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Abstract. In this study, the influence of radiative cooling
and small eddies on cirrus formation is investigated. For
this purpose the non-hydrostatic, anelastic model EULAG
is used with a recently developed and validated ice micro-
physics scheme (Spichtinger and Gierens, 2009a). Addition-
ally, we implemented a fast radiative transfer code (Fu et
al., 1998). Using idealized profiles with high ice supersat-
urations up to 144% and weakly stable stratifications with
Brunt-Vaisala frequencies down to 0.0018 s−1 within a su-
persaturated layer, the influence of radiation on the forma-
tion of cirrus clouds is remarkable. Due to the radiative cool-
ing at the top of the ice supersaturated layer with cooling
rates down to−3.5 K/d, the stability inside the ice super-
saturated layer decreases with time. During destabilization,
small eddies induced by Gaussian temperature fluctuations
start to grow and trigger first nucleation. These first nucle-
ation events then induce the growth of convective cells due
to the radiative destabilization. The effects of increasing the
local relative humidity by cooling due to radiation and adia-
batic lifting lead to the formation of a cirrus cloud with IWC
up to 33 mg/m3 and mean optical depths up to 0.36. In a more
stable environment, radiative cooling is not strong enough to
destabilize the supersaturated layer within 8 h; no nucleation
occurs in this case.

Overall triggering of cirrus clouds via radiation works only
if the supersaturated layer is destabilized by radiative cool-
ing such that small eddies can grow in amplitude and finally
initialize ice nucleation. Both processes on different scales,
small-scale eddies and large-scale radiative cooling are nec-
essary.

Correspondence to:F. Fusina
(fabian.fusina@env.ethz.ch)

1 Introduction

The existence of cloud-free air masses that are supersatu-
rated with respect to ice in the upper troposphere or low-
ermost stratosphere has long been known. More than 60
years ago,Glückauf (1945) obtained values of relative hu-
midity with respect to ice (RHi) up to 160% over Southern
England. The fact that high ice supersaturations can occur
in the upper troposphere has been neglected for many years
and has often been termed erroneous. During the last two
decades the existence of supersaturated airmasses has been
proven by many measurements using a variety of different
measurement techniques (e.g.Jensen et al., 1998; Vay et al.,
2000; Ovarlez et al., 2000; Krämer et al., 2009). These mea-
surements are consistent with theoretical considerations, that
ice crystals form at very high supersaturations, where the
exact freezing threshold depends on the nucleation mecha-
nism (homogeneous freezing of solution droplets or hetero-
geneous nucleation, see e.g. Koop et al., 2000; De Mott et al.,
2003, respectively). For homogeneous nucleation, which is
probably the dominant mechanism for ice crystal formation
at low temperatures (T < −38◦C) relative humidities in the
range 140 to 170% RHi, depending on temperature (Koop et
al., 2000), are required.

The properties and global distributions of ice supersatu-
rated regions (ISSRs) have been determined over recent years
(e.g. Spichtinger et al., 2003a,b; Gettelman et al., 2006).
They occur 20 to 30% of the time in cloud free air masses
in the upper troposphere over the North Atlantic. The large
horizontal extent of ISSRs, with mean path lengths of about
150 km, and in some rare cases of a few thousand kilometers
(Gierens and Spichtinger, 2000) means that there is a sub-
stantial amount of cloud free air masses with enhanced water
vapor content. However, only a few parametrizations exist
that correctly (i.e. physically) describe the formation of cir-
rus clouds (from ISSRs) driven by synoptic scale dynamics
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Fig. 1. Heating-rates [K/d] of an ISSR with RHi=130% due to emis-
sion and absorption of radiation.

(CAM3, see Lin et al., 2007; ECHAM5, seeKärcher and
Lohmann, 2002). The impact of meso- and small-scale mo-
tions is not explicitly included, although some approxima-
tions are used to obtain meso-scale motions (Kärcher and
Lohmann, 2002).

The radiative impact of ISSRs (with RHi up to 130%) has
been investigated byFusina et al.(2007). These regions of
enhanced water vapor can reduce the total outgoing long-
wave radiation by more than 1 W/m2 and imply a significant
cooling at their upper boundary (i.e. due to thermal emis-
sion).

