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Abstract. A series of synthetic data experiments is per- distribution in time or space, can be used to infer relatively
formed to investigate the ability of a regional atmospheric in- accurate monthly ecoregion scale £8urface fluxes over
version to estimate grid-scale G@uxes during the growing  North America within estimated uncertainty bounds. Simu-
season over North America. The inversions are performedated random transport error is shown to decrease the qual-
within a geostatistical framework without the use of any prior ity of flux estimates in under-constrained areas at the ecore-
flux estimates or auxiliary variables, in order to focus on gion scale, although the uncertainty bounds remain realistic.
the atmospheric constraint provided by the nine towers col-\While these synthetic data inversions do not consider all po-
lecting continuous, calibrated GOneasurements in 2004. tential issues associated with using actual measurement data,
Using synthetic measurements and their associated conceml-g. systematic transport errors or problems with the bound-
tration footprints, flux and model-data mismatch covarianceary conditions, they help to highlight the impact of inver-
parameters are first optimized, and then fluxes and their unsion setup choices, and help to provide a baseline set gf CO
certainties are estimated at three different temporal resolufluxes for comparison with estimates from future real-data
tions. These temporal resolutions, which include a four-dayinversions.

average, a four-day-average diurnal cycle with 3-hourly in-
crements, and 3-hourly fluxes, are chosen to help assess the
impact of temporal aggregation errors on the estimated fluxei
and covariance parameters. Estimating fluxes at a tempo-

ral resolution that can adjust the diurnal variability is found Improved estimates of regional-scale £@nd-atmosphere

to be critical both for recovering covariance parameters di-gxchange are needed for the design and verification of carbon
rectly from the atmospheric data, and for inferring accuratemanagement policies, as well as for the validation of process-
ecoregion-scale fluxes. Accounting for both spatial and tem+y,55ed models used to predict £@uxes. Continuous C
poral a priori covariance in the flux distribution is also found f,xes cannot be directly measured at regional scales, and
to be necessary for recovering accurate a posteriori Unceliaye instead been inferred from atmospheric concentration
tainty bounds on the estimated fluxes. Overall, the result,aiterns using inverse modeling techniques. While earlier
.suggest'that even a fairly sparse network of 9 towers collectyopal inversion studies had used atmospherig C@ncen-

ing continuous C@measurements across the continent, useo?ration measurements sampled in the free troposphere at re-
with no auxiliary information or prior estimates of the flux mote or high-altitude locations to infer continental-scale,CO
fluxes (e.g. Gurney et al., 2002a; Baker et al., 2006), the re-
cent convergence of several factors has made it feasible to

Correspondence toA. M. Michalak estimate sub-continental scale £€@uxes in a regional in-
m (amichala@umich.edu) verse modeling framework (e.g. Peylin et al., 2005; Lauvaux
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etal., 2008; Schuh et al., 2010). These factors include continprescribe a prior estimate of the flux distribution from bio-
uous ground-based measurements of atmosphena@®n  spheric models and/or inventories. Therefore, this approach
at several North American and Eurasian sites (e.g. Bakwirprovides a unique opportunity to assess the information con-
et al.,, 1998; Haszpra, 1999) that provide data with hightent of the available atmospheric measurement data (Mueller
temporal (and, increasingly, high spatial) resolution to con-et al., 2008).

strain carbon fluxes at finer scales. In addition, the contin- Geostatistical inversions, as well as some other recent in-
uous measurement locations tend to be sited in continentaljersions, also estimate fluxes directly on a grid at fine spa-
low-altitude areas with strong biospheric activity, providing tial resolutions, thereby minimizing spatial aggregation er-
more information about flux variability at sub-continental rors (e.g. Kaminski et al., 2001; Gourdiji et al., 2008; Schuh
scales relative to the measurements used in global inversionst al., 2009) that can occur when fixed flux patterns are im-
Finally, recent advances in regional atmospheric transporposed for large regions (e.g. Law et al., 2002; Peters et al.,
modeling and the use of analyzed wind fields with high spa-2007). These errors result because the inversion cannot ad-
tial resolution make it feasible to take advantage of continu-just the flux patterns within specified regions, even though at-
ous data from continental locations in regional inversions. mospheric observations are sensitive to sub-regional variabil-

The use of continuous data in grid-scale dfersions is  ity. Aggregation errors can be temporal as well as spatial, a
relatively new, and, therefore, many questions remain as taopic explored in the current study. Temporal aggregation er-
the optimal approach for taking advantage of these large andors occur when estimating a single flux, or flux adjustment,
highly variable data streams. Synthetic data (a.k.a. “pseudoever a time interval with significant intra-period variability,
data”) experiments are useful in the design of inversionswhich is of particular concern for regional inversions using
because they include a set of specified baseline fluxes witltontinuous data collected in areas with strong diurnal and
which results can be compared, making it easier to diagnossynoptic flux variability. While estimating spatially and tem-
any potential biases in inferred fluxes under a number of dif-porally finer scale fluxes helps to reduce aggregation errors,
ferent scenarios (e.g. Law et al., 2002, 2003, 2004; Carougeomputational costs also grow as the number of estimated
et al., 2010a, b). Also, given a wide spread in inversion re-fluxes grows.
sults, such as those from the North American Carbon Pro- The current work uses a series of synthetic data inversion
gram Regional Interim Synthesis (Cook et al., 2009), syn-experiments to evaluate a regional geostatistical grid-scale
thetic data studies can help to isolate the impact of inversion(1° x 1°) inversion for June 2004 over North America, using
setup choices, as opposed to other sources of bias in invethe nine continuous C{£observing towers operational in the
sions, e.g. due to errors in the boundary conditions, or transtnited States and Canada at that time. The primary objec-
port models. tives of this study are threefold. First, we investigate the use

The interpretation of flux estimates in a synthetic data in-of available atmospheric measurements to infer reasonable
version is simplified relative to a real data inversion in two covariance parameters (both flux covariance and model-data
important ways. First, synthetic measurements are only inmismatch), as well as the impact of these inferred parame-
fluenced by fluxes occurring within the domain of study, ters on the estimated fluxes. Second, we perform inversions
and therefore there is no need to specify boundary condiestimating fluxes at three different temporal resolutions rang-
tions at the edge of the domain. Errors in boundary condi-ing from 3-hourly to 4-day averages, in order to evaluate the
tions used in regional real-data inversions can bias flux esimpact of temporal aggregation errors on inversion results.
timates, particularly for smaller regions (e.g. Peylin et al., Third, we assess the information content of the limited atmo-
2005; Gickede et al., 2010). Second, the effect of atmo-spheric network for 2004, by comparing inversion results to
spheric transport model errors can be controlled by using thehe “true” fluxes at both the grid and aggregated eco-region
same transport model to create the synthetic measuremensgale. The effect of random transport model error is addition-
as is used to estimate fluxes in the inversion. The impact ofilly explored throughout this study by adding random noise
transport model errors on atmospheric inversions has beenwith realistic magnitude to the synthetic measurements, and
significant research focus for some time, principally at thethen observing their impact on the inversion results.
global scale (e.g. Gurney et al., 2002b; Baker et al., 2006).

