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Abstract. We present airborne in situ measurements made
during the AMMA (African Monsoon Multidisciplinary
Analysis)/SCOUT-O3 campaign between 31 July and 17 Au-
gust 2006 on board the M55 Geophysica aircraft, based in
Ouagadougou, Burkina Faso. CO2 and N2O were mea-
sured with the High Altitude Gas Analyzer (HAGAR), CO
was measured with the Cryogenically Operated Laser Diode
(COLD) instrument, and O3 with the Fast Ozone ANalyzer
(FOZAN).

We analyse the data obtained during five local flights to
study the dominant transport processes controlling the trop-
ical tropopause layer (TTL, here∼350–375 K) and lower
stratosphere above West-Africa: deep convection up to the
level of main convective outflow, overshooting of deep
convection, and horizontal inmixing across the subtropical
tropopause. Besides, we examine the morphology of the
stratospheric subtropical barrier.

Except for the flight of 13 August, distinct minima in CO2
mixing ratios indicate convective outflow of boundary layer
air in the TTL. The CO2 profiles show that the level of main
convective outflow was mostly located at potential tempera-
tures between 350 and 360 K, and for 11 August reached up
to 370 K.

While the CO2 minima indicate quite significant convec-
tive influence, the O3 profiles suggest that the observed con-
vective signatures were mostly not fresh, but of older origin
(several days or more). When compared with the mean O3
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profile measured during a previous campaign over Darwin
in November 2005, the O3 minimum at the main convective
outflow level was less pronounced over Ouagadougou. Fur-
thermore O3 mixing ratios were much higher throughout the
whole TTL and, unlike over Darwin, rarely showed low val-
ues observed in the regional boundary layer.

Signatures of irreversible mixing following overshooting
of convective air were scarce in the tracer data. Some small
signatures indicative of this process were found in CO2 pro-
files between 390 and 410 K during the flights of 4 and 8 Au-
gust, and in CO data at 410 K on 7 August. However, the
absence of expected corresponding signatures in other tracer
data makes this evidence inconclusive, and overall there is
little indication from the observations that overshooting con-
vection has a profound impact on gas-phase tracer TTL com-
position during AMMA.

We find the amount of photochemically aged air isentropi-
cally mixed into the TTL across the subtropical tropopause to
be not significant. Using the N2O observations we estimate
the fraction of aged extratropical stratospheric air in the TTL
to be 0.0±0.1 up to 370 K during the local flights. Above the
TTL this fraction increases to 0.3±0.1 at 390 K.

The subtropical barrier, as indicated by the slope of the
correlation between N2O and O3 between 415 and 490 K,
does not appear as a sharp border between the tropics and
extratropics, but rather as a gradual transition region between
10◦ N and 25◦ N where isentropic mixing between these two
regions may occur.
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1 Introduction

The tropical tropopause layer (TTL), the region in the trop-
ics where air has characteristics of both the stratosphere and
the troposphere, is a critical region of the atmosphere. It is
the main region for air entering the stratosphere and there-
fore it sets the chemical boundary conditions for the strato-
sphere. The TTL is commonly defined as the layer extending
from the level of main convective outflow at 10–14 km to
the cold point tropopause at about 16–19 km altitude (Get-
telman and Forster, 2002). Laterally, the TTL is bounded by
the position of the subtropical jets. Processes active in the
TTL include the global-scale circulations in the stratosphere
(Brewer-Dobson) and troposphere (Hadley-Walker), large-
scale and small-scale atmospheric waves, convection organ-
ised on all time and space scales, mixing, radiative heating
and cooling, chemistry and cloud microphysics.

