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Abstract. Multi-year time series records of C2-C6 alka-
nes, C2-C4 alkenes, ethyne, isoprene, C6-C8 aromatics,
trichloroethene (C2HCl3), and tetrachloroethene (C2Cl4)
from canister samples collected during January 2004–
February 2008 at the University of New Hampshire (UNH)
AIRMAP Observatory at Thompson Farm (TF) in Durham,
NH are presented. The objectives of this work are to iden-
tify the sources of nonmethane hydrocarbons (NMHCs) and
halocarbons observed at TF, characterize the seasonal and in-
terannual variability in ambient mixing ratios and sources,
and estimate regional emission rates of NMHCs. Analysis
of correlations and comparisons with emission ratios indi-
cated that a ubiquitous and persistent mix of emissions from
several anthropogenic sources is observed throughout the en-
tire year. The highest C2-C8 anthropogenic NMHC mix-
ing ratios were observed in mid to late winter. Following
the springtime minimums, the C3-C6 alkanes, C7-C8 aro-
matics, and C2HCl3 increased in early to mid summer, pre-
sumably reflecting enhanced evaporative emissions. Mix-
ing ratios of C2Cl4 and C2HCl3 decreased by 0.7±0.2 and
0.3±0.05 pptv/year, respectively, which is indicative of re-
duced usage and emissions of these halogenated solvents.
Emission rates of C3-C8 NMHCs were estimated to be 109

to 1010 molecules cm−2 s−1 in winter 2006. The emission
rates extrapolated to the state of New Hampshire and New
England were∼2–60 Mg/day and∼12–430 Mg/day, respec-
tively. Emission rates of benzene, toluene, ethylbenzene,
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xylenes, and ethyne in the 2002 and 2005 EPA National
Emissions Inventories were within±50% of the TF emis-
sion rates.

1 Introduction

Volatile organic compounds (VOCs) (including nonmethane
hydrocarbons (NMHCs), alkyl nitrates, oxygenated and
halogenated hydrocarbons) are ubiquitous and important
chemical constituents in the atmosphere. The reaction of
VOCs with various oxidants (e.g., hydroxyl radical (OH),
ozone (O3), nitrate radical, halogens) produces organic
(RO2) and hydro (HO2) peroxy radicals which react with
nitrogen oxides (NOx) to produce secondary species, such
as tropospheric ozone, organic nitrates, and peroxides, and
regulates the oxidation capacity of the atmosphere. The
relative concentrations and speciation of NOx and NMHCs
in a particular region determine whether ozone production
or destruction occurs (e.g., Carter, 1994; Sillman and He,
2002; Kleinman et al., 2005). In addition, the partitioning
of low volatility VOC oxidation products into the condensed
phase produces secondary organic aerosols (e.g., Odum et
al., 1997; Ng et al., 2007; Kroll and Seinfeld, 2008). Ozone
and aerosols are components of photochemical smog, are
respiratory lung irritants, and are harmful to vegetation and
crops. Furthermore, several VOCs, such as benzene, toluene,
xylenes, and tetrachloroethene, are classified as toxic air pol-
lutants and are subject to federal regulations (US EPA, 2008).
Therefore, it is necessary to identify and characterize the
atmospheric distributions and sources of VOCs in order to
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develop and validate emission inventories, reduce the levels
of hazardous air pollutants, and to predict and control O3 and
aerosol concentrations.

The regional distributions of VOCs are highly variable
because of several confounding factors, including differ-
ent atmospheric lifetimes and removal mechanisms, varying
meteorological conditions, and the wide range of potential
sources. In order to minimize these complications and to
eliminate site-to-site differences, long-term continuous mea-
surements from the same location are necessary. Multi-year
measurements of NMHCs and halocarbons at remote and
urban North American sites have been reported (e.g., Job-
son et al., 1994; Hagerman et al., 1997; Kang et al., 2001;
Mohamed et al., 2002; Gautrois et al., 2003; Swanson et
al., 2003; McCarthy et al., 2006; Qin et al., 2007), but not
for New England since 1994–2001 (Goldstein et al., 1995;
Kleiman and Prinn, 2000; Barnes et al., 2003; Lee et al.,
2006). These studies have provided baseline data from which
to monitor future changes in sources and ambient mixing ra-
tios.

Air masses containing urban and industrial emissions from
southern New England, the US East Coast and mid-Atlantic
corridor, and the Midwest are transported to New Hampshire.
Previous research has indicated that the trace gas measure-
ments (including O3, carbon monoxide (CO), nitric oxide
(NO), mercury, select VOCs) made at the UNH AIRMAP
monitoring site at Thompson Farm (TF) in Durham, New
Hampshire are representative of both inland and coastal New
England (e.g., Talbot et al., 2005; Chen et al., 2007; Sive
et al., 2007; Mao et al., 2008; White et al., 2008; Zhou et
al., 2005, 2008). This suggests that the TF results can be
applied to regional analyses of the short and long-term tem-
poral variability and sources of VOCs for this region. This is
particularly valuable because southern New England, includ-
ing the seacoast region of New Hampshire, and extending to
the southwest through New York and New Jersey is classified
as an O3 nonattainment area (US EPA, 2003, 2008).

We have been conducting VOC measurements at Thomp-
son Farm since 2002. Multi-year VOC data published thus
far includes measurements of C1-C5 alkyl nitrates (Russo
et al., 2010), methyl iodide (Sive et al., 2007), and oxy-
genated VOCs (OVOCs) and select NMHCs (Jordan et al.,
2009). Summertime measurements (2002–2004) of NMHCs,
OVOCs, and marine-derived halocarbons at TF were dis-
cussed in Talbot et al. (2005), Chen et al. (2007), White
et al. (2008), and Zhou et al. (2005, 2008). In this work,
four years (2004–2008) of ambient C2-C8 NMHC and an-
thropogenic halocarbon data from daily canister samples
collected at the Thompson Farm site in southeastern New
Hampshire are presented and discussed. The primary objec-
tives of this study are to characterize the seasonal to inter-
annual trends and to identify the possible sources of C2-C8
NMHCs and halocarbons. Additionally, emission rates of
several NMHCs were estimated and compared with the EPA
National Emissions Inventory.

2 Sampling and analytical methods

2.1 Daily canister sample collection and analysis

The University of New Hampshire AIRMAP Observatory at
Thompson Farm (TF) is located in Durham, New Hampshire
(43.11◦ N, 70.95◦ W, elevation 24 m) and is located approx-
imately 20 km inland from the Atlantic Ocean and 100 km
north of Boston, MA (www.airmap.unh.edu) (Fig. 1). TF is
surrounded by agricultural fields and a mixed deciduous and
coniferous forest. An ambient canister sample has been col-
lected at some point between 10:00–15:00 (EST; UTC−5 h)
each day at the top of the 15 m tower next to the manifold in-
let for all the instruments housed in the TF building. Sample
collection began on 12 January 2004 and continues through
the present. The sample collection time window is represen-
tative of daytime conditions when photochemistry is most
active and the boundary layer is likely well mixed. Prior
to sampling, the 2-liter electropolished stainless steel canis-
ters (University of California, Irvine, CA) were prepared by
flushing with UHP helium that had passed through an acti-
vated charcoal/molecular sieve (13X) trap immersed in liquid
nitrogen. The canisters were then evacuated to 10−2 torr.

The canister samples were analyzed in the laboratory
at UNH approximately every 1–3 months for C2-C10 non-
methane hydrocarbons, C1-C5 alkyl nitrates, C1-C2 halo-
carbons, several OVOCs, and select sulfur compounds. A
three gas chromatograph system equipped with two flame
ionization detectors (FID), two electron capture detectors
(ECD), and a mass spectrometer (MS) was used for analy-
sis of each 1500 cc (STP) sample aliquot. The PLOT-FID,
OV-1701-ECD, and OV-624-MS column-detector combina-
tions have remained the same throughout 2004-2008 (see
Sive et al. (2005) and Zhou et al. (2005, 2006, 2008) for
additional information). In 2006, the FID channel used for
C4-C10 NMHC analysis was changed from a DB-1 column
(60 m×0.32 mm I.D., 1 µm film thickness) to a VF-1ms col-
umn (60 m×0.32 mm I.D., 1 µm film thickness). Also, the
OV-624-ECD channel was changed to a CP-PoraBond-Q col-
umn (25 m×0.25 mm I.D., 3 µm film thickness) coupled to
a Restek XTI-5 column (30 m×0.25 mm I.D., 0.25 µm film
thickness). The MS was operated in electron impact mode
with single ion monitoring for measuring OVOCs and sul-
fur compounds, as well as duplicate measurements of sev-
eral halocarbons and NMHCs. A 1500 cc aliquot from one
of two working standards was assayed every ninth analysis.
The measurement precision for the whole air standards (i.e.,
relative standard deviation (RSD) = standard deviation of
peak areas/average of peak areas) was<1–4% for the C2-C8
NMHCs and 5% for C2HCl3 and C2Cl4 at 0.50 and 6.0 pptv,
respectively.