However, transport model errors may be even more of a con- ,

cern for regional inversions, where the models’ ability to sim- 2 Inversion method and components

ulate small-scale variability in areas with high biospheric ac-
tivity and/ or complex terrain is relatively unknown (Geels et
al., 2004; Patra et al., 2008; Gerbig et al., 2009).

In addition to the simplifications associated with a syn-
thetic data inversion, the geostatistical inversion approach
(Michalak et al., 2004) further makes it possible to elimi-
nate the impact of the choice of a priori flux estimates on
inversions. Geostatistical inversions are Bayesian, but do not

This section summarizes the geostatistical inverse modeling
method, and the setup of each component of the inversion for
the analyses performed in this study.
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2.1 Geostatistical inverse modeling (GIM) B

The GIM approach to C&flux estimation was developed to
help limit the influence of a priori assumptions on inversion
results (Michalak et al., 2004; Mueller et al., 2008; Gour-
dji et al., 2008). The approach is Bayesian, but, instead of
prescribing a prior estimate of the flux distribution, the GIM CDLj FRD . SBL
approach uses: 1) a deterministic model of the trend that esti ® AMT; o
mates the relationship of GGlux to key covariates, and 2) a LEFE__A__E H.FO
prior covariance matrix that describes the expected variabil-
ity in flux departures from the trend, as a function of the sep- s
aration distance in space and time between individual grid- on
scale fluxes. The model of the trend can be as simple as 4§ LT
single unknown mean flux across the domain, or can include : ?L‘I‘I’/%BL
more complex components, such as a linear combination off .- > km winds
auxiliary variables related to GOlux processes (Gourdiji et pintel
al., 2008). The GIM equations are summarized below, and| -

readers are referred to Michalak et al. (2004), Mueller et
al. (2008), and Gourdji et al. (2008) for additional details. Fig. 1. Location of nine measurement towers used in the study, as

The GIM approach entails minimizing the following ob- el as the domains for the two levels of high-resolution nesting
jective function: with the WRF winds. Outside of the 2 and 10 km resolution nests,
40km resolution winds were used for the remainder of the domain.

1 1 The background grid represents the flux estimation resolution of

Lyg= é(z—Hs)TFrl(z—Hs)Jré(s —XB)TQts—XB)  1°x1°.

1)

_ that is solved for the matrices andM, which are then used
where the vector (n x 1) represents the atmospheric £0 to define the a posteriori best estimates ahdp as:
measurements (ppm), ard(m x 1) is the vector of fluxes

(umol/(nf's)). H (n x m) describes the sensitivity of GO S=Az ©)
measurements to surface fluxes, as quantified from an ats Tt LT A1

mospheric transport model, with units of ppm/(umof @), B= (X Q X) X'Q Az “)
andHs therefore represents a vector of modeled,@Dser-
vations. X is a known {z x p) matrix containing the flux
covariates in the model of the trengl,are (p x 1) unknown
drift coefficients, anX g is the model of the trend. The two
covariance matrices in the objective functiéh(n xn) and . - T -1 —~

Q (m x m), balance the relative weight of the atmospheric § =XB+QH (HQH +R> (Z—Hxﬂ) ®)
data and the model of the trend in estimating the flukeis

the model-data mismatch covariance matrix, describing theT_he a posteriori uncertainties of the grid-scale fluxes are
expected magnitude of discrepancies between obseryed (9iven by:

and modeledHs) CO, concentrations (due to measurement, T

transport model, representation, and aggregation errQrs). Vi=—XM+Q—-QH A )

(mxm) is the a priori flux covariance matrix, characterizing . . . .
where this full covariance matrix represents a composite of

how flux deviations from the model of the trend (ise- X 8) : : ) T
N the uncertainty associated with the estimation of unknown
are correlated in time and space. The setup of each com,

ponent of the GIM objective function is further discussed in drift Toefﬁugpts gf)f:n the model of the trend, the shpatlotem—
Sects. 2210 2.7, poral variability of fluxes as represented@) and the over-

all constraint on fluxes as determined by the concentration

The GIM problem involves estimating the fluxesaswell - oqorints, the model of the trend and the prior covariance
as the drift coefficients$ (e.g. Michalak et al., 2004). Mini- - ~irices.

mizing Eq. () with respect to these variables yields a system

The best estimates of flux can alternately be expressed as
the sum of a deterministic model of the trendf) and a
spatiotemporally correlated stochastic component:

of linear equations: 2.2 Flux estimation resolution (s)
HQHT+RHX ][ AT [HQ ) For all inversions, fluxes are estimated afaL° grid-scale
HX)T 0 M | XT (2) spatial resolution, with the domain including all land cells
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ing (WRF) model (Skamarock et al., 2005), version 2.2. For
this study, WRF v2.2 was configured to use three levels of
high resolution nesting: a 2-km resolution grid around the
three tallest measurement towers (LEF, AMT and WKT, see
Table 2 and Fig. 1), embedded in a 10-km resolution grid
over the northern Midwest, Gulf Region, and New England
extending to approximately 10%V, and then an outermost
40-km resolution grid covering the remainder of the overall
domain of the inversions.

At each measurement location, 10-day back-trajectories of
500 particles were generated using STILT every hour from
1 June to 8 July 2004. Concentration footprints, or sensi-
tivities, were then calculated at 3-hourly intervals back in

. - time, by integrating these particle trajectories over the North
3e-4 9e4 3e3 7e3 002 005 014 04 1 American 2 x 1° grid as described in Lin et al. (2003). Fi-
ppm/(umol/(m?s)) nally, these high-resolutioll matrices were aggregated to
the temporal resolution of the concentration data, described
Fig. 2. Average monthly sensitivity of June 2004 measurements atin Sect. 2.4, and the three flux temporal resolutions.
nine towers to all fluxes. A map of the average sensitivity of measurements to fluxes
for June 2004, derived from the concentration footprints, is

o ] shown in Fig. 2. As seen here, many parts of North America
within the range of 10—70°N and 50 —170°W, yield-  5re not well-constrained by the 9-tower measurement net-
ing 2641 estimation regions (Fig. 1). Fluxes are estimatedyqrk in 2004. These areas include northwest Canada and
from 1 June to 2 July 2004, in universal time (UTC) using a|aska, the southwestern and southeastern United States, and
three different temporal resolutions: 3-hourly (henceforth hats of Central America. In contrast, the eastern temperate

referred to as F3hr), a 4-day average diurnal cycle with 3-fqrests and Midwestern agricultural areas have a stronger at-
hourly time increments (F4d-diurnal), and a flat 4-day aver-mospheric data constraint.

age without any diurnal variability (F4d). These three tem-

poral resolutions make it possible to investigate the beneo 4 Synthetic concentration time seriesz)

fit of directly estimating the diurnal cycle of fluxes, and,

conversely, the risk of temporal aggregation error associatedne goal of this study is to assess the projected accuracy
with estimating fluxes averaged over multiple days. Despiteof North American estimates of GQllux using a contem-

the potential benefits associated with estimating finer-scalgorary observation network. Therefore, synthetic data were
fluxes, the number of estimated fluxes and associated conyenerated at the highest sampling elevation of the nine tow-
putational costs grow as the temporal resolution becomegrs that were collecting continuous high-precision calibrated

finer, as shown in Table 1. Additional details associated withCO, measurements in North America in June of 2004 (Fig. 1,

the setup for each temporal flux resolution are described inrable 2). A full set of synthetic measurements without data