Satellite observations and 2-D or 3-D transport models
provide a general picture of the TTL, but typically cannot
well resolve spatial, in particular vertical, variations within
the layer. Hence, highly resolved in situ measurements of
trace gases and their use as tracers of atmospheric trans-
port have proven extremely useful for studying the radia-
tive, chemical, and dynamical properties of the TTL (e.g.,
Park et al., 2007a). Tracers are compounds whose lifetimes
are longer than the timescales of the processes transporting
them, such that their distributions are mainly determined by
dynamical processes. In the stratosphere, the correlation be-
tween two long-lived tracers (tracer-to-tracer correlation) of-
ten turns out to be very compact (Plumb and Ko, 1992). The
form and curvature of the correlation curve is dependent on
the lifetimes of the tracers and on transport processes. Dif-
ferent atmospheric regions may exhibit different correlation
curves between tracers. Variations from these correlations
may be caused by horizontal or vertical mixing between the
regions or by chemistry. Hence, tracer-to-tracer correlations
are a particularly useful tool to study transport and mixing
between the troposphere and the stratosphere (e.g.,Hoor et
al., 2002), or between the tropical and extratropical strato-
sphere (e.g.,Volk et al., 1996).

Over the last decade various field campaigns have taken
place to obtain in situ observations of the TTL and get more
insight into the different processes taking place in this layer
of the atmosphere. Several European campaigns were con-
ducted with the Russian M55-Geophysica high-altitude air-
craft. The APE-THESEO campaign took place in February
and March 1999 over the western equatorial Indian Ocean
(Stefanutti et al., 2004; MacKenzie et al., 2006). Cairo et
al. (2008) show with observations made above a tropical cy-
clone during this campaign that cyclones may induce hori-
zontal stirring of the lower stratosphere, possibly promoting
irreversible entrainment of midlatitude stratospheric air into
the tropical zone. The TROCCINOX campaign took place
in February 2005 from Aracatuba, Brasil.Konopka et al.
(2007) show with a comparison of the in situ measurements

of ozone, water vapour, NO, NOy, CH4 and CO with CLaMS
model simulations that vertical mixing, mainly driven by the
vertical shear in the tropical flanks of the subtropical jets and,
to some extent, in the outflow regions of large-scale convec-
tion, offers an explanation for the upward transport of trace
species from the main convective outflow at around 350 K
up to the tropical tropopause around 380 K. The SCOUT-
O3 campaign over Darwin, Australia in November 2005 was
focused on studying the effect of deep convection on the
composition of the TTL (Vaughan et al., 2008). Schiller et
al. (2009) found highly localised layers of enhanced water
vapour up to 420 K which could be traced to direct injection
by overshooting turrets during this campaign.

In situ measurements of tracers in the TTL have also
been conducted using the NASA ER-2 and WB-57F aircraft.
Marcy et al.(2007) have presented measurements of HCl,
O3, HNO3, H2O, CO, CO2 and CH3Cl in the tropical up-
per troposphere and lower stratosphere (UT/LS) during the
Pre-AVE campaign over Costa Rica in January 2004. They
infer that a significant amount of stratospheric air and O3
were present in the TTL, making it distinct from both the
stratosphere and the remainder of the troposphere.Park et al.
(2007a) have presented CO2 measurements during the Pre-
AVE, CR-AVE and TWP-ICE campaign in Costa Rica and
Australia. They suggest that the TTL is composed of two
layers, the lower TTL which is subject to significant inputs
of convective outflow, and the upper TTL, where air ascends
slowly and ages uniformly. They calculate a mean age of air
entering the lower stratosphere of 26 days during NH winter.
Tuck et al.(2003) have analyzed tracers and thermodynam-
ical data from various ER-2 and WB57F aircraft campaigns
and documented significant transport from the lower midlat-
itudes stratosphere toward the tropics, coming to the conclu-
sion that the characteristics of the TTL are determined by
a combination of subtropical jet stream dynamics and inner
tropical ascent via deep convection.

Until now, in situ measurements of tracers throughout the
TTL have not been reported during NH summer and none
have been made above the African continent. However,
this region may play an important role in troposphere-to-
stratosphere transport.Ricaud et al.(2007) present satel-
lite data of N2O, CH4 and CO and radar data in the tropical
tropopause region during NH spring and suggest that rapid
uplift over land convective regions, in particular over Africa,
may be the dominant process of troposphere-to-stratosphere
exchange. However, this view is in contrast to a number of
other studies showing that the African region is not an im-
portant contributor to troposphere-to-stratosphere transport
compared in particular to Southeast Asia and the Western Pa-
cific (Fueglistaler et al., 2004; Berthet et al., 2007; Barret et
al., 2008; Park et al., 2007b).