In a stably stratified atmosphere, these diabatic heating
rates are too small to significantly influence the local dy-
namics. But if potential stability of the environment is weak
or neutral, radiative cooling can decrease the Brunt-Vaisala
frequency to a critical value. This finally leads to a change
(increase) of the extent and amplitude of preexisting small
scale motions. The combination of the locally amplified ver-
tical velocity and the radiative cooling can trigger the first
nucleation. Regions with weak stratification (i.e. small verti-
cal gradients of potential temperature) have been observed in
the upper troposphere, using radiosonde data obtained over
the meteorological observatory in Lindenberg, Germany. In
these regions dynamical instabilities could also occur: The
Miles theorem describes that a stable atmosphere is given by
a Richardson numberRi> 0.25,

Ri=
N2(
∂u
∂z

)2
, using N2

=
g

θ

∂θ

∂z
(1)

where N denotes the Brunt-Vaisala frequency. Moderate
and strong windshears are often observed in the upper tro-
posphere, as described byBirner (2006).

In this study, we investigate the possibility of cirrus cloud
formation due to radiative cooling in weakly stable layers
within the upper troposphere. Sensitivity studies are carried
out for the most important initial parameters such as poten-
tial stability, windshear and RHi within the ISSR. The main
purpose is to investigate the sensitivity to environmental con-
ditions, for which radiative cooling (a large scale process) at
the top of an ISSR can destabilize the stratification. Dur-
ing the destabilization, the amplitude of preexisting small
scale eddies increase and trigger cloud formation. Only the
superposition of effects on different scales (i.e. large-scale
radiative cooling and small scale motions) can finally lead
to cirrus formation. The main properties of the formed cir-
rus clouds are investigated, such as ice water content (IWC),
ice crystal number density (N ), cloud life time and their im-
pact on the radiation. For this purpose, the non-hydrostatic
anelastic model EuLag (Eulerian, semi-Lagrangian Model)
is used (e.g.Prusa et al., 2008), using a two stream radiative
transfer code (Fu, 1996; Fu et al., 1998) and an ice micro-
physics scheme (Spichtinger and Gierens, 2009a).

The paper is organized as follows: In the next section, the
model is described briefly. In Sect. 3 we define the experi-
mental setup for the reference simulations. In Sect. 4, results
of the reference and sensitivity simulations are presented. We
end with discussions and conclusions.

2 Model description

As a basic dynamical model, the anelastic nonhydrostatic
model EULAG is used (seePrusa et al., 2008). The dry
anelastic equations solved in the model are presented inSmo-
larkiewicz and Margolin(1997).

2.1 Ice physics

A recently developed bulk ice microphysic scheme is used,
which can treat an arbitrary number of ice classes. These
ice classes are distinguished by their formation mechanism
(e.g. heterogeneously vs. homogeneously formed ice). The
following processes for cold cirrus clouds are parameterized:
nucleation (homogeneous), deposition (growth, evaporation)
and sedimentation (Spichtinger and Gierens, 2009a). It pro-
vides a consistent double moment scheme with terminal ve-
locities for ice number and mass concentration. Aggregation
is not yet implemented in the microphysics scheme. How-
ever, aggregation is of less importance for the cold temper-
ature regime (T < −38◦C) and/or for moderate vertical ve-
locities (Kajikawa and Heymsfield, 1989).

For the parametrization of homogeneous freezing of aque-
ous solution droplets, sulfuric acid solution droplets are as-
sumed as a background aerosol, using a lognormal distribu-
tion for the H2SO4 droplet size (geometric standard deviation
σr = 1.4, geometric mode radiusrm = 25 nm, total number
concentration 300cm−3). The freezing rates are calculated
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Fig. 2. Vertical profiles used for the reference simulation. Left: RHi profile; middle: potential temperature profile; right: horizontal velocity
profile.

using a temperature based parametrization, based on water
activity (seeKoop et al., 2000). We use a modified Koenig
ansatz (Koenig, 1971) to parameterize the diffusional growth
or evaporation for small ice crystals, including corrections
for the kinetic growth regime and ventilation respectively.
For all simulations in this study, only homogeneous nucle-
ation is taken into account. For details of the model, the
reader is referred toSpichtinger and Gierens(2009a).

2.2 Radiation transfer model

A two stream radiative transfer code, i.e. a representation of
forward and backward streams, has been implemented into
the EuLag model. It contains 6 bands in the solar and 12
bands in the thermal infrared regime. For a detailed descrip-
tion, the reader is referred toFu(1996) for the shortwave and
to Fu et al.(1998) for the longwave parametrizations, respec-
tively.