Sects. 2.3t0 2.7. gaps from 1 June to 8 July were generated by multiplying
3-hourly CQ surface flux estimates) from a biospheric
2.3 Atmospheric transport (H) model by the atmospheric transport matridd3. (

The biospheric fluxes used in this study are taken from the
Atmospheric transport models are necessary fop @@er- Carnegie Ames Stanford Approach terrestrial carbon cycle
sions in order to quantify the sensitivity of measured concen-model, as configured for the Global Fire Emissions Database
trations to surface fluxes, or the concentration footprints thatv2 project (henceforth referred to as CASA-GFEDv2; Ran-
populate the atmospheric transport matiixThe Stochastic  derson et al.,, 1997; Van der Werf et al., 2006). CASA-
Time-Inverted Lagrangian Transport Model (STILT) model GFEDv2 was chosen because it is a well-accepted model
(Lin et al., 2003) is used for the current study. STILT, which that has been used for specifying prior flux estimates in
has already been applied in several pilot studies aimed at corseveral synthesis Bayesian inversion studies (e.g. Baker et
straining CQ sources and sinks in the United States (Gerbigal., 2006; Peters et al., 2007), although the choice of bio-
etal., 2003, 2006; Lin et al., 2004; Matross et al., 2006), rep-spheric model is flexible here, given that the aim of a syn-
resents air arriving at observation locations as an ensemblthetic data inversion is to assess the accuracy of the setup
of particles that are transported backward in time. The partitelative to a given set of prescribed fluxes. The monthly-
cle velocities in STILT are in turn derived from meteorologi- average CASA-GFEDv2 Net Ecosystem Exchange (NEE)
cal fields generated by gridded numerical weather predictiorvalues were temporally downscaled to a 3-hourly resolution
models, in this case from the Weather Research & Forecasin order to test the ability of the inversion setup to accurately
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Table 1. Inversion characteristics for three flux temporal resolutions.

Case Flux resolution # of estimated fluxes Structure of Structure of flux
trend X) covariance Q)

F4d 4-day average (2641x 8)=21128 One spatiotemporal Full spatiotemporal flux
mean covariance

F4d-diurnal  4-day average diur- (2641x 64) =169024  Eight spatial means Full spatiotemporal flux
nal cycle (with 3- by 3-hourly bins covariance across 4-day
hourly bins) periods, but not within

diurnal cycle

F3hr 3-hourly (2641x 256) =676 096 Eight spatial means Full spatiotemporal flux
by 3-hourly bins covariance across days,
but not within diurnal
cycle

Table 2. Measurement locations used in the inversions.

Tower Location Coordinates Height Maintained by Type
LEF Park Falls, Wisconsin 4593N,90.27W 396m NOAA/GMD Tall
WKT  Moody, Texas 31.32N,97.33W 457m NOAA/GMD Tall
BRW  Barrow, Alaska 71.32N, 156.60W  10m NOAA/GMD MBL
SBL  Sable Island, Nova Scotia 43.93N, 60.02W 25m Met Service Canada MBL
AMT  Argyle, Maine 45.03N, 68.68W  107m NOAA/GMD Short
ARM  Norman, Oklahoma 36.62N, 97.50 W 60m  US Dept. of Energy  Short
CDL Candle Lake, Saskatchewan 53.99N, 105.12W  30m Met Service Canada Short
FRD Fraserdale, Ontario 49.84N, 81.52W 40m Met Service Canada  Short

HFO  Petersham, Massachusetts 42.54N, 72.17W 30m Harvard University Short

recover diurnally-varying fluxes. This was accomplished us-
ing the method of Olsen and Randerson (2004), which is
based on net shortwave radiation and near-surface tempet
ature data from the NASA Global Land Data Assimilation |
System (GLDAS; Rodell et al., 2004). These downscaled 3-
hourly CASA-GFEDvV2 fluxes, shown in Fig. 3 at the aggre-
gated monthly scale, represent the “truth” to which inversion
results are compared.

The vector of modeled observations (&), obtained by
multiplying the “true” 3-hourly fluxes by the concentration
footprints, was first generated at the hourly resolution cor- |
responding to the STILT particle releases for the nine tower
locations. Then, the synthetic observation vectors were av- | - ' - '
eraged to a 3-hourly timescale. Sensitivity tests were addi- _
tionally performed for inversions using daily and 8-day av- .3 _>5 5 _15 -1 _o5 0 0.5 1
erage concentration vectors. These tests revealed that us
ing higher temporal resolution observations yielded superior
flux est.imates, consistent with Law et aI_. (2002), who found Fig. 3. “True” CASA-GFEDV2 fluxes, aggregated to the monthly
that using 4-hourly measurements relative to more coarselyécale_
averaged observations helped to reduce biases over the Aus-
tralasian subcontinent when fluxes were estimated at a suffi-

Ciently fine Spatial resolution. As a result, Only cases consid- Fina”y' for inversions that simulate the effect of trans-
ering 3-hourly averaged observations are presented here. port model error, three sets of inversions using different
realizations of uncorrelated errors added to the synthetic

pmol/(mzs)
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surements were included here for the five “Short” towers (see
Table 2) that are consistently within the nocturnal boundary
layer. For these towers, which are all in the Eastern or Cen-
tral Standard Time zones, “afternoon” was considered to be
18:00-24:00 UTC. In contrast, all 24 h of atmospheric data
were included in the inversions for the four tali400 m) or
marine boundary layer towers (“Tall” or “MBL” in Table 2).

At these towers, observations sample relatively well-mixed
air throughout the diurnal cycle, and therefore night-time
measurements are assumed to be better-represented by the
WRF/ STILT model relative to those at Short towers. This
was qualitatively confirmed by comparing the diurnal cycle
of actual observations at the tallest sampling levels of these

B Tropical & Subtropical (Trop) towers to those from transported CASA-GFEDv2 fluxes.

