mean,
although their impact may potentially decrease as more areas
become better-constrained by a growing measurement net-
work.

4.5 Sensitivity tests with night-time data

In order to investigate the potential value of including night-
time data for both Short and Tall/MBL towers, additional
sensitivity tests were performed using the F4d-diurnal case.
This resolution was chosen because of its comparable quality
to the F3hr case with lower computational cost, which makes
it most promising for annual or multi-year inversions. Inver-
sions using reference covariance parameters and no transport
error were used for these tests in order to isolate the impact of
temporal aggregation errors associated with night-time mea-
surements.

Results show that the continental grid-scale RMSE
changes only marginally when night-time data are elimi-
nated for the Tall/MBL towers (0.62 vs. 0.63 µmol/(m2 s)).
However, including night-time data for both Short and
Tall/MBL towers substantially increased the RMSE to
0.71 µmol/(m2 s), most likely due to the temporal aggrega-
tion errors associated with the smaller footprints for night-
time measurements at the Short towers. An analysis of re-
sults at the aggregated ecoregion scale showed that the setup
used for most inversions in the current study, using night-
time data only for the Tall/MBL towers, minimizes ecoregion
scale RMSE’s. This setup eliminates the temporal aggrega-
tion errors associated with including night-time data at the
Short towers, while also allowing for a stronger constraint on
far-field fluxes through night-time data from the Tall/ MBL
towers. Again, in a real-data environment, the value of using
night-time measurements from the Tall/MBL towers may be
reduced for nights when the towers are within the PBL, and
the PBL height is consistently over or under-estimated.

5 Summary and conclusions

This study evaluated the constraint on CO2 fluxes provided
by atmospheric data from nine continuous measurement lo-
cations across the North American continent, within the con-
text of a regional geostatistical inversion without additional
auxiliary variables. Estimating fluxes at a temporal resolu-
tion that can directly estimate the diurnal variability (F4d-
diurnal and F3hr cases) was found to be crucial both for
recovering covariance parameters directly from the atmo-
spheric data, and for inferring ecoregion-scale fluxes that
were statistically consistent with the “true” fluxes. Account-
ing a priori for both spatial and temporal covariance in the
flux distribution was also found to be necessary for recover-
ing accurate a posteriori uncertainty bounds on the estimated
fluxes.
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The poor performance of inversions that did not estimate
the diurnal cycle (i.e. F4d) were due to the high temporal
aggregation errors associated with not being able to adjust
the strong diurnal and synoptic variability of the fluxes, par-
ticularly near the measurement locations. For time periods
outside of the growing season, the impact of temporal ag-
gregation error may be lower, because fluxes are expected to
be less variable, although the ability to infer accurate fluxes
during the growing season is necessary for inferring accurate
annual or multi-year carbon budgets. Also, while temporal
aggregation errors may be of particular concern for geosta-
tistical inversions because they do not assume the shape of
the diurnal cycle a priori, any errors in the diurnal cycle in
prior flux estimates in synthesis Bayesian inversions would
also yield temporal aggregation errors. This is likely to be of
at least some concern, given the differences observed in the
diurnal cycles predicted by different biospheric models. This
impact is the subject of ongoing work.

In terms of the two flux resolutions resolving the diurnal
cycle (i.e. F3hr and F4d-diurnal), both cases yielded flux esti-
mates of comparable quality, despite the fact that covariance
parameters estimated with the atmospheric data were more
consistent with reference values for the F3hr relative to the
F4d-diurnal case. In fact, for both of these flux resolutions
(with no transport model error) at the ecoregion scale, the
two standard deviation uncertainty bounds captured the true
flux for all or almost all eco-regions. This is an encouraging
result, showing that data from only nine measurement towers
sparsely located across the continent can be used to constrain
ecoregion-scale fluxes without additional auxiliary informa-
tion from remote-sensing datasets or biospheric models, as
long as the diurnal cycle is resolved in the fluxes. Between
the two cases, the F4d-diurnal case has the additional advan-
tage of estimating four times fewer fluxes than the F3hr case,
yielding substantial computational savings that will become
important for longer-term inversions. Therefore, given the
comparable quality of inversion results for these two cases,
performing regional inversions in a way that resolves a multi-
day average diurnal cycle appears to be the most promising
avenue for regional inversions using real atmospheric data.

In this study, simulated random transport error was shown
to decrease the quality of flux estimates in under-constrained
areas at the ecoregion scale. It is important to note that non-
random transport errors due to phasing or systematic biases,
that may be more typical of the real inaccuracies in exist-
ing atmospheric transport models, may have more of an im-
pact on flux estimation in the near-field where small errors
in the transport matrices (H) could translate into large differ-
ences in inferred fluxes. The impact of transport errors on
regional inversions has been investigated more thoroughly in
other studies, e.g. Law et al. (2003), and should also be ex-
plored further in future studies focusing on North America.

