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Abstract. We present carbon dioxide (CO2) estimates from
the Tropospheric Emission Spectrometer (TES) on the EOS-
Aura satellite launched in 2004. For observations between
40◦ S and 45◦ N, we find about 1 degree of freedom with
peak sensitivity at 511 hPa. The estimated error is∼10 ppm
for a single target and 1.3–2.3 ppm for monthly averages
on spatial scales of 20◦

×30◦. Monthly spatially-averaged
TES data from 2005–2008 processed with a uniform initial
guess and prior are compared to CONTRAIL aircraft data
over the Pacific ocean, aircraft data at the Southern Great
Plains (SGP) ARM site in the southern US, and the Mauna
Loa and Samoa surface stations. Comparisons to Mauna
Loa data show a correlation of 0.92, a standard deviation of
1.3 ppm, a predicted error of 1.2 ppm, and a∼2% low bias,
which is subsequently corrected. Comparisons to SGP air-
craft data over land show a correlation of 0.67 and a standard
deviation of 2.3 ppm. TES data between 40◦ S and 45◦ N
for 2006–2007 are compared to surface flask data, GLOB-
ALVIEW, the Atmospheric Infrared Sounder (AIRS), and
CarbonTracker. Comparison to GLOBALVIEW-CO2 ocean
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surface sites shows a correlation of 0.60 which drops when
TES is offset in latitude, longitude, or time. At these same
locations, TES shows a 0.62 and 0.67 correlation to Carbon-
Tracker at the surface and 5 km, respectively. We also con-
ducted an observing system simulation experiment to assess
the potential utility of the TES data for inverse modeling of
CO2 fluxes. We find that if biases in the data and model
are well characterized, the averaged data have the potential
to provide sufficient information to significantly reduce un-
certainty on annual estimates of regional CO2 sources and
sinks. Averaged pseudo-data at 10◦

×10◦ reduced uncer-
tainty in flux estimates by as much as 70% for some tropical
regions.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic
greenhouse gas (IPCC, 2007). It is long-lived with a current
global average tropospheric mixing ratio of about 390 parts
per million (ppm), and is increasing at a rate of about 2 ppm
per year. Superimposed on this upward trend is a seasonal
cycle reflecting the uptake and release of CO2 by the ter-
restrial biosphere and oceans, and which is markedly more
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pronounced in the Northern Hemisphere than the Southern
Hemisphere (Matsueda et al., 2002; Tans and Conway, 2005;
Bösch et al., 2006). Currently about 55% of the anthro-
pogenically emitted CO2 remains in the atmosphere (IPCC,
2007, chapter 7), whereas the remainder is removed by the
ocean and land biosphere; but the spatial and temporal distri-
bution of the uptake has large uncertainties. Recent studies
have shown that emissions of CO2 from fossil fuel combus-
tion have been increasing faster than predicted (Raupach et
al., 2007) and that the southern hemispheric oceans’ capacity
for CO2 uptake may be diminishing (Le Quéŕe et al., 2007).
An improved quantitative understanding of the sources and
sinks of atmospheric CO2 is essential for reliably predicting
future atmospheric CO2 levels, for assessing the impact of
land use changes on atmospheric CO2, developing mitiga-
tion strategies, and for treaty verification.

Inverse modeling, which uses an atmospheric transport
model to estimate fluxes from a set of atmospheric CO2 ob-
servations, has emerged as an important tool for quantifying
CO2 sources and sinks. This approach, pioneered by Tans
et al. (1990) and Enting and Mansbridge (1991), has become
more sophisticated, but is limited by the fact that the current
observational network is sparse and consequently does not
have the information content to provide reliable constraints
on carbon fluxes at regional scales (e.g., Rayner et al., 1996;
Gloor et al., 2000; Suntharalingam et al., 2003). Studies us-
ing simulated data have demonstrated the potential utility of
space-based measurements of CO2 for providing improved
estimates of regional CO2 fluxes (e.g., Pak and Prather, 2001;
Rayner and O’Brien, 2001; Houweling et al., 2004; Cheval-
lier et al., 2007; Baker et al., 2006; Feng et al., 2009). For ex-
ample, Rayner and O’Brien (2001) showed that satellite mea-
surements of CO2 column abundances with a precision of
2.5 ppm, averaged monthly and on spatial scales of 8◦

×10◦,
would offer more information on CO2 fluxes than can be
obtained from the existing surface network. Houweling et
al. (2004) showed that, with sufficient coverage, satellite ob-
servations of upper tropospheric CO2 would lead to signifi-
cant reductions of CO2 source and sink errors as compared
to the in situ observation network. Chevallier et al. (2005,
2009) found, however, that their inversions using upper tro-
pospheric information from AIRS radiances are sensitive to
latitude-dependent biases larger than about 0.3 ppm and that
while their radiance assimilation improved surface flux un-
certainties, it did not perform as well as the flask network.
Baker et al. (2006) performed inversions of the same surface
data using different models and found significant differences
in flux estimates from transport error, suggesting measure-
ments in the mid-troposphere would add value in addition to
surface sites.

Space-based measurements of CO2 are currently avail-
able from the Scanning Imaging Absorption Spectrometer
for Atmospheric Chartography (SCIAMACHY), the Atmo-
spheric Infrared Sounder (AIRS), the Infrared Atmospheric
Sounding Interferometer (IASI), and the Greenhouse gases

Observing Satellite (GOSAT). SCIAMACHY was launched
on the Envisat platform in 2001 and measures reflected sun-
light at UV-SWIR wavelengths, with peak sensitivity near the
surface. Buchwitz et al. (2005, 2007), Bösch et al. (2006)
and Barkley et al. (2006) have presented daytime CO2 re-
trievals over land from SCIAMACHY data. AIRS was
launched on the EOS-Aqua platform in 2002 and different
techniques have been used to retrieve atmospheric CO2 abun-
dances from AIRS radiances. These include using different
spectral regions, different optimization methodologies, co-
retrieving different species and direct assimilation of radi-
ances. The different retrieval approaches have resulted in
AIRS retrievals with estimated peak sensitivity ranging be-
tween 200 and 600 hPa (e.g., Chahine et al., 2005, 2008;
Crevoisier et al., 2003; Engelen et al., 2004; Strow et al.,
2008; Maddy et al., 2008). The AIRS data shown in this pa-
per are taken from the AIRS standard product (Chahine et al.,
2005, 2008). IASI, onboard the European MetOp platform,
was launched in October 2006 and Crevoisier et al. (2009)
have recently presented a tropical (20◦ N–20◦ S) ocean CO2
product from IASI with peak sensitivity near 200 hPa. In
January 2009, the GOSAT instrument was launched specifi-
cally to study greenhouse gases (http://www.jaxa.jp/projects/
sat/gosat/indexe.html) with a mission target of 4 ppm accu-
racy for a 3 month regional average using a combination of
SWIR and IR channels (Hamazaki et al., 2004a, b; Yokota et
al., 2009). The Orbiting Carbon Observatory (OCO) (Crisp
et al., 2004) was lost as a result of a launch mishap in Febru-
ary 2009. This NASA satellite for dedicated CO2 observa-
tions aimed to measure CO2 columns with a precision of
1 ppm on regional, monthly scales (Crisp et al., 2004). OCO
is now being rebuilt and is expected to relaunch in 2013.

We present here atmospheric CO2 retrievals of the Tro-
pospheric Emission Spectrometer (TES) satellite instrument.
TES is a Fourier transform spectrometer that measures ther-
mal infrared emission. We find that the TES nadir profile
retrievals of CO2 have peak sensitivity in the middle tropo-
sphere, near 500 hPa. The individual TES retrievals have er-
rors of about 10 ppm at 511 hPa, but monthly averaging re-
duces the errors to about 1.3–2.3 ppm for 20◦

×30◦ and about
2 ppm for 10◦×10◦. We show that TES CO2 has the poten-
tial to reduce uncertainty in regional estimates of CO2 fluxes
through an observing system simulation experiment (OSSE).
In a subsequent study by Nassar et al. (2010) we present an
inversion analysis using the TES CO2 data and compare the
information provided by TES with that obtained from the
in situ observing network for constraining CO2 sources and
sinks.

2 The TES instrument

TES is on the Earth Observing System Aura (EOS-Aura)
satellite and makes high spectral resolution nadir measure-
ments in the thermal infrared (660 cm−1–2260 cm−1, with
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unapodized resolution of 0.06 cm−1). It was launched in
July 2004 in a sun-synchronous orbit at an altitude of 705 km
with an equatorial crossing time of 13:38 (local mean solar
time) and with a repeat cycle of 16 days. In standard “global
survey” mode, 2000–3000 observations are taken every other
day (Beer, 2006). There are additional targeted “special ob-
servations”, which account for about 10% of TES data over
mid-latitude Pacific in 2006, and which are not used in this
analysis as they are less spatially and temporally uniform.
TES level 2 data provide profile retrievals for atmospheric
temperature (Herman et al., 2008), water (Shephard et al.,
2008), HDO (J. Worden et al., 2007), ozone (H. Worden
et al., 2007; Nassar et al., 2008; Osterman et al., 2008;
Richards et al., 2008), carbon monoxide (Rinsland, 2006;
Luo et al., 2007a, b), methane (Payne et al., 2009), as well as
surface temperature, emissivity, and cloud information (El-
dering et al., 2008). For details on the TES instrument, see
Beer (2006), and for information on the retrieval process see
Bowman et al. (2006) and Kulawik et al. (2006).

3 TES retrievals of atmospheric CO2

3.1 Challenges of CO2 retrievals

Estimating CO2 from remote sensing measurements is chal-
lenging for a number of reasons. The horizontal variability
of CO2 at regional scales is small (∼0.5%–3%) compared to
most trace gases (e.g. ozone variability is∼30%). Moreover,
the spectral signature of CO2 variations is small compared
to spectral effects of temperature and water variability, as
demonstrated in Fig. 1. As a result, CO2 spectral lines are
often used to estimate atmospheric temperature, where CO2
concentrations are assumed to be fixed. Such an approxima-
tion is not valid for CO2 retrievals, and could lead to a cir-
cular dependence between CO2 and temperature. As shown
in this paper, moderate temperature biases propagate into un-
tenably large CO2 errors, but this can be mitigated by jointly
retrieving atmospheric temperature and CO2 for monthly and
regional averages.