B Temperate Broadleaf & Mixed Forests (TBMF) Two sensitivity tests were performed to evaluate the choice
Temperate Coniferous Forests (TCoF) of including night-time data for Tall and MBL towers and ex-
Boreal Forests/ Taiga (Bore) cluding them for Short towers. First, night-time data were in-
Tundra (Tund) cluded for the Short towers, such that 24 h of measurements

B Temperate Grasslands, Savannas & Shrublands (TGSS) were used for all sampling locations. Second, night-time data

B Desert & Xeric Shrublands (DeXS) were excluded for the Tall/MBL towers, such that only after-

noon measurements were used for all nine towers. (For the
Fig. 4. Seven ecoregions (modified from Olson, 2001) used for MBL towers, afternoon values were shifted to reflect local
analyzing inversion results at spatially aggregated scales. Stars refiime zones.) Overall, such experiments help to assess biases
resent nine measurement locations. associated with the use of night-time measurements, relative

to the potential additional constraint on fluxes they can pro-

vide.
measurements were conducted. The variance of these er-

rors remains the same across realizations, and correspongsg  Model of the trend (XB)
to the expected magnitude of model-data mismatch seen in
real measurements for each tower, as discussed in Sect. 3.1a very simple model of the trend is applied in the current

study for all inversions, analogous to those used in Micha-
2.5 Use of night-time measurements lak et al. (2004) and Mueller et al. (2008), where no addi-

tional auxiliary environmental variables are included in the
Due to stable conditions, night-time measurements takemnodel of the trend. As discussed in Sect. 2.1, the flux esti-
from shorter towers within the nocturnal boundary layer pro- mates §) are a composite of the inferred trendg) and a
vide little information about fluxes at large scales (Haszpra,spatiotemporally-correlated stochastic component, such that
1999). In addition, meteorological fields used in transportany flux variability seen through the atmospheric observa-
models have difficulty in reliably simulating the height of the tions but not captured by the trend can be still be recovered
night-time planetary boundary layer (PBL), or the sharp gra-through the stochastic component of the best estimate. For
dient across it, which can lead to biased flux estimates fromhe F4d inversionsX is represented as a vector of ones, such
inversions using night-time measurements from within thethat the corresponding drift coefficieng) represents the
PBL (Geels et al., 2007). For example, Gerbig et al. (2008)mean value in space and time of fluxes across all grid-cells.
found biases of up to 50% in night-time PBL heightin a study For the two temporal resolutions resolving the diurnal cycle
using high-resolution winds from the European Centre for(F4d-diurnal and F3hr), th¥ matrix is instead structured to
Medium-Range Weather Forecasts (i.e. ECMWF, availableallow for eight spatial means defined for each 3-hourly bin
from http://data.ecmwf.int/datg/ comparison of the high of the diurnal cycle. Longitudinal gradients that could cap-
resolution WRF wind fields (T. Nehrkorn, personal commu- ture the changing day/ night gradient across the continent for
nication) used in this study with wind profiler PBL-height different UTC time intervals were also considered for these
measurements yielded a similar conclusion. inversions, but ultimately not included because they did not

Given their local footprints, the use of night-time near- improve flux estimates.

surface measurement data in regional inversions could lead
to higher aggregation errors near the towers, relative to thos@.7 Covariance matrices (Q and R)
for afternoon measurements sampling well-mixed air. In ad-
dition, biases in night-time PBL height would affect future Model-data mismatch errors are assumed uncorrelated in
real-data inversions. For these reasons, only afternoon me&pace and time, yielding a diagonal matRx as is typical

Atmos. Chem. Phys., 10, 6153167, 2010 www.atmos-chem-phys.net/10/6151/2010/
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in most inversion studies. A different variance was usedvariable during the day-time compared to the night. How-
for each measurement tower, based on results from initiakver, the use of multiple variance parameters resulted in only
tests showing significantly reduced errors in inferred fluxessmall changes to the inferred fluxes, and in some areas biased
as compared to an inversion using only two separate varithe results. Therefore, for simplicity, only one flux variance
ances for Tall/MBL and Short towers. parameter was used for each inversion.

In contrast to the diagonal structure Rf the covariance Covariance parameters were estimated from the atmo-
matrix Q contains off-diagonal entries describing the spa-spheric data using the Restricted Maximum Likelihood
tial and/or temporal correlation of the flux deviations from (RML) approach, described in detail for atmospheric appli-
the model of the trencKB. The estimated fluxes for this cations in Michalak et al. (2004) and Mueller et al. (2008).
study are sorted first in space, and then in time. ThereforeMore specifics on the covariance parameter optimization for
if only spatial covariance were considere@,would be a  bothR andQ are included below in Sect. 3.1.
block diagonal matrix, with each block describing the cor-
relation between grid-scale fluxes for each time period of the
inversion. (Because of the simple models of the trend used® Covariance parameter optimization
g}ot?LSs Sgggyréifgééﬁfr)éstiréi;Ilzxfgi\]”ztlggﬁsltg;?ig:g?;ild his section describes the approach taken to estimate covari-
therefore these blocks describe the covariance of the fluxeglnCe parameters in this study, as well as an analysis of the

nferred parameters.
themselves.) When temporal covariance is additionally con?
S|der§d_, the off- d|agongl blocksmco_ntam dlagonal entries 3.1 Setup for testing RML optimization with
describing the correlation among grid-cells with themselves atmospheric data
over time. Finally, if cross spatial-temporal covariance is in-
cluded, the off-diagonal blocks i@ become full, and they  Tq infer unbiased fluxes with accurate uncertainty estimates,
describe the spatial covariance between fluxes across diffeft js jmportant to correctly specify the flux covariance pa-
ent time periods. rameters (Gerbig et al., 2006), as well as the model-data

In the current StUdy, preliminary tests showed that inClUd'mismatch variances. The RML approach provides a way to
ing full spatiotemporal covariance between grid-scale fluxesstatistically optimize these parameters using the atmospheric
helped to recover accurate uncertainty bounds for recovgata in an inverse setup (henceforth referred to as RML-
ered fluxes, especially at spatially and temporally aggregateghy). If the recovered covariance parameters can be shown to
scales. (A subset of this analysis is presented in Table 5.yjeld accurate flux estimates, then this approach eliminates
Therefore, Cross Spatial—temporal covariance was included |rﬂhe need to use proxy methods for estimating covariance pa-
Q for all flux temporal resolutions. However, for the tWo rameters. While this approach was previously demonstrated
flux resolutions resolving the diurnal cycle, spatial-temporalin Michalak et al. (2004) to perform well with synthetic data
covariance is only assumed for the same 3-hourly intervalexperiments for the global scale, it is investigated here for
across days or periOdS, but not within the diurnal CyCle. Forregiona| inversions using continuous data.
example, grid-scale fluxes from 00:00-03:00 UTC are corre- Tp estimate covariance parameters with the atmospheric
lated with fluxes from 00:00-03:00 UTC in neighboring da.yS da’[a, the RML-Inv approach minimizes the negative |Og_
or periods, but not with fluxes from 03:00-06:00 UTC. likelihood of the available atmospheric observations with re-

The correlation structure iQ is modeled using a covari- spect to the covariance parametef$, (Which include the
ance function that varies in space and time as a function othree flux covariance parameters @ (U | and 7) and

separation distance. Here, as in Michalak et al. (2004), wahe nine model-data mismatch vanancesRnQone for each

use an isotropic exponential decay model: tower). The corresponding objective function is (Kitanidis,
N N 1995):
Q(hx,ht ‘oé,l,r) :oéexp(—%)exp(——') 7) ; ; L\l
T L:In‘HQH +R’+In (HX) <HQH +R) HX‘
whereh, andh, are the separation distances between grid T -l -1
cells in space and time, respectivelys the spatial correla- +[Z <(HQH ) —<HQH ) HX
tion range parametet, is the temporal correlation range pa- N
9 . . -1 - -1
rameter_, anel_rQ is the asymptotic variance of fluxes at large A(Hx)T (HQHT) HX (HX)T (HQHT) 2
separation distances. The correlation lengths for an exponen-
tial model are approximatelyl &nd3z. @8)

