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Abstract. High-frequency measurements of atmospheric
molecular hydrogen (H2) and carbon monoxide (CO) were
made at an urban site in the United Kingdom (UK) from
mid-December, 2008 until early March, 2009. Very few mea-
surements of H2 exist in the urban environment, particularly
within the UK, but are an essential component in the assess-
ment of anthropogenic emissions of H2 and to a certain ex-
tent CO. These data provide detailed information on urban
time-series, diurnal cycles as well as sources and sinks of
both H2 and CO at urban locations. High-frequency data
were found to be strongly influenced by local meteorological
conditions of wind speed and temperature. Diurnal cycles
were found to follow transport frequency very closely due
to the sites proximity to major carriageways, consequently
a strong correlation was found between H2 and CO mole
fractions. Background subtracted mean and rush hour molar
H2/CO emission ratios of 0.53±0.08 and 0.57±0.06 respec-
tively, were calculated from linear fitting of data. The scatter
plot of all H2 and CO data displayed an unusual two popula-
tion pattern, thought to be associated with a large industrial
area 85 km to the west of the site. However, the definitive
source of this two branch pattern could not be fully eluci-
dated. H2 emissions from transport in the UK were estimated
to be 188±39 Gg H2/yr, with 8.1±2.3 Tg/yr of H2 produced
from vehicle emissions globally. H2 and CO deposition ve-
locities were calculated during stable night-time inversion
events when a clear decay of both species was observed. CO
was found to have a much higher deposition velocity than H2,
1.3±0.8×10−3 and 2.2±1.5×10−4 m s−1 (1σ) respectively,
going against the law of molecular diffusivity. The source
of this unusual result was investigated, however no conclu-
sive explanation was found for increased loss of CO over H2
during stable night time inversion events.
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1 Introduction

Atmospheric mixing ratios of molecular hydrogen (H2), re-
ported to be stable over the past 14-years (Grant et al.,
2010), may be altered with the possible introduction of H2
as an energy carrier. This has provoked increased interest
in the H2 budget as it may result in increased H2 emis-
sions due to leakages during transport, distribution and usage
of the fuel, thereby altering tropospheric and stratospheric
chemistry. Major sources of H2 consist of VOC oxidation
(∼50%), biomass burning (∼20%) and fossil fuel combus-
tion in transport and industry (∼25%) (Novelli et al., 1999;
Price et al., 2007; Xiao et al., 2007). The latter is thought to
be the main emission source significantly altered with intro-
duction of a H2 economy. Current estimates of H2 emission
from transport and industry are based on inventories of car-
bon monoxide emissions combined with emission ratios of
H2/CO from transport, which have been found to vary with
engine and vehicle type (Vollmer et al., 2007). Although nu-
merous studies have reported H2/CO ratios from road trans-
port sources (Hammer et al., 2009 and references therein)
there is a paucity of H2/CO ratio measurements from other
sources such as aviation, domestic heating and industry.

The major loss of H2 is from its poorly constrained biolog-
ically active soil sink, contributing 70–80% (Novelli et al.,
1999; Price et al., 2007; Sanderson et al., 2003; Xiao et al.,
2007) of its total loss, whilst reaction with the hydroxyl (OH)
acts as a minor sink. H2 deposition to the soil is particularly
difficult to quantify as it has been found to vary depending on
a number of parameters such as soil moisture, temperature,
porosity, diffusivity and type (Schmitt et al., 2009; Yonemura
et al., 1999). It is thus vital to accurately quantify the magni-
tude of the soil sink in different areas and soil types to accu-
rately estimate the magnitude of this loss process.

Carbon monoxide (CO) is one of the key components con-
trolling the oxidative capacity of the troposphere by reacting
with the OH radical, which is its primary loss route. Uptake
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Fig. 1. Sampling site location in Bristol’s city centre in the United
Kingdom and the location of Port Talbot to the west of the site.

by soil micro-organisms contributes up to 10% of its loss
(Bergamaschi et al., 2000). CO is also emitted by soils which
results in a net global balance of uptake and production in
soil (Conrad, 1988). However, soils in temperate environ-
ments have been found to primarily show CO uptake rather
than emission (Moxley and Smith, 1998).