Additionally, spectroscopic data used for infrared CO2 re-
trievals are estimated to have∼1% accuracy in the laser
bands (around 1000 cm−1) (Devi et al., 2003; Dana et al.,
1992). While Devi et al. (2003) and Dana et al. (1992) agree
within 1% for the laser bands, they both show a 4% bias with
respect to previous work by Johns and Noel (1988), which
indicates that biases on the order of 4% may also occur in
the Johns and Vanderauwera (1990) measurements of thev2
band (near 700 cm−1). A 1% spectroscopy bias translates to
a ∼4 ppm error in CO2. On the positive side, a uniform bias
could be easily corrected. Radiometric calibration and sta-
bility errors can propagate into the CO2 retrievals; an effect
which may not be noticed in the retrievlas of other more vari-
able atmospheric constituents. Estimates of TES radiometric
accuracy are 0.1 K (Kerola et al., 2009); this would result in
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Fig. 1. Radiance change resulting from perturbations of +10% to
water (blue),−1 K to atmospheric temperature (green) and 10 ppm
to CO2 (red). The perturbations are applied to the boundary layer
(0–2 km) (top) and to the free troposphere (4–8 km) (bottom). The
applied perturbations to water and temperature are of the same order
as the predicted errors.

∼2.5 ppm CO2 error. However, if this is an RMS error, it
averages out, whereas if it is a bias error, it can be corrected.

3.2 Retrieval setup

The development of TES CO2 relied on a combination of
guidance from validation with in situ CO2 data and predictive
calculations of error and information content which has been
used to develop previous TES products, as described in Wor-
den et al. (2004). The main validation data sets used were
the Comprehensive Observation Network for TRace gases by
AIrLiner (CONTRAIL) aircraft flask data, observations from
the Mauna Loa and Samoa surface stations, and the SGP air-
craft flask data (for land validation). A coarse vertical grid,
consisting of 5 levels (surface, 511, 133, 10, and 0.1 hPa) was
chosen for the retrieval, which minimizes contributions from
the a priori state information at each retrieval level. The re-
trieved parameters for CO2 are the logarithm of the volume
mixing ratio at the above levels.

Testing was done with a prototype code based on the TES
production code written in the IDL language (http://www.
ittvis.com/ProductServices/IDL.aspx). Comparisons to vali-
dation data and examination of spectral residuals and other
quality factors were used to iteratively update and refine the
retrieval approach.
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3.3 Retrieval methodology and error analysis

CO2 is estimated by iteratively minimizing a cost func-
tion using the Levenberg-Marquardt non-linear least squares
(NLLS) algorithm. The cost function, C(z), is the combina-
tion of the norm difference between the observed and pre-
dicted radiances and a penalty term based on the a priori
knowledge of the atmosphere:

C(z) =‖Lobs− L(z,b)‖2
S−1

m
+ ‖z − za‖

2
3 (1)

Lobs is the observed radiance vector, which follows the addi-
tive noise model:

Lobs= L(ztrue,btrue) + ε (2)

whereε is the radiance error.L(z,b) is the predicted ra-
diance evaluated for the retrieved statez and non-retrieved
stateb. The cost function terms are weighted by the inverse
of Sm (the radiance error covariance) and3 (the constraint
matrix). The constraint vector,za, is also used for the initial
state. Note that‖A‖

2
B ≡ ABAT .

When differences between radiances calculated at the true
state and a priori vector are spectrally linear, the nonlinear
retrieval can be represented by the linear equation:

xest= xa + Gε + GKb(best− btrue) + A(xtrue − xa) (3)

whereA is the averaging kernel (which describes the sensi-
tivity of the measurement to the true state),xa is the a priori
constraint vector,xtrue is the true state,G is the gain matrix
(describing the sensitivity of the measurement to changes in
radiance),ε is the radiance error vector,Kb is the Jacobian
matrix (describing the sensitivity of the radiance to each pa-
rameter,Kb

ij=∂Li/∂bj ) of the interferent parameters, andb

are the interferent parameters.
The retrieved statez and the full state vectorx (over which

the forward model is calculated) are related through interpo-
lation or mapping, and represent the log of the volume mix-
ing ratio for CO2. The retrieval algorithm is described in
more detail in Bowman et al. (2006).

The second-order stochastic characterization of the atmo-
spheric state and the spectral measurement noise are de-
scribed by the a priori and measurement error covariances:

Sa = cov(xtrue − xa) (4a)

Sm = cov(ε) (4b)

Using Eq. (3), the covariance of the error between the re-
trieved and true state,Serr=cov(xest−xtrue), can be calcu-
lated:

Serr = GSmGT︸ ︷︷ ︸ + GKbSb err(GK)T︸ ︷︷ ︸ (5)

Measurement Interferent

+ (1 − Axx)Sa,xx(1 − Axx)
T︸ ︷︷ ︸ + AxySa,yy(1 − Axy)

T︸ ︷︷ ︸ (5)

Cross−state Smoothing

The measurement and interferent errors come from terms 2
and 3 of the right side of Eq. (3), respectively. The 4th term
of Eq. (3) splits into “smoothing” and “cross-state” errors
(which are described in Worden, 2004), where CO2 indices
are denoted by x, and the indices of co-retrieved species de-
noted by y. The cross-state component is due to the propaga-
tion of error from co-retrieved species into CO2; these errors
should decrease with target averaging over regional scales.
However, when targets with the same true state are averaged,
the smoothing term enters as a bias into the retrieved state
and does not decrease with averaging.

The predicted total error covariance for ann target average
is:

Serr = (Smeas+ Sint + Scross−state)/n + Ssmoothing

Serr = Sobs/n + Ssmoothing (6)

The observation error and smoothing error covariances in
Eq. (5) are included in the TES products (Osterman et al.,
2009). The predicted error for a particular level is the square-
root diagonal of the predicted error covariance at that level,
and the off-diagonal terms describe correlated errors between
levels. Spectroscopic and calibration errors, which may con-
tribute an additional bias and/or random error, are not in-
cluded in Eq. (5).

3.3.1 The observation operator

The TES averaging kernel and a priori constraint vector
are used in the “observation operator”,H(∗)=xa+A(∗−xa)

(Jones et al., 2003). This estimates a TES measurement of
CO2 given an input CO2 profile x, which may be derived
from an in-situ measurement or a model forecast:

xobs= xa + A(x − xa) (7)

This operator uses the sensitivity calculated in the averaging
kernel which is provided in the TES standard product. When
a TES measurement is compared toxobs , the expected dis-
crepancy is the “observation error” which is the sum of the
measurement error, interfering species error, and cross-state
error, shown in Eq. (5), and provided in the TES standard
product.

3.4 The predicted sensitivity

The approximations assumed in the linear retrieval in Eq. 3
can be validated, as described in Kulawik et al. (2008), by
comparing non-linear retrievals using two different a priori
vectors,xa andxa

′. The non-linear retrieval usingxa
′ is com-

pared to the non-linear retrieval usingxa followed by a linear
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Fig. 2. Radiances and Jacobians for the three CO2 bands used in the retrievals. The Jacobians show the sensitivity of radiances to changes in
CO2 at different altitudes. The red arrow shows the sensitivity of the radiance at 710 cm−1 when CO2 at 10 km is changed. The Jacobians
have been divided by the radiance noise, so a value of 1 means that the radiance will change by the same amount as the expected radiance
noise.

transformation of the a priori vector fromxa to xa
′ using the

expression:

xest
′
= x̂ + A(xa

′
− xa) (8)

wherex̂ is the non-linear retrieval obtained withxa, andxest
′

is the linear estimate of the NLLS retrieval with a priori vec-
tor xa

′. xest
′ from Eq. (8) can be compared to thex̂′, the

non-linear retrieval obtained using a priori vectorxa
′. This

analysis is done in Sect. 5.4.

3.5 Radiances and Jacobians

TES filters used in normal operation span the spectral region
from 660 cm−1 to 2260 cm−1, with gaps from 910–950 cm−1

and 1320–1891 cm−1. There is significant CO2 signal in the
radiance between 660–770 cm−1, 930–1090 cm−1 and near
2100 cm−1. The signal near 2100 cm−1 has a low signal to
noise ratio and was not used, and 990–1070 cm−1 was ex-
cluded because of interference from the 10 µm ozone band.
Figure 2 shows the radiance and Jacobians for the three CO2
sensitive spectral regions considered. Although thev2 band
(near 700 cm−1) has a stronger spectral signature, the laser
bands (near 1000 cm−1) have similar information content
due to a better signal to noise ratio.

The mean and standard deviation of radiance residuals,
which is the difference between the observed and forward
model spectra, following CO2 retrievals highlight problem-
atic spectral lines and regions. Spectral regions with standard
deviation>1.2× the NESR (Noise Equivalent Spectral Ra-
diance), or with mean residual>0.5× the NESR for a large
set of retrievals were taken from the window list. The impact
on CO2 sensitivity was minor (less than 0.05 DOF). The full
window list is shown in Table 1.

Table 1. Spectral windows used for TES CO2.

TES filter Start End
(cm−1) (cm−1)

2B1 671.620 673.420
2B1 674.020 685.300
2B1 685.840 690.100
2B1 690.580 697.180
2B1 697.660 705.100
2B1 705.580 713.201
2B1 713.740 713.800
2B1 714.280 723.220
2B1 723.701 724.960
1B2 967.100 971.060
1B2 971.660 987.260
1B2 987.740 990.02
1B2 1070.000 1073.720
1B2 1074.200 1074.680
1B2 1075.280 1080.980
1B2 1081.520 1085.120
1B2 1085.780 1104.620
1B2 1105.160 1117.400

The species included in the forward model were H2O, CO2, O3,
HNO3 for the 2B1 filter and H2O, CO2, O3, CFC-11, CFC-12 for
the 1B2 filter.