Beginning in 2001, the large project AMMA (African
Monsoon Multidisciplinary Analyses) was set up to study
the West-African monsoon and its influence on the phys-
ical, chemical and biological environment, regionally and
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globally. The overall objective of the project was to provide
the underpinning science that relates variability of the West
African Monsoon to issues of health, water resources, food
security and demography for West-African nations and to de-
fine and implement relevant monitoring and prediction strate-
gies (www.amma-international.org). Within the frame of
AMMA and the project SCOUT-O3 (Stratospheric-Climate
Links with Emphasis on the Upper Troposphere and Lower
Stratosphere) an aircraft campaign took place at the peak of
the summer monsoon period in 2006, probing the air from
the boundary layer up to the stratosphere (Cairo et al., 2010).
The campaign took place in July/August 2006 and was based
in Ouagadougou, Burkina Faso. The main aim of this air-
craft campaign was to quantify the contribution of different
air mass origins on the chemical composition of the TTL dur-
ing the summer monsoon over West Africa. At this time of
year the TTL can be impacted by recent local or regional
convective uplift, but also by uplift from the lower tropo-
sphere upwind (e.g. over Asia), intrusion of air from the mid-
latitude lower stratosphere or cross-hemispheric transport of
air masses from the Southern Hemisphere (Law et al., 2010).
A detailed description of the meteorological situation during
the West-African monsoon in 2006 can be found inJanicot
et al.(2008).

In this paper we will present in situ tracer data of CO2,
N2O, O3 and CO that were obtained on board the M55
Geophysica aircraft during the AMMA/SCOUT-O3 project
and analyse them regarding the principal transport processes
that control the chemical composition of the TTL and trop-
ical lower stratosphere above West-Africa. Vertical pro-
files and correlations between the various species, serving
as stratospheric tracers, as boundary layer tracers, or age-
of-air tracers will be used to contrast observations of the
background TTL with convectively influenced air, to diag-
nose irreversible mixing of convectively overshooting air
with the background TTL, to assess isentropic mixing across
the subtropical tropopause and to study the morphology of
the stratospheric subtropical transport barrier.

2 In situ measurements

Tracer measurements were made between 31 July and 17 Au-
gust 2005 on board the M55 Geophysica aircraft from (and
during transfer to/from) Ouagadougou, Burkina Faso (12◦ N,
1◦ W). A total of nine flights were performed with measure-
ments from the free troposphere up to the tropical lower
stratosphere around 20 kilometer altitude. Four transfer
flights were made between Verona (Italy), Marrakech (Mo-
rocco) and Ouagadougou (Burkina Faso). Five local flights
between 4◦ N and 17◦ N latitude and 3◦ W and 3◦ E longitude
were made to study mesoscale convective systems (MCS)
and long range transport, and to validate the CALIPSO satel-
lite. A brief overview of the flights is given in Table 1. A

Table 1. Overview of flights during AMMA-SCOUT-O3.

Date of flight Time (UTC) Goal

31 Jul 2006 05:50–09:13 Transfer flight-UTLS profile
1 Aug 2006 10:59–14:59 Transfer flight-UTLS profile
4 Aug 2006 08:26–12:13 Long range transport
7 Aug 2006 12:15–16:07 MCS close up
8 Aug 2006 11:46–15:31 CALIPSO validation
11 Aug 2006 14:44–18:22 MCS aged outflow
13 Aug 2006 12:50–16:23 Long range transport
16 Aug 2006 13:27–15:16 Transfer flight-UTLS profile
17 Aug 2006 04:10–07:51 Transfer flight-UTLS profile

more extended overview of the flights and the Geophysica
campaign can be found inCairo et al.(2010).

A suite of long-lived tracers (CO2, N2O, CFC−12,
CFC−11, H−1211, SF6, CH4, H2) was measured by the
University of Frankfurt’s High Altitude Gas Analyzer (HA-
GAR) on all flights except on 7 August when a software fail-
ure occurred. HAGAR is a two-channel in situ gas chromato-
graph (GC) that is combined with a CO2 sensor (LI-COR
6251). The two GC-channels with electron capture detec-
tors (ECD) measure the long-lived tracers N2O, CFC−12,
CFC−11,H−1211, CH4, SF6 and H2 with a time resolution
of 90 s. The CO2 sensor achieves a time resolution of 5 s
using non-dispersive infrared absorption (NDIR). A detailed
description of the instrument can be found inRiediger(2000)
andStrunk(1999).