Atmos. Chem. Phys., 10, 4909–4929, 2010 www.atmos-chem-phys.net/10/4909/2010/

www.airmap.unh.edu


R. S. Russo et al.: Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons 4911

2.2 Daily canister sample data set

Data for several classes of NMHCs and two halocarbons
from the canister samples collected during 12 January 2004
to 8 February 2008 were used for this study. Collec-
tion of the daily samples is ongoing. The specific com-
pounds, which represent a wide range of chemical reactiv-
ities and sources, are C2-C6 alkanes (ethane, propane, i-
butane, n-butane, i-pentane, n-pentane, n-hexane), C2-C4
alkenes (ethene, propene, 1-butene), C6-C8 aromatics (ben-
zene, toluene, ethylbenzene, m+p-xylene, o-xylene), ethyne,
isoprene, tetrachloroethene (C2Cl4), and trichloroethene
(C2HCl3). The data for each year and for the combined
four year data set was separated into four seasons which
are defined as winter: December, January, February; spring:
March, April, May; summer: June, July, August; and fall:
September, October, November. Note that the data encom-
passes five winter seasons (2004–2008) and four spring, sum-
mer, and fall seasons (2004–2007) with the exceptions of
winter 2004 which only includes 12 January to 29 February
and winter 2008 which is only through 8 February. Mixing
ratios higher than the 95th percentile value for each month
were removed in order to ensure that the results were repre-
sentative of typical conditions and were not skewed by out-
lying or spurious data points.

2.3 Thompson Farm automated gas chromatograph

Hourly measurements of C3-C6 alkanes, ethyne, propene,
benzene, toluene, ethylbenzene, m+p-xylene, and o-xylene
from an automated GC system during December 2005–
January 2006 at TF were also used in this analysis. The sam-
ple size of the in situ GC system was also 1500 cc. Details of
the four channel (2 FIDs, 1 ECD, 1 MS) GC system, MMR
preconcentrator, sample trapping and splitting, calibrations,
and instrument control are given in Sive et al. (2005). The
system deployed at TF also contained four channels, but
VOC detection was made with two FIDs and two ECDs. The
channel which replaced the MS was a PoraBond-Q/OV-1 col-
umn coupled to an ECD for measuring C1-C2 halocarbons.
A 1500 cc aliquot from one of two working standards was
assayed every tenth analysis. The precision (i.e., RSD) for
each of the hydrocarbons discussed in this work ranged from
3–10%.

2.4 Standards and calibration

In order to ensure that the VOC mixing ratios in samples
analyzed at different times are comparable, whole air and
synthetic standards were routinely analyzed and calibration
scales were cross referenced and validated. When conduct-
ing the canister sample analysis, one of two whole air stan-
dards was analyzed after every eighth sample in order to
monitor changes in detector sensitivity and measurement
precision and to quickly detect any analytical problems. The
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Fig. 1. Location of the UNH AIRMAP Atmospheric Observing
Station at Thompson Farm in Durham, New Hampshire.

whole air working standards employed for this work have
mixing ratios representative of clean free tropospheric air
and suburban air, thus bracketing the low and high ranges for
the measurements at TF. Moreover, linearity studies are regu-
larly conducted to evaluate the detector response over the ob-
served mixing ratio ranges for all classes of compounds. The
working standards are part of the larger network of whole
air standards maintained by B. Sive at UNH as part of the
AIRMAP program. In total, there are currently ten high
pressure cylinders, six 36-liter electropolished low-pressure
pontoons (∼350 psi), and three 34-liter electropolished high-
pressure pontoons (∼900 psi) containing whole air standards
that have been filled and calibrated by UCI (D. Blake) and
UNH. We estimate the upper limit of the absolute accuracy of
the calibrated standards to be on the order of±1–5% for the
gases reported here. In addition to the whole air standards,
calibrations are conducted using five different high-pressure
cylinders containing synthetic blends of selected NMHCs,
OVOCs, and halocarbons at the ppbv level (Apel-Reimer En-
vironmental, Inc.). The absolute accuracy for all of the gases
in the synthetic standards is less than±5%.

Response factors (RF) for each compound in a particular
standard were calculated by dividing the detector response
(peak area=A) by the mixing ratio (MR) of that compound
in the standard (RF=A/MR). Mixing ratios for each gas to
be quantified in the ambient samples were subsequently cal-
culated using the average RF determined from the whole air
standards during each set of individual analyses. In order to
monitor the response of NMHCs with different numbers of
carbon atoms, it is useful to evaluate the per-carbon response,
particularly when dealing with long-term calibrations. The
per-carbon response provides information regarding analyt-
ical system performance and standard integrity with time.
The per-carbon response factors (PCRF) were determined by
dividing the RF for each NMHC by the number of carbon
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Fig. 2. Per carbon response factors (PCRF) of(a) ethane,(b) ethyne,(c) propane,(d) propene,(e) n-butane, and(f) 1-butene in different
standards (pont1, pont2, ccrXY, hppc, DC2) analyzed in the UNH laboratory during 2004–2008. The reference lines are the mean± 1
standard deviation of the PCRF included in each plot. The symbols± error bars are the mean PCRF± 1 relative standard deviation for the
individual standard analyzed during the specified time period.

atoms (C) in each particular hydrocarbon (PCRF=RF/C).
While the response for hydrocarbons containing the same
number of carbon atoms should be uniform, this should al-
ways be verified by analyzing different classes of compounds
(e.g., alkanes, alkenes, alkynes). Examples of the PCRFs for
several NMHCs are shown in Fig. 2 as representative exam-
ples for the analyses when a new standard began to be used
and every∼3–6 months when the same two standards were
being analyzed throughout 2004–2008. While there is some
scatter about the mean PCRF over the four years, the PCRF
of the two standards analyzed during each analysis period
are self-consistent. Moreover, this illustrates the long-term
stability of our analytical system.

The PCRF of the C2-C4 NMHCs measured with the
PLOT-FID column-detector pair decreased with increasing
carbon number, but remained approximately the same over
the four years and did not vary with standard. Additionally,
the PCRFs remained constant for the C3 (mean± standard
deviation = 4.12±0.19) and C4 (3.70±0.16) compounds
(Fig. 2c–f). The PCRFs of the C4-C10 NMHCs for the DB-
1/VF-1ms-FID column-detector pair have remained essen-
tially constant (1.43±0.03) for compounds with different car-
bon numbers and for different compound classes since 2005
(Sive, 1998; Zhou, 2006). Periodically, the standards used
by the automated GC system at TF were returned to the lab-
oratory and analyzed on the canister analysis system. The
PCRFs for the TF standards (e.g., DC2) agreed (within±5%)
with the laboratory standards ensuring that the measurements
made by the two independent systems are comparable.

3 Seasonal and interannual variability of VOCs at
Thompson Farm

3.1 General characteristics of NMHCs and comparison
with previous studies

The highest monthly mean and median mixing ratios of
NMHCs (excluding isoprene, Sect. 3.2) at TF were observed
in the winter (Fig. 3, Table 1). This reflects the slow re-
moval rates from the atmosphere caused by minimum OH
radical concentrations at this time of year. Lower bound-
ary layer heights in winter are conducive to the build up of
trace gas concentrations and may also contribute to the win-
tertime peak mixing ratios. In general, the lowest NMHC
mixing ratios were observed in spring to summer when the
maximum OH concentrations occur and the photochemical
removal of NMHCs is the most rapid. It should also be men-
tioned that there is a variation in dominant air mass trans-
port pathways throughout the year which may contribute to
the seasonal variation in NMHC mixing ratios. For example,
in the winter, the transport of clean, Canadian air masses to
New England, which are representative of background con-
ditions, is more frequent (Munger et al., 1996; Moody et al.,
1998; Shipham et al., 1998). In contrast, transport from the
south and west is more frequent during the summer (Moody
et al., 1998; Fischer et al., 2004; Mao and Talbot, 2004b).
Overall, the seasonal variation at TF is consistent with the
general tropospheric trend observed at other North American
sites (e.g., Jobson et al., 1994; Bottenheim and Shepherd,
1995; Goldstein et al., 1995; Hagerman et al., 1997; Gautrois
et al., 2003; Swanson et al., 2003; Lee et al., 2006; Qin et al.,
2007).
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Table 1. Monthly NMHC statistics (pptv) for January 2004–February 2008. SD is the standard deviation.N is the number of samples.

January February March April May June July August September October November December