The required parameters for ice microphysics are ice wa-
ter content (IWC) and effective radius, which is derived fol-
lowing Slingo (1989), Dobbie et al.(1999) andFu (1996).
In the microphysical model ice crystals are assumed to be
small hexagonal columns. The ice crystal size is lognormally
distributed with a geometric standard deviation ofσL = 1.5.
The effective radius is calculated as described inFusina et al.
(2007) under the assumption of randomly oriented columns
(Ebert and Curry, 1992).

The radiative transfer code uses following constant trace
gas concentrations: CO2: 330 ppmv; CH4: 1.6 ppmv; N2O:
0.28 ppmv, respectively (default values of the radiative trans-
fer model). The ozone profile depends on altitude, including
the stratospheric ozone layer. The model domain of the ra-
diative transfer code has a maximum altitude ofLzr = 50 km,
which is not necessarily equivalent to the top level of the
EULAG model (Lz). The vertical resolution within the
EULAG model domain is set by the model setup. IfLzr > Lz

(this is the case for our simulations), the vertical resolu-
tion of the additional layers exceeding the EULAG model
domain is set to 1 km, the water vapor mixing ratio is set

to qv = 10−11 kg/kg, the pressure profile is interpolated us-
ing the US standard atmosphere; the temperature profile is
built using a constant lapse rate up to a final temperature
of T (50km) = 275 K (according to the US standard atmo-
sphere,COESA, 1976). The solar zenith angle is set to 60◦

and the solar surface albedo is 0.3. The infrared surface emis-
sivity is assumed to be 1.

3 Experimental setup

For the simulations, an idealized framework is used, in-
cluding a 2-D model domain with a horizontal extent of
Lx = 12.8 km and a vertical extent ofLz = 15 km for dynam-
ics and ice microphysics, respectively. An ISSR is placed
betweenlb = 9500 m andub = 10 500 m with a constant rel-
ative humidity over ice of 140%, which fully occupies the
whole horizontal extent of this layer. RHi below and above
the ISSR is set to 60% and 5%, respectively (see Fig.2, left
panel). Using a grid resolution ofdx = 100 m anddz = 50 m,
in the horizontal and the vertical, respectively, the domain is
discretized withnx ×nz = 128×301 grid points.

A constant-stratification ambient profile of potential tem-
perature, as described byClark and Farley(1984), is used
with a surface temperatureT = 293.15 K and a Brunt-Vaisala
frequencyN = 0.0094 s−1. Within the layer between 9250 m
and 10 750 m altitude, the stability of the stratification is
decreased to a constant vertical gradient of the potential
temperature of∂θ/∂z = 0.4 K/km (which corresponds to a
Brunt-Vaisala frequencyN = 0.0035 s−1). The tropopause is
placed at an altitude of 12 000 m (see Fig.2 middle). The sta-
bility above the tropopause is set toN = 0.02 s−1. The pro-
file of the horizontal velocity contains a constant wind below
and above and a weak windshear of∂u/∂z = 1×10−3 s−1

(for the reference case) within the ISSR (Fig.2, right panel):
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u(z) =


1 for 0≤ z < lb,

1+duz ·(z− lb) for lb ≤ z ≤ ub,

1+duz ·(ub− lb) for ub < z.

(2)

The initial potential temperature field is distributed by a
Gaussian noise with standard deviationσT = 0.01 K. All
simulations run for a total time of 8 h with 1 s increments for
the dynamics, optional 0.1 s increments for the ice physics in
case of homogeneous nucleation and 10 s increments for the
radiation, respectively. We assume a calm troposphere, i.e.
no vertical wind in our small 2-D domain.

4 Results

4.1 Reference case

At the beginning of the reference case simulation, only ra-
diative processes (emission and absorption of LW radiation)
can change dynamical and microphysical properties in the
domain. The obtained heating rates (see Fig.3) have an im-
pact on two major characteristics within the ISSR. First, the
temperature decrease (strongest at the top) tends to increase
RHi by ∼ +1% per hour (see Fig.4d). Second, the stability
of the stratification decreases with time, reaching its lowest
neutral/unstable state att = 200 min (see Fig.4a), where the
first unstable grid cells (i.e. with a negative squared Brunt-
Vaisala frequency) occur att = 150 min. Within this first
200 min, small eddies (induced by initial temperature fluctu-
ations) grow due to the destabilization and start to lift up air
parcels, temporally increasing their RHi. Patterns within the
vertically averaged turbulent kinetic energy enhance the for-
mation and growth of these small cells. However, the vertical
velocities do not increase significantly before the stratifica-
tion becomes unstable, but the amplitude of the temperature
deviations increases slightly.