Frequent in flight calibrations within the instrument were
performed in order to meet the specifications for accuracy
and precision. All measurements are directly traceable to the
current WMO scales based on intercalibrations against stan-
dards of NOAA/GMD or (for CO2) the University of Hei-
delberg (I. Levin). For CO2 the mean precision during all
flights was 0.3 ppm. The precisions for the measurement of
the other tracers are in the order of 0.5–3%; for the N2O
measurements used in this study it is better than 1.5%. Accu-
racies of the HAGAR measurements are limited by the pre-
cision and are thus only slightly larger than these precision
values.

Additionally, CO was measured with a precision of
1% and accuracy of 6–9% by the Italian institute INOA
(Istituto Nazionale di Ottica Applica) with the tunable diode
laser COLD (Cryogenically Operated Laser Diode) as de-
scribed in detail byViciani et al. (2008). Ozone was mea-
sured with the Fast Ozone ANalyzer (FOZAN) of the Central
Aerological Observatory (CAO, Russia) with an accuracy of
10% (Ulanovsky, 2001). Mixing ratios for all gas measure-
ments are expressed in dry mole fractions. Flight parameters
as altitude, pressure and temperature were recorded by the
aircraft.
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3 Analysis of main transport processes

The results of the analysis of the different transport processes
occurring in the summer TTL over West-Africa will be dis-
cussed in the following sections. Section3.1 describes both
main convective outflow as well as overshooting convection,
Sect.3.2 describes isentropic stratospheric inmixing across
the subtropical tropopause and Sect.3.3describes isentropic
mixing across the subtropical barrier in the lower strato-
sphere. Each section will have a short introduction about the
concepts of the transport process described.

3.1 Convection

Convection plays an important role in determining the ther-
modynamic and chemical properties of the TTL. It can pro-
vide a fast pathway for halogenated very short lived species
and other boundary layer trace gases to reach the TTL and
subsequently the stratosphere, where they could contribute
to the depletion of ozone. The amount of very short lived
species that can reach the stratosphere thus depends crucially
on the convective mass flux into the TTL as well as the max-
imum altitude level that is reached by deep convection. The
impact of convection on the TTL may also significantly de-
pend on the fraction and composition of mid-tropospheric air
entrained into convection (Fridlind et al., 2004).

There are two mechanisms in which convection con-
tributes to vertical transport through the TTL. The first is di-
rect convective uplift to the level of neutral buoyancy, which
is located at a potential temperature of at most 365 K (Folkins
et al., 2000). At this level the potential temperature becomes
equal to the highest equivalent potential temperatures real-
ized in the marine boundary layer. It is therefore near the
maximum altitude an air parcel from the boundary layer can
reach by undiluted, non-overshooting ascent (Reid and Gage,
1981). This convection up to the level of neutral buoyancy
can be followed by slow diabatic ascent up to and across the
tropopause due to radiative heating and the dynamical forc-
ing by the Brewer Dobson circulation (Folkins et al., 1999).
The typical time scales for this diabatic transport, as derived
from numerical models and tracer measurements, range be-
tween 2 and 3 months for the upward transport from a poten-
tial temperature of 350 K up to 390 and 420 K, respectively
(e.g.,Andrews et al., 1999).

The second mechanism, by which convection can influ-
ence the TTL to much higher levels than its neutral buoyancy
level, is irreversible mixing of air following dynamic over-
shooting (Danielsen, 1982, 1993; Sherwood, 2000). When
an air parcel overshoots its level of neutral buoyancy it will
be colder than the surrounding air and start descending back
to its equilibrium level. However, when it entrains and
mixes with warmer surrounding air it will come to rest at
a warmer, higher equilibrium level, i.e. its potential temper-
ature increases (Danielsen, 1982). This overshooting of con-
vection occurs predominantly above continental areas (Liu

and Zipser, 2005; Zipser et al., 2006) and in large mesoscale
convective systems (Rossow and Pearl, 2007), which are
generated regularly over West-Africa in the monsoon pe-
riod, thereby providing a fast pathway for boundary layer
air into the upper TTL or even the lower stratosphere. Dur-
ing AMMA, in fact, moist layers were observed above the
tropopause over Niger up to 19 km and have been attributed
to geyser-like injection of ice particles over overshooting tur-
rets (Khaykin et al., 2009). Although impact of overshooting
convection on the upper TTL and lower stratosphere is gener-
ally accepted and can be numerically simulated (e.g.,Arteta
et al., 2009; Liu et al., 2010), its importance at global scale
is less clear.