Finally, it is important to note that real-data inversions are
subject to additional complications in flux interpretation rel-
ative to synthetic data studies, due to potential biases intro-

duced by the boundary conditions, non-random transport er-
rors, and aggregation errors from flux variability at scales
finer than the scale of the estimation grid. Overall, however,
synthetic data experiments provide a baseline for the best
achievable performance of real-data inversions, and help to
highlight the impact of setup choices that may be obscured
by the additional complexity associated with using real data.

In summary, synthetic data experiments were shown in this
work to help illuminate the constraint on fluxes achieved by
various regional inversion setup choices. The results suggest
that even a fairly sparse network of continuous CO2 measure-
ments, used with no auxiliary information or prior estimates
of flux variability in time or space, can be used to infer accu-
rate monthly ecoregion scale CO2 surface fluxes over North
America, as long as the diurnal cycle is resolved in the esti-
mated fluxes and both a priori spatial and temporal flux co-
variances are considered. Statistically significant sinks can
also be recovered at the grid-scale, although uncertainties re-
main high at this fine spatial scale. The incorporation of addi-
tional atmospheric data and auxiliary variables in future real
data geostatistical inversions can only help to further improve
the recovery of fluxes at finer spatial resolutions.
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Göckede, M., Turner, D. P., Michalak, A. M., Vickers, D., and Law,
B. E.: Sensitivity of a sub-regional scale atmospheric inverse

CO2 modeling framework to boundary conditions, J. Geophys.
Res.-Biogeosciences, in review, 2010.

Gourdji, S. M., Mueller, K. L., Schaefer, K., and Michalak, A.
M.: Global monthly-averaged CO2 fluxes recovered using a
geostatistical inverse modeling approach: 2. Results including
auxiliary environmental data, J. Geophys. Res., 113, D21115,
doi:10.1029/2007JD009733, 2008.

Gurney, K., Law, R. M., Denning, A. S., Rayner, P. J., Baker,
D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan,
S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J.,
Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M.,
Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi,
T., and Yuen, C. W.: Towards robust regional estimates of CO2
sources and sinks using atmospheric transport models, Nature,
415(6872), 626–630, 2002a.

Gurney, K., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D.,
Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung,
I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Kowal-
czyk, E., Maki, T., Maksyutov, S., Peylin, P., Prather, M., Pak,
B. C., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C. W.:
TransCom 3 CO2 inversion intercomparison: 1. Annual mean
control results and sensitivity to transport and prior flux informa-
tion, Tellus, 55B, 555–579, 2002b.

Haszpra, L.: On the representativeness of carbon dioxide measure-
ments, J. Geophys. Res., 104(D21), 26953–26960, 1999.

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On ag-
gregation errors in atmospheric transport inversions, J. Geophys.
Res., 106, 4703–4715, 2001.

Kitanidis, P.: Quasi-linear geostatistical theory for inversing, Water
Resour. Res., 31(10), 2411–2419, 1995.

Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P.,
Lac, C., Davis, K. J., Ciais, P., Denning, A. S., and Rayner,
P. J.: Mesoscale inversion: first results from the CERES cam-
paign with synthetic data, Atmos. Chem. Phys., 8, 3459–3471,
doi:10.5194/acp-8-3459-2008, 2008.

Law, R. M., Rayner, P. J., Steele, L. P., and Enting, I. G.: Using
high temporal frequency data for CO2 inversions, Global Bio-
geochem. Cycles, 4, 1053, doi:10.1029/2001GB001593, 2002.

Law, R. M., Rayner, P. J., Steele, L. P., and Enting, I. G.:
Data and modelling requirements for CO2 inversions using
high frequency data, Tellus, 55B, 512–521, doi:10.1034/j.1600-
0560.2003.0029.x, 2003.

Law, R. M., Rayner, P. J., and Wang, Y. P.: Inversion of
diurnally-varying synthetic CO2: network optimisation for an
Australian test case, Global Biogeochem. Cycles, 18, GB1044,
doi:10.1029/2003GB002136, 2004.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B.
C., Davis, K. J., and Grainger, C. A.: A near-field tool for sim-
ulating the upstream influence of atmospheric observations: the
Stochastic Time-Inverted Lagrangian Transport (STILT) model,
J. Geophys. Res., 108(D16), 4493, doi:10.1029/2002JD003161,
2003.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C.,
Grainger, C. A., Stephens, B. B., Bakwin, P. S., and Hollinger,
D. Y.: Measuring fluxes of trace gases at regional scales by
Lagrangian observations: application to the CO2 Budget and
Rectification Airborne (COBRA) study, J. Geophys. Res., 109,
D15304, doi:10.1029/2004JD004754, 2004.