Ethane
Mean (SD) 2436 (621) 2395 (443) 2138 (435) 1856 (278) 1423 (205) 1104 (306) 1023 (324) 876 (277) 998 (275) 1238 (367) 1859 (544) 2278 (939)
Median(N) 2248(125) 2288(101) 2104(98) 1835(86) 1401(102) 1057(92) 942(91) 784(99) 961(103) 1099(86) 1734(94) 2074(94)
Range 984–4673 1656–3901 872–3709 947–2604 859–2079 488–2049 453–2655 465–1765 530–1815 720–2567 881–3778 1085–7622
Propane
Mean (SD) 1498 (612) 1332 (481) 1002 (371) 674 (231) 444 (204) 497 (340) 559 (308) 505 (314) 605 (331) 786 (471) 1217 (527) 1518 (795)
Median(N) 1309(125) 1161(101) 933(98) 622(86) 387(102) 380(92) 522(91) 399(99) 532(103) 666(86) 1164(94) 1299(94)
Range 439–3907 806–3128 358–2419 225–1682 125–1135 103–1488 137–1600 91–1647 134–1766 274–3229 446–2788 608–4549
i-Butane
Mean (SD) 269 (109) 253 (109) 190 (116) 98 (46) 54 (26) 65 (39) 70 (39) 60 (36) 75 (59) 126 (67) 210 (99) 266 (144)
Median(N) 234(125) 220(99) 163(96) 89 (86) 47 (102) 57 (92) 64 (92) 46 (99) 58 (103) 106(86) 201(94) 225(94)
Range 66–679 140–694 59–655 17–224 13–125 12–172 15–224 6–161 9–276 34–289 64–434 90–866
n-Butane
Mean (SD) 500 (208) 444 (169) 308 (138) 174 (86) 96 (48) 103 (73) 105 (59) 95 (61) 118 (81) 217 (125) 376 (191) 502 (349)
Median(N) 429(125) 400(101) 279(98) 153(86) 85 (102) 72 (92) 92 (92) 78 (99) 99 (103) 180(85) 333(93) 422(93)
Range 111–1325 261–1230 108–708 29–423 19–227 16–349 26–350 10–271 21–478 54–577 105–833 171–2160
i-Pentane
Mean (SD) 202 (112) 163 (74) 125 (93) 74 (47) 67 (46) 105 (77) 115 (60) 110 (75) 109 (80) 127 (90) 177 (104) 211 (140)
Median(N) 170(125) 151(100) 95 (98) 63 (86) 59 (102) 79 (92) 106(92) 88 (99) 92 (103) 100(86) 150(94) 176(93)
Range 55–710 67–427 33–517 13–216 11–265 15–341 30–301 17–377 13–399 23–412 46–467 59–767
n-Pentane
Mean (SD) 129 (61) 101 (38) 72 (43) 40 (23) 34 (20) 45 (30) 52 (28) 51 (34) 52 (35) 66 (42) 104 (53) 135 (83)
Median(N) 114(125) 91 (100) 60 (98) 33 (86) 31 (102) 38 (92) 49 (92) 44 (99) 45 (103) 57 (86) 88 (94) 114(94)
Range 26–374 51–237 21–235 7–124 5–114 7–151 12–140 7–165 10–168 16–179 19–250 49–465
n-Hexane
Mean (SD) 53 (32) 42 (22) 27 (20) 16 (11) 18 (11) 23 (17) 25 (15) 25 (16) 25 (18) 29 (21) 40 (23) 52 (32)
Median (N ) 42 (125) 37 (100) 23 (93) 12 (82) 15 (89) 18 (86) 22 (88) 22 (91) 19 (90) 23 (81) 38 (94) 42 (92)
Range 14–180 17–130 3–116 3–59 2–51 5–90 5–82 4–75 3–83 3–84 6–95 10–144
Ethyne
Mean (SD) 730 (260) 704 (177) 560 (157) 394 (94) 256 (68) 215 (121) 235 (108) 203 (98) 222 (107) 318 (129) 498 (198) 624 (230)
Median(N) 631(125) 650(101) 533(98) 379(86) 242(102) 181(92) 216(92) 179(99) 193(103) 289(85) 440(93) 588(93)
Range 222–1804 475–1329 251–1146 184–723 118–455 80–643 82–499 56–515 72–614 121–700 247–1331 318–1552
Ethene
Mean (SD) 579 (387) 437 (259) 346 (291) 337 (335) 216 (185) 216 (169) 192 (104) 184 (136) 192 (118) 240 (154) 437 (284) 679 (412)
Median(N) 455(125) 364(101) 257(98) 162(86) 158(102) 165(92) 177(91) 155(99) 158(103) 209(86) 380(93) 534(93)
Range 168–2552 120–1245 32–1270 41–1181 38–854 31–788 70–717 36–938 41–552 57–758 87–1284 141–2110
Propene
Mean (SD) 89 (72) 66 (48) 52 (37) 38 (20) 43 (22) 43 (20) 52 (30) 54 (44) 53 (34) 54 (33) 71 (48) 98 (74)
Median(N) 64 (125) 50 (101) 38 (98) 34 (86) 37 (102) 40 (92) 47 (91) 46 (99) 42 (103) 43 (86) 57 (93) 75 (93)
Range 21–427 9–244 11–198 13–95 12–115 10–94 17–214 11–295 13–180 16–164 15–212 21–380
1-Butene
Mean (SD) 20 (16) 18 (12) 16 (10) 12 (7) 13 (10) 11 (6) 10 (6) 12 (12) 12 (8) 12 (9) 18 (12) 20 (15)
Median(N) 14 (120) 14 (95) 13 (94) 9 (79) 11 (97) 8 (88) 9 (90) 9 (92) 9 (91) 9 (82) 13 (89) 16 (92)
Range 4–26 3–79 4–56 4–38 3–63 3–27 5–47 2–81 3–43 3–43 3–55 4–90
Isoprene
Mean (SD) 35 (54) 24 (51) 20 (33) 9 (9) 50 (125) 666 (674) 1278 (848) 1078 (657) 464 (420) 86 (116) 16 (15) 93 (150)
Median(N) 17 (40) 10 (34) 9 (23) 5 (31) 15 (84) 376(92) 1007(92) 946(99) 336(103) 40 (77) 11 (45) 25 (47)
Range 3–303 3–301 3–149 3–49 2–829 13–3131 176–3893 103–3714 26–2486 3–566 2–72 2–551
Benzene
Mean (SD) 167 (50) 159 (42) 133 (42) 88 (24) 60 (18) 55 (35) 60 (26) 55 (26) 59 (28) 75 (28) 114 (39) 151 (56)
Median(N) 152(125) 148(101) 126(99) 88 (86) 59 (102) 45 (92) 55 (92) 50 (99) 54 (103) 69 (85) 110(94) 136(94)
Range 61–364 108–372 72–297 42–182 25–111 18–207 21–123 9–136 15–139 27–147 46–229 57–373
Toluene
Mean (SD) 136 (91) 126 (102) 125 (215) 67 (53) 73 (48) 109 (74) 106 (68) 91 (63) 102 (80) 99 (80) 122 (87) 131 (85)
Median(N) 104(125) 96 (101) 61 (99) 49 (86) 56 (100) 92 (92) 87 (91) 74 (98) 78 (103) 77 (85) 101(94) 111(93)
Range 48–535 40–621 16–1979 9–235 13–203 16–291 31–379 14–340 6–375 16–352 22–442 33–416
Ethylbenzene
Mean (SD) 18 (12) 16 (9) 15 (17) 10 (9) 9 (6) 13 (11) 14 (10) 11 (7) 10 (8) 12 (9) 15 (10) 17 (12)
Median(N) 14 (124) 13 (99) 8 (99) 7 (87) 8 (98) 10 (89) 11 (90) 9 (99) 8 (102) 10 (86) 11 (94) 14 (94)
Range 4–68 4–45 3–118 2–62 1–26 0.7–60 3–59 2–40 2–34 2–44 3–44 5–57
m+p-Xylene
Mean (SD) 23 (19) 18 (13) 17 (20) 11 (10) 11 (8) 18 (24) 19 (22) 12 (12) 12 (10) 15 (13) 20 (15) 24 (18)
Median(N) 15 (124) 15 (99) 8 (99) 8 (87) 8 (98) 10 (89) 12 (90) 8 (99) 8 (102) 12 (86) 16 (94) 19 (93)
Range 4–126 3–64 2–113 1–47 2–47 0.6–150 3–125 2–85 2–47 2–73 2–62 5–107
o-Xylene
Mean (SD) 13 (11) 10 (7) 9 (10) 7 (5) 6 (4) 11 (13) 12 (11) 9 (9) 8 (6) 9 (7) 11 (8) 13 (10)
Median(N) 9 (123) 9 (97) 5 (98) 5 (86) 5 (98) 7 (88) 9 (90) 6 (99) 6 (102) 7 (86) 9 (94) 11 (93)
Range 2–73 2–33 1–61 2–30 1–22 2–75 2–62 1–61 1–31 2–39 1–36 3–56
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The mixing ratios of NMHCs observed at TF are lower
than those reported for major US cities (Baker et al., 2008),
including Pittsburgh, PA (Millet et al., 2005), Dallas, TX
(Qin et al., 2007), and Houston, TX (Gilman et al., 2009).
The winter mean and median mixing ratios of ethyne, C2-
C4 alkanes, n-pentane, and n-hexane at TF were compara-
ble to background (monthly 10th percentile) mixing ratios
observed at Harvard Forest (HF) in Massachusetts during
1992–2001 (Goldstein et al., 1995; Lee et al., 2006). Sim-
ilar behavior was observed during summer with the excep-
tion of propane whose mean and median mixing ratios were
comparable at TF and HF. It must be kept in mind that the
HF results include nighttime data. Winter and summer day-
time mixing ratios of ethane, ethene, and ethyne at TF were
similar to or higher than levels in the SE US (Hagerman et
al., 1997) and at Whiteface Mountain, NY (WFM) (Gong
and Demerjian, 1997) while aromatic hydrocarbon mixing
ratios were generally lower at TF. This may reflect reduced
emissions of aromatic compounds since the 1990’s. Addi-
tionally, the mixing ratios of C4-C6 alkanes at TF in win-
ter were generally lower than observed at various Canadian
sites in the mid-1990’s which likely reflects the influence of
the Arctic air mass and/or the weaker photochemical removal
of NMHCs at higher latitudes (Jobson et al., 1994; Botten-
heim and Shephard, 1995; Young et al., 1997; Gautrois et
al., 2003). In summer, the C2-C6 alkanes, ethene, and ethyne
were similar to or higher than values reported in Canada the
previous decade, including the downwind site at Chebogue
Point, Nova Scotia (Jobson et al., 1998). With the excep-
tion of HF, summertime mixing ratios of propane, ethene,
and ethyne at TF were consistently higher than or similar to
values reported for rural sites throughout the continental US
and Canada. In contrast to the 1993 NARE campaign, the
median mixing ratios of C3-C8 NMHCs were factors of 2–3
(factor of 6 for toluene) lower at Chebogue Point, Nova Sco-
tia during summer 2004 (Millet et al., 2006) illustrating the
closer proximity to anthropogenic sources at TF.