Continuous high-frequency measurements of H2 and CO
were made in Bristol, United Kingdom (UK) from Decem-
ber 2008 to March 2009 at an urban city centre location.
To our knowledge they represent the first published set of
continuous measurements of H2 in the UK. The presented
data and their analyses provide essential information on lo-
cal sources and sinks of both H2 and CO which may aid in
the assessment of the impact of a future H2 economy.

2 Experimental

2.1 Sampling location

Semi-continuous measurements of H2 and CO in ambient
air have been performed using an automated, high-frequency
system sampling in the city centre of Bristol, UK (Fig. 1)
from mid December 2008 to early March 2009. The sam-
pling site [51◦27′ N, 2◦36′ W; 62 m above sea level] located
at the Atmospheric Chemistry Research Group in the Univer-
sity of Bristol is representative of urban conditions (Khan et
al., 2009; Rivett et al., 2003). Air quality at this urban sam-
pling site is dominated by traffic emissions as it sits close
to a number of major carriageways, which act as busy and
often congested commuter routes to and from the city cen-
tre. With a population of nearly 500 000 Bristol is the UK’s
sixth largest city. The city centre sits in a basin like depres-
sion surrounded by hills on each side. Two major motorways
run nearby the city, with a high volume of local traffic. These
combined effects often result in pollutant build-up during sta-
ble high pressure systems.

2.2 Analytical method and calibration

A commercial gas chromatograph (Peak Performer 1 (PP1),
Trace Analytical, Inc., California, USA) was used to measure
H2 and CO. This instrument is fitted with a mercuric oxide
bed and, following mercury’s reduction by H2 or CO, the en-
suing vapour is measured by UV photometry. A customised
sample introduction system was fitted to the PP1 very similar
to that reported by Grant et al. (2010) which is used at one
of the five Advanced Global Atmospheric Gases Experiment
(AGAGE) measurement sites at Mace Head, Ireland. This
customised sample introduction system enabled continuous,
high frequency, and concurrent analysis of air and standard
samples. The analysis sequence consisted of an air sample
followed by a standard to determine and correct for instru-
mental drift, resulting in 72 fully calibrated air samples per
day. A carrier gas flow of 20 ml/min of synthetic air is passed
through a Sofnocat cleanup trap to remove any trace CO im-
purities prior to use. Each sample is dried prior to separation
using a permeation Nafion drier (Permapure, USA). Once
dried the sample is flushed through the 1 ml sample loop and
allowed to decay to ambient pressure, before injection onto
two isothermal packed columns. The pre-column, used to
protect the main column from contamination by gases which
adsorb to the surface, is held a 105◦C, as is the main column,
both using standard PP1 column combination with Unibeads
1S, 60/80 mesh and molecular sieve 5Å, 60/80 mesh, respec-
tively. Once H2 and CO have been separated on the main col-
umn they are analysed by the mercury detector. All H2 and
CO peaks were integrated by height using customised soft-
ware (GCWerks) developed for instruments in the AGAGE
network, mole fractions were determined relative to a work-
ing standard also known as the quaternary standard. Qua-
ternarys are filled by compressing background ambient air at
Mace Head, Ireland into 35 L electropolished stainless steel
canisters (Essex Cryogenics, Missouri, USA) using a modi-
fied oil-free compressor (SA-3, RIX California, USA). The
internal surfaces of the cylinder are electropolished to re-
move active sites on the surface of the stainless steel. One
of these calibrated quaternary standards used in the AGAGE
network was used in the Bristol urban sampling campaign.
H2 and CO measurements were referenced against a cali-
bration scale developed at CSIRO (Commonwealth Scien-
tific and Industrial Research Organisation). Inter-calibrations
have been carried out between CSIRO and a scale devel-
oped at the Max Plank Institute (MPI) in Jena (Jordan and
Steinberg, 2010). This scale was developed for the Eurohy-
dros project to enable a network of calibrated measurements
across Europe. Good agreement was found, with MPI val-
ues approximately 16 ppb H2 higher than the CSIRO scale
(Grant et al., 2010).

Due to the non-linear response of the PP1 detector, linear-
ity testing was carried out during the reported measurement
period. This was completed using a high concentration refer-
ence gas (BOC Speciality gases Ltd., Surrey, UK) which was
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Fig. 2. Urban air measurements for H2 and CO from the 15th of
December 2008 until the 4th of March 2009 measured at Bristol in
the United Kingdom.

dynamically diluted with zero air to the range of atmospheric
concentrations by means of a custom made dynamic dilution
unit. Results provided measurements for the non-linearity
correction thus producing an equation to correct data for non-
linearity. A maximum internal reproducibility (1σ) of 5 ppb
and 1 ppb was found for H2 and CO respectively, assuming
average concentrations of 500 ppb H2 and 120 ppb CO deter-
mined from recurrent working standard analyses.