Matross, D. M., Andrews, A., Pathmathevan, M., Gerbig, C., Lin, J.

Atmos. Chem. Phys., 10, 6151–6167, 2010 www.atmos-chem-phys.net/10/6151/2010/

http://nacp.ornl.gov/int_synth_contreg.shtml


S. M. Gourdji et al.: Regional-scale geostatistical inverse modeling of North American CO2 fluxes 6167

C., Wofsy, S. C., Daube, B. C., Gottlieb, E. W., Lee, J. T., Zhao,
C., Bakwin, P. S., Munger, J. W., and Hollinger, D. Y.: Estimat-
ing regional carbon exchange in New England and Quebec by
combining atmospheric, ground-based, and satellite data, Tellus,
58(5), 344–358, 2006.

Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical
approach to surface flux estimation of atmospheric trace gases, J.
Geophys. Res., 109(D14), D14109, doi:10.1029/2003JD004422,
2004.

Mueller, K. L., Gourdji, S. M., and Michalak, A. M.:
Global monthly-averaged CO2 fluxes recovered using a geo-
statistical inverse modeling approach: 1. Results using at-
mospheric measurements, J. Geophys. Res., 113, D21114,
doi:10.1029/2007JD009734, 2008.

Olsen, J. C. and Randerson, J. T.: Differences between sur-
face and column atmospheric CO2 and implications for car-
bon cycle research, J. Geophys. Res.-Atmos., 109, D02301,
doi:10.1029/2003JD003968, 2004.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N.
D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I.,
Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Rick-
etts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao,
P., and Kassem, K. R.: Terrestrial ecoregions of the world: a new
map of life on earth, Bioscience, 51(11), 933–938, 2001.

Patra, P. K., Law, R. M., Peters, W., Rodenbeck, C., Takigawa,
M., Aulagnier, C., Baker, I., Bergmann, D. J., Bousquet, P.,
Brandt, J., Bruhwiler, L., Cameron-Smith, P. J., Christensen,
J. H., Delage, F., Denning, A. S., Fan, S., Geels, C., Houwel-
ing, S., Imasu, R., Karstens, U., Kawa, S. R., Kleist, J., Krol,
M. C., Lin, S.-J., Lokupitiya, R., Maki, T., Maksyutov, S.,
Niwa, Y., Onishi, R., Parazoo, N., Pieterse, G., Rivier, L.,
Satoh, M., Serrar, S., Taguchi, S., Vautard, R., Vermeulen,
A. T., and Zhu, Z.: TransCom model simulationsof hourly at-
mospheric CO2: Analysis of synoptic-scale variations for the
period 2002–2003, Global Biogeochem. Cycles, 22, GB4013,
doi:10.1029/2007GB003081, 2008.

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway,
T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G.,
Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J.
T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric
perspective on North American carbon dioxide exchange: Car-
bonTracker, PNAS, 104(48), 18925–18930, 2007.

Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F.,
Heinrich, P., Ciais, P., and AEROCARB contributors: Daily
CO2 flux estimates over Europe from continuous atmospheric
measurements: 1, inverse methodology, Atmos. Chem. Phys., 5,
3173–3186, doi:10.5194/acp-5-3173-2005, 2005.

Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., and
Field, C. B.: The contribution of terrestrial sources and sinks
to trends in the seasonal cycle of atmospheric carbon dioxide,
Global Biogeochem. Cycles, 11(4), 535–560, 1997.

Rodell, M., Houser, P. R., Jambor, U., et al.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, 2004.

Schuh, A. E., Denning, A. S., Uliasz, M., and Corbin, K. D.: Seeing
the forest through the trees: Recovering large-scale carbon flux
biases in the midst of small-scale variability, J. Geophys. Phys.-
Biogeo., 114, G03007, doi:10.1029/2008JG000842, 2009.

Schuh, A. E., Denning, A. S., Corbin, K. D., Baker, I. T., Uliasz,
M., Parazoo, N., Andrews, A. E., and Worthy, D. E. J.: A
regional high-resolution carbon flux inversion of North Amer-
ica for 2004, Biogeosciences, 7, 1625–1644, doi:10.5194/bg-7-
1625-2010, 2010.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., and Powers, J. G.: A description of the
advanced research WRF version 2. Technical Note 468+STR,
MMM Division, NCAR, Boulder, CO, 88 pp., available from
http://www.mmm.ucar.edu/wrf/users/docs/arw.pdf, 2005.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variabil-
ity in global biomass burning emissions from 1997 to 2004, At-
mos. Chem. Phys., 6, 3423–3441, doi:10.5194/acp-6-3423-2006,
2006.

www.atmos-chem-phys.net/10/6151/2010/ Atmos. Chem. Phys., 10, 6151–6167, 2010

http://www.mmm.ucar.edu/wrf/users/docs/arw.pdf