3.2 Seasonal variation of anthropogenic C2-C8 NMHCs

The C2-C6 alkanes, ethyne, toluene, and benzene exhibited
reproducible seasonal trends where the longer lived com-
pounds had higher mixing ratios and reached minimum an-
nual mixing ratios later in the year. Ethane mixing ratios
peaked in winter-early spring and then decreased until mid
to late summer when minimum mixing ratios were observed
(Fig. 3a). Mixing ratios of the C3-C6 alkanes, alkenes,
ethyne, and aromatics began to decrease in mid to late win-
ter and reached minimum levels 2–4 months later (Fig. 3;
Table 1). Ethene, ethyne, and benzene remained at their an-
nual minimum mixing ratios from late spring to late sum-
mer (Fig. 3d). Despite its order of magnitude shorter life-
time, ethene mixing ratios were often similar to or higher
than ethyne in summer, fall, and winter indicating the im-
portance of ethene emissions in NH. The monthly mean and

median propane, i-butane, and n-butane mixing ratios were
lowest in late spring (May–June) followed by an increase
in early summer before reaching a second minimum in late
summer (Table 1). In comparison, minimum mixing ra-
tios of the shorter-lived C5-C6 alkanes, propene, and toluene
occurred earliest (April–May), increased in early summer,
and then remained within a similar range through October-
November (Fig. 3c, f; Table 1). The mean summer mixing
ratios of propene, toluene, and the C5-C6 alkanes were∼15–
90% higher than the April-May mean mixing ratios. These
NMHCs react rapidly with OH (summer lifetime<1.5 days
assuming [OH]=2×106 molecules cm−3), and thus would be
expected to remain at minimum mixing ratios throughout the
entire summer. The summer increase in mixing ratios is in-
dicative of a strong influence from evaporative emissions on
the NMHC distribution (discussed in more detail in Sect. 4).

On average, 1-butene, ethylbenzene, and xylenes (m+p
and o) were also highest in winter, lowest in early to mid
spring, and increased in early summer (Fig. 3e–g, Table 1).
Superimposed on the general alkene and C8 aromatic sea-
sonal patterns were unique interannual trends reflecting vary-
ing sources or emission rates. For example, a higher and nar-
rower range of propene (∼50–80 pptv) and 1-butene (∼8–
17 pptv) monthly mean and median mixing ratios were ob-
served in spring 2006 through winter 2008 compared to the
previous two years when distinct winter peaks and spring-
summer minimum mixing ratios occurred. Additionally, the
highest monthly mean and median m+p-xylene and o-xylene
mixing ratios of the entire four year study period (∼25–40
and 25–35 pptv, respectively), as well as the highest summer
toluene (90–140 pptv) and ethylbenzene (14–22 pptv) mixing
ratios, were observed in summer 2007 and elevated mixing
ratios persisted through winter 2008.

3.3 Influence of enhanced NMHC emissions on summer
photochemistry

The enhanced summer mixing ratios of reactive NMHCs will
likely influence the ambient mixing ratios and regional bud-
gets of secondary photochemical species, such as organic
aerosols, OVOCs, and O3. NMHCs make variable contri-
butions to the production of secondary species because of
their different rates of reaction with OH. The incremental re-
activity (IR) is a method for determining the various ozone
formation potentials (OFP) of VOCs and takes into consid-
eration the different chemical reaction pathways following
the initial reaction of the NMHC with OH. The incremen-
tal reactivity is defined as the change in O3 resulting from
the addition or subtraction of an increment of VOC to/from
an airmass divided by the amount of VOC added or re-
moved (Carter, 1994; Bowman and Seinfeld, 1995). An es-
timate of the maximum possible amount of O3 that could
be formed resulting from the higher propene, C5-C6 alkane,
and toluene in summer was made using the following equa-
tion: 1O3 = 1NMHC×MIR where1NMHC = maximum
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Fig. 3. Time series of NMHCs (pptv) at TF during January 2004–February 2008:(a) ethane, propane,(b) n-butane, i-butane,(c) i-pentane,
n-pentane, n-hexane,(d) ethene, ethyne, benzene (note that the benzene axis is offset),(e) propene, 1-butene,(f) toluene, ethylbenzene, and
(g) m+p-xylene, o-xylene.

summer mixing ratio – average spring mixing ratio and MIR
is the maximum incremental reactivity factor (gram of O3
produced/additional gram of NMHC) (Carter, 1994, 2008).
For these calculations, we are assuming that conditions are
favorable for O3 production. The atmosphere over New
England in summer is generally NOx-limited because of the
abundance of biogenic VOCs. Nonetheless, summer NOx
mixing ratios at TF have been observed to range from 0.21–
17.5 ppbv (average 2.3 ppbv) (Griffin et al., 2007). These
NOx mixing ratios are sufficient for the NO+peroxy radical
reaction to be preferred over peroxy radical self reactions
(e.g., Flocke et al., 1991; Roberts et al., 1998). These cal-
culations indicate that 0.5–2.4 ppbv, 0.46–0.65 ppbv, 0.15–

0.24 ppbv, 0.08–0.1 ppbv, and 1.2–2.3 ppbv (total range 2.4–
5.7 ppbv) of additional O3 could be formed as a result of
the enhanced propene, i-pentane, n-pentane, n-hexane, and
toluene mixing ratios, respectively, in summer at TF. In com-
parison, the 24 h mean O3 mixing ratios at TF are∼30 ppbv
in summer (Mao and Talbot, 2004a; Talbot et al., 2005).
These results are not absolute levels of O3 that will be pro-
duced because the MIR factors were derived for conditions
that do not necessarily reflect New England (Carter, 1994).
Nonetheless, these results are intended to illustrate the po-
tentially significant impact of the enhanced summer mixing
ratios of reactive NMHCs on the ozone formation potential
in this region.
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Fig. 4. (a) Time series of isoprene (pptv) (green line) and the
monthly mean temperature (◦C) (gray line) at TF during January
2004–February 2008.(b) Correlation between log(isoprene) (in
ppbv) and the hourly average temperature (corresponding to the
hour the canister sample was collected) during June–September of
2004, 2005, 2006, and 2007.

3.4 Isoprene

Isoprene is the only NMHC discussed in this work with a
predominantly biogenic origin (deciduous plants and trees)
(e.g., Guenther et al., 1995). Isoprene mixing ratios rapidly
increased in the beginning of June, remained high through
August, and gradually decreased in September-October of
each year (Fig. 4a, Table 1). In July–August 2005, 2006,
and 2007, isoprene was the most abundant NMHC (monthly
mean mixing ratios=1000–2100 pptv) illustrating the impor-
tance of biogenic emissions in this region. In comparison,
mean ethane (the longest lived NMHC) mixing ratios were
∼800–1250 pptv. Isoprene was positively correlated with the
ambient temperature during each summer. The relationship
can be expressed as log(isoprene)=0.074T–1.9 (r2=0.57) for
all of the available June-September data (Fig. 4b) (T in ◦C
corresponding to the hour the sample was collected). The
highest isoprene mixing ratios (>3 ppbv) were observed in
the warmest summers (2005 and 2006) while the lowest
(<1600 pptv) mixing ratios occurred during the coolest sum-
mer (2004). The temperature dependence of isoprene was
nearly the same each summer, on sunny/clear days, and on
cloudy/rainy days. Furthermore, this relationship is consis-
tent with previous studies (e.g., Fehsenfeld et al., 1992; Job-
son et al., 1994; Goldan et al., 1995; Gong and Demerjian,
1997; Hagerman et al., 1997; Kang et al., 2001) indicating a
similar temperature dependence of ambient isoprene mixing
ratios at various North American sites.

Fig. 5. Time series of(a) C2HCl3 and(b) C2Cl4 (pptv) at TF dur-
ing January 2004–February 2008. Black line and circles are the
monthly mean± standard error mixing ratios.

3.5 Halocarbons

Trichloroethene and tetrachloroethene are primarily used as
dry cleaning and degreasing solvents and are thus tracers
of industrial sources (e.g., Wang et al., 1995; McCulloch
and Midgley, 1996). It is necessary to monitor the atmo-
spheric trends of C2HCl3 and C2Cl4 because they are used
as replacements for CFCs and in the production of HFCs
and HCFCs and because they are classified as toxic air pol-
lutants and are regulated by the EPA (US EPA, 2007). A
wide range of C2Cl4 (3–65 pptv) and C2HCl3 (<1–23 pptv)
mixing ratios were observed at TF (Fig. 5). The shorter-
lived (days-weeks) C2HCl3 had a similar seasonal variation
as the NMHCs with a winter maximum (monthly mean mix-
ing ratios=5–8 pptv), late spring minimum (1–2 pptv), and
an early summer increase (2–5 pptv). Similar to propene,
the C5-C6 alkanes, and toluene, the mean mixing ratios in
summer were 50–75% higher than in spring illustrating that
evaporative emissions of C2HCl3 are important to its atmo-
spheric distribution in this region. In contrast, the monthly
mean mixing ratios of the longer-lived (months) C2Cl4 were
fairly uniform. A seasonal variation was apparent in the
C2Cl4 background (monthly 10th percentile) mixing ratios
which were highest in winter (8–9 pptv) and lowest in late
summer (3–5 pptv).