Multiple variance parameters ) were initially consid-
ered for different times of the day for those inversions resolv-To test performance, parameters inferred using RML-Inv for
ing the diurnal cycle (i.e. F4d-diurnal and F3hr), because theeach flux temporal resolution are compared to reference val-
underlying “true” CASA-GFED fluxes are significantly more ues, derived using the underlying true fluxes, as described
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Table 3. Inferred parameters using RML-Krig and RML-Inv for the a priori flux covariance ma@)x RML-Inv parameters were estimated
using observations with and without simulated transport error. The cell shading indicates the factor by which RML-Inv parameters differ
from the RML-Krig, a.k.a. reference, values:

(no fill)
=2x 2x t04x 3xtodx >4x

Q Fad \ Fad-diurnal \ F3hr
RML-Inv \ RML-Inv \ RML-Inv
RML-Krig Perfect Trans.| RML-Krig Perfect Trans.| RML-Krig Perfect Trans.
trans. error trans. error trans. error
aé (umol/(n? s))? 1.0 97.1 2538 11.1 355 273 13.4 24.3 20.7
1 (km) 610 0 57 809 389 363 601 661 528
7 (days) 6.8 2.6 6.9 80.7 9.2 9.6 8.6 2.7 35

Table 4. “True” and RML-Inv inferred variances by tower for the model-data mismatch ma®jxgoth “True” and RML-Inv results are
shown as calculated using observations with and without simulated transport error. The cell shading indicates the factor by which RML-Inv
parameters differ from the “true”, or reference, values:

(no fill)
=2x 2x t03x 3xtodx >4x

R F4d \ F4d-diurnal \ F3hr
(ppnP) “True” RML-Inv \ “True” RML-Inv \ “True” RML-Inv
Perfect Trans.| Perfect Trans.| Perfect Trans. Perfect Trans.| Perfect Trans. Perfect Trans.
trans. error | trans. error | trans. error | trans. error | trans. error | trans. error
LEF 10.7 13.8 2.7 7.9 2.2 4.7 0.1 2.7 0.0 1.8 0.0 1.9
WKT 5.0 18.0 2.3 15.7 0.7 10.5 0.1 7.9 0.0 10.1 0.0 8.8
SBL 6.2 10.6 0.1 5.6 2.7 7.3 0.1 5.0 0.0 4.6 0.0 4.3
BRW 0.2 1.3 0.0 1.1 0.1 1.2 0.0 1.1 0.0 1.1 0.0 1.2
ARM 35 14.9 0.1 13.1 1.2 12.4 0.4 10.3 0.0 11.1 0.0 11.2
HF 15.6 34.4 5.2 25.7 8.8 24.4 6.8 17.7 0.0 23.5 2.2 23.2
AMT 9.5 23.4 3.9 17.6 4.8 21.5 1.3 14.9 0.0 11.6 0.3 13.4
FRD 3.4 11.7 0.0 7.4 2.4 11.1 0.0 7.1 0.0 8.8 0.0 8.6
CDL 2.9 3.6 0.0 1.0 1.2 1.4 0.0 0.0 0.0 0.0 0.0 0.0

below. In addition, the impact of using RML-Inv parameters In order to derive “true” model-data mismatch variances
on estimated fluxes is investigated in Sect. 4. in R, an approach other than RML-Krig must be applied us-

Because this is a pseudo-data setup, the covariance paranmg the true fluxes transported forward to the measurement
eters forQ can also be estimated by implementing RML di- locations. In the current study, fluxes are estimated at the na-
rectly on the “true” underlying CASA-GFEDvV2 fluxes)( tive spatial resolution of the true fluxes (i.€.:.1°). There-
This approach will henceforth be referred to as RML-Krig, fore, there is technically no spatial aggregation error, and for
where “Krig” refers to the kriging setup of RML; see Mueller cases that do not consider simulated random transport error,
et al. (2008) and Gourd;ji et al. (2008) for details. Here, thethe model-data mismatch variancesHrare exclusively de-

RML objective function becomes: termined by temporal aggregation error. These errors can
1 1 be directly calculated as the variance of the difference be-
Lo = EIn|Q| +§In‘XTQ_1X’ tween two synthetic data vectors: the observations used in

1 the inversion (generated using 3-hourly fluxes), and a second
+= [ST(Q—l_Q—lx (xTQ—lx)—leQ—l)s] (9)  set of observations generated using fluxes pre-averaged to
2 coarser timescales (i.e. the 4-day or 4-day diurnal cycle) and
Because RML-Krig does not use the atmospheric measurethen multiplied by aggregated transport matridd$. (Tem-
ments, the RML-Krig parameters are not affected by the sim-poral aggregation error is technically zero in this study when
ulation of transport error.
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Table 5. Percent of true fluxes falling within two standard deviations of the a posteriori grid-scale monthly flux estimates. Results are shown
without added transport errors for the three flux temporal resolutions, two sets of covariance parameters, and with and without assumed
temporal flux covariance .

Reference parameters \ RML-Inv parameters

Spatial Spatiotemporal Spatial Spatiotemporal
covariance only covariance | covariance only covariance
F4d 66% 88% 100% 100%
F4d-diurnal 80% 96% 98% 99%
F3hr 49% 93% 63% 95%

estimating 3-hourly fluxes, although a floor of 0.01gpi;t  correlation length is much longer than the one-month time
set for the model-data mismatch variance in all inversionsperiod of analysis.

using this flux resolution. The “true” model-data mismatch variancesRrfor inver-

For inversions that consider transport model errors, thesions without transport error represent temporal aggregation
variance of the noise added to the measurements is addestrors, and they become higher, as expected, as the flux tem-
to the temporal aggregation error variance to arrive at theporal resolution becomes coarser. This is the essence of ag-
“true” total model-data mismatch variance. The variancesgregation error, where averaging out the “true” temporal vari-
of the added noise were determined per tower in the follow-ability in the fluxes and then transporting them forward to the
ing manner. RML-Inv was first used to estim&eand R sampling locations cannot properly reproduce the measured
parameters with actual atmospheric measurements for Juneoncentrations. For a given temporal resolution, these aggre-
2004. Then, the difference between these “real data” modelgation errors also tend to be higher for towers in highly active
data mismatch variances and the RML-Inv inferred temporalbiospheric regions (e.g. LEF, AMT and HF), where temporal
aggregation errors (with synthetic data) were taken as a mearariability in nearby fluxes has a strong influence on mea-
sure of the magnitude of residual model-data mismatch forsured concentrations. The “true” model-data mismatch with
each tower, most of which is likely attributable to transport simulated transport error is increased by the magnitude of
model error. This procedure was repeated for each of the exthe random noise added to the measurements, which varies
amined flux resolutions, and then these inferred differencedrom a standard deviation of about 0.5 ppm for CDL to about
by tower were used as the variance of the random noise addesippm for AMT.
to the synthetic measurements for the transport error analy-