After t = 200 min, the eddies start to grow rapidly in size
(favored by the unstable environment) and therefore, the first
air parcels reach the threshold of homogeneous nucleation of
156% (see Fig.4d). This effect happens only in several small
isolated cells, surrounded by downwelling regions. Latent
heat release due to the growth of the ice crystals amplifies the
motions inside the ISSR, increasing the vertical velocity from
its preliminarywmax= ±0.03 m/s up towmax= ±0.5 m/s,
forming convective cells. The formed cirrus cloud is persis-
tent over the rest of the simulation time, containing ice crystal
number concentrations up toN = 300 L−1 and a maximum
mean ice water path ofIWP= 2.95×10−3 kg/m2 (averaged
over all columns). The peak with the highest ice water con-
tent corresponds to a local maximum of the vertical velocity.
The whole time evolution forIWP is showed in Fig.4c.

At the time of maximumIWP, an optical depth ofτ = 0.1
is derived.τ is averaged over all columns, observing a peak-
value ofτ = 0.36, which is significantly higher than the mean
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Fig. 3. Vertical radiative heating rates (split into solar, infrared and
total) at the initial time step, containing an ISSR with maximum
RHi of 140%.

value due to the patchiness of the cloud. Due to the high su-
persaturation inside the layer, the formed ice crystals grow
rapidly to larger sizes and start to sediment. During the
downward motion, they continue to grow and deplete wa-
ter vapor, reducing the RHi in the lower part of the ISSR. In
the downwelling regions, some entrainment of very dry air
from above the ISSR can be observed, making the 2-D field
of RHi more patchy than before. Within the upper part of the
ISSR, at the top of the upwelling regions, the RHi remains at
the homogeneous freezing threshold for a longer time, con-
tinuously forming new ice crystals (Fig.5, t = 360 min).

4.2 Variation of potential stability

For sensitivity tests, the initial vertical gradient of the poten-
tial temperatureθ is changed within the ISSR. For a small
wind shear, as used in the reference case and in this set of
sensitivity simulations, this value represents the stability be-
cause of high Richardson numbers. Cases with stronger wind
shear will be discussed in the next section. A set of value
is chosen as:∂θ/∂z = 0.1/0.2/0.3/0.4/0.5/0.6/0.8 K/km
(corresponding to Brunt-Vaisala frequenciesN =

0.0018/0.0025/0.003/0.0035/0.0039/0.0043/0.005 s−1,
respectively). These values have been compared with ra-
diosonde records obtained from routine measurements over
the meteorological observatory Lindenberg, Germany (see
e.g.Spichtinger et al., 2003a). The dataset covers the time
period from 1 February 2000 to 30 April 2001 with mea-
surements every 6 h (i.e. 00:00, 06:00, 12:00, 18:00 UTC).
14.7% of all profiles show a layer of at least 500 m thickness,
containing a potential stability between 0.1 and 0.8 K/km
(5% for stabilities lower than 0.4 K/km; reference case).
3.26% of all profiles contain the same stability, but within a
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Fig. 4. (a)Time evolution of horizontal mean of the squared Brunt-Vaisala frequency atz = 10 500 m (altitude of maximum cooling);(b) His-
togram: vertical velocity for 4 different timesteps (200/220/240/260 min);(c) Time evolution of mean ice water path (IWP); (d) Maximum
RHi for 4 different timesteps (0/120/180/240 min).

layer of at least 1km thickness (0.64% for stabilities lower
than 0.4 K/km). These cases are filtered for temperatures
lower than 235 K for comparison in potential cirrus regions.
It follows that the values used in this sensitivity study are in
the range of atmospheric relevance.

All cases in this sensitivity simulation fulfill the Miles the-
orem for shear stability (i.e.Ri > 0.25). All other simulation
parameters are equal to the reference case.