In this section the two mechanisms for convective influ-
ence will be studied with help of the tracer data measured
during AMMA/SCOUT-O3. In Sect.3.1.1we will examine
the first mechanism and assess the level of main convective
outflow and the influence of local and aged convection on
the CO2 profiles. In Sect.3.1.2we will examine the data for
signatures of overshooting air.

3.1.1 Main convective outflow

CO2 can be used as a tracer for continental convection be-
cause its mixing ratio is reduced in the boundary layer due to
uptake by vegetation during daytime. Deep convection dur-
ing the African monsoon season peaks in the evening (Sul-
tan et al., 2007) when boundary layer CO2 is expected to be
around its minimum. Convective transport of boundary layer
air into the TTL during the monsoon season therefore results
in a layer of low CO2 mixing ratios around the level of main
convective outflow. Above this level, diabatic ascent is ex-
pected to dominate convection, vertical mixing and mixing of
older air from mid-latitudes into the tropics. Hence, a coher-
ent “tape recorder” signal due to the monotonic aging of the
slowly ascending air and the progressing CO2 seasonal cycle
in the tropospheric boundary layer can be observed (Boering
et al., 1996; Park et al., 2007a).

In this section we will discuss the strength and height of
the main convective influence with help of the CO2 profiles
and compare with results of an analysis byLaw et al.(2010).
Law et al.(2010) calculate the fraction of measured air sam-
pled between 350 and 365 K that has potentially been influ-
enced by recent convection with help of ECMWF backtra-
jectories and infrared satellite images identifying convective
clouds. They label an airmass as possibly recently convec-
tively influenced when its backward trajectory crossed a re-
gion whose cloud top radiance was below 200 K within a lon-
gitudinal band from 30◦ W to 40◦ E, corresponding to an age
of at most three to four days.

Figure1 shows the vertical CO2 profiles for the four lo-
cal flights on 4, 8, 11 and 13 August, respectively. Mix-
ing ratios as low as 372 ppm are observed in the daytime
boundary layer over Ouagadougou; even lower values could
be present in rural areas. The influence of vegetative uptake
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Fig. 1. Vertical profiles of CO2 for the local flights on 4, 8, 11 and
13 August, respectively.

of CO2 is getting smaller in the free troposphere, resulting in
higher mixing ratios of around 380 ppm. Convection during
afternoon and evening transports the CO2-depleted bound-
ary layer air up to about 13–14 km, or a potential tempera-
ture level of 350 K (Fig.2), where again a distinct layer with
low mixing ratios is observed. Above this level the typical
coherent “tape recorder” signal is observed.

The flight of 11 August shows the highest and strongest
outflow signature, with mixing ratios as low as 374 ppm
found up to 370 K. This flight aimed specifically at sam-
pling air influenced by a large and intense MCS that had
crossed westward across Burkina Faso during the previous
days (Cairo et al., 2010). Law et al.(2010) also find that of
all flights performed during the campaign, the TTL sampled
during the flight on 11 August was most influenced by re-
cent convection. They calculate that for this flight ~55% of
the measured air between 350 and 365 K was possibly influ-
enced by recent convective activity. Our CO2 observations
suggest that convective outflow of this intense MCS in fact
reached unusually high potential temperatures of 370 K.

For the flight of 8 August,Law et al.(2010) also indicate
possible convective influence for ~40% of the air sampled be-
tween 350 and 365 K. This agrees well with the CO2 profile,
which shows a level of main convective outflow at 350 K,
albeit with a CO2 minimum that is less pronounced than on
11 August. However, above this level the “tape recorder” sig-
nal is less compact than during the other flights, which might
be an indication of overshooting convection, which will be
discussed in the next section.