3.6 Retrieval strategy

In light of the impact of CO2 of errors in temperature and
water, the retrieval strategy selected jointly retrieves atmo-
spheric temperature, surface temperature, emissivity (over

www.atmos-chem-phys.net/10/5601/2010/ Atmos. Chem. Phys., 10, 5601–5623, 2010
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Table 2. Degrees of freedom for CO2 for one ocean target in differ-
ent scenarios.

CO2 alone +TATM +H2O +clouds, TSUR

ν2 1.87 1.00 0.62 0.61
laser 1.02 0.88 0.72 0.68
ν2 + laser 2.08 1.33 1.09 1.04
Sel. Windows 1.94 1.22 1.01 0.95

Additional retrieval species are added in each column, so the final
column retrieves CO2, atmospheric temperature, water, clouds, and
surface temperature. The “ν2” window is 670–775 cm−1, the laser
windows are 967–990 and 1070–1117, and the selected windows
are shown in Table 1. Note that additional windows to improve tem-
perature and water would increase the CO2 DOFs in a joint retrieval
with the upper limit being the “CO2 alone” column.

land), water vapor, and CO2. For water, the constraints and
retrieval are the same as those used operationally for TES,
however the emissivity constraint was updated to allow more
variation in emissivity. The temperature constraint was also
tightened from∼2 K to ∼0.6 K variability to allow more de-
grees of freedom for CO2 and which matches TES-sonde
temperature biases of∼0.5 K (Herman et al., 2008). Ozone
was not jointly retrieved as it was found that retrieving ozone
had no impact on the carbon dioxide monthly average values.

Table 2 shows the total degrees of freedom with different
TES spectral windows and different species combinations.
Table 2 shows that if CO2 were retrieved by itself, i.e. assum-
ing temperature and water are adequately known, CO2 would
have more than double the degrees of freedom as when it is
co-retrieved with temperature and water. However, as shown
in the next section, the temperature must have a low aver-
age bias for this strategy to work. Table 2 also shows that
the laser bands contain more independent CO2 information
as compared to thev2 band (by comparing rows 1 and 2) and
that only about 0.1 additional degree of freedom is available
for CO2 beyond the windows selected (by comparing rows 3
and 4). The degrees of freedom available for CO2 would
also increase if more windows are included which indepen-
dently determine temperature, water, etc., effectively freeing
up shared information for estimating CO2. However since
calibration and spectroscopy vary for TES for different filters
and spectral regions, a working strategy implementing this
has not been developed. Additionally, averaging strategies
which reduce measurement error could improve CO2 sensi-
tivity.

3.7 A priori covariance and constraint

The a priori covariance, used for calculating the smoothing
error, is set to the same values globally, although the atmo-
spheric variability of CO2 is significantly lower in the South-
ern Hemisphere. The square root values of the diagonal of
the a priori covariance are set to: 4, 3.5, 2.5, 2, and 2 ppm at

the surface, 511, 133, 10, and 0.1 hPa, respectively. The sur-
face variability is based on the average GLOBALVIEW vari-
ability (3.5 ppm variability) which is increased to 4 because
of the higher variability over land (e.g. 10 ppm variability for
SGP aircraft data). The 511 hPa variability is based on mea-
surements of Mauna Loa variability. The 133 hPa variabil-
ity is based on CONTRAIL variability, and the values at the
higher levels are slightly reduced from the CONTRAIL vari-
ability. The off-diagonal correlations in the a priori covari-
ance matrix are 0.8 for the first two levels, based on correla-
tions of monthly averaged SGP data for the first two levels,
0.9 for the second two levels, based on correlations of Mauna
Loa and CONTRAIL data, and 0.9 for all other adjacent lev-
els.

As seen in Eq. (1), the constraint matrix determines how
much weight is given to the a priori knowledge of the atmo-
sphere. The relative constraint strengths for CO2 and tem-
perature also determine the partitioning of shared degrees of
freedom between CO2 and temperature. The selection of a
reduced set of retrieval levels or linearly scaling a profile can
also be represented in the a priori framework and expressed
as a constraint matrix. The effect of the constraint can be
seen by applying the observation operator (Eq. 7) to a model
or aircraft profile to simulate the degraded vertical resolution
seen by TES.

The constraints are calculated based on the method of Ku-
lawik et al. (2006) with the variability of the CO2 covariance,
which is discussed in Sect. 4, enhanced to 5.4% at the sur-
face and 2.8% in the mid-troposphere which increases both
the sensitivity to CO2 and the measurement error. As seen in
Sect. 5, this loose constraint results in a large uncertainty for
a single target and a 1.3–2.3 ppm error with averaging.

4 In situ observations of atmospheric CO2

4.1 In situ and other datasets used for validation of
TES CO2

TES CO2 data over oceans for the period 2005–2008 are
compared to CONTRAIL data and to surface data from
Samoa and Mauna Loa. The CONTRAIL dataset contains in
situ aircraft flask measurements taken on commercial flights
between Australia and Japan. The data are collected pri-
marily between 10–11 km one to two times per month at
12 latitudes between 24◦ S and 35◦ N (Matsueda et al., 2002,
2008; Machida et al., 2008). The CONTRAIL dataset is ex-
tremely useful for satellite validation as it occurs in the up-
per troposphere over all seasons in both the Northern and
Southern Hemispheres. We compare to sets of CONTRAIL
data in the Northern Hemisphere between 13◦–35◦ N, and in
the Southern Hemisphere between 10◦–25◦ S. We also com-
pare to the Mauna Loa site, which is at 3.4 km altitude,
19.5◦ N, 155◦ W and is part of the NOAA Earth System
Research Laboratory (ESRL)/Global Monitoring Division
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(GMD) Carbon Cycle Greenhouse Gases network (http://
www.esrl.noaa.gov/gmd/ccgg/index.html). This site is useful
as it has monthly averaged data at an altitude somewhat lower
but comparable to the location of peak sensitivity of TES,
at 5 km. The GMD Samoa site (54.5◦ S, 154◦ E) provides
surface measurements complementary to the Southern Hemi-
sphere CONTRAIL data. Together these data bracket the al-
titudes of the peak TES sensitivity. A map of validation sites
and coincident TES observation locations shown in Fig. 3.
In the Pacific, we also compare to the AIRS CO2 dataset
(Chahine et al., 2005, 2008), which monthly averages grid-
ded by 2◦×2.5◦, available fromhttp://mirador.gsfc.nasa.gov/
(keyword AIRX3C2M). The retrieved parameter is a scaling
factor applied to a CO2 profile and has peak sensitivity at
300 hPa for mid-latitudes (Olsen, 2009).

For validation of the TES data over land for 2006–2008,
we compare to aircraft flask measurements taken at the
Southern Great Plains (SGP) Atmospheric Radiation Mea-
surement (ARM) site with up to 12 measurements between
0.3 and 5.3 km altitude up to 8 times per month. This site
is located in the southern United States at 36.8◦ N, 97.5◦ W,
and has data starting in 2006.

For TES CO2 retrievals between 40◦ S and 45◦ N, we com-
pare to surface station flask data from the NOAA GMD
network (Conway et al., 2008), the GLOBALVIEW dataset
(GLOBALVIEW-CO2, 2008), and CarbonTracker (Peters
et al., 2007; http://carbontracker.noaa.gov). The GLOB-
ALVIEW dataset interpolates and extends data from sur-
face and aircraft flask measurements, and continuous surface
and tower CO2 measurements to provide weekly CO2 val-
ues at specific locations (Masarie and Tans, 1995). There are
39 stations (25 ocean and 14 land) between 35◦ S and 40◦ N
with data in 2006–2007, although some do not have contin-
uous data. Ocean sites are expected to compare better with
TES measurements because of smaller differences in CO2
between the surface and free troposphere. CarbonTracker is
a data assimilation system that combines in situ observations
with a model to produce three dimensional estimates of tro-
pospheric CO2 distributions as well as estimates of sources
and sinks. The CO2 distributions have global, daily output on
34 pressure levels ranging from the surface to 0.1 hPa. TES
is compared to CarbonTracker at the surface and at 500 hPa
with and without the TES averaging kernel.

4.2 Observed variability in CO2 at the surface and in
the free troposphere

This section compares in situ data at different locations and
altitudes to provide context for the TES results. Surface sta-
tion flask data show seasonal variability of 2–15 ppm, with
larger variability observed over land and in the Northern
Hemisphere, and the highest seasonal variability towards the
north pole. Over the northern mid-latitude Pacific Ocean,
comparisons were made between monthly averaged surface
data from the Guam ground station (at 13.7◦ N, 144◦ E),

Figure 3 

 

Mauna Loa 

Samoa Surface sites 

SGP 

CONTRAIL NH 

CONTRAIL SH 

Fig. 3. Validation locations: In the Northern Hemisphere, CON-
TRAIL data (red dots, 13◦–35◦ N, ∼140◦ E, 10–11 km) are com-
pared to TES in the same vicinity (blue, 13◦–35◦ N, 128◦–158◦ E).
The same TES data are compared to Mauna Loa observatory (green,
19.5◦ N, 155◦ W at 3.4 km). Over land, TES (28.8◦–44.8◦ N,
109.8◦–85.5◦ W) is compared to aircraft data at the Southern Great
Plains (SGP) ARM site in the US (orange, 36.8◦ N, −97.5◦ W, 0.5–
5.3 km). In the Southern Hemisphere CONTRAIL data (red dots,
10◦–30◦ S, ∼150◦ E, 10–11 km) are compared to TES data from
the box (10◦–30◦ S, 128◦–168◦ E). These are also compared to the
Samoa surface site (purple circle, 14◦ S, 170◦ W). TES data be-
tween 40◦ S and 45◦ N are also compared to the GLOBALVIEW
dataset (purple +’s).