When we reduce the vertical gradient of the potential
temperature of the reference case (0.4 K/km) to ∂θ/∂z =

0.2 K/km, the maximum obtained amount ofIWP increases
from IWP = 3× 10−3 kg/m2 to IWP = 6.8× 10−3 kg/m2.
This peak value appears 100 min earlier than in the refer-
ence case and corresponds to the moment of maximum ki-
netic energy within the ISSR (i.e. the vertical wind speeds
are strongest; see Fig.6b). One can conclude that in sim-
ulations with a lower stability inside the ISSR, nucleation
occurs earlier than in the reference case due to two reasons.
First, the amplitude of the temperature variation inside the
small eddies is larger due to the lower stability. Second, and
more important, by the destabilization of the layer due to ra-

diation is faster, starting at lower Brunt-Vaisala frequencies.
The obtainedIWP is higher for cases with weaker initial sta-
bilities (Fig.6a). The largestIWP= 8.9×10−3 kg/m2 (with
a maximum value of IWC= 33 mg/m3) can be observed
for the simulation with the weakest initial potential stability,
170 min after initialization. The main reason for the higher
IWP are the higher vertical velocities obtained in the sim-
ulations with weaker initial stability, resulting in higher ice
crystal amounts (Fig.7). In the simulation with the weakest
stability (0.1 K/km), vertical updrafts of up tow = 1.6 m/s
are observed in some isolated cells. If the initial stability is
reduced further, then convective cells can be generated due
to the initial temperature perturbations and the role of the
radiation in the cloud building process is no longer domi-
nant (i.e. the superposition of these two effects, radiation and
small eddies, is no longer required). For higher initial stabil-
ities the destabilization event takes more time. For all sim-
ulations with a stronger stability than the reference case, the
simulation time of 480 min is not sufficient to deplete the
whole supersaturation inside the layer. In these cases, layer-
clouds are formed in the upper part of the ISSR. If the initial
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60 80 100 120 140 160
RHi [%]

Fig. 5. Cirrus cloud formation in the reference simulation – Colors indicate RHi in %; Contour lines represent IWC [10−6 kg/m3] increments.
Time evolution: 1. Destabilization at ISSR top, first nucleation. 2. Developement of the cloud/convective cells. 3. Entrainment.

stability exceeds the threshold of 0.8 K/km, no nucleation
occurs within the 8 h simulation time.

4.3 Variation of wind shear

In a second set of sensitivity simulations, the impact of dif-
ferent strengths of wind shear is determined while the ther-
mal stratification is set to the reference value of∂θ/∂z =

0.4 K/km. We use values of∂u/∂z = 0/1/2/4/6/8 ×

10−3 s−1 in the altitude range 9500≤ z ≤ 10 500 m (see
Fig. 8a). The chosen values are weak, but in the range of
observations in the upper troposphere (see, e.g., the statis-
tics presented byBirner, 2006). For the strongest wind
shear∂u/∂z = 8×10−3 s−1, the initial Richardson Number
Ri = 0.19< 0.25 is below the threshold for shear instability.
In this case, we expect the formation of Kelvin-Helmholtz

instabilities. Values of wind shear above this threshold are
not of interest for this study, because the mixing effect of
shear instability would superimpose with the destabilization
effect of radiative cooling in an unpredictable way. All other
simulation parameters are equal to the reference case.

For this set of sensitivity simulations, the highestIWP=

4.15×10−3 kg/m2 was observed for zero wind shear. In this
scenario, the formation and evolution of the isolated convec-
tive cells is not affected by wind shear, so the cells have a
larger vertical extent than in the cases with windshear. The
statistics inBirner (2006) show that for the mid-latitudes,
wind shear free scenarios are very unlikely at cirrus altitudes.
Increasing the wind shear to∂u/∂z = 2×10−3 s−1 reduces
the vertical extent of the upwelling regions and the vertical
updraft velocity inside. The cells start to tilt with height.

Atmos. Chem. Phys., 10, 5179–5190, 2010 www.atmos-chem-phys.net/10/5179/2010/
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Fig. 6. (a) IWP (averaged over all columns) for thermal stratifica-
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within the ISSR for thermal stratification∂θ/∂z = 0.1 to 0.8 K/km.
The purple line represents the reference case.