Ses. 3.3 Results of RML-Inv optimization

3.2 Comparison of reference covariance parameters by
flux temporal resolution

The RML-Krig Q parameters and the “truéR covariance

Estimated RML-Inv parameters f6 andR are also shown

in Tables 3 and 4. The RML-Inv values for inversions with
transport error represent the average parameters inferred us-
ing three realizations of random noise. Although RML-Inv

parameters are shown in Tables 3 and 4 for each of the exparameters are compared here with the RML-Krig values (for
amined flux resolutions. Because these parameters were ifQ) and “true” model-data mismatch variances (Rjyrto as-
ferred using the true underlying fluxes, they are henceforthsess the relative ability of the atmospheric data to recover
referred to as reference values, for later comparison with theovariance parameters, the ultimate concern is the impact of
RML-Inv parameters inferred with the synthetic measure-these parameters on the inversions, results of which are pre-
ments. However, first we compare the reference parametersented in Sect. 4.

themselves across flux temporal resolutions. The correspondence between the inferred RML-Inv pa-
The RML-Krig Q parameters show that the spatial corre- rameters and the reference values, as seen in Tables 3 and

lation ranges|j are not substantially different across tem- 4, is found to be strongly dependent on the flux temporal
poral resolutions, but that the overall varianeg ) of the resolution. For the F3hr case, RML-Inv is able to recover
fluxes decreases as the estimated temporal resolution beovariance parameters within a factor of two for the flux
comes coarser. This is expected, as more of the short-termariance ¢2), spatial correlation rangé)(and seven of the
variability in the spatial flux distribution is averaged out. The nine model-data mismatch variances with perfect transport.
temporal correlation range ) is much longer for the 4-day In contrast, for the F4d case, most of the recovered RML-
diurnal cycle relative to the other timescales, although thisinv covariance parameters differ by more than a factor of
is most likely an unreliable value given that the calculatedfour, particularly the flux varianceoé). The F4d-diurnal
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1.2 [ T R IR T e e 4.1 Inversion setups and diagnostics
Il Reference parameters
Il RML-Inv parameters

' O Withtransporterror ||
- - Baseline

After the covariance parameter optimization analysis, a se-
ries of inversions was run to test the impact on inferred fluxes

= 08k N T and uncertainties of a) varying the temporal flux resolution
Ng ------------------------------- (shown in Table 1), b) using inferred RML-Inv vs. the refer-
3 06k | . ence covariance parameters, and c) including simulated ran-
g dom transport error. All combinations of a), b) and c) yielded
a 04k .ein... | . , 24 inversions, i.e. 2 sets of covariance parameters for each of
= 3 flux temporal resolutions, once with perfect transport and
Y - , three times with different realizations of random transport er-

ror. In addition, sensitivity tests were run for the inversions
with no transport model error to test the impact of excluding
F4d F4d-diurnal F3hr cross spatial-temporal covariance@y and the inclusion or
exclusion of night-time data.
Fig. 5. Root Mean Square Error (RMSE) between estimated and The g posteriori flux estimates from all inversions, as
“t_rue” grid-scale fluxes, aggregated to monthly averages, for inver-We" as the true CASA-GFEDV2 fluxes, were averaged to

. . . : A monthly timescale in order to compare results at a scale
resolutions. Bars show the RMSE for inversions without transport y P

error, and the white dots show the RMSE for inversions conducteg][rzlevant for carbon-c()j/cle_SCIence. Th_e |r_\ferred g”d'f:(.:ale
with three different realizations of simulated transport error. The uxes were compared using two quantitative metrics. First,

baseline RMSE, as described in Sect. 4.2, represents the value ad1€ root mean square error (RMSE) (e.g. Law et al., 2002)
sociated with inferring a perfect flat mean monthly flux across theetween the true and estimated fluxes was calculated at the

continent. native P x 1° spatial resolution for all land grid-cells across
the continent (Fig. 5). Second, the accuracy of the estimated
a posteriori uncertainties (from Eq. 6) was evaluated by cal-
case exhibits intermediate performance between the othefyjating the percent ofx 1° true fluxes that fall within two
flux resolutions. standard deviations of the estimated fluxes (Table 5). Ideally,
The flux variance parametesg) is higher than the refer- 9504 of fluxes should fall within this interval. Values sig-
ence value for all temporal resolutions. This is most likely nificantly below 95% indicate an underestimation of the true
due to the fact that the majority of towers are sited in bio- 5 posteriori uncertainties. The results of this second metric
spherically active regions, which have above-average fluxare compared for inversions with and without cross spatial-
variability as compared to the continent as a whole. Surpristemporal covariance i, in order to examine the impact of
ingly, the addition of simulated random transport error helpsaccounting for temporal covariance on the recovered flux un-
to bring the flux variance closer to the reference value, butcertainties.
this may be due to the transport errors obscuring some of the |pyersion results were also compared qualitatively by ex-
“true” flux variability that would otherwise be seen through amining the spatial patterns of inferred fluxes to those of the
the measurement data. . true fluxes (Figs. 6, 7, and 8). Finally, monthly fluxes and
Overall, estimating covariance parameters with the atmoncertainties were aggregated to seven ecoregions (Fig. 4)
spheric data and the coarse flux resolution (F4d) appears s el as to the North American continent (Fig. 9). These
yield consistently unrelia_ble parameter estimates, Whereaécoregions are loosely defined based on the work of Olson
the RML-Inv approach with the other two temporal resolu- (>001), and represent large, mostly contiguous, regions with

tions yields results that are more consistent with the referencgjm;jar climate. land cover and land use. An area-weighted
values. The impact of these inferred parameter estimates op\SE at the ecoregion scale was also calculated.

inversion results in explored in the next section.

4.2 Results of grid-scale diagnostics

4 Inversion experiments . . o .
P Figure 5 shows the grid-scale RMSE's for the six inversions

This section describes the setup and results of inversions useifith no transport error (using two sets of covariance param-

to test the impact of covariance parameter optimization meth £t€rs and grouped by the three examined flux resolutions).
ods, flux temporal resolutions, and other inversion assumpyvnh the reference covariance parameters, there is little dif-
tions and data choices. ference in continental grid-scale RMSE among the three flux

resolutions, although the 3-hourly resolution shows a slight
advantage. Using the RML-Inv parameters, inversion per-
formance degrades for coarser estimation timescales, con-
sistent with the fact that the recovered RML-Inv covariance
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Fig. 6. Monthly grid-scale fluxes estimated from F4d inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthl
averagega, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard dev{atie)sand locations of significant

sources and sinks atl and &; (c, f).