3 Results and discussion

The full record of high-frequency H2 and CO observations
taken at an urban site in Bristol from mid-December 2008 to
early March 2009 are shown in Fig. 2. This dataset contains
∼80% of the possible measurements taken over this period
with segments of missing data due to instrumental problems.
Overall accuracy on measurements is within±2%, this takes
into account standard to standard reproducibility, uncertain-
ties in non-linearity corrections and scale propagation. Over
the entire measurement period H2 was found to range from a
minimum of 494 ppb to a maximum of 1544 ppb with a mean
(±1σ) mole fraction of 601±92 ppb, whilst CO showed a
mean of 291±151 ppb with a range of 96–1214 ppb.

3.1 Diurnal variations

Anthropogenic emissions, particularly from the transport
sector were found to have a significant effect on the short-
term variability of H2and CO, evident in Fig. 3, a plot of a
six day period of high-resolution H2 and CO mole fractions
where nearly every peak in H2 coincides with elevated lev-
els of CO. In this plot mole fractions of H2 and CO are also
seen to vary with wind conditions. In Fig. 3 mole fractions
of H2 and CO are seen to rise sharply during morning and
evening rush hours, approximate times of which are high-
lighted in yellow and green, respectively. The diurnal vari-
ation is however severely affected by meteorology. A rise

Fig. 3. H2 and CO mole fractions and wind speed over a six day
period in January 2009, with rush hours highlighted in yellow for
morning and green for evening.

in wind speed on Wednesday evening and Thursday morn-
ing leads to lower H2 and CO mole fractions than expected.
High wind speeds at midday on Friday also reduce the am-
plitude of the evening rush hour peak. Overnight on Friday a
large elevation of H2 and CO is observed. Low wind speeds
overnight combined with the expected emissions from Friday
evening related transport both contribute to this large eleva-
tion. Overnight on Saturday the expected traffic peak due
to night life associated traffic is not observed due to high
wind speeds (e.g. Martin et al., 2008). The effects of both
wind speed and temperature on H2 and CO observations are
shown in Fig. 4. Low temperatures in winter act to reduce
the height of boundary layer. Pollutants are then trapped in
a smaller volume resulting in the observation of elevated H2
and CO mole fractions. As Bristol is located in a bowl shaped
depression pollutants can easily build up. High wind speeds
which increase turbulence act to dilute pollutants by bringing
clean air for rural areas which mixes with polluted urban air.

Figure 5 illustrates hourly mean H2 and CO mole fractions
separated into weekdays, Saturdays and Sundays shown in
local winter time (GMT). Highest mole fractions for both
H2 and CO were observed during morning and evening
rush hours. Rush hour time periods were verified by sta-
tistical traffic count data provided by Bristol City Coun-
cil (2009). These are produced by a combination of man-
ual traffic counts, carried out across central Bristol during
the same week every year on mid-week days, and through
the use of automatic traffic counters. Traffic flow data shows
morning rush hour beginning at 07:00, peaking from 07:30
to 08:45 and dropping to baseline levels by 09:30. Evening
rush hour is evident from traffic count data by a slow increase
in traffic from 15:00, with traffic flow peaking at 17:30 and
dropping off at 18:30. Mean mole fractions of 646 ppb H2,
390 ppb CO for morning rush hours, and 630 ppb H2 and
341 ppb CO were observed during evening rush hours. H2
mole fractions are seen to fall from midnight onwards, due
to uptake by soil enzymes but also due to dilution caused
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Fig. 4. H2 and CO mole fractions plotted with(a) temperature and
(b) wind speed.