Due to the increased mixing inside the ISSR, fewer regions
with RHi close to the homogeneous threshold are observed.
This leads to reduced nucleation, whereby the number of ice
crystalsN decreases. Increasing the wind shear more will
amplify these further effects, leading to lower IWPs (see
Fig. 8b). For windshears of∂u/∂z ≥ 4× 10−3 s−1, shear
instability is generated with time. This leads to more tur-
bulent motions inside the ISSR and results in stronger ver-
tical velocities followed by an increased homogeneous nu-
cleation rate. For the case with the highest windshear of
∂u/∂z ≥ 8×10−3 s−1, a pronounced Kelvin-Helmholtz in-
stability develops aftert = 440 min, containing vertical up-
draft velocities ofw > 2 m/s. The cirrus clouds formed by
turbulence due to shear instabilities appear even, when the ra-
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Fig. 7. (a)Histogram of vertical velocity for all time steps (for 3 dif-
ferent thermal stratifications∂θ/∂z = 0.1/0.4/0.8 K/km). The red
line represents the reference case;(b) Histogram of number con-
centration for all time steps (for 3 different thermal stratifications
∂θ/∂z = 0.1/0.4/0.8 K/km. The red line represents the reference
case.)

diation code is disabled. For this reason, they are not of inter-
est for this study. It can be concluded that, after the destabi-
lization of the stratification due to radiative cooling, isolated
eddies are a key feature of cirrus clouds triggered by radia-
tion, supported by the latent heat release after the first nucle-
ation event. Their evolution and persistence is suppressed by
stronger wind shears. Wind shear can also block the desta-
bilization of the layer with the highest radiative cooling rate,
by mixing it with the surrounding air. However, this hap-
pens only for values close to the threshold for shear instabil-
ity (Ri ≤ 0.25).
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Fig. 8. (a)6 vertical profiles for horizontal wind speed containing
different wind shears within the ISSR. The red line represents the
reference case;(b) IWP (averaged over all columns) for windshears
from 0 to 8×10−3 s−1.

4.4 Variation of RHi

A third set of sensitivity simulations uses different amounts
of water vapor inside the ISSR. By increasing the RHi,
the distance to the homogeneous freezing threshold is de-
creased, so earlier nucleation can be expected. Decreasing
the RHi leads to the opposite effect. The values used for
RHi are 132/136/140/144%, respectively. Wind shear and
thermal stability are set to the values in the reference case
(∂u/∂z = 10−3 s−1, N = 0.0035 s−1).

For simulations with a maximum RHi lower than in the
reference case (i.e.< 140%), it takes more time to reach the
homogeneous freezing threshold (due to cooling from emis-
sion and adiabatic lifting). On the other hand, the radiative
cooling inside the ISSR is a function of the RHi (i.e. the wa-
ter vapor mixing ratio) as discussed inFusina et al.(2007).
Thus, for lower RHi values at the same temperature, the cool-
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Fig. 9. Mean ice water pathIWP (averaged over all columns) of
simulations using different initial values for RHi inside the ISSR
(RHi=132 to 144%). The black line represents the reference case.

ing rates decrease. This results in a slower destabilization of
the upper part of the ISSR. The differences between the up-
draft velocities are small, no significant change in the num-
bers of ice crystals can be observed between the different
simulations. It follows that the enhanced water-vapor con-
tent increases the size of the ice crystals but not their num-
ber concentration. This can modulate the cirrus life time, as
larger crystals fall faster down to subsaturated regions and
sublimate.

For the simulation with RHi= 144%, the nucleation starts
15 min earlier than in the reference case, obtaining a maxi-
mumIWP that is 30% higher. A comparison of theIWP be-
tween the different sensitivity simulations is given in Fig.9.
In the simulations with RHi=136/140/144%, a second nu-
cleation peak at the end of the simulation can be observed.
This nucleation event is possibly triggered by the latent heat
release during the earlier ice crystal forming, superimposed
with destabilization due to radiative cooling. If the initial
RHi is reduced to less than 132%, the cooling will again get
weaker and no destabilization occurs (i.e. formation of an
updraft) and for this reason, no nucleation can be observed
during the simulation time of 8 h. If the initial RHi is in-
creased to 150% or more, the small scale motions due to the
initial temperature fluctuations are strong enough to trigger
nucleation without any prior change in the local stability due
to radiative cooling (not shown).

4.5 Variation of RHi gradient at ISSR boundary

Here we discuss the influence of the water vapour gradi-
ent at the top of the ISSR on local heating rates. Ra-
diosonde profiles show a variety of different shapes of the
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Fig. 10. Profile 1: steep upper RHi gradient (Lindenberg 1 July
2000 06:00 UTC); Profile 2: weak upper RHi gradient (Lindenberg
4 March 2001 06:00 UTC).