For the flight of 4 August, the CO2 profile shows again a
recognisable level of main convective outflow at 355 K, again
less distinct as for the flight of 11 August.Law et al.(2010)
infer here a possible influence of recent convection for only
∼10% of the air between 350 and 365 K during that day.

Least influence of convection is evident in the profile of
13 August, where an outflow level can hardly be discerned,
with mixing ratios at 13 km as high as in the free troposphere.
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Fig. 2. Potential temperature profiles of CO2 for the flights on 4, 8,
11 and 13 August, respectively.

This again agrees well with the analysis ofLaw et al.(2010),
who also find least possible influence of recent convection
(∼5%) during this flight, and in fact not even convective up-
lift of the trajectories within the previous 10 days.

Overall, the observed features in the CO2 profiles and their
relative strengths are thus qualitatively in line with the frac-
tions of sampled air having recently (within about 4 days)
passed over convective systems, as calculated byLaw et
al. (2010). An exception is the flight of 4 August where
the observed pronounced CO2 reductions by 2–3 ppm in the
convective outflow region cannot easily be explained by the
small recent convective input of 10%, unless regional bound-
ary layer mixing ratios are much lower on the average than
those actually observed over Ouagadougou. Another, more
likely, explanation is that the CO2 minima are not only due
to recent convection, but to a larger part caused by older con-
vection having occurred more than four days earlier. Since
CO2 is chemically conserved in the TTL, it is not possible to
distinguish between the effects of recent and older convec-
tion with help of the CO2 profiles. However O3 profiles can
give an indication whether the convection was of recent or of
older origin.

In the tropical boundary layer typical ozone mixing ra-
tios range from 15 to 40 ppb (Folkins and Martin, 2005).
Deep convection will transport this O3 poor air together with
ozone precursors from the tropical boundary layer into the
TTL, where, as long as no new convective input takes place,
the mixing ratio will steadily increase by photochemical pro-
duction until it reaches its steady state. Therefore, O3 mix-
ing ratios are an indication for the convective replacement
timescale over a region. However, not only convection, pho-
tochemical production, and the time since the air has last ex-
perienced convective flushing determine the O3 mixing ratios
in the TTL. The O3 budget in the TTL can also be signifi-
cantly affected by isentropic stratospheric inmixing bringing
in extratropical stratospheric air with high O3 mixing ratios.
Vertical mixing, e.g. following overshooting of air, may also
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Fig. 3. Ozone profiles for the five local flights. The average profiles
is indicated with the black line. The green line represents the av-
erage ozone profile for the SCOUT-O3 campaign over Australia in
November/December 2005.

mix down higher ozone concentrations from higher altitudes.
We show in Sect.3.2 that horizontal stratospheric inmixing,
however, is not significant during the four flights considered
here. Mixing following overshooting will be discussed in the
next section (Sect.3.1.2).

Figure3 shows the ozone profiles during the AMMA cam-
paign. The average profile of all five local flights is indicated
as the black line. For comparison, the dark green line repre-
sents the average ozone profiles during the SCOUT-O3 cam-
paign, which took place in November and December 2005
above northern Australia. This latter profile shows the typical
S-shape, with low O3 mixing ratios of 30 ppb over the marine
boundary layer, increasing concentrations in the free tropo-
sphere, again low O3 mixing ratios at the level of main con-
vective outflow, and above that increasing mixing ratios due
to the photochemical production of O3 in the lower strato-
sphere.

The AMMA-SCOUT-O3 profiles also show this S-shape
profile, although less pronounced. Again, concentrations are
on average about 30 ppb in the boundary layer; this mean
value above Ouagadougou agrees also well with that ob-
served in the boundary layer over Niamey, Niger, by regu-
larly launched ozone sondes (Cairo et al., 2010) and is thus
thought to be fairly representative for a wider region. In
the free troposphere O3 increases with height up to around
60 ppb at a potential temperature level of 340 K. O3 mix-
ing ratios at the level of main convective outflow, how-
ever, are much higher on average than those observed dur-
ing the SCOUT-O3 campaign or in the boundary layer dur-
ing AMMA-SCOUT-O3. For most of the flights no bound-
ary layer values are observed at the main level of convective
outflow (~355 K), thereby suggesting that there is no major
flushing of the TTL by recent convection of O3-poor bound-