Normalized Errors Significant Sources/ Sinks
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Fig. 7. Monthly grid-scale fluxes estimated from F4d-diurnal inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthl
averagega, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard dev{atiel)sand locations of significant

sources and sinks at1 and & (c, ).

parameters became farther from the reference values as The RMSE corresponding to the three realizations of sim-
fluxes were temporally aggregated (Sect. 3.3). If the in-ulated transport error for each inversion setup are also shown
version were to infer the exact mean monthly flux acrossin Fig. 5. The grid-scale fluxes (results not shown) from these
the continent with no spatiotemporal variability, the RMSE inversions show that transport error has the effect of damp-
would be 0.72 umol/(rhs). Therefore, all inversions, except ing down the variability in the inferred flux signal. For the
for the F4d case with RML-Inv parameters, perform bettertwo timescales with temporal aggregation error (i.e. F4d and
than this baseline value. F4d-diurnal), this has a positive impact on the RMSE, with
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Estimated Fluxes
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Fig. 8. Monthly grid-scale fluxes estimated from F3hr inversion. The first row presents results obtained using the reference covariance
parameters, and the second row shows results obtained using RML-Inv parameters. The maps show a posteriori fluxes aggregated to monthl
averagega, d), errors relative to the true fluxes (Fig. 3) normalized by the a posteriori standard dev{atiej)sand locations of significant

sources and sinks at1 and 2; (c, f).
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Fig. 9. Estimated fluxes from inversions with no transport error using RML-Inv covariance parameters, aggregated to monthly average
ecoregion (Fig. 4) and continental scales. Error bars represent 95% uncertainty bounds. Estimated fluxes from inversions using three
different realizations of transport error are also shown for each temporal resolution. Uncertainty bounds are not shown for these inversions
for simplicity, but were similar in magnitude to their equivalents with no transport error.

the difference being more pronounced with the RML-Inv pa- scale RMSE. While these results are promising, itis not clear
rameters due to the improvement in quality of the covariancewhether this result would hold true with more realistic sys-
optimization for these cases. In contrast, for the F3hr casetematic, non-random transport errors.

simulated transport error has a minimal impact on the grid-

Atmos. Chem. Phys., 10, 6153167 2010 www.atmos-chem-phys.net/10/6151/2010/



S. M. Gourdji et al.: Regional-scale geostatistical inverse modeling of North Americarfl@G@s 6163

The fraction of true fluxes lying within two standard de- covariance parameters yield consistent results with reason-
viations (Eq. 6) of the estimated fluxes is presented at theable grid-scale spatial patterns. This indicates that, although
monthly timescale for the inversions with no transport errorthe covariance parameters for the F4d-diurnal case inferred
in Table 5, for both covariance parameter optimization meth-using the atmospheric data (RML-Inv) differed from the ref-
ods, and with and without temporal covariance included inerence covariance parameters in some cases (Tables 3 and 4),
Q. The inclusion of temporal covariance is found to be im- the RML-Inv parameters can still be used to recover fluxes of
portant for obtaining accurate a posteriori uncertainties whercomparable quality to those obtained using idealized covari-
using the reference covariance parameters for all flux resoluance parameters. The a posteriori uncertainties are more af-
tions. The same result holds using the RML-Inv parame-fected by the use of RML-Inv parameters than the fluxes, as
ters with the 3-hourly flux resolution, whereas for the F4d- reflected in the lower normalized errors and fewer significant
diurnal and F4d cases, accurate grid-scale uncertainties casources and sinks relative to the inversion using the reference
be obtained even with spatial-only covariance if RML-Inv parameters.
parameters are used, due to the large estimated flux variance The F3hr inversions (Fig. 8) also yield realistic spatial
parameter inQ. Results with simulated transport error are variability, especially when using the reference parame-
not shown in Table 5, although the same conclusions holdters. With the RML-Inv parameters, the spatial variability
Overall, these results highlight that accounting for both spa-is slightly reduced, although as with the F4d-diurnal case,
tial and temporal flux covariance yields accurate a posteriorinferred fluxes are similar using the two sets of parameters.
uncertainty bounds at the grid-scale much more reliably thamlso, given the more realistic recovered uncertainties with

accounting for only spatial correlations. this resolution as compared to the other cases (Table 5), the
largest number of significant sources and sinks are recovered
4.3 Inferred grid-scale spatial patterns at the grid-scale with the RML-Inv parameters for this case.

Overall, this comparison of the grid-scale flux maps
Grid-scale maps of monthly-averaged flux estimates argjemonstrates that an inversion that directly estimates the di-
shown in Figs. 6, 7 and 8 for inversions performed with the yrnal cycle of the fluxes (i.e. F4d-diurnal and F3hr) can re-
three flux resolutions and two sets of covariance parametergover reasonably accurate grid-scale spatial patterns across
without any simulated random transport error. For comparthe continent using only a 9-tower measurement network.
ison, the true monthly-averaged fluxes are shown in Fig. 3Also, as previously shown in Fig. 5, the quality of inferred
Overall, the inversions detect correct large-scale patterns ofjuxes is preserved even when covariance parameters are esti-
sources and sinks, with significant sinks recovered from themated from the available atmospheric data, and not assumed
eastern United States to northwest Canada and Alaska. Agnown a priori. Inversions that estimate fluxes at coarser
expected, the inferred fluxes show significantly less overalkimescales (i.e. F4d) that average out the diurnal cycle do

variability relative to the true fluxes, due to the sparse atmomot perform nearly as well, consistent with the covariance
Sphel’ic network and the absence of auxiliary enVironmentabarameter conclusions presented in Sect. 3.3.

variables within the trend (e.g. Gourd;ji et al., 2008).

The F4d inversions (Fig. 6) perform least well in captur- 4.4 Results at ecoregion scale
ing the true grid-scale spatial patterns. Fluxes estimated us-
ing the reference covariance parameters remain close to theffigure 9 presents estimated fluxes and their uncertainties
mean value for the continent with little spatial variability. In from the inversions using covariance parameters inferred
addition, high normalized errors exist near the WKT, ARM with the atmospheric observations (RML-Inv), aggregated a
and SBL measurement towers, most likely due to temporaposteriori to the monthly-average ecoregion (Fig. 4) and con-
aggregation errors near the sampling locations. High errorsinental scales. The RML-Inv parameters were used, because
are also seen in northwest Canada, where the strong sinks this is most consistent with what would be possible in future
this region fall outside of the areas well-constrained by thereal-data inversions. Also, results using the reference covari-
atmospheric measurements (Fig. 2). With the RML-Inv pa-ance parameters are very similar at this aggregated scale to
rameters, the opposite problem occurs such that there is urthose presented in Fig. 9.
realistic spatial variability in the recovered fluxes associated At the ecoregion scale, the inversions resolving the diurnal
with the artificially high flux variance parameter@ These  cycle (F4d-diurnal and F3hr) are seen to yield more accurate
results are consistent with those presented in Sect. 3.3, corfluxes, which is also confirmed by the RMSE’s at this ag-
firming that estimating fluxes directly at highly aggregated gregated scale (0.03, 0.04 and 0.16 pmdi&rfor the F3hr,
temporal scales is not an optimal setup for regional inver-F4d-diurnal, and F4d cases, respectively). The relative per-
sions. formance of inversions using the three temporal resolutions

The F4d-diurnal inversions (Fig. 7) show more realistic is particularly evident in the better-constrained ecoregions,
spatial variability in the fluxes. Sources are now properly re-such as the Temperate Broad & Mixed-leaf Forest (TBMF)
covered in Central America, while normalized errors are re-and Boreal Forest (Bore), where temporal aggregation er-
duced in all areas. Also, fluxes recovered using both sets ofor has the larger impact on fluxes due to their proximity to
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the towers and strong flux variability. In addition, the F3hr strain fluxes in the far-field. Random transport errors degrade
and F4d-diurnal inversions also infer more realistic ecore-the ecoregion-scale flux signal towards the continental mean,
gion fluxes in the far-field, e.g. in the Tropics (Trop) and although theirimpact may potentially decrease as more areas
the Desert and Xeric Shrubland (DeXS). In contrast, the F4dbecome better-constrained by a growing measurement net-
case yields aggregated fluxes that remain close to the meanork.