RHi profile in the upper troposphere. In Fig.10, two differ-
ent radiosonde profiles with different water vapor gradients
are shown. We use the same setup as in the reference case
simulation (maximum RHi=140%) and increase the vertical
distance in which the RHi decreases from its maximum value
down to RHi=5% near the tropopause, using following val-
ues: dz = 250/500/750/1000/1500 m, wheredz = 250 m
stands for the reference case (see Fig.11a).

In Fig. 11b, the heating rates for the different RHi gradi-
ents can be seen. It is clear, that for weaker gradients, the
cooling area is distributed over a larger vertical layer than for
stronger gradients. Therefore, the maximum cooling peak
is lower, resulting in a weaker destabilization of the upper
layer. Thus, only the profiles with the strongest two initial
RHi-gradients were able to trigger the described cirrus for-
mation mechanism within the simulation time of 8 h (assum-
ing all other parameters to be equal to the reference case).
This might be a constraint upon this kind of cloud formation
process. A sharp decrease of RHi at the upper boundary of
the ISSR is strictly required for destabilization due to radia-
tive cooling. One example for a sufficient strong RHi gradi-
ent is shown in Fig.10, Profile 1.

4.6 Variation of temperature

Another way to change the water vapor content within the
ISSR is to vary the vertical temperature profile. Using con-
stant initial values for RHi in the ISSR implies that for an
increasing temperature, the water vapor mixing ratio will
increase too. This influences the local heating rates and,
due to radiation, also the destabilization of the stratification.
The destabilization due to radiation is faster for profiles with
higher environmental temperatures and the formed cirrus has
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Fig. 11. (a)Vertical RHi profiles of ISSRs using different upper
gradients;(b) radiative heating rates for 5 different RHi gradients
(initial conditions, see (a).

a larger IWC. However, the general sensitivity of higher H2O
content in the upper troposphere is shown in Sect.4.4.

4.7 Discussion of radiative impacts

The variation of the potential stability has the biggest influ-
ence on the radiative properties of the formed cirrus cloud.
Increasing the initial∂θ/∂z from 0.1 to 0.8 K/km (i.e.N =

0.0018 to 0.005 s−1), the maximum value of the mean opti-
cal depth (averaged for all columns for every time step) de-
creases fromτ = 0.36 to 0.05 (see Fig.12a–c). Note that
this is a mean value over the whole domain and the values
for single columns can be considerably larger (the largest
optical depth for a single column can be observed in case
of the smallest potential stability:τmax= 0.82). The small-
est changes ofτ can be observed for the sensitivity study of
changing initial RHi (τ = 0.14 to 0.08). For all cases, the cal-
culated total outgoing radiation fluxes (the sum of shortwave
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Fig. 12.Mean optical depth (as a function of time) of cirrus clouds, triggered by radiative cooling for following sensitivity studies:(a) thermal
stratification;(b) dynamic stability (variation of vertical wind shear);(c) RHi, using different peak values inside the ISSR.

and longwave radiation) decrease by a certain amount after
the cloud formation, i.e. the difference between the absorbed
and emitted longwave radiation inside the cloud exceeds
the amount of reflected shortwave radiation at the cloud top
(warming scenario, seeFusina et al., 2007).

5 Conclusions

The nonhydrostatic, anelastic model EULAG (Prusa et al.,
2008) was used with a recently developed and validated ice
microphysics scheme (Spichtinger and Gierens, 2009a) and
an additionally implemented fast radiative transfer code (Fu
et al., 1998) to investigate the influence of a superposition of
radiative cooling and small eddies on cirrus formation. For
this purpose, idealized profiles with high supersaturations up
to 144% RHi and weak thermal stability have been used. The
focus is on the multiscale aspect of cirrus formation super-
imposing large scale (i.e. radiative cooling) with small scale
(i.e. small eddies) effects. Only the combination of these ef-
fects results in significant cloud formation.

The results can be summarized as follows: destabilization
due to radiative cooling can lead to amplification of small

scale eddies, which can act as an initial cloud forming mech-
anism. Sensitivity studies for following parameters have
been performed: static and dynamic stability and the RHi
within the ISSR. The values of these key factors should be
between 0.1 and 0.8 K/km for the thermal stability (i.e. the
vertical gradient of the potential temperature), 132 to 144%
RHi and there should be no shear instability (Ri> 0.25).

Our investigations could answer some questions concern-
ing the formation of cirrus clouds due to radiative cooling:

1. Cooling due to thermal emission at the top of an ISSR
can destabilize an initial weak stable profile within sev-
eral hours (depending on the initial stability and RHi).