CONTRAIL aircraft flask data at 10–11 km, and the Mauna
Loa ground station (at 3.4 km elevation). There is good
agreement at these different longitudes, latitudes, and al-
titudes (with perhaps a one-month temporal lag in CON-
TRAIL for January through April). This indicates that CO2
over the Pacific is fairly uniform in latitude (between 15◦–
35◦ N), longitude, and altitude (between 0–12 km). The sea-
sonal cycle is about 5 ppm in these data.

In contrast, aircraft measurements taken at the SGP site
in the southern United States show a seasonal variability of
∼10.0 ppm between 0–2 km, with a seasonal pattern peak-
ing earlier than at Mauna Loa. In contrast, the 2–7 km data
from the SGP have∼5 ppm seasonal variability with a sim-
ilar seasonal pattern to Mauna Loa. Variability within each
month drops off with altitude with intra-monthly variability
of 3.9 ppm for the 0–2 km data. For the 2–4 km data and
the 4–7 km data, the intra-monthly variability is 1.8 ppm and
1.4 ppm, respectively. The 2–4 km and 4–7 km data showed
similar seasonal patterns.

In the southern Pacific Ocean, the Samoa ground station
and CONTRAIL aircraft data between 10–30◦ S both show
∼3 ppm seasonal variation, with Samoa showing an irreg-
ular monthly increase, and CONTRAIL perhaps showing a
peak around July of each year. Both show variability within
each month of∼0.5 ppm. A surface station at Cape Fergu-
son, Australia (19◦ S, 147◦ E), close to the CONTRAIL flight
path, shows the same yearly increase with different monthly
variability. The CONTRAIL data, on average, have a 0.5–
1 ppm high bias versus the surface stations, which, when
looking at data averaged over several years, appears to oc-
cur between May and August. In summary, the Southern
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Figure 4  

OCEAN LAND 

Fig. 4. Averaging kernel rows for an average of ocean (near Mauna
Loa, left) and land (near the SGP site, right) targets over a 4-year
period. The ocean targets show more sensitivity on average because
the mean tropical ocean temperature is 300 K versus 290 K for the
land cases, leading to a higher thermal contrast. Therefore, although
daytime, summer, land targets will have the greatest sensitivity, av-
eraging over winter and night reduces land average sensitivity.

Hemisphere shows little seasonal variability, but there are
month by month differences between the surface data and
CONTRAIL.

5 Characterization of results

5.1 Sensitivity and errors of a single target

Averaging kernel rows for Ocean (in Pacific Ocean, 13◦–
35◦ N) and Land (near SGP, 31◦–46◦ N) retrievals are seen in
Fig. 4. Thermal contrast drives the sensitivity of the retrievals
in the infrared, with higher sensitivity correlated with higher
surface temperatures. Summertime, daytime, land cases have
the most sensitivity, however tropical ocean locations have
more sensitivity than land locations when averaged over day
and night, and all seasons. The averaging kernels show sen-
sitivity for the retrieved value at the surface, 511 hPa, and
133 hPa. The peak sensitivity is at 511 hPa with about 45%
sensitivity near the 511 hPa level, about 10% sensitivity near
the surface, and about 25% sensitivity around the 133 hPa
level, with the remainder coming from the prior.

Figure 5 shows the predicted errors for both a single target
and a 100-target average for TES CO2 retrievals. The sin-
gle target predicted error is about 6 ppm at 511 hPa, which is
dominated by cross-state error, primarily from atmospheric
temperature, but also from water, surface temperature, and
cloud properties. The 100-target average error at 511 hPa is
about 1.4 ppm, dominated by the smoothing error.

The thermal infrared radiation signal strength observed by
TES depends on the surface temperature and surface prop-
erties. As a result, sensitivity to CO2 depends on latitude
as shown in Fig. 6. Because of the sensitivity decrease with

 

 

        

Figure 5  

 

 

 1 target  100 targets 

Fig. 5. Errors for a single target (left) and a 100-target average
(right). For the single target, the dominant error is the cross-state
error, which results from the propagation of errors from tempera-
ture, water, surface temperature, and clouds into CO2. For the 100-
target average, all errors except for self-smoothing, which results
from sub-optimal sensitivity, are assumed to add randomly. Self-
smoothing is the dominant error for the 100-target average.

 

 

Figure 6  

 
Fig. 6. Sensitivity vs. latitude of the TES CO2 retrievals in Octo-
ber 2006. Since the sensitivity drops off with latitude, only targets
between 40◦ S to 45◦ N are processed to retrieve CO2.

higher latitudes, only 40◦ S to 45◦ N is used from TES data.
Results at higher latitude do not compare well to aircraft val-
idation data at 65◦ N at Poker Flats (not shown). For simi-
lar reasons, only targets with cloud optical depth (OD) less
than 0.5 are considered to have good quality.

5.2 Predicted and actual errors for averaged profiles

In this section we test Eq. (6) by calculating the actual and
predicted errors for various numbers of averaged profiles in
boxes of 10◦×10◦, 15◦

×15◦, 20◦
×20◦, and 20◦×30◦ de-

grees. Three years of TES data are compared to Mauna Loa
(with and without the TES observation operator) and CON-
TRAIL data as shown in Fig. 7. All comparisons show a de-
crease in error as the number of profiles averaged increase, as
predicted. Equation 6 suggests that the error of TES versus
Mauna Loa or CONTRAIL should fit to

√
Sobs/n+Ssmoothing
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and the error of TES versus Mauna Loa with the TES obser-
vation operator should fit to

√
Sobs/n. Fits of the data shown

in Fig. 7 to the form of Eq. (6) indicated that the observa-
tion error is 12.3 ppm (rather than the predicted 6 ppm) and
the smoothing error is 1.1, about as predicted. The largest
uncertainty in the smoothing error is the a priori covariance,
which predicts the initial uncertainty in the atmospheric state.
The dominant error of observation error is the cross-state er-
ror, which includes temperature and water errors. CO2 er-
ror is not found to be very sensitive to the initial water un-
certainty but increasing the temperature a priori uncertainty
from about 2 K to 5 K resulted in a 12 ppm predicted error for
CO2. However, 5 K is larger than the expected initial error in
TES temperature, and this suggests another source of error
for CO2, e.g. a variable calibration error, which averages out
similarly to the observation error.

5.3 Impact of temperature and cloud errors

The effects of temperature errors were studied by setting
the temperature to the initial guess or the initial guess per-
turbed by +0.1 K throughout the profile. The difference in
retrieved CO2 (holding temperature fixed) for the two initial
temperature values was calculated and compared to the pre-
dicted change using Eq. (3). Based on a case study of about
100 non-linear retrievals, it was found that a +0.1 K tempera-
ture error resulted in a +2.5 ppm CO2 error. This agreed with
the predicted propagation of temperature error, as given by
the quantityGKb (0.1 K) from Eq. (3). As the uncertainties
in the TES initial temperature (from NASA’s Global Model-
ing and Assimilation Office GEOS-4 meteorological fields)
are∼2 K compared to sondes (Herman et al., 2008), temper-
ature errors resulting from fixing the temperature to the initial
value would translate into unacceptable errors in CO2, of up
to 50 ppm, for a single target. However, when temperature
and water are jointly retrieved along with CO2, the tempera-
ture and water errors partially cancel, and result in predicted
errors of∼6 ppm for a single target, and less when averaged
over many targets.

With the cloud optical depth (OD) less than 0.5, the pre-
dicted errors from clouds propagated to CO2 are on the or-
der of 1 ppm. We would expect this to impart a random er-
ror with some targets retrieving clouds that are too optically
dense, and other targets retrieving clouds that are too opti-
cally thin. The systematic impact of cloud errors was studied
by comparing TES versus Mauna Loa data for different re-
trieved cloud top pressures and cloud optical depths. The
targets were divided into two groups, those with OD<0.1
(162 targets per monthly average) and those with OD be-
tween 0.1–0.5 (101 targets per monthly average). The pre-
dicted DOF is 0.85 versus 0.67 for these targets and the RMS
errors versus Mauna Loa data with the TES observation op-
erator are 1.3 and 1.5 ppm, respectively. Although OD<0.1
performs better, averaging all cases results in a lower RMS
of 1.1 ppm due to averaging more targets. The two cloud

 

 

 

Figure 7  
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Fig. 7. Actual and predicted total error (top panel) and observation
error (bottom panel). The actual error is the root mean square dif-
ference between TES and in situ data. As predicted, comparisons
to in situ data improve as the number of profiles averaged increases.
The actual error fits best to an observation error of 12 ppm (about
twice the predicted observation error) and a self-smoothing error of
1.1 ppm (as predicted). This fit is shown as a red dashed line in both
panels.

bins show a relative bias of 0.6 ppm (higher cloud OD results
in higher CO2). Partitioning cases with clouds (OD>0.1)
into those with cloud top pressures greater than and less than
500 hPa, produced 53 and 54 targets per bin, respectively.
The RMS errors for these cases, based on comparison to
Mauna Loa data with the TES observation operator, were
1.9 and 1.7 ppm, respectively, with a relative bias of 1.9 ppm
(higher altitude clouds result in higher CO2 retrieved). These
values indicate that cloud optical depth artifacts are likely not
a concern, but that cloud pressure artifacts may be impacting
CO2 retrievals and should be further studied. By itself this
result should not be used to screen TES data based on cloud
pressure, since cloud properties are related to convective pro-
cesses and vertical transport, which can result in differences
in atmospheric composition.