continental flux across all ecoregions. This last resultis inter-

esting in that high grid-scale spatial variability for this case 4.5 Sensitivity tests with night-time data

(seenin Fig. 6) did not translate into large differences in spa-

tially aggregated ecoregion scale fluxes. In order to investigate the potential value of including night-

For the F3hr and F4d-diurnal cases, the 95% uncertaintfime data for both Short and Tall/MBL towers, additional
bounds capture the true flux for all or most ecoregions. Also,sensitivity tests were performed using the F4d-diurnal case.
an analysis of inversions for these cases that were performedihis resolution was chosen because of its comparable quality
with and without accounting for temporal covariance be- to the F3hr case with lower computational cost, which makes
tween fluxes (results not shown) confirms that accounting forit most promising for annual or multi-year inversions. Inver-
this correlation a priori is necessary for recovering accuratesions using reference covariance parameters and no transport
uncertainty bounds at the monthly ecoregion scale. In conerror were used for these tests in order to isolate the impact of
trast, the quality of inferred fluxes and uncertainties is lowertemporal aggregation errors associated with night-time mea-
for the F4d case regardless of spatial-temporal covariance asurements.
sumptions, with only three of seven aggregated fluxes falling Results show that the continental grid-scale RMSE
within two standard deviations of the true ecoregion flux in changes only marginally when night-time data are elimi-
Fig. 9. Overall, these results show that realistic a posteriorinated for the Tal/MBL towers (0.62 vs. 0.63 pmolA®)).
uncertainties can be recovered by the inversion at aggregatddowever, including night-time data for both Short and
ecoregion scales, in addition to grid-scales (Table 5), as lonJall/MBL towers substantially increased the RMSE to
as the diurnal cycle is estimated in the inferred fluxes, andd.71 umol/(n¥ s), most likely due to the temporal aggrega-
both spatial and temporal correlation are considered in the &éion errors associated with the smaller footprints for night-
priori flux covariance matrix. time measurements at the Short towers. An analysis of re-

As expected, the addition of transport error degrades thesults at the aggregated ecoregion scale showed that the setup
quality of inferred ecoregion scale fluxes for all temporal res-used for most inversions in the current study, using night-
olutions, with the inferred values being closer to the meantime data only for the Tall/MBL towers, minimizes ecoregion
continental flux, as seen in Fig. 9. The impact is greaterscale RMSE’s. This setup eliminates the temporal aggrega-
for inversions that resolve the diurnal cycle (F3hr and F4d-tion errors associated with including night-time data at the
diurnal), perhaps because these cases were originally bett&hort towers, while also allowing for a stronger constraint on
able to resolve ecoregion-scale variability in a setup with-far-field fluxes through night-time data from the Tall/ MBL
out transport model error. In addition, for under-constrainedtowers. Again, in a real-data environment, the value of using
areas (e.g. Tropics (Trop) and Desert and Xeric Shrublandight-time measurements from the Tall/MBL towers may be
(DeXS)), random noise may obscure the diffuse signal fromreduced for nights when the towers are within the PBL, and
these areas more than in the near-field of the tower locationghe PBL height is consistently over or under-estimated.
Despite the fact that random transport errors are shown here
to degrade inversion quality, uncertainty bounds for the cases
resolving the diurnal cycle are still realistic for most eco- 5 Summary and conclusions
regions (results not shown).

At the North American continental scale, inferred fluxes This study evaluated the constraint on £fuxes provided
from all temporal resolutions, with and without transport er- by atmospheric data from nine continuous measurement lo-
ror, are reasonably close to the true net flux (a differencecations across the North American continent, within the con-
of <0.25 umol/(nd s)). Consistent with previous results, the text of a regional geostatistical inversion without additional
F4d case performs the least well, with the continental sinkauxiliary variables. Estimating fluxes at a temporal resolu-
being statistically significantly different from the true value. tion that can directly estimate the diurnal variability (F4d-
However, for all cases, as demonstrated by the narrower undiurnal and F3hr cases) was found to be crucial both for
certainty bounds at the continental scale, results confirm thatecovering covariance parameters directly from the atmo-
fluxes can be inferred more precisely at the continental scalspheric data, and for inferring ecoregion-scale fluxes that
than at smaller spatial scales. were statistically consistent with the “true” fluxes. Account-

Overall, the ecoregion-scale results confirm the impor-ing a priori for both spatial and temporal covariance in the
tance of estimating the diurnal cycle of fluxes directly. This is flux distribution was also found to be necessary for recover-
particularly true in the near-field of the tower locations due toing accurate a posteriori uncertainty bounds on the estimated
temporal aggregation errors, but it also appears to help confluxes.
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The poor performance of inversions that did not estimateduced by the boundary conditions, non-random transport er-
the diurnal cycle (i.e. F4d) were due to the high temporalrors, and aggregation errors from flux variability at scales
aggregation errors associated with not being able to adjudiiner than the scale of the estimation grid. Overall, however,
the strong diurnal and synoptic variability of the fluxes, par- synthetic data experiments provide a baseline for the best
ticularly near the measurement locations. For time periodsachievable performance of real-data inversions, and help to
outside of the growing season, the impact of temporal ag-highlight the impact of setup choices that may be obscured
gregation error may be lower, because fluxes are expected toy the additional complexity associated with using real data.
be less variable, although the ability to infer accurate fluxes In summary, synthetic data experiments were shown in this
during the growing season is necessary for inferring accuratevork to help illuminate the constraint on fluxes achieved by
annual or multi-year carbon budgets. Also, while temporalvarious regional inversion setup choices. The results suggest
aggregation errors may be of particular concern for geostathat even a fairly sparse network of continuous@@asure-
tistical inversions because they do not assume the shape afients, used with no auxiliary information or prior estimates
the diurnal cycle a priori, any errors in the diurnal cycle in of flux variability in time or space, can be used to infer accu-
prior flux estimates in synthesis Bayesian inversions wouldrate monthly ecoregion scale GGurface fluxes over North
also yield temporal aggregation errors. This is likely to be of America, as long as the diurnal cycle is resolved in the esti-
at least some concern, given the differences observed in thmated fluxes and both a priori spatial and temporal flux co-
diurnal cycles predicted by different biospheric models. Thisvariances are considered. Statistically significant sinks can
impact is the subject of ongoing work. also be recovered at the grid-scale, although uncertainties re-

In terms of the two flux resolutions resolving the diurnal main high at this fine spatial scale. The incorporation of addi-
cycle (i.e. F3hr and F4d-diurnal), both cases yielded flux esti-tional atmospheric data and auxiliary variables in future real
mates of comparable quality, despite the fact that covariancéata geostatistical inversions can only help to further improve
parameters estimated with the atmospheric data were moree recovery of fluxes at finer spatial resolutions.
consistent with reference values for the F3hr relative to the
F4d-diurnal case. In fact, for both of these flux resolutionsAcknowledgementsThis work was supported by the National
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