by dispersion within the boundary layer (Steinbacher et al.,
2007). H2 mole fractions are seen to rise in a delayed pat-
tern in comparison with traffic flow data. Morning peaks in
H2 and CO reach their highest from 09:00 to 10:00, an hour
and a half later than peak morning traffic flow. After this
time, transport emissions decrease and with the additional
effect of stronger vertical mixing at this time, dilution with
background air and H2 deposition, the resulting weekday and
weekend minimum is seen from 1–3 p.m. Evening rush hour
peaks of H2 are wider than those observed during the morn-
ing, also verified by traffic flow data. Peak evening levels
of H2 are also observed later than peak traffic flow, delayed
by ∼1 h. This delay between vehicle emission and measure-
ment of elevated mole fractions of H2 can be attributed to
the mixing time required for emissions to rise from average
emission source height to the measurement point, elevated
by a few hundred metres from major carriageways. H2 lev-
els drop off more slowly after the evening rush hour as the
boundary layer height decreases with more stable nocturnal
inversion conditions concentrating pollutants. A very similar
pattern is seen for CO, with identical morning and evening
rush hour peaks. However, differences can be seen in the
amplitude of rush hour peaks and overnight depletion of CO.
It is well known that transport emits a much larger mole frac-
tion of CO than H2 which results in the larger amplitude seen
for rush hour peaks of CO (Colls, 1997; Vollmer et al., 2007).

Fig. 5. Hourly averaged(a) H2 and(b) CO data for weekdays (cir-
cles) and Saturday (triangles) and Sundays (squares) for the entire
measurement period.

Dry deposition of CO is reported to be much lower than that
of H2 (Yonemura et al., 2000), thus dispersion and mixing
is thought to be the primary parameter controlling the CO
decrease seen overnight with concentrations only dropping
to 225 ppb compared with H2 which falls to 555 ppb, near
background levels. Interestingly a similar study by Stein-
bacher et al. (2007) saw much higher mole fractions of CO
during rush hour periods but similar levels of H2 compared
with this work. The study by Steinbacher et al., was con-
ducted at a suburban site in Switzerland and observed aver-
age morning and evening rush hour peaks of∼520 ppb and
∼500 ppb CO respectively, compared with our study in an
urban environment, in which morning and evening rush hour
peaks of 370 ppb and 325 ppb CO were observed. However,
CO elevation from early morning minimum was found to be
very similar (∼150 ppb CO) in both studies. Therefore we
believe that the higher CO mole fractions observed during
rush hour in the Swiss study was an artefact of the higher
background levels observed at the suburban site. One would
initially expect the site to have lower background mole fac-
tions due to its location further from direct emission sources
however local conditions such as meteorology or unknown
emission sources may bias this. The difference in trans-
port fleets between the two countries may also contribute to
higher background mole fractions of CO. Petrol vehicles are
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known to emit over twice the amount of CO per km com-
pared with diesel vehicles (Colls, 1997). The UK vehicle
fleet is known to consist of approximately 68% petrol fuelled
vehicles, whilst the Swiss fleet contains considerably larger
fraction of petrol vehicles (76%) (Vollmer et al., 2007 and
references therein). This may contribute to elevated back-
ground levels of CO but is not likely to be the main cause for
the higher mole fractions observed.

3.2 H2 to CO ratios

Figure 6 shows a scatter plot of H2 and CO over the entire
measurement period with background H2 and CO mole frac-
tions subtracted. It was proven to be essential to subtract
background H2 and CO values prior to plotting and assess-
ment of the molar H2 to CO ratio, as H2 and CO show a
seasonal cycle offset of two to four months thus it is impor-
tant to remove the effects of seasonality on the H2/CO ratio
(Grant et al., 2010). A close correlation can be seen between
H2 and CO with an interesting two branch pattern emerging
at higher mole fractions. This is the first study to display
such a pattern. Ordinarily, scatter plots of H2 and CO show
a single grouping around a central line with a small amount
of scatter. A linear fit was applied to all data, a molar H2/CO
ratio of 0.53±0.08 with anR2 value of 0.84 was calculated
using reduced major axis regression taking into account the
error in both x and y axes. Branch A displayed a molar
H2/CO ratio of 1.34±0.12 (R2