The monthly mean halocarbon mixing ratios at TF are
higher than observed at remote sites, such as Mace Head,
Ireland (Simmonds et al., 2006), along the US west coast
(Simpson et al., 2004), NOAA CMDL sites (Thompson et
al., 2004), Chebogue Point, Nova Scotia (Millet et al., 2006),
and over the North Atlantic Ocean (Dimmer et al., 2001), re-
flecting the closer proximity to industrial sources and their
continued use in North America, but are lower than observed
in heavily urbanized areas, such as Pittsburgh, PA (Millet et
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al., 2005), Houston, TX (Gilman et al., 2009), and Mexico
City, Mexico (Velasco et al., 2007). The C2Cl4 mixing ra-
tios at TF are similar to background levels in Massachusetts
during 1996–1999 (Kleiman and Prinn, 2000; Barnes et al.,
2003) which suggests that C2Cl4 emission rates in more
populated areas in the US did not change considerably be-
tween the late 1990’s and 2004. However, we have ob-
served a decrease in the magnitude of peak mixing ratios, and
in the annual mean, median, and background mixing ratios
throughout 2004–2008 at TF (Fig. 5, Table 2). More specif-
ically, the background mixing ratios of C2Cl4 and C2HCl3
were 30% and 65% lower, respectively, in 2007 than in
2004. According to the EPA 2008 Toxics Release Inventory
(www.epa.gov/tri), C2HCl3 emission reductions were about
a factor of two larger than C2Cl4 over the same time period.

An estimate of the rate of decrease in atmospheric mix-
ing ratios of both halocarbons was made using the annual
statistics in order to minimize the influence of the seasonal
variation in C2HCl3 and in background C2Cl4. The lin-
ear regression through the annual background mixing ra-
tios gave decrease rates (± standard deviation) of 0.73±0.24
and 0.27±0.05 pptv/year for C2Cl4 and C2HCl3, respectively
(Table 2). In comparison, C2Cl4 decrease rates (pptv/year)
were estimated to be 1.0 (C2HCl3=0.1) in 1991–1996 at
Alert, Canada (Gautrois et al., 2003), 0.6–1.2 during 1994–
1997 in the continental US (Hurst et al., 1998), 0.1–0.4
throughout 1989–2002 along the North American west coast
(Simpson et al., 2004), 0.18 (C2HCl3=0.01) during July
2000–December 2004 at Mace Head, Ireland (Simmonds et
al., 2006), and 5% per year in 1995–2003 based on analysis
of EPA and NOAA CMDL data at remote North American
sites (McCarthy et al., 2006). It must be kept in mind that the
trends observed at TF and other locations represent differ-
ent time periods, emission rates, and industrial regulations.
Nonetheless, our results indicate that the amounts of C2Cl4
and C2HCl3 being transported from the northeastern US to
the North Atlantic are decreasing.

4 NMHC source identification

4.1 Comparison with tracers and source signatures

The major sources of ethyne, benzene, carbon monoxide
(CO), and alkenes are incomplete combustion of fossil fu-
els, biomass burning, and vehicle exhaust emissions (e.g.,
Harley et al., 1992, 2001; McLaren et al., 1996; Choi and
Ehrman, 2004). The oxidation of VOCs is also a potential
secondary source of CO, particularly in summer when bio-
genic NMHC mixing ratios are high (Sect. 3.4) (Hudman
et al., 2008). Studies focused on the northeast US during
summer 2004 found that observed CO mixing ratios could
largely be explained by primary urban/industrial and biomass
burning sources (Warneke et al., 2006; Griffin et al., 2007).
Thus, in our analysis, we neglect the possible secondary

Table 2. Annual C2HCl3 and C2Cl4 statistics (pptv) for 2004–
2008, and the rate of decrease (pptv/year) in the annual background
mixing ratios± standard deviation (SD).N is the number of sam-
ples. Background is the 10th percentile for the entire year.

C2HCl3 C2Cl4

2004
Mean (SD) 6.0 (4.7) 15.8 (10.5)
Median(N) 4.6 (277) 12.3(277)
Background 1.3 6.7
Range 0.25–23.4 3.3–65.7

2005
Mean (SD) 5.0 (3.7) 13.3 (7.6)
Median(N) 4.5 (323) 11.0(324)
Background 0.9 6.2
Range 0.16–21.1 3.4–44.7

2006
Mean (SD) 4.0 (3.6) 13.1 (9.2)
Median(N) 2.9 (264) 9.6 (270)
Background 0.7 5.7
Range 0.14–20.3 3.3–65.3

2007
Mean (SD) 3.0 (2.6) 10.5 (6.5)
Median(N) 2.5 (240) 8.6 (244)
Background 0.5 4.5
Range 0.12–14.6 2.4–40.6

pptv/year (SD) −0.27±0.05 −0.73±0.24
r2 0.99 0.95

contribution to CO. Ethyne and CO were fairly well corre-
lated at TF (r2=0.5–0.9) demonstrating a year-round impact
from combustion emissions (Fig. 6a). The correlations be-
tween alkenes and tracers for combustion (ethyne), lique-
fied petroleum gas (LPG) (propane), and fuel evaporation
(i-pentane) were strongest in winter and showed consider-
able scatter in the other seasons. The short-lived alkenes had
presumably undergone mixing and oxidative removal during
transport resulting in weaker correlations in spring, summer,
and fall. Based on the winter measurements, the ethene and
propene correlation slopes with ethyne (1.2 and 0.21, respec-
tively) were similar to light duty gasoline and vehicle exhaust
emission ratios (0.9–1.7 and 0.1–0.5, respectively) (Conner
et al., 1995; Watson et al., 2001; Choi and Ehrman, 2004;
McGaughey et al., 2004) suggesting that vehicular emissions
were the dominant source of these alkenes. Propene and 1-
butene were well correlated throughout the majority of the
study period reflecting a common source (Fig. 6b). The cor-
relation coefficients between ethyne and the alkanes, ben-
zene, and toluene were fairly variable within each season
and year (r2=0.4–0.9), but overall suggest that combustion
sources were collocated with or were the same as the alkane
and aromatic sources.

www.atmos-chem-phys.net/10/4909/2010/ Atmos. Chem. Phys., 10, 4909–4929, 2010

www.epa.gov/tri


4918 R. S. Russo et al.: Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons

Fig. 6. Correlations (m=slope± standard error (r2)) between(a)
CO (ppbv) and ethyne and(b) propene and 1-butene for each year
(2004, 2005, 2006, 2007, 2008).

The C3-C6 alkanes were well correlated with each other
(r2=0.6–0.9). The slopes of the correlation between propane
and n-butane (2.2–2.7, Fig. 7a) and i-butane (3.8–5.5, not
shown) agree with LPG emission ratios (2–4 and 3–7, re-
spectively) (e.g., Scheff and Wadden, 1993; Blake and Row-
land, 1995; Goldan et al., 1995; Chen et al., 2001; Fujita,
2001; Watson et al., 2001; Mukerjee et al., 2004; Barletta
et al., 2008) indicating that LPG emissions are widespread
and prevalent in New England. Moreover, the i-butane/n-
butane slope (0.49–0.56, Fig. 7b) was within the range of
reported emission ratios from several sources, including ur-
ban/vehicular exhaust (∼0.2–0.3), LPG (0.46), and natural
gas (∼0.6 to>1) (B. Sive, unpublished data; Jobson et al.,
1998, 2004; Goldan et al., 2000; Fujita, 2001; Watson et
al., 2001; Barletta et al., 2002; Choi and Ehrman, 2004; Ve-
lasco et al., 2007). Additionally, the slope of the correla-
tion between i-pentane and n-pentane (range for each season
each year=1.5–2.6) (Fig. 7c) was within the range of reported
emission ratios for vehicle exhaust and tunnel studies (∼2.2–
3.8), liquid gasoline (1.5–3), and fuel evaporation (1.8–4.6)
(Conner et al., 1995; Harley et al., 2001; Watson et al., 2001;
Jobson et al., 2004; McCaughey et al., 2004; Lough et al.,
2005; Velasco et al., 2007). Overall, these results suggest that
a uniform mix of emissions from numerous alkane sources is
observed at TF.

Fig. 7. Correlation (m=slope± standard error (r2)) of n-butane
with (a) propane and(b) i-butane for each year.(c) Correlation be-
tween n-pentane and i-pentane. Gray diamonds are all of the sam-
ples collected in October–May of 2004–2008. Red squares are all
of the samples collected in June–September of 2004–2007.

The i-pentane/n-pentane correlation slope was noticeably
higher in the warmer months each year (June-September
slope=2.2; October-May slope=1.6, Fig. 7c) which likely re-
flects enhanced evaporative emissions of i-pentane (e.g., Ru-
bin et al., 2006). Additionally, the correlation slopes between
the C5-C6 alkanes and butanes were factors of∼0.5–2 higher
in summer. Gasoline retailers in New England are required
to sell reformulated gasoline with a lower Reid vapor pres-
sure (RVP) in order to reduce emissions of highly volatile
NMHCs in the summer (US EPA, 2003, 2008). Our measure-
ments demonstrate that fuel evaporation and headspace va-
por emissions of the C5-C6 alkanes were still strong enough
to partially counteract OH chemistry throughout the entire
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summer each year. These relationships will continue to be
monitored in order to identify and evaluate any potential im-
pacts of the switch to using gasoline containing 10% ethanol
(E10) in 2007 (www.des.nh.gov) on the ambient distributions
of NMHCs in New England.