5.4 Validation of predicted sensitivity

Starting the retrieval with a different prior and initial guess is
used to validate the averaging kernel and retrieval linearity.
TES data in the Northern Hemisphere Pacific Ocean (13–
35◦ N, 128–158◦ E) were processed using both a 360 ppm
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Figure 8  

Fig. 8. TES CO2 retrieved with an initial guess and prior (dashed
line) of 360 ppm for (13-35◦ N, 128-158◦ E). The TES results (red)
agree well with Mauna Loa data with the TES observation operator
(orange) applied, which accounts for TES sensitivity. This validates
the TES reported sensitivity, which is captured in the averaging ker-
nel.

(360IG) and a 380 ppm (380IG) initial guess and prior value
(both the a priori vector and initial guess are set to the spec-
ified values for all pressures and all dates) for 2006–2008.
The two sets of retrievals are compared to Mauna Loa data
to determine the effect of starting at a “bad” initial guess
and prior, and compared to each other to determine if they
are consistent given the TES predicted sensitivity. Figure 8
shows 360IG compared to Mauna Loa with the TES obser-
vation operator (Eq. 7). The consistency of these results
validate TES’s averaging kernel, with the averaging kernel
row at 511 hPa averaging∼0.8. However, 380IG corre-
lates somewhat better than 360IG with Mauna Loa (r=0.95
versusr=0.91), showing that the initial guess and prior do
make some difference in the resulting accuracy. Monthly
averaged 380IG values were converted using Eq. (8) to a
360 ppm a priori vector to create the 360EST dataset. The
360EST dataset averaged 1.2 ppm higher than 360IG, with a
0.8 ppm rms. The bias between 360EST and 360IG is likely
due to the smaller degrees of freedom (by 0.05) for 360IG,
reflecting the fact that the averaging kernel is calculated at
the retrieved state, which is lower for 360IG.

Conversion using the averaging kernel on the TES 66-level
pressure grid instead of the 5-level CO2 retrieval level grid
yielded similar results. Applying Eq. (8) to individual targets
and then creating monthly averages yielded a larger standard
deviation (4 ppm vs. 0.8 ppm) and a smaller bias (0.4 ppm
vs. 1.2 ppm) versus first averaging and then converting with
Eq. (8). Operationally, the initial error is not expected to
be more than 5 ppm. These findings validate the reported
sensitivity and indicate that the results are fairly robust under
changes to the a priori vector (e.g., as described in Kulawik
et al., 2008).

5.5 Bias characterization

TES results show a low bias of about 6 ppm relative to all val-
idation data, which is most likely due to some combination of
calibration and spectroscopic error. The bias changes when
the spectral windows or constraints are changed. This bias,

however, appears to be stable over the 3 years of uniformly
processed data using TES v003 radiances. Whether the bias
is spectroscopic or calibration, it can be represented as a ra-
diance error which propagates into CO2 using the equation
1x=G1L , where1xis the error in log(VMR),G is the gain
matrix, and1L is the radiance error. If it is from a line inten-
sity error, the Jacobian error is of the form1K=f K , mak-
ing the radiance error1L=f Kx, wherex is the log of the
true state, so the error in the retrieved value isf Ax. This
is the format assumed for the error. The value forf was set
by comparisons to data from the Mauna Loa observatory, as
these data had the highest correlation with the retrieved TES
values. The best fit forf was 0.021, or 2.1%. Applying
the correction factor did not impact the correlation but did
improve the bias. TES v004 radiances, which have an up-
date to the frequency calibration, had a similar but slightly
larger bias of about 0.023. Ideally the comparison would be
to oceanic well-mixed aircraft data covering the altitudes of
TES sensitivity (surface through∼11 km) with the TES ob-
servation operator applied rather than to a uniform profile set
to the Mauna Loa surface value with the TES observation
operator applied. However, this correction factor is easy to
update, as it is applied post-processing using the averaging
kernels in the product.

6 Comparisons to in situ data, AIRS, and
CarbonTracker

The validation dataset for CO2 is far more comprehensive
than for many other atmospheric constituents. We compare
to 39 surface stations between 35◦ S and 40◦ N, which report
daily or monthly values, to aircraft data taken over the United
States (SGP) and to aircraft data taken in the Pacific between
Japan and Australia (CONTRAIL), data from the AIRS in-
strument, and to CarbonTracker.

6.1 CONTRAIL, Mauna Loa, and AIRS in the
Northern Hemisphere

In Fig. 9 we compare CONTRAIL aircraft measurements of
CO2 in the Northern Hemisphere to TES data processed from
the same vicinity, with locations described in Fig. 3. The
TES data are also compared to data from the Mauna Loa sur-
face site and to AIRS measurements from the same latitude
and longitude ranges as TES. The Mauna Loa and CON-
TRAIL data, at 3.5 and 10.5 km, respectively, are useful in
that they bracket the altitude of maximum TES sensitivity,
around 5 km. The AIRS CO2 used (Chahine et al., 2005) has
peak sensitivity around 300 hPa, corresponding to a higher
altitude than TES CO2. Figure 9 shows a time series of the
datasets (top panel), the difference between TES and Mauna
Loa with the TES observation operator (middle panel), and
correlations of TES to the other measurements (lower panel).
For the application of the TES observation operator, the true

Atmos. Chem. Phys., 10, 5601–5623, 2010 www.atmos-chem-phys.net/10/5601/2010/



S. S. Kulawik et al.: Characterization of TES CO2 for carbon cycle science 5611
 

 

 

Figure 9  

CO2 Comparison 13-35N 

TES – Mauna Loa w/obs 

Δ
C
O

2
 (

p
p

m
)
 

Fig. 9. Comparison of TES (at∼5 km, red), Mauna Loa surface data
(at 3.5 km, purple), CarbonTracker (5 km), AIRS (∼9 km, blue),
and CONTRAIL aircraft data (10-11 km, green) in the Northern
Hemisphere (13◦–35◦N, 128◦–158◦ E). The top panel shows a time
series of the different datasets, where the TES initial and a priori
values are set to 380 ppm (dashed line). The orange data show the
observation operator applied to Mauna Loa, which agrees best with
TES data as the TES averaging kernel row sums to about 0.8. The
middle panel shows TES – Mauna Loa with TES observation op-
erator, which does not show a trend. The bottom panel shows TES
(x-axis) plotted versus the above data.

value is set to the Mauna Loa value for all pressures. TES
is most correlated with Mauna Loa (r=0.92) and Carbon-
Tracker (r=0.95) and correlated with CONTRAIL and AIRS
at aboutr=0.85. The correlations represent a combination of
yearly and seasonal trends.

As seen in Fig. 9 TES begins to show a low bias versus
Mauna Loa without the TES observation operator, starting in
mid-2008, when CO2 deviates significantly from the a priori
value of 380 ppm. The bias is improved with the application
of the TES observation operator, which takes into account the
TES sensitivity. For assimilation of data, it is most important
to have the sensitivity accurately characterized, as demon-
strated by the good comparison of the TES average (red) and
Mauna Loa with TES observation operator (orange).
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Fig. 10. Comparison of TES (at∼5 km, red), Samoa surface data
(purple), CarbonTracker (5 km), AIRS (∼9 km, blue), and CON-
TRAIL aircraft data (10–11 km, green) in the Southern Hemisphere
(10◦–30◦ S, 128◦–168◦ E). The top panel shows a time series of the
different datasets, where the TES initial and a priori values are set to
380 ppm (dashed line). The middle panel shows TES – Samoa with
TES observation operator. The bottom panel shows TES (x-axis)
plotted versus the above data.

6.2 CONTRAIL, Samoa, AIRS in the Southern
Hemisphere

As seen in Fig. 10, the seasonal variability of Southern Hemi-
sphere CO2 is far less than the Northern Hemisphere, al-
though the yearly increase in CO2 is similar in both hemi-
spheres. Figure 10 shows comparisons of CONTRAIL,
AIRS, CarbonTracker, and the Samoa surface site with TES
based on the locations as described in Fig. 3. The TES vari-
ability is larger than expected as compared to the validation
data, with high values in the second part of the year, partic-
ularly in 2005 and 2006, which show up clearly in Fig. 11.
Correlations with CONTRAIL, AIRS, and Samoa are shown
in Fig. 10, as well as the bias versus Samoa over time. To
understand the differences between TES and the validation
data we also looked at data from the Rarotonga aircraft site in
the Southern Hemisphere at 21◦ S, 160◦ W. Although miss-
ing data for much of 2005–2006, Rarotonga aircraft data are
1–2 ppm higher at 4.5 km than at 0.5 km, indicating that the
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Fig. 11. Monthly averaged CO2 July 2005 to July 2008 in the
Northern Hemisphere (top panel) and Southern Hemisphere (bot-
tom panel). In the Northern Hemisphere, the agreement is gen-
erally within 2 ppm for all datasets, with Mauna Loa showing the
most seasonal variability and TES versus Mauna Loa with the TES
observation operator applied showing the best agreement. In the
Southern Hemisphere, TES values are∼2 ppm high compared to
Samoa and CONTRAIL in the second half of the year which is dis-
cussed in the text.

southern Pacific is not as vertically homogenous as the north-
ern Pacific.

6.3 Seasonal variations from 2005–2008 monthly
averages

Figure 11 shows the seasonal variability of the observations,
based on three years of data, from June 2005 to June 2008,
averaged by month (i.e. all data from August 2005, 2006,
and 2007 averaged. In the Northern Hemisphere, TES agrees
well with the Mauna Loa data transformed with the TES ob-
servation operator,which has less seasonal variability than
the raw Mauna Loa data. CarbonTracker shows a similar
seasonal pattern with less variability, especially considering
that the data do not have the TES observation operator ap-
plied. AIRS, at a higher altitude, shows the same seasonal
pattern with less variability. The CONTRAIL data, at 10–
11 km, appear to show approximately the same seasonal vari-
ability as Mauna Loa, with faster transitions. In the South-
ern Hemisphere, the seasonal variability of all datasets is
markedly less, and the agreement is less striking. TES shows
higher values in the second half of the year, with a seasonal

 

 

Figure 12  

CO2 Comparison at SGP 

Fig. 12.Monthly averaged TES (∼5 km, red), SGP aircraft data (2–
7 km, green), and Carbontracker (black). SGP with the observation
operator (orange) is influenced by the surface data and affected by
seasonal variations in sensitivity. TES compared with SGP with the
TES observation operator applied shows a high bias.

cycle somewhat similar to CarbonTracker, although averag-
ing about∼1.5 ppm higher. The validation in the Southern
Hemisphere relies on data at the surface and 10 km, with no
validation data in the mid troposphere, so it is not possible to
fully validate the TES Southern Hemisphere results.