2. During destabilization, the amplitude of initial small ed-
dies increases and leads to the first nucleation of ice
crystals. Supported by the subsequent latent heat re-
lease, vertical updraft velocities up to 1.6 m/s can oc-
cur.

3. Within the first 8 h, cirrus clouds are formed with mean
ice water paths up to 8.9×10−3 kg/m2 and ice crystal
number densities up toN = 350 L−1.
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4. In sensitivity studies it was shown that increasing the
initial potential stability would delay the first nucleation
event up to several hours and decrease the strength of
the nucleation event, as we can see forIWP andN .
Increasing the initial wind shear would lead to smaller
cells, and therefore to nucleation of fewer crystals. In-
creasing the RHi within the ISSR amplifies the thermal
emission and shortens the duration to the first nucleation
event, but it has only a marginal effect on the vertical ve-
locities. This will lead to cirrus clouds with largerIWP.

5. To obtain sufficient radiative cooling at the top of the
ISSR, a sharp decrease of RHi is required.

Using a simple phase-diagram (Fig.13) we can explain the
sensitivity due to certain parameters. If the initial RHi is
lower than the boundary (a), the radiative cooling would be
too weak to destabilize the stratification. If it is too high
(boundary (c)), the random motions due to initial tempera-
ture fluctuations would be strong enough to trigger a cloud
before the profile becomes unstable. If the stability (static or
dynamic) becomes too weak (boundary (b)), updrafts can be
triggered spontaneously due to initial small-scale motions or
induced shear-instability. If it becomes too strong (boundary
(d)), the radiative cooling is again not strong enough to desta-
bilize the profile within a certain time (8 h for this simula-
tions). At least for conditions near the boundary (b), it is very
hard to distinguish which of the observed effects (e.g. desta-
bilization due to radiative cooling, shear-instability, small-
scale eddies) actually is the most important. It has to be
considered that we always have a superposition of different
cloud-controlling effects on different scales. It must be noted
here that without radiative cooling at the top of the ISSR,
there would be no cloud formation for all simulations within
8 h. This implies that other cloud building mechanisms like
frontal lifting or orographic effects (i.e. gravity waves) (e.g.
Spichtinger and Gierens, 2009b; Joos et al., 2009) should not
occur during the simulation time.

As a kind of textbook knowledge in the cirrus community
it is usually assumed that radiation might not be important
for the initial formation of cirrus clouds. The main argument
is that radiative cooling would result into very low cooling
rates or equivalently into vertical updraughts of the order of
millimetres per second. This would lead to very thin cirrus
clouds containing only a few ice crystals per litre (see e.g.
Kärcher and Spichtinger, 2009). However, from the results
of the present study this position might be revised under the
comprehension of the discussed destabilisation process. In
presence of weakly stable profiles both effects, i.e. radiative
cooling and destabilisation might lead to the formation of
visible cirrus clouds. On the other hand, the impact of radia-
tion on the stability of the upper troposphere itself, discussed
in a broader sense, should be an interesting topic for future
research. From this point of view the role of convective cells
in ice-supersaturated regions and cirrus cloud layers might
be interesting in terms of cirrus cloud inhomogeneities and

RHi

St
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a) c)

b)

d)

Fig. 13. Phase-diagram of possible conditions, for which thermal
emission is an important cloud-building factor in dependence of the
stability (statical and dynamical) and the RHi within an ISSR. The
regions outside(b) and(c) accord to spontaneous cloud formation
without an influence of radiation, whereas outside(a) and (d) the
conditions supress any cloud formation within the simulation time.

patchiness of cirrus clouds, also in terms of the radiative im-
pact of cirrus clouds. Finally, this could also be important for
more physically based parameterisations of cirrus clouds in
large-scale models, including also the macroscopic structure
on the cloud scale. We could not discuss in detail the issue of
frequency of occurrence of environmental conditions, which
allow the radiation to have a predominant impact on the sta-
bility of the upper troposphere (and therefore be of impor-
tance for cirrus formation). The radiosonde data used origi-
nates from only one measurement site and therefore does not
give an insight into global distributions. This must be inves-
tigated in future studies, using meteorological analyses and
maybe also output from large-scale models in order to ob-
tain a better overview about the importance of the described
mechanism. It also remains unclear how important radiative
destabilisation is, when superimposed with other large- or
meso-scale processes (i.e. frontal lifting, gravity waves etc.);
this will be subject of future research.
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