= 0.95) from linear fitting.
Error from linear fitting was taken into account by use of the
regression coefficient (or R2 value). Branch A was separated
from the rest of the dataset according to points highlighted
in Figs. 2 and 6 (75 points in total) to enable assessment of
its source. The highlighted points accounted for 2% of the
entire dataset. Branch A was analysed by time of day, day
of week, weeks during the months, wind speed and wind di-
rection. Points were found to be evenly scattered throughout
the day with an equal number of points overnight and dur-
ing the day. No points in branch A fell between 14:00 and
16:00 local time, we do not believe this to be significant. No
significant pattern was observed with day of week, 25% of
points were found to fall at weekend however this is close to
the percentage of points which fell at the weekend over the
entire dataset (26%). A large proportion (43%) of the points
which made up branch A were found to occur between the
15th and 17th of February which accounted for 15% of the
entire dataset over this period. Points in branch A mainly
(88%) occurred from the 7th of February until the 2nd of
March, 2009. Points in branch A were found to occur at a
large range of wind speeds from 3–15 m s−1. No correlation
was found between nocturnal inversion events (Section 3.4)
and the source of Branch A. Wind direction was the only
condition where a clear relationship could be demonstrated.
Points from branch A were found only to occur between a
wind angle of 240◦ and 330◦, 70% of which were from a
westerly direction (±10◦). However, all data arriving from

Fig. 6. A scatter plot of individually background subtracted H2 and
CO mole fractions over entire measurement period. Molar H2/CO
ratios are displayed in the form of a linear fit through the scatter plot
in the top of the plot.

this broad westerly region (240◦–330◦) showed data points
which encompassed branches A and B. A possible source of
elevated H2 compared with CO in this region is the town of
Port Talbot. Situated 85 km to the west of Bristol, Port Talbot
contains a high density of heavy industry including a large in-
dustrial gases plant (British Oxygen Company), a steelworks,
and a gas fired power plant. Given the very consistent H2/CO
ratio of branch A, its appearance without an obvious bias for
time of day and its onset at a threshold of 3 m s−1 suggests
a continuous point source some distance away. We believe
emissions from some of this industry, possibly the industrial
gases plant or the gas turbine engines in the power plant may
be the cause for branch A where higher H2/CO ratios are ob-
served. Gas turbine engines which use liquid fuels which
have a high hydrogen content have been shown to emit high
levels of CO under low firing temperatures due to incomplete
combustion (Pavri and Moore, 2003). It is possible that un-
burnt H2 could also be emitted in similar or higher quantities.
This would give rise to a much higher H2/CO ratio as seen in
Branch A.

3.3 H2 emissions from transport

Recently there has been increased interest in H2/CO emis-
sion ratios from transport (Barnes et al., 2003; Hammer et
al., 2009; Steinbacher et al., 2007; Vollmer et al., 2007) as
it enables the estimation of large-scale H2 emissions by scal-
ing from CO, which has well constrained regional and global
emission inventories. In this study only weekday morning
rush hours (7–9 a.m.) were used to calculate H2 emissions
from transport, as this period when transport emissions are
highest best represents the molar H2/CO transport emission
ratio. An overall molar H2/CO ratio of 0.53±0.08 from lin-
ear fitting using a reduced major axis regression method of
calculation with regression coefficients providing a measure
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Table 1. Literature comparisons of molar H2/CO ratios calculated from linear fitting.

Source Location Year of study H2/CO ratio

Novelli et al. (1999) Urban, Busy intersection, Colorado 1989 0.6±0.1
Barnes et al. (2003) Rural but downwind of pollution Harvard Forest, US 1996–1998 0.34
Steinbacher et al. (2007) Suburban, Switzerland 11/2002–02/2005 0.33±0.01a

Vollmer et al. (2007) Urban, Highway tunnel, Switzerland Nov/Dec 2004 0.48±0.12b,c 0.51±0.11b,d

Hammer et al. (2009) Urban Heidelberg, Germany 01/2005–07/2007 0.40±0.06a

This study Urban, Bristol, UK 12/2008–03/2009 0.57±0.06a 0.53±0.08b

a: weekday morning rush hour;b: all data;c: mean ratio;d: vehicle weighted ratio.