The C7-C8 aromatics were well correlated illustrating
their common sources. The toluene/ethylbenzene correla-
tion slope was in good agreement with vehicular and ur-
ban emission ratios (Fig. 8a) (e.g., Parrish et al., 1998;
Monod et al., 2001). The o-xylene/m+p-xylene correla-
tion slope (0.44–0.55, Fig. 8b) was slightly higher, and
the m+p-xylene/ethylbenzene (1.1–1.9, Fig. 8c) and o-
xylene/ethylbenzene (0.53–1.1, not shown) slopes were
lower than industrial/urban, gasoline, fuel evaporation, and
vehicle exhaust emission ratios (∼0.36–0.4, 2.2–4.6, and
1.2–1.8, respectively) (Conner et al., 1995; Kirchstetter et
al., 1996; Sagebiel et al., 1996; Rogak et al., 1998; Monod
et al., 2001; Watson et al., 2001; Choi and Ehrman, 2004;
Jobson et al., 2004; Velasco et al., 2007). The differences
between the emission and ambient C8 aromatic ratios likely
reflect the preferential loss of the xylenes during air mass
transport because of their greater reactivity.

4.2 Ambient ratios: compounds with similar lifetimes

Information on the relative impact of various sources in a
region can be obtained by comparing the ambient ratio of
two compounds that have similar rates of reaction with OH
but different sources (e.g., Klemp et al., 1997; Jobson et
al., 1999; Goldan et al., 2000). The ratio should reflect the
integration of several factors, such as air mass mixing and
dilution, new emission inputs, and oxidative removal, be-
cause neither compound will be removed preferentially dur-
ing transport. Thus, on average, the ratio can be assumed
to remain fairly constant and approximately equal to the
emission ratio (Parrish et al., 1998). For example, propane,
ethyne, and benzene have similar lifetimes (<30% difference
in kOH) (Atkinson et al., 2006), but these NMHCs are tracers
of different sources. The propane/ethyne, propane/benzene,
and benzene/ethyne vehicular exhaust and whole gasoline
emission ratios are typically<1 while ratios from natu-
ral gas, LPG, or gasoline vapor are≥∼1 (e.g., Conner et
al., 1995; Fujita et al., 1995; Fujita, 2001; Mukund et al.,
1996; Lawrimore et al., 1997; Watson et al., 2001; Choi and
Ehrman, 2004; Mukerjee et al., 2004; White et al., 2008).
Throughout 2004-2008, the propane/ethyne (Fig. 9a) and
propane/benzene ratios ranged from 1–5 and 3–25, respec-
tively, demonstrating the stronger influence of natural gas
or LPG relative to incomplete combustion as a source of
propane throughout the entire year. This corroborates pre-
vious work at TF and Appledore Island, Maine (10 km off
the NH coast) during summer 2004 which concluded that
LPG was the dominant source of propane throughout the en-
tire day in southern NH (White et al., 2008). Furthermore,
Goldan et al. (2004) illustrated that the relationship between

Fig. 8. Correlations (m=slope± standard error (r2)) between(a)
toluene and ethylbenzene,(b) o-xylene and m+p-xylene, and(c)
m+p-xylene and ethylbenzene for each year.

propane and benzene was unique to the northeast US based
on measurements made off the New England coast during
the NEAQS 2002 campaign and suggested that this is indica-
tive of a non-vehicular source of propane. This supports our
observations of a significant influence from LPG use and/or
leakage at TF.

The slope of the benzene vs. ethyne correlation was the
same in each season of every year (slope of all data=0.21,
r2=0.91) (Fig. 9b). This ratio value is indicative of a vehicu-
lar source and is consistent with observations of ambient ben-
zene/ethyne ratios measured during several spring-summer
field campaigns conducted throughout the US (Fortin et al.,
2005; Harley et al., 2006; Parrish, 2006; Sistla and Aleksic,
2007; Warneke et al., 2007) and in major cities (Parrish et al.,
2009). The strong correlations between propane and ethyne
(Fig. 9a), propane and benzene (r2=0.71–0.76, not shown),
and benzene and ethyne (Fig. 9b) suggest that emissions from
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Fig. 9. Correlation (m=slope± standard error (r2)) of ethyne with
(a) propane and(b) benzene for each year.

natural gas, petroleum, and fossil fuel/incomplete combus-
tion (e.g., vehicles) sources were concurrent and/or collo-
cated. Moreover, this illustrates a pervasive and continuous
influence of emissions from several anthropogenic sources
on the chemical composition of air masses observed at TF.

4.3 Ambient ratios: compounds with different lifetimes

Ambient ratios between compounds with different rates of
reaction with OH and with well characterized sources and
sinks are frequently used to estimate the relative photochem-
ical age of air masses, transport times and distances, or OH
concentrations (e.g., Jobson et al., 1994; McKeen et al.,
1996; Parrish et al., 1998; Smyth et al., 1999; Dimmer et
al., 2001; Kleinman et al., 2003; Russo et al., 2003). A fun-
damental drawback to estimating air mass processing times
using ambient ratios is a lack of information on seasonal
variations in sources, especially when analyzing data from
short-term field campaigns. Analysis of the long-term mea-
surements from TF provided a unique perspective on the in-
terrelationships between seasonal variations in sources and
chemical processing in this region.

Four common ratios with the shorter-lived com-
pound in the numerator are ethyne/CO, propane/ethane,
toluene/benzene, and C2HCl3/C2Cl4 (Fig. 10). The general
behavior of these ratios can be predicted based on the differ-
ential removal of the compounds in each ratio. For example,
if reaction with OH was the only factor influencing the
seasonality in mixing ratios, a decrease in ratio values from

Fig. 10. Time series of the(a) ethyne/CO (pptv/ppbv) and
toluene/benzene ratios and(b) propane/ethane and C2HCl3/C2Cl4
ratios during January 2004–February 2008.

winter to summer would be expected to occur concurrently
with the increase in atmospheric OH concentrations because
the shorter-lived compound is removed preferentially. The
ethyne/CO ratio trend reflects the seasonal variation in OH
concentrations with higher winter ratios (4–5 pptv/ppbv)
indicating less processed emissions and low summer ra-
tios (1–2 pptv/ppbv) reflecting more processed air masses
(Fig. 10a). The propane/ethane and C2HCl3/C2Cl4 ratios
tracked each other very well, and the temporal variation of
both ratios resembled the ethyne/CO ratio with maximum
values in winter and minimum values in late spring-summer
(Fig. 10b). However, the propane/ethane and C2HCl3/C2Cl4
ratios increased throughout summer and fall which likely
reflects the similar lifetimes and seasonal variation of
propane and C2HCl3 combined with the mid to late summer
minimum ethane and C2Cl4 mixing ratios.

The seasonal variation of the toluene/benzene ratio
was opposite of the ethyne/CO, propane/ethane, and
C2HCl3/C2Cl4 ratio behavior, and thus contrary to the ex-
pected photochemical trend (Fig. 10a). The toluene/benzene
ratio was lowest in winter-spring (∼0.5–1.5) and highest in
summer-fall (0.5–7). These ratio values are comparable to
ambient ratios (1–5) observed in numerous continental/urban
areas (e.g., Parrish et al., 1998; Monod et al., 2001). How-
ever, the fact that the ratio increases in the summer is in-
dicative of an additional source or enhanced emissions of
toluene in this region. White et al. (2009) illustrated that
the anomalous toluene behavior at TF could not be fully
explained by fuel evaporation and industrial emissions and
provided evidence for a biogenic contribution to the summer
toluene enhancements. It was also noted that the toluene en-
hancements were larger with each successive year (White et
al., 2009). This trend continued into 2007 when the highest
toluene/benzene ratios (mean=2.1) were observed (Fig. 10a).
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This analysis provides a clear illustration for the necessity
of characterizing VOC sources in individual regions. As re-
cently discussed by Schnitzhofer et al. (2008), these results
have important implications because numerous studies have
used the toluene/benzene ratio to estimate photochemical air
mass ages (e.g., Roberts et al., 1984; Gong and Demerjian,
1997; Kang et al., 2001; de Gouw et al., 2005; Warneke et al.,
2007) or to distinguish between industrial, evaporative, and
exhaust emission sources (e.g., Barletta et al., 2008). The
TF measurements demonstrate that the toluene/benzene ratio
may not be appropriate for estimating relative air mass ages
in this region because variations in the ratio values reflect
both chemical processing and additional toluene emissions.
An additional source of toluene in this region causes the ini-
tial toluene/benzene emission ratio used in the processing
time calculations to be erroneously high leading to overes-
timated photochemical air mass ages and transport distances.

5 Emission rates of NMHCs

5.1 Emission rates estimated from observations at TF

Emission rates of speciated VOCs based on ambient mea-
surements are needed for developing regional budgets, im-
plementing effective control strategies for reducing emis-
sions of photochemical smog precursors and toxic com-
pounds, and evaluating emission inventories and air quality
models. Estimates of emission rates are limited and are pri-
marily reported on global scales (e.g., Boissard et al., 1996;
Gupta et al., 1998) or in urban areas during specific cam-
paigns (e.g., Blake and Rowland, 1995; Chen et al., 2001,
Velasco et al., 2005). Additionally, emissions for individual
VOCs are usually lumped into specific classes (i.e., alkane,
alkene, aromatic, biogenic). Major reasons for the lack of in-
formation on regional VOC emission rates include the com-
plications involved with differentiating between local, re-
gional, and distant sources and the scarcity of long-term con-
tinuous measurements. In order to minimize the complica-
tions associated with air mass transport, we focus on (1) win-
ter measurements because the C2-C8 NMHC lifetimes are
longer than regional transport and mixing timescales at this
time of year and (2) nighttime data when it has been deter-
mined that mixing is minimal. Under these conditions, we
can assume that a change in NMHC mixing ratios reflects
local sources or sinks. In contrast, the daily canister sam-
ples are representative of daytime conditions when mixing
and transport may be occurring and can be assumed to reflect
sources from a larger area. Thus, emission rates of NMHCs
were calculated in two steps.