6.4 Comparison to SGP aircraft data

Figure 12 shows comparisons to aircraft data from the
SGP ARM site. Surface air at the SGP shows a seasonal
drawdown arising from winter-wheat (April–May) and pho-
tosynthesis of more distant summer crops and grass (June–
July) (Fischer et al., 2007; Riley et al., 2009). The air-
craft data from 2–4 km and 4–7 km show very similar sea-
sonal patterns at this location so aircraft data between 2–7 km
were averaged monthly and compared to monthly averages
of TES over the spatial region described in Fig. 3. Figure 12
shows the comparison of these data from 2006–2008, and
the lower panel shows a correlation of 0.67 between TES
and SGP aircraft data and 0.77 correlation between TES and
Carbontracker. These correlations do not change when the
TES observation operator is applied, however TES shows a
high bias when the observation operator is applied, indicat-
ing more work is needed on the characterization of the TES
bias correction. Since SGP is at one location with a few mea-
surements per month and TES is averaging over most of the
United States, it is not surprising that there are some differ-
ences between these measurements, however the differences
are larger than expected. Comparisons of aircraft data from
Sinton, Texas (at 4.5 km) and Beaver Crossing, Nebraska
(at 5 km) to the SGP aircraft data above 2 km show differ-
ences of 1–2 ppm which indicate that TES land retrievals of
CO2 need improvement; one possible explanation that is now
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Table 3. TES correlation to GLOBALVIEW, CarbonTracker, and AIRS for different subsets.

Correlation Correlation Correlation GLOBALVIEW station locations
GLOBALVIEW CarbonTracker AIRS used for comparison

N. Hemisphere ocean 0.69 0.69 0.53 BME BMW CHR GMI HAA IZO KEY KUM
MID MLO MNM RPB RYO YON GSN AZR
PTA TAP

S. Hemisphere ocean 0.11 0.57 0.16 ASC CPT EIC SEY SMO RTA

Ocean 0.60 0.67 0.46 ASC BKT BME BMW CHR CPT EIC GMI
HAA IZO KEY KUM MID MLO MNM RPB
RYO SEY SMO YON GSN AZR PTA RTA
TAP

Ocean altitude>2 km 0.83 0.74 0.56 MLO IZO

Land 0.16 0.36 0.24 ASK CFA MKN PTA SGP TAP TGC UTA
WIS WKT WLG CPT GSN BKT

N. Hemisphere Land 0.35 0.52 0.48 ASK GSN PTA SGP TAP TGC UTA WIS
WKT WLG

Land Altitude>2 km 0.51 0.24 0.28 ASK MKN WLG

Correlations of TES, GLOBALVIEW, CarbonTracker (at 500 hPa with TES observation operator applied), and AIRS (∼300 hPa) at subsets
of GLOBALVIEW locations. Correlations are higher for ocean versus land, for northern versus Southern Hemisphere; and for higher
versus lower altitude surface stations. The highest correlation is for ocean locations with altitude>2 km. Overall, TES correlates best with
CarbonTracker.

being investigated is interference from emissivity due to a
prominant silicate feature in the right laser band.

The correlations between TES and SGP are significantly
lower than that obtained between TES and Mauna Loa or
CONTRAIL data in the Northern Hemisphere. The lower
correlation could indicate a problem in TES results over land,
or could result because TES is averaging over a much of the
US. Land data present more challenges than ocean, namely
an uncertain and variable surface emissivity, and a less cer-
tain and more variable surface temperature. It is likely that
the less optimal comparison with validation data is a com-
bination of more interference of surface characteristics and
more variable CO2. This dataset is and will be useful for
testing improvements to the TES retrieval algorithm.

6.5 Comparison to GLOBALVIEW and surface flasks

Comparisons of TES to GLOBALVIEW data are useful for
a statistical validation of TES even though GLOBALVIEW
mainly consists of surface site estimates and TES sensitivity
peaks in the mid-troposphere. Processed TES data from Jan-
uary 2006 through September 2007 are compared to GLOB-
ALVIEW surface values between 35◦ S and 40◦ N which in-
cludes 24 ocean and 14 land stations. We compare monthly
averaged TES values which have at least 20 TES measure-
ments within 830 km of the site in a month (resulting in
about a 15◦ diameter circle centered at the site). Compari-
son of TES to GLOBALVIEW versus flasks yielded nearly
identical results, with comparisons within 0.02 correlation of
each other, so for simplicity only results compared to GLOB-
ALVIEW are shown. Use of GLOBALVIEW data points

with a relative weight of at least 2 (“derived directly from
the actual measurements”) resulted in only 4 stations with
not much improvement in statistics over using all weights, so
all weights are used for comparisons.

Table 3 shows TES and GLOBALVIEW correlations for
different subsets of locations; we find that ocean sites have
significantly higher correlation than land locations, and that
the Northern Hemisphere sites have significantly higher cor-
relation than those in the Southern Hemisphere. We also
find that high altitude sites (>2 km) correlate better with TES
than lower altitude sites, likely because at high altitudes the
measurement is made closer to the altitude of TES peak sen-
sitivity. As shown in Table 4, offsetting TES ocean targets
from GLOBALVIEW by latitude, longitude, or time resulted
in a significant reduction in correlation between TES and
GLOBALVIEW, validating patterns seen by TES in latitude,
longitude, and time.

The mean difference between TES and GLOBALVIEW
is 0.1 ppm (TES high) with the bias correction discussed
in Sect. 5.5. The expected difference given in Stephens et
al. (2007) for 4 km – surface values is−0.7 ppm. However,
this bias fluctuates depending on which subset of data is used,
so it indicates, but not conclusively, that the TES bias correc-
tion is too high. The predicted error for the TES averages
(∼85 targets per month per GLOBALVIEW site) is 1.9 ppm.
A scatter plot of TES versus GLOBALVIEW is shown in
Fig. 13, which shows definite skill for TES, especially con-
sidering that the TES initial guess and a priori are both set
to 380 ppm. The correlation is 0.60 and, as discussed above,
decreases if TES is offset from GLOBALVIEW by time, lat-
itude, or longitude.
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Figure 13  

 

Fig. 13. TES versus GLOBALVIEW data for TES observations
within 550 km of GLOBALVIEW sites. The agreement is signifi-
cant given that TES starts with a uniform 380 ppm prior and initial
guess.

Table 4. TES correlation to GLOBALVIEW at and offset from
GLOBALVIEW locations.

Time (±1 month) Latitude (±15◦) Longitude (±30◦)

TES + shift 0.56 0.54 0.47
Aligned 0.60 0.60 0.60
TES – shift 0.44 0.44 0.52

This table shows correlation of TES shifted by the indicated amount
versus GLOBALVIEW. This shows that TES agrees best with
GLOBALVIEW when aligned to the same time, latitude, and longi-
tude. This is for yearly de-trended data.

6.6 Comparison to CarbonTracker

TES is compared to CarbonTracker at the surface and at
500 hPa at GLOBALVIEW ocean locations. Because Car-
bonTracker spans the surface through 0.1 hPa, the TES ob-
servation operator can be applied to CarbonTracker for com-
parisons to TES. CarbonTracker is interpolated to the TES
standard pressure grid (∼65 levels from the surface through
0.1 hPa), the observation operator is applied on the TES stan-
dard pressure grid using Eq. (7), and the resultant value
is sampled at 511 hPa for comparison to the TES results.
For comparisons at the same ocean GLOBALVIEW sites
as above, the correlations are 0.62 for TES versus Carbon-
Tracker at the surface and 0.67 for TES versus Carbon-
Tracker with the TES observation operator at 500 hPa, indi-
cating a better agreement between TES and CarbonTracker
when CarbonTracker is sampled at the TES pressure level.
CarbonTracker at 500 hPa shows about 25% less seasonal
variability than TES, and CarbonTracker with the TES ob-
servation operator shows about half the variability of TES
in the Northern Hemisphere, as seen in Table 6 and illus-
trated in Fig. 11. TES is also compared to CarbonTracker at
an offset from GLOBALVIEW locations by±15◦ latitude or

Table 5. TES and CarbonTracker correlations at and offset from
GLOBALVIEW locations.

−30 longitude 0 +30 longitude

+15 latitude 0.61
0 0.57 0.67 0.58
−15 latitude 0.59

Correlations of TES and CarbonTracker w/obs at 500 hPa at and
offset from GLOBALVIEW locations for ocean scenes. This
suggests that CarbonTracker agrees somewhat better with TES
data at GLOBALVIEW locations. Both datasets de-trended by a
2 ppm/year increase.

Table 6. Variability and mean differences of monthly average data.

OCEAN LAND
Stdev Diff vs. TES Stdev Diff vs. TES
(ppm) (ppm) (ppm) (ppm)

GLOBALVIEW 3.3 0.1 4.3 0.7
CarbonTracker-surface 3.2 −0.8 4.2 −1.4
CarbonTracker 500 hPa 1.5 0.9 2.4 4.0
CarbonTracker 500 hPa w/obs 1.3 1.0 1.1 3.4
TES (511 hPa) 2.4 – 2.7 –
AIRS (∼300 hPa) 1.5 0.9 1.6 2.4

Column 1 is the variability of each dataset and column 2 is the mean
of (TES minus<dataset>) for data 1/2006 through 9/2007 with all
data de-trended at a constant rate of 2 ppm per year. The first two
columns are for GLOBALVIEW ocean locations and the last two
are for land locations. TES has a positive bias compared to GLOB-
ALVIEW and CarbonTracker at 500 hPa, but a negative bias com-
pared to CarbonTracker at the surface. TES shows less variability
than GLOBALVIEW and CarbonTracker at the surface, but more
variability than CarbonTracker at 500 hPa, especially comparing to
CarbonTracker with TES observation operator (w/obs).