of the uncertainly in the slope. A molar H2/CO ratio of
0.57±0.06 was calculated using the same method for week-
day morning rush hours (7–9 a.m.). This rush hour ratio
agrees well with other urban studies (Table 1) and primarily
represents the H2/CO emission ratio from transport. Vari-
ation of our molar H2/CO ratio of 0.53 (and 0.57 for rush
hour) from those observed by other urban studies is statisti-
cally insignificant with respect to the errors involved in this
and other studies. Molar H2/CO ratios reported by Stein-
bacher et al. (2007) are lower (0.33±0.01) due to the subur-
ban nature of this site. Barnes et al. (2003) reported a molar
ratio of 0.34 from a rural location downwind of high pol-
lution where much dilution of pollution plumes would have
occurred prior to sampling. Hammer et al. (2009) reported
a molar ratio of 0.40±0.06 from an urban site. This mo-
lar ratio, lower than that calculated in this study could be
attributed to differing local conditions such as location of in-
dustry, incinerators and reduced traffic levels which may al-
ter the H2/CO ratio. If there are large industrial emissions
close to the measurement location H2/CO ratios may be al-
tered, as a recent study found chimney stack emissions from
incinerators and domestic heating to produce a significantly
reduced ratio compared with emissions from vehicle exhaust
(M. K. Vollmer, personal communication, 2009). Winter
H2/CO ratios have been found to display a higher correla-
tion coefficient than summer ratios, as increased mixing and
dilution during summer months caused by thermal convec-
tion alters the direct emission ratio (Steinbacher et al., 2007).
Increased depletion of H2 due to dry deposition to the soil
has also been found to alter H2/CO ratios less in winter than
summer (Grant et al., 2010). Therefore we believe H2/CO
ratios derived solely from winter data (as used in this study)
are thought to be more accurate in predicting H2 emissions
from transport sources.

H2 emissions from transport and other anthropogenic
sources are very poorly constrained, with a scarcity of bot-
tom up emissions estimates. Thus top down estimates are
produced as a best guess constrained by bottom up emission
estimates for CO, a much more widely studied tropospheric
pollutant. The mass of H2 emissions was calculated using a
simple approach incorporating annual CO emissions and the
measured H2/CO emissions ratio (Dunse et al., 2005). An-

nual CO emissions for Bristol are estimated to be 7.9 Gg/yr,
with 4578 Gg CO/yr from UK transport emissions (NAEI,
2006a; NAEI, 2006b). Applying a rush hour H2/CO ra-
tio of 0.57±0.06, Bristol’s H2 source can be estimated as
325±67 Mg H2/yr, this is considered an upper estimate of
overall H2 emissions in the area as it has been suggested that
a H2/CO ratio of much less than 0.5 may be more appropri-
ate for non-transport sources of H2 (Grant et al., 2010). UK
vehicle transport emissions of 188±39 Gg H2/yr were also
estimated using a transport emissions ratio of 0.57±0.06.

Since diesel vehicles are known to produce significantly
less H2 than their petrol counterparts (Vollmer et al., 2007),
to predict global H2 emissions from transport, one must con-
sider the proportion of diesel and petrol fuelled vehicles
worldwide. The world fleet has been estimated to consist
of ∼ 92% petrol vehicles (Fulton and Eads, 2004). However,
as our molar H2/CO emissions ratio was measured in a fleet
of 68% petrol vehicles we must assume our ratio of 0.57 is at
the lower end of the emissions ratio (Anderson, 2008) which
would produce an emission of 7.7±2.2 Tg H2/yr. Assuming
global CO emissions from road transport of 186 Tg CO/yr
for 2000 taken from the EDGAR v3.2 database (Olivier et
al., 2002). We can also scale up our molar H2/CO emis-
sions ratio in the same manner as Vollmer et al. (2007) to
produce an estimate for the world fleet of 92% petrol vehi-
cles. Our emission ratio of 0.57 can be scaled up to 0.63
assuming a pure petrol fleet which is then reduced to 0.61 to
account for the 8% of diesel vehicles globally. This scaled ra-
tio estimates 8.1±2.3 Tg H2/yr is produced from road trans-
port globally, with uncertainties in scaling of an emissions
ratio based on the percentage of vehicle types and the error
associated with the CO emissions estimate. This is within
the wide range quoted by Novelli et al. (1999) of 5–20 Tg
H2/yr. It is at the upper end of the range of 4.2–8.1 Tg H2/yr
quoted by Vollmer et al. (2007). Differences between our
study and that of Vollmer and co-workers are due to the lower
molar H2/CO emission ratio measured in that study but also
due to the range of different methods of calculation used in
the study by Vollmer and co-workers. The lower estimate
of 4.2 Tg H2/yr produced by Vollmer was formed by use of
the H2/CO2 emissions ratio from vehicles and a global road
vehicles CO2 emissions estimate.
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3.4 Nocturnal depletions of H2 and CO