First, we estimated emission rates of NMHCs using hourly
measurements from the automated in situ GC system at TF
during December 2005–January 2006. We followed a simple
box model approach which has been effectively used in pre-
vious studies to calculate emission and removal rates of trace

gases in this region (i.e., Talbot et al., 2005; Zhou et al., 2005;
Sive et al., 2007; White et al., 2008; Russo et al., 2010). This
method uses measurements made on nights with low wind
speeds and when a stable inversion layer has developed be-
cause under these conditions, the exchange of air between the
nocturnal boundary layer (NBL) and the residual layer above
is limited (e.g., Hastie et al., 1993; Gusten et al., 1998; Talbot
et al., 2005). Therefore, advection and vertical mixing of air
masses can be neglected. Two criteria were used for identify-
ing nights when a stable inversion layer developed: (1) wind
speeds<1 m/s and (2) O3≤5 ppbv. The two criteria condi-
tions were met on several nights between approximately mid-
night and 05:00 with concurrent increases in NMHC mixing
ratios. Emission rates (ERGC) were calculated by multiply-
ing the slope of the linear regression between the change in
hourly average concentrations (dC in molecules cm−3) per
unit time (dt=5 h) by the boundary layer height:

ERGC =

[
dC

dt

]
·H (1)

Stable nocturnal boundary layer heights typically range from
∼50–200 m at midlatitude continental locations (e.g., Hastie
et al., 1993; Gusten et al., 1998; McKendry and Lundgren,
2000; White et al., 2003); thus we chose 125 m as a repre-
sentative value for the TF site (e.g., Talbot et al., 2005; Sive
et al., 2007; Mao et al., 2008; White et al., 2008; Zhou et
al., 2005). If we useH=50 m or 200 m, our emission rate
estimates discussed below vary by±60%. It must be kept
in mind that the resulting emission rate estimates are directly
proportional to the boundary layer height which varies with
meteorological conditions, time of day, and season (Talbot et
al., 2005).

In the second step, emission rates (ERDC) were calculated
by multiplying the emission ratio for each compound from
the daily canister samples by the emission rate of a reference
compound (Eq. 2):

ERDC =

(
NMHC

Ethyne

)
·ERGC Ethyne (2)

Ethyne was used as the reference compound because of its
relatively long lifetime and because its major source (com-
bustion) is well known (e.g., Conner et al., 1995; Goldstein
et al., 1995; de Gouw et al., 2005; Lee et al., 2006). Emis-
sion ratios using the winter 2006 daily canister data were de-
termined from the slope of the correlation between a spe-
cific NMHC and ethyne (NMHC/ethyne). A comparison be-
tween the winter 2006 data from the automated in situ GC
and the canister samples demonstrated that the mixing ratios
agreed well (±10%, r2=0.82–0.94; orthogonal distance re-
gression) and that the results from the two instruments can
be meaningfully compared (Fig. 11). The correlations are
based on comparing the TF GC sample corresponding most
closely to the time the canister was collected. These times
agreed within less than one hour. The canister and GC data
tracked each other illustrating that the daily canister samples
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captured a wide range of air mass types and compositions
including background air masses and significant winter pol-
lution events with enhanced NMHC mixing ratios.

The percent difference between the emission rates cal-
culated from the TF GC nighttime data (Eq. 1) and
the daily canister emission ratios (Eq. 2) ranged be-
tween ±5–80% (Table 3). The emission rate of propane
(∼2 to 4×1010 molecules cm−2 s−1) was 1–2 orders of
magnitude larger than the other NMHCs (range 0.2–
7×109 molecules cm−2 s−1) (Table 3). The high propane
emission rate is another indication of the persistent impact
of leakage from LPG tanks or refilling stations throughout
the region (Sect. 4.2). Additionally, assuming the TF results
are representative of the state and region, the NMHC emis-
sion rates extrapolated to the state of New Hampshire and
New England are∼2–61 Mg/day and∼12–430 Mg/day, re-
spectively (Table 3). The emission rates of propane, i-butane,
and n-butane from New Hampshire were 20–90% lower than
observed from LPG leakage in Mexico City, Mexico (Elliott
et al., 1997) and in Santiago, Chile (Chen et al., 2001). How-
ever, taking into consideration the larger land area for New
Hampshire and New England, our results suggest that po-
tential emissions of C3-C4 alkanes from the northeast US
are comparable to emission rates that have been observed in
densely populated urban areas (see also White et al., 2008).
Furthermore, these high levels of precursor compounds in air
masses transported to and across the North Atlantic may con-
tribute to O3 and aerosol production, thus influencing the air
quality of downwind regions.

Emission rates determined using the daily canister emis-
sion ratios from winters 2004, 2005, 2007, or 2008 were
within ∼10–50% of the winter 2006 values. In addition, the
winter 2006 emission rates of propane, i-butane, n-butane, i-
pentane, and propene agreed (within factors of∼0.7–6) with
estimates made using nighttime measurements from the au-
tomated TF GC during summers 2003 and 2004 (White et
al., 2008). The consistency between the estimates for differ-
ent winters and for winter and summer suggests that emis-
sion rates do not appear to be varying detectably with season
or year. We consider the fact that the winter 2006 TF GC
and daily canister emission rates and the summer 2003 and
2004 emission rates from White et al. (2008) agree within
an order of magnitude (with the exception of m+p-xylene)
to be good agreement. Furthermore, despite the different ar-
eas (i.e., source footprints) potentially represented by the TF
GC and daily canister emission rates, both approaches yield
similar results. Possible explanations for this similarity in-
clude: (1) the two estimates are not completely independent
because the daily canister emissions are calculated using the
TF GC ethyne emission rate; (2) local NMHC emission rates
are similar to rates throughout New England; (3) the mid-
day daily canister emission rates retain a signature from local
nighttime emissions following the breakup of the NBL and
subsequent mixing with remnant air from the previous day’s
mixed layer in the morning. Overall, this analysis provides

Fig. 11. Comparison between(a) propane,(b) ethyne,(c) benzene,
and(d) toluene data from the automated TF GC system during De-
cember 2005–January 2006 and the daily canister samples collected
during the same time period. Note: the canister samples with mix-
ing ratios>95th percentile for each month have been removed.

promising results that the daytime canister samples provide
representative information on regional emission rates.

5.2 Comparison with the 2002 and 2005 EPA National
Emissions Inventory

The emission rates of benzene, toluene, ethylbenzene,
xylenes, and ethyne in the two most recent versions (2002
and 2005) of the EPA National Emissions Inventory (NEI)
(www.epa.gov/ttn/chief/net) were compared with each other
and with the emission rates estimated at TF (Sect. 5.1). These
five NMHCs were chosen because the NEI provides spe-
ciated emission rates for some toxic compounds (includ-
ing aromatics) and because ethyne or VOC/ethyne ratios are
commonly used as tracers of specific sources. The emis-
sion rates of benzene, toluene, ethylbenzene, and xylenes for
NH from the major source categories (onroad, nonroad, non-
point, point) were obtained directly from the NEI. Emission
rates of ethyne were estimated using the total VOC emis-
sions from its major sources (gasoline and diesel exhaust,
recreational equipment, lawn and garden equipment, and sta-
tionary source fuel combustion) and the EPA recommended
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Table 3. Emission rates (molecules cm−2 s−1) of C3-C8 NMHCs calculated using nighttime measurements made by the automated TF
GC when a stable inversion layer developed during winter 2006. The error bars were calculated by propagating the standard error of the
linear regression between the change in NMHC concentration per unit time (00:00–05:00 EST) and the assumed variation in nocturnal
boundary layer height (125 m±75 m). The winter 2006 daily canister emission ratio (±standard error (SE)) was calculated from the slope
of the correlation between a NMHC and ethyne. The winter 2006 daily canister emission rate (molecules cm−2 s−1) was calculated by
multiplying the daily canister emission ratios by the TF GC ethyne emission rate. The error bars were calculated by propagating the error
associated with the winter 2006 TF GC ethyne emission rate and the standard error of the NMHC/ethyne emission ratio. New Hampshire
(land area=2.3×1010m2) and New England (land area=1.6×1011m2) emissions (Mg/day) were extrapolated from the winter 2006 TF GC
emission rates.