±30◦ longitude in Table 5. TES and CarbonTracker correlate
∼0.05 better at GLOBALVIEW locations compared to non-
GLOBALVIEW locations. Overall TES compares better to
CarbonTracker than to surface sites or AIRS.

6.7 Comparison to AIRS

We compare to the Chahine et al. (2005, 2008) AIRS CO2
product, which is gridded (2◦×2.5◦) monthly data with peak
sensitivity at 300 hPa (Olsen, 2009). As seen in Table 3, the
correlation between TES and AIRS ranges between 0.16 for
Southern Hemisphere ocean (which has a weak seasonal cy-
cle) to 0.53 for Northern Hemisphere ocean, with AIRS sea-
sonal variability less than TES, as seen in Table 6 and Fig. 11.

6.8 Spatial maps from TES, CarbonTracker,
GLOBALVIEW, and AIRS

Maps of 15◦×15◦ degree monthly-averaged TES data be-
tween 40◦ S and 45◦ N are shown for February, April, and

Atmos. Chem. Phys., 10, 5601–5623, 2010 www.atmos-chem-phys.net/10/5601/2010/
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Fig. 14. TES (top), CarbonTracker at 500 hPa with the TES observation operator (middle), and AIRS (bottom) for February, April, and
September, 2007. The small circles show values for 15◦

×15◦ monthly averages of TES and CarbonTracker sampled at the TES observation
locations with the background color showing interpolation between these points. The AIRS data are shown as 2◦

×2.5◦ monthly averages.
The large circles show GLOBALVIEW surface values. Some enhancements over land seen in TES are also seen in CarbonTracker data near
the surface. In general TES exhibits more variability than CarbonTracker at 500 hPa. AIRS, TES, and CarbonTracker all show high values
in the Northern Hemisphere in April, as expected, and the reverse in September. All color scales are the same.

September 2006 (with interpolation) in Fig. 14, with loca-
tions and values for GLOBALVIEW surface measurements
overplotted (circles). For comparison purposes, Carbon-
Tracker (at the surface and 500 hPa) is sampled at TES ob-
servation locations and monthly averaged on the same 15◦

grid. The 500 hPa value shows the CarbonTracker pro-
file mapped to the TES 5 retrieval values, and sampled at
511 hPa. Surface values from CarbonTracker are also shown,
which show some correlation with the high values seen by
TES over land in Africa, South America, and Asia, sug-
gesting more vertical transport in these locations than in-
cluded in CarbonTracker. AIRS on a monthly 2◦

×2.5◦ grid
is also shown. High CO2 values are seen in TES, Carbon-
Tracker, and AIRS data for April 2007 in the Northern Hemi-
sphere, as expected. September/October is the seasonal min-
imum of CO2 in the Northern Hemisphere, and lower values
are seen in all 3 datasets in the Northern Hemisphere. In
general, TES shows more longitudinal variability than Car-
bonTracker. Correlations between TES and GLOBALVIEW
suggest the longitudinal variations seen by TES are meaning-
ful (see Table 4).

7 Investigating the potential of TES CO2 in for inverse
modeling

We conducted an OSSE to assess the potential utility of the
TES data for inverse modeling of CO2 fluxes. As discussed
in Sect. 1, several studies have suggested that satellite obser-
vations of CO2 when averaged on spatial scales of 8◦

×10◦,
for example, and on weekly or monthly timescales can pro-
vide valuable new constraints on estimates of CO2 fluxes if
the precision of the data is better than about 2.5 ppm. We
examine here the reduction in uncertainty of CO2 flux esti-
mates obtained when simulated unbiased TES data are av-
eraged monthly on spatial scales of 10◦

×10◦, 15◦
×15◦ and

20◦
×30◦.

7.1 Inversion configuration

7.1.1 Forward model

We use the GEOS-Chem global chemical transport model
(CTM) to simulate a pseudo-atmosphere from which pseudo-
observations of CO2 from TES are generated. The GEOS-
Chem model uses meteorological fields from the NASA
Global Modeling and Assimilation Office (GMAO). We use
version v8-01-01 with GEOS-4 meteorological fields at a
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Figure 15  

Fig. 15. The 40 regions used in our inversions are defined as the
standard 11 TransCom 3 ocean regions, 28 land regions based on
AVHRR definitions of dominant vegetative types, and the Rest of
the World (ROW) consisting of mostly Antarctic/Greenland and
some small isolated islands. Coastal grid boxes can belong to both
land and ocean regions.

horizontal resolution of 2◦×2.5◦ and with 30 vertical sigma
levels. The model has multiple separate simulation modes,
the most common of which is the Ox-NOx-hydrocarbon
chemistry mode (Bey et al., 2001). The CO2 simulation
mode run for this work contains no chemistry, but accounts
for CO2 emissions and uptake at the land and marine surface
from both anthropogenic and natural sources. The original
version of the CO2 simulation is described in Suntharalingam
et al. (2003, 2004) but significant improvements have been
implemented in conjunction with this work, as described in
Nassar et al. (2010).

7.1.2 Inversion methodology

We examine the potential of the TES data to reduce un-
certainty in estimates of CO2 fluxes from the 28 land and
11 ocean regions shown in Fig. 15. The ocean regions are
the standard TransCom 3 ocean regions (Baker et al., 2006),
whereas the land is spatially divided based on AVHRR dom-
inant vegetation types (Hansen et al., 1998, 2000) to obtain
the given regions, as described in Nassar et al. (2010). One
additional tracer for the Rest of World (ROW) is used to

aggregate fluxes from areas not included in any other region,
such as Greenland/Antarctic or small isolated islands.

In our inversion approach, the fluxes used to generate the
pseudo-data are defined as the “truth.” We then use the
pseudo-data to sequentially update and thus optimize the flux
estimates, starting from an a priori estimate of the fluxes that
is different from the truth. We use the maximum a posteri-
ori (MAP) approach described in Jones et al. (2003, 2009),
in which we minimize the following cost function

J(u) = (x̂ − F(u))T Sε(x̂ − F(u)) (9)

+ (u− ua)
T S−1

a (u − ua)

where x̂ is the observation vector that consists of the TES
CO2 retrievals at the 511 hPa level,u is the state vector with
elements representing the CO2 flux from each region,ua is
the a priori state vector,Sε is the TES observation error co-
variance matrix, andSa is the a priori covariance matrix for
the fluxes.F(u) is the forward model which reflects the trans-
port of the CO2 fluxes in the GEOS-Chem model and the
TES observation operator (which accounts for the TES sen-
sitivity and a priori profile as described in Sect. 3.3.2). Both
the TES retrieval̂x and the forward model simulation of the
observations are expressed with respect to the natural loga-
rithm of the CO2 volume mixing ratio (VMR). The expres-
sion forF(u) is analogous to Eq. (7)

F(u) = xa + A(ln [H(u)] − xa) (10)

whereH(u) is the modeled CO2 profile interpolated onto the
TES retrieval grid,xa is the TES a priori (given in terms of
the logarithm of the CO2 mixing ratio), andA is the TES
averaging kernel. To minimize possible representation er-
rors in the spatio-temporal averaging of the pseudo-data and
the model, the model is first sampled at the location and
time (to within 1 h) of each TES global survey observation
and then averaged monthly and spatially in bins of 10◦

×10◦,
15◦

×15◦, or 20◦×30◦. We generate pseudo-data for 2006
and ingest the monthly mean pseudo-data over the entire year
to obtain an annual mean estimate of the fluxes.

7.2 Inversion results

The results of the inversion analysis are given in Table 7 and
Fig. 16. Shown are the ratio of the optimized flux estimates
to the truth and the ratio of the a posteriori to a priori un-
certainties for the 40 flux regions and for the three different
bin sizes used for averaging the TES data. The differences
between the inversions with the different bin sizes are not
large. All three inversions indicate that the TES data provide
the most constraints on estimates of the tropical fluxes. All
three datasets produced the largest error reduction on fluxes
from the Southern African Grasslands and the South Amer-
ican Tropical Rain Forest; the ratio of the a posteriori to a
priori uncertainty was 0.27 for fluxes from these two regions
with the 10◦×10◦ data.
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Figure 16 

 

Fig. 16. OSSE uncertainty ratios for the land, ocean and ROW regions at 3 different resolutions (10◦
×10◦, 15◦×15◦ and 20◦×30◦). Lower

ratios indicate a larger error reduction.

Examination of the uncertainty reduction (the difference
between unity and the ratio of the a posteriori to a priori un-
certainties) across all the regions indicates that the TES data
provide the largest error reduction on the fluxes when aver-
aged on 10◦×10◦ scales. At 10◦×10◦, 6 regions gave an
error ratio less than 0.50, compared to 5 regions with the
20◦

×30◦ data. These regions are South American Tropical
Rain Forest, Southern Africa Grasslands, South and Central
Europe, Northern Africa Grasslands, East Asia Mainland,
and South American Wooded Grasslands.

The trace of the inversion resolution matrix is an indica-
tion of the number of regions in the 40-element state vector
which are constrained independently in the inversion. This is
analogous to the DOFs for a profile retrieval. The traces ob-
tained with the 10◦×10◦, 15◦

×15◦, and 20◦×30◦ data were
14.9, 13.9, and 13.7. We found that at 20◦

×30◦ the data pro-
vide greater error reduction on the boreal fluxes, whereas the
10◦

×10◦ data offered more constraints on the mid-latitude
and tropical fluxes.