Over several nights during the measurement period strong
nocturnal depletions of H2 and CO were observed, thought to
occur due to a combination of mixing and dry deposition for
CO and dry deposition for H2. The deposition velocity can
be calculated if the height of the boundary layer is known.
The boundary layer height (h) in meters can be calculated
according to the equation:

h =
3

√
γ 2.T .u4

∗

f.κ.g

(
−dT

/
dt

)
(1)

whereγ = 0.4 is the Zilitinkevich constant,T is the mean
temperature in Kelvin,f is the coriolis parameter for Bris-
tol, g is the acceleration of gravity,dT /dt is the mean cool-
ing rate andu∗ is the friction velocity (Garland and Derwent,
1979; Moxley and Cape, 1997). Friction velocity was calcu-
lated according to the equation:

u(z) =
u∗

κ
.ln

z

z0
(2)

whereu is wind speed at heightz = 10 m, the von Karman
constantκ = 0.4 and the roughness length (zo) for an urban
area of 0.4 m (Stull, 1988), which resulted in a mean fric-
tion velocity of 1.05 m s−1 for the Bristol area. Although
this is a rough estimate of the boundary layer height making
many assumptions, such as a constant cooling rate and aver-
age friction velocity for each event, it is preferable to using
a constant boundary layer height of 100 m for instance (suit-
able for winter nighttime). This method allows variation of
boundary layer height with wind speed and turbulence there-
fore results in a more refined estimation of deposition veloc-
ities.

Calculation of the boundary layer height enables estima-
tion of the deposition velocity,υd (m s−1) according to the
equation:

υd = k1h (3)

wherek1 is the first-order decay constant for the decrease in
X (s−1) (whereX =H2 or CO mole fractions, assuming no
mixing or dilution occurs). The decrease in X follows first
order kinetics and can be written as:

−
d [X]

dt
= k1[X] or [X]t = [X]0e−k1t (4)

Where[X]0 is the mole fraction at approximately 11 p.m. lo-
cal time depending on the night-time event and [X]t is the
mole fraction at timet after 11 p.m. Decay rate constants (k1)

for H2 and CO ranged from 2.26×10−6 to 1.19×10−5 s−1

and 1.84×10−5 to 6.31×10−5 s−1, respectively.
The boundary layer height was calculated for each night

time event and displayed a range of 18 to 100 m, well
within reported ranges of 20–30 m (Mahrt and Vickers,

2002), 50–150 m (Salmond and McKendry, 2002) and 100–
500 m before sunrise (Stull, 1988). H2 deposition veloci-
ties were calculated with individual boundary layer heights
for each nocturnal event. A range of 0.9±0.2−5.7±1.1×

10−4 m s−1, with a mean of 2.2±1.5×10−4 m s−1 (1σ) and
a median of 1.8×10−4 m s−1 were found over the four-
teen nocturnal events studied. This mean value agrees well
with that of 2.4±1.3×10−4 m s−1 (Yver et al., 2009) and
3.0×10−4 m s−1 (Hammer and Levin, 2009) both measured
in urban environments but using a different method. How-
ever our value is slightly higher than another urban estimate
of 0.5−1.0×10−4 m s−1 (Steinbacher et al., 2007). Our esti-
mate is smaller than 4.8±1.3×10−4 m s−1 (Gerst and Quay,
2001) and a recent modelling estimate of 5.3×10−4 m s−1

(Sanderson et al., 2003) but within the wide range reported
0−10×10−4 m s−1 from flux chamber measurements (Yone-
mura et al., 1999).

CO deposition velocities displayed a range of 4.2±0.8−

31± 6.2× 10−4 m s−1, with a mean of 13±8×10−4 m s−1

(1σ) and a median of 8.8×10−4 m s−1 over the fourteen
nocturnal events. Two other studies using similar methods
have estimated deposition velocities. A study in a semi-
rural area approximately 4 km outside Edinburgh a CO de-
position velocity of 11×10−4 m s−1 was estimated (Moxley
and Cape, 1997), which agrees well with our work. How-
ever a value of 0.4×10−4 m s−1 was calculated at a costal
background site (Simmonds et al., 2000), significantly lower
than our estimate which is unexpected as with a larger soil
area exposed at this rural area one would conversely ex-
pect higher deposition velocities. Other estimates range from
0.56−7.6×10−4 m s−1 mainly from chamber studies in the
field (Table 2), significantly lower than the mean CO depo-
sition velocity but close to the median CO deposition calcu-
lated in this study.