Winter 2006 TF GC Winter 2006 Daily Winter 2006 Daily New New
Emission Rate Canister Emission Ratio Canister Emission Rate Hampshire England

×109 r2
(

NMHC
Ethyne

)
±SE r2

×109 Mg/day Mg/day

(molec. cm−2 s−1) (molec. cm−2 s−1)

Ethyne 7.4±4.9 0.78 6.4±4.2 45±30
Propane 42±25 0.96 2.33±0.25 0.57 17±12 61±37 427±260
Propene 3.2±2.0 0.86 0.25±0.02 0.75 1.8±1.2 4.5±2.9 32±20
i-Butane 3.2±2.0 0.89 0.44±0.04 0.60 3.3±2.0 6.1±3.8 43±27
n-Butane 3.6±2.3 0.83 0.85±0.13 0.40 6.3±4.1 6.9±4.4 49±31
i-Pentane 2.4±1.5 0.94 0.43±0.04 0.68 3.2±2.1 5.8±3.6 41±25
n-Pentane 1.4±0.8 0.96 0.22±0.03 0.46 1.6±1.0 3.3±2.0 23±14
n-Hexane 0.6±0.4 0.87 0.09±0.01 0.61 0.7±0.4 1.7±1.1 12±8
Benzene 1.6±1.1 0.81 0.19±0.01 0.94 1.4±0.9 4.3±2.8 30±19
Toluene 2.7±1.7 0.82 0.30±0.02 0.79 2.3±1.5 8.2±5.3 58±37
Ethylbenzene 0.5±0.3 0.86 0.04±0.003 0.69 0.3±0.2 1.8±1.1 13±8
m+p-Xylene 1.3±0.8 0.80 0.04±0.004 0.61 0.3±0.2 4.4±2.9 31±20
o-Xylene 0.5±0.3 0.88 0.03±0.002 0.65 0.2±0.1 1.8±1.1 13±8

composite profiles for those sources. The speciation pro-
files were obtained from the SPECIATE 4.2 database (http:
//projects.pechan.com/ttn/speciate4.2.1).

The emission rates of benzene, toluene, ethylbenzene,
xylenes, and ethyne in both the 2002 and 2005 NEI agreed
within the error limits and were the same order of magnitude
as the TF emission rates (Table 4). The emission rates of ben-
zene, ethylbenzene, and xylenes were fairly similar (within
±15%) in the two versions of the NEI. The relative distribu-
tion of emissions in the NEI and at TF was the same in 2002
with toluene> xylenes∼ ethyne> benzene> ethylbenzene.
Toluene and ethylbenzene had the highest and lowest emis-
sion rates, respectively, in the 2005 NEI as well. Overall, it
appears that the 2002 NEI emission estimates were in better
agreement with the TF emission rates than the 2005 NEI.

A notable difference between the two versions of the NEI
is the higher toluene emissions from nonroad sources (specif-
ically recreational, lawn, and garden equipment) in 2005 than
in 2002 (Table 4). While still within the error limits, the
largest difference between the central TF emission rate and
the NEI was for toluene (out of the five compounds shown
in Table 4). The 2002 and 2005 total NEI toluene emis-
sions were 30% and 50%, respectively, higher than the TF
estimates. Toluene has many potential sources in this re-
gion (e.g., vehicular exhaust, fuel evaporation, solvent uti-
lization, biogenic, White et al., 2009) which is a likely fac-

tor contributing to the disagreement between the inventory
and our estimates. Previous studies focused on the east-
ern US have reported that toluene emissions were overesti-
mated in earlier versions of the NEI. For example, Choi et
al. (2006) found that toluene emissions were overestimated
in a modified version of the 1996 NEI compared to PAMS
measurements made in Mid-Atlantic states. In contrast to
this work in which the higher toluene in 2005 was asso-
ciated with larger nonroad emissions, the overestimate re-
ported by Choi et al. (2006) was related to solvent utiliza-
tion. Furthermore, WRF-CHEM model predictions based on
the 1999 NEI of the vertical profile of toluene over the north-
east US during the NEAQS-ITCT 2004 campaign were ap-
proximately a factor of 3 larger than observations (Warneke
et al., 2007). Toluene is an important precursor of O3 and
SOA which highlights the critical need for updated source
profiles, improved inventory emission estimates, and addi-
tional observational constraints on toluene emissions.

The total 2002 NEI and TF ethyne emission rates agreed
remarkably well (∼2300 Mg/year) (Table 4). However, the
total 2005 NEI ethyne emission rate was∼40% lower than
the central TF value, but was still within the error lim-
its of the TF emission rate. Ethyne emissions in the non-
point source category reflect residential stationary source
fuel combustion with a minor contribution from open burning
(yard and household waste). Residential wood and fireplace
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Table 4. Emission rates (Mg/year) of benzene, toluene, ethylbenzene, xylenes (m+p+o), and ethyne and the toluene/benzene and ben-
zene/ethyne ratios from the 2002 and 2005 EPA National Emissions Inventory (NEI) for New Hampshire. The TF column is the emission
rate (Mg/year) estimated using the winter 2006 TF GC nighttime measurements from Table 3. The toluene/benzene and benzene/ethyne ra-
tios were calculated by converting the emission rates for TF and for the respective source category listed in this table to molar concentrations.
The TF toluene/benzene and benzene/ethyne ratio errors were propagated from the error in the TF emission rates.

Onroad Exhaust Onroad Evaporation Nonroad Nonpoint Point Total

TF 2002 NEI

Benzene 1555±1000 540 25 730 520 10 1830
Toluene 3000±1900 1400 160 1660 480 100 3800
Ethylbenzene 660±400 200 30 365 25 30 650
Xylenes 2260±830 790 100 1120 260 120 2390
Ethyne 2350±1540 390 540 1370 2 2300

Toluene/Benzene 1.6±1.4 2.2 5.4 1.9 0.78 8.4 1.8
Benzene/Ethyne 0.22±0.2 0.46 0.45 0.13 1.7 0.26

TF 2005 NEI

Benzene 1555±1000 650 30 400 480 10 1570
Toluene 3000±1900 1450 160 2340 520 90 4560
Ethylbenzene 660±400 210 30 275 30 5 550
Xylenes 2260±830 820 100 1280 290 40 2530
Ethyne 2350±1540 405 640 430 5 1480

Toluene/Benzene 1.6±1.4 1.9 4.5 5.0 0.92 7.6 2.5
Benzene/Ethyne 0.22±0.2 0.53 0.21 0.37 0.67 0.35

combustion was the largest nonpoint source of VOC emis-
sions in northern New England in both versions of the NEI.
According to the EPA, the emission factor used to calcu-
late emissions for the woodstove and fireplace source cate-
gory was reduced for the 2005 NEI (www.epa.gov/ttn/chief/
net/2005inventory). Consequently, the VOC emission rate
from the woodstove and fireplace source category was∼70%
lower in the 2005 NEI than in the 2002 NEI. This resulted
in the lower ethyne emissions in 2005 and the larger discrep-
ancy with the TF emission rates. This illustrates the necessity
of additional studies to accurately quantify the VOC emis-
sions from residential combustion in the northeast US (e.g.,
Jordan et al., 2009).

The toluene/benzene and benzene/ethyne ratios based on
the NEI emissions for New Hampshire were also examined
and compared to the ambient ratios (Sects. 4.2 and 4.3)
(Table 4). Both the 2002 and 2005 NEI toluene/benzene
and benzene/ethyne ratios agreed within the error limits of
the TF ratio values. The total benzene/ethyne ratios in the
2002 (0.26) and 2005 (0.35) NEIs were lower than the ra-
tios given in Parrish (2006) for the 1996 and 1999 NEIs (0.9
and 0.7, respectively). The benzene/ethyne ratio in the on-
road exhaust source category (∼0.5) was higher than am-
bient ratios (∼0.2). Our results are consistent with Parrish
(2006) who reported that there was a downward trend in
NEI benzene/ethyne ratio values but that there are still prob-
lems with the apportioning of benzene and ethyne emissions

in the onroad source category. Overall, the range of NEI
toluene/benzene and benzene/ethyne ratio values in the dif-
ferent source categories are within the range of the ambi-
ent values observed at TF (Table 4, Figs. 9, 10). The gen-
eral agreement between our results and the inventory may be
fortuitous or it may indicate that VOC emissions are more
accurately represented in the 2002 and 2005 NEIs than in
earlier versions. Furthermore, these results suggest that the
ethyne emission rate from the NEI may be useful for esti-
mating emission rates of other VOCs by using their emission
ratios relative to ethyne from the daily canister samples. This
may be a valuable tool for modeling or predicting ambient
VOC concentrations.

6 Summary

This work characterized the mixing ratios, seasonal to inter-
annual variability, and sources of C2-C8 NMHCs, C2HCl3,
and C2Cl4 from samples collected during January 2004-
February 2008 at Thompson Farm in Durham, NH. The
midday canister samples provided a comprehensive and rep-
resentative picture of the day-to-day and interannual VOC
trends and captured a wide range of mixing ratios and var-
ious sources (fossil fuel combustion, gasoline, LPG, fuel
or solvent evaporation, industry, biogenic). Estimates of
NMHC emission rates using the daily canister sample and
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automated in situ TF GC measurements ranged from 109–
1010 molecules cm−2 s−1. Additionally, benzene, toluene,
ethylbenzene, xylene, and ethyne emission rates from the
2002 and 2005 EPA National Emissions Inventory were
within ±50% of the TF emission rates. The alkanes, ethyne,
benzene, toluene, and halocarbons exhibited consistent and
reproducible seasonal trends each year, whereas the alkenes
and C8 aromatics illustrated greater interannual variability
reflecting their shorter lifetimes and/or varying sources or
emission rates. Furthermore, this multi-year data set illus-
trated that the mixing ratios of reactive NMHCs (specifi-
cally C5-C6 alkanes, propene, toluene), and C2HCl3 were
enhanced in the summer relative to their springtime min-
imums indicating a persistent influence from evaporative
emissions each year. Previous fuel emission studies have ob-
served increased evaporative emissions from gasoline con-
taining ethanol (e.g., Durbin et al., 2007; Graham et al.,
2008). The results from this study will be valuable for eval-
uating and documenting the impact of new federal regula-
tions enacted in 2005-2007 for motor vehicle emissions (http:
//www.epa.gov/otaq/gasoline) (i.e., MTBE ban and switch
to E10) and dry cleaning solvents on the ambient levels of
VOCs in this region.
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