The greater uncertainty reduction obtained with the
10◦

×10◦ averaging is somewhat expected since the monthly
mean observation error of the TES data increases from about
1 ppm at 20◦×30◦ to 2 ppm at 10◦×10◦, whereas the amount
of data ingested in the inversion analysis increases by a factor

of 6 at 10◦×10◦. Interestingly, although the 15◦
×15◦ av-

eraging (which has a monthly mean observation error of
about 1.4 ppm) produced only a modest increase in the DOFs
(13.9 compared to 13.7 at 20◦

×30◦), it gives an a posteriori
estimate of the fluxes that is closest to the truth. With the
15◦

×15◦ averaging there are 19 elements of the 40-element
state vector with the smallest residual error, compared to 12
with the 10◦×10◦ data and 9 with the 20◦×30◦ data.

The results presented here suggest that TES CO2 have
the potential to provide additional information on the CO2
fluxes. However, it is important to recognize that ability of
the OSSE to reliably constrain the true flux estimates reflects
the fact that both the model and the pseudo-data were un-
biased in the OSSE. If biases in the model and the real data
are not properly characterized and accounted for, the inferred
flux estimates in the inversion analysis will be biased. Fur-
thermore, although averaging the data reduces the random
errors in the measurement, which improves the measurement
precision, it could lead to a loss of information associated
with atmospheric processes on spatial and temporal scales
smaller than that on which the averaging is done. An alterna-
tive would be to exploit the individual retrievals without aver-
aging. On the other hand, the large random error in the indi-
vidual measurements could be an issue for inverse modeling.
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Table 7. OSSE a posteriori flux estimates compared with the “true” state along with a ratio of the a posteriori error relative to the a priori
error for 40 geographic regions. The shaded regions, primarily in the tropics, show regions with the most information added from TES.

Xtrue Xpost/Xtrue Predicted a posteriori error/
a priori error

FLUX REGIONS TgC/yr 10×10 15×15 20×30 10×10 15×15 20×30

1 North American Tundra 27.2 1.04 1.00 1.04 0.96 0.97 0.97
2 North American Boreal Forest −35.2 1.05 0.89 0.63 0.71 0.79 0.64
3 Western US and Mexico −459.3 0.58 1.08 1.15 0.70 0.74 0.75
4 Central North America −298.5 0.92 1.11 1.07 0.72 0.78 0.77
5 North American Mixed Forest −270.8 1.18 0.87 1.20 0.75 0.80 0.82
6 Central America and Caribbean 164.1 0.85 1.01 1.28 0.80 0.82 0.84
7 South American Tropical Rain Forest 494.0 1.03 0.95 0.94 0.27 0.27 0.32
8 South American Coast and Mountains−190.5 1.10 1.03 1.15 0.94 0.94 0.96
9 South American Wooded Grasslands −470.9 0.96 1.25 1.26 0.44 0.43 0.51

10 Eurasian Tundra −167.6 1.17 1.04 0.96 0.94 0.95 0.94
11 Eurasian Boreal Coniferous −388.0 1.01 1.05 0.94 0.73 0.79 0.69
12 Eurasian Boreal Deciduous −215.0 0.94 0.88 1.01 0.67 0.77 0.61
13 South and Central Europe −664.1 1.15 0.91 0.88 0.30 0.33 0.32
14 Central Asian Grasslands −138.0 0.92 1.03 1.16 0.86 0.87 0.88
15 Central Asian Desert −39.3 0.93 1.01 1.01 0.93 0.93 0.96
16 East Asian Mainland −87.6 1.10 1.03 1.02 0.41 0.45 0.39
17 Japan −4.8 1.06 1.03 0.93 0.96 0.96 0.97
18 Northern African Desert −69.4 1.08 1.02 0.97 0.89 0.90 0.91
19 Northern African Grasslands −80.7 0.98 1.30 0.85 0.30 0.31 0.33
20 African Tropical Forest −249.9 0.87 0.94 1.08 0.63 0.64 0.71
21 Southern Africa Grasslands −792.4 1.02 0.95 0.74 0.27 0.28 0.32
22 Southern African Desert −109.6 0.97 0.99 1.07 0.97 0.97 0.98
23 Middle East −70.6 1.16 1.01 1.08 0.94 0.95 0.95
24 India and Region −44.6 1.18 0.70 1.03 0.54 0.57 0.58
25 Maritime Asia −61.9 1.25 0.93 1.04 0.69 0.76 0.78
26 Australian Forest/Grassland −112.3 0.90 1.15 1.15 0.86 0.85 0.90
27 Australian Desert −108.8 1.13 0.86 1.17 0.92 0.93 0.94
28 New Zealand −6.9 1.02 1.04 1.08 0.96 0.97 0.97
29 Arctic Ocean −278.3 1.02 1.09 0.98 0.94 0.95 0.95
30 North Pacific −504.4 1.01 1.03 0.91 0.74 0.76 0.75
31 Tropical West Pacific 50.2 0.97 0.93 1.00 0.96 0.96 0.97
32 Tropical East Pacific 427.4 1.12 1.12 1.00 0.64 0.65 0.67
33 South Pacific −326.7 1.20 0.88 0.92 0.86 0.85 0.87
34 North Atlantic −01.2 0.90 1.02 0.96 0.92 0.93 0.93
35 Tropical Atlantic 114.0 1.17 0.96 0.93 0.94 0.95 0.95
36 South Atlantic −157.7 0.96 1.01 1.17 0.95 0.96 0.96
37 Tropical Indian Ocean 114.2 1.07 1.00 1.05 0.92 0.92 0.93
38 Southern Indian Ocean −442.9 0.93 0.90 1.11 0.79 0.78 0.80
39 Southern Ocean −181.6 1.05 0.90 0.86 0.89 0.89 0.91
40 Rest of the World (ROW) −40.1 1.08 1.09 1.12 0.92 0.94 0.95

For example, Wang et al. (2009) showed that a joint inver-
sion analysis of CO and CO2, exploiting the correlations in
the model errors for CO and CO2 would provide more con-
straints on the CO2 fluxes than using only CO2. But a re-
quirement of joint inversion approach, as noted by Wang et
al. (2009), is that the measurement error must be smaller than
the model error. A more detailed analysis is clearly needed to

better assess the potential impact of the spatial and temporal
averaging of the data on the inferred flux estimates.
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8 Conclusions

Carbon dioxide retrievals from the TES instrument between
40◦ S and 45◦ N over 3 years are shown in comparison to sur-
face data, SGP and CONTRAIL aircraft data, satellite data
from AIRS and to assimilated data from CarbonTracker. The
peak TES sensitivity is at 511 hPa (∼5 km), with about 10%
of the sensitivity in the lower troposphere and about 1 degree
of freedom total. We find a low bias of 2.1% in TES CO2
which has been corrected using Mauna Loa data at 3.4 km al-
titude, however the bias correction would be more accurately
quantified by comparisons to profile aircraft data at a well-
mixed location with values from the surface through∼11 km
to cover the range of TES sensitivity. Maps of TES CO2
show expected latitudinal gradients and seasonal features,
with more longitudinal features than seen in CarbonTracker.
The characterization of TES sensitivity and errors shows that
for the monthly-averaged TES there is good agreement be-
tween the predicted and actual sensitivity and errors, with
errors decreasing as predicted as more profiles are averaged.
The monthly predicted error for a 15◦

×15◦ average (with
∼80 targets per bin) between 40◦ S and 45◦ N is 2.2 ppm.

The CO2 abundances from TES, Mauna Loa, CON-
TRAIL, AIRS, and CarbonTracker in the northern tropical
Pacific all show similar seasonal cycles. TES correlates best
with the Mauna Loa data, which are collected at 3.4 km, com-
parable the location of the peak TES sensitivity, near 5 km.
In the southern Pacific, although all datasets show a yearly
increase in CO2, the correlation of TES to the other datasets
is much smaller. Comparisons of TES monthly averages to
SGP aircraft data over the US show a correlation of about 0.7,
which is significantly less than over the ocean in the Northern
Hemisphere due to a combination of more variability over
land (as TES is averaged over a large area) and greater chal-
lenges for land retrievals.

At 39 GLOBALVIEW sites, TES is compared to Carbon-
Tracker, AIRS, and GLOBALVIEW. Comparison of TES
to GLOBALVIEW surface sites shows a 0.60 correlation at
ocean sites and a 0.16 correlation at land sites, with low cor-
relation over land likely related to the sharp gradients seen
over land between the surface and free troposphere. Al-
though the troposphere is not expected to completely cor-
relate with the surface, it is significant that the correla-
tions between TES and GLOBALVIEW decrease if the TES
data are shifted in latitude, longitude, or time compared to
GLOBALVIEW. TES correlates best with CarbonTracker (at
500 hPa with the TES observation operator applied), yielding
a 0.67 correlation at ocean sites and 0.36 correlation at land
sites. Comparing the variability of the CO2 data at ocean
sites shows that TES variability (2.4 ppm) is less than the
surface data (3.3 ppm), but significantly more than Carbon-
Tracker (w/obs) (1.3 ppm) or AIRS (1.5 ppm).

An OSSE using simulated TES observations based on
GEOS-Chem model output shows that TES data can re-
duce uncertainty in regional CO2 fluxes when the data are

averaged monthly and on various spatial scales. TES data av-
eraged at 10◦×10◦, for example, have a total error of about
2.4 ppm and produced a large reduction (of about 70%) in
uncertainty of estimates of CO2 fluxes from tropical land re-
gions, such as the South American Tropical Rain Forests,
Southern African Grasslands, Northern African Grasslands,
as well as Southern and Central Europe. Many of these re-
gions are areas where GLOBALVIEW coverage is relatively
sparse. Our results suggests that if biases in the TES CO2
data and the model are properly characterized and accounted
for, the data will provide sufficient information to reliably
quantify CO2 sources and sinks. Since the TES sensitivity
peaks in the middle troposphere, the instrument should offer
complementary information to the surface data and, there-
fore, integrating TES with the surface data should offer valu-
able new constraints for inverse modeling of carbon fluxes.
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