As expected the deposition velocities of H2 and CO were
closely correlated (R2

= 0.61), however, the mean ratio of
H2/CO deposition velocities during individual events (0.19)
was significantly lower than previously reported. Yonemura
et al. (1999) reported a ratio of H2/CO deposition of 1.55,
whilst Simmonds et al. (2000) reported an extremely large
ratio of 6.5. Another study by Yonemura et al. (2000b) dis-
played a high H2/CO correlation coefficient of 0.88 in an
arable field, with a H2/CO deposition velocity ratio of 1.79,
however the forested site in this study showed much lower
correlation (R2

= 0.41) with a H2/CO deposition velocity ra-
tio of 2.33. In light reported ratios of H2/CO deposition in
literature, our H2/CO deposition velocity ratio is unusually
small (<1), showing much larger CO deposition velocities
than H2. This is surprising as the law of molecular diffusiv-
ity states that lighter gases diffuse into the soil much faster
than heavier gases. One may therefore expect H2 to have
a higher deposition velocity than CO as diffusion into the
soil surface was found to be the primary parameter control-
ling deposition of H2 (Schmitt et al., 2009). However, CO
deposition may be controlled by kinetics of the biological
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Table 2. Comparison of CO deposition velocities.

Method Vegetation COυd (×104 m s−1) Reference

Decay rate Mixed 11 (2.6–33) Moxley and Cape (1997)
Open flow chamber Andisol field 0–6 Yonemura et al. (1999)
CO2 tracer method Grass field 3.4 Yonemura et al. (2000a)
Flux chamber Arable field Forest 2.4±1.6 (0–7) 2.7±0.6 (1.5–4.5) Yonemura et al. (2000b)
Closed flux chamber Pine forest Spruce forest 0.85 1.5 Zepp et al. (1997)
Ozone tracer method Rural mixed 0.4 Simmonds et al. (2000)
Static chamber Agricultural Forest 0.14 0.23 Moxley and Smith (1998)
Decay rate Urban mixed 12.7±8.4 (1σ) mean 8.79 median Our work

uptake process as well as diffusion which results in this un-
usual uptake ratio. Loss of CO by reaction with the OH radi-
cal can be ruled out, as CO loss of 3.3×10−5 s−1 (mean loss
from night-time events) would require a night-time OH rad-
ical concentration of 1.6×108 molecules cm−3 which is not
possible under night-time conditions. Night-time OH radical
concentrations in the range of 2±1.5×105 molecules cm−3

have been measured and modelled in recent studies (Emmer-
son and Carslaw, 2009; Geyer et al., 2003) whilst daytime
average OH is thought to be 1×106 molecules cm−3 (Khan
et al., 2008; Prinn et al., 2005). Reaction of CO with the ni-
trate radical (NO3) is too slow to account for any significant
loss (Boyd et al., 1991).

4 Conclusions

High-frequency measurements of H2 and CO were per-
formed at an urban site in the UK from December 2008 to
March 2009. To our knowledge these are the first published
measurements from an urban UK site, influenced predomi-
nantly by vehicle emissions. The site was found to be heav-
ily influenced by transport emissions, where a clear transport
related diurnal cycle was observed. However, local meteo-
rological conditions of temperature, wind speed and direc-
tion were also found to influence the high-frequency mea-
surements taken at the site, which may have implications
for future analysis of measurements taken in an urban envi-
ronment. Future studies should consider placing urban mea-
surement stations in areas less prone to strong winds which
disrupt urban emission patterns. A scatter plot of H2 ver-
sus CO revealed an unexpected two population pattern which
has not been observed in any previous studies and whose ori-
gin proved difficult to elucidate. An industrial gases plant
and power plant were suggested as the possible source of the
higher H2/CO ratio, a higher ratio than observed in any previ-
ous studies. However, measurements of specific sources such
as this must be carried out for this hypothesis to be verified.
We suggest that further investigation into the H2/CO emis-
sion ratios from poorly constrained sources of H2 such as
chimney stack emissions from industry, incinerator and avi-

ation emissions would aid the assessment of future studies,
particularly in the analysis of H2/CO ratio anomalies. This
would enable more accurate estimates of H2 emissions from
combustion sources globally.

H2 and CO deposition velocities were calculated over sta-
ble periods when a clear decay of both species was observed.
CO was found to have a much higher deposition velocity
than H2 (1.3×10−3 and 2.2×10−4 m s−1 respectively). The
source of this unusual result was investigated, however no
conclusive evidence was found for increased loss of CO over
H2 during stable night time inversion events.
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