ary layer air. The absence of this flushing results in increased
O3 mixing ratios due to production by NOx from lightning
(LiNOx) (e.g.,Thompson et al., 2000; Sauvage et al., 2007;
Barret et al., 2010) and other ozone precursors.Law et al.
(2010) indicate that a large part of the air in the TTL origi-
nated from Asia about a week earlier, where uplift of these
ozone precursors could have taken place. An exception ap-
pears to be the flight on 4 August when values as low as
30 ppb observed at a level of 355 K indicate more recent con-
vective flushing.

Above 370 K the O3 mixing ratios are up to twice as high
as during the SCOUT-O3 campaign.Randel et al.(2007)
show that in a narrow vertical layer between∼16 and 19 km
(∼375–450 K) approximately a factor 2 change in ozone be-
tween the minimum (during NH winter) and maximum (dur-
ing NH summer) takes place due to variations in vertical
transport associated with mean upwelling in the lower strato-
sphere (the Brewer Dobson circulation). Thus, the higher
mixing ratios observed during AMMA in the lower strato-
sphere are probably caused by the seasonal difference in up-
welling due to the Brewer Dobson circulation.

In summary, the CO2 profiles show that the region around
West-Africa is highly influenced by convection up to 355 K,
during 11 August even up to 370 K. Clearly pronounced lev-
els of main convective outflow are observed during three of
the four flights. However, O3 profiles strongly suggest that
this convectively influenced air is mostly of older origin, and
has been transported for at least several days before being
measured. Only the observations of 4 August exhibit some
signatures of recent convection in the O3 profile. Overall,
these results are in good agreement with the findings ofLaw
et al.(2010).

3.1.2 Overshooting of convection

Now we examine potential signatures of overshooting con-
vection in the tracer data by observations of CO, CO2 and
O3.

In Fig. 4 the CO2 profiles during AMMA/SCOUT-O3 are
plotted in one figure, with their average represented by the
black line. On 8 August there are large deviations from this
average between 390 and 420 K. Both enhanced and reduced
values of CO2 can be found at this level. On 4 August there
are also some reduced values between 400 and 420 K.

The enhanced values on 8 August cannot be explained by
transport processes; given they occur shortly after a calibra-
tion phase of the instrument we cannot completely rule out
an unusual instrumental instability. The low values could
be an indication of irreversible mixing of overshooting air.
If irreversible mixing takes place during or following con-
vective overshoot, air parcels originating from the boundary
layer with a potential temperature of 350–360 K (the level of
neutral buoyancy) will mix with air masses with a higher po-
tential temperature along a mixing line. In practice, mixing
may proceed along a multitude of such mixing lines resulting
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Fig. 4. CO2 profiles for the local flights during AMMA/SCOUT-
O3. Average profile in black. Two examples of possible mixing
lines are presented by the grey lines.

in a mixing band in a profile plot (provided sufficient sam-
pling). In Fig.4, two possible idealized mixing lines are dis-
played. They indicate that, in order to explain the signatures,
mixing would have occurred between air parcels with po-
tential temperatures of approximately 355 K and 400–420 K,
that is overshooting convection would have reached up to 17–
18 km.

Overshooting convection can also be diagnosed in tracer-
tracer correlations. Without mixing, the correlation between
a tropospheric (e.g. CO, CO2) and a stratospheric tracer
(e.g. O3) will form an L-shape: in the troposphere an almost
constant mixing ratio of the stratospheric tracer and much
variation in the mixing ratio of the tropospheric tracer, and
the opposite in the upper TTL and stratosphere. Thus, the
correlation plot exhibits two distinct branches for the strato-
sphere and the troposphere, which meet in the lower TTL.
Mixing following overshooting would again be seen along
mixing lines between these two branches, connecting bound-
ary layer observations with values observed at the highest
level of overshoot.

Figure5 shows the correlation plot between O3 and CO2
for the local flights, coloured according to potential temper-
atures and with the average correlation in black. The fig-
ure shows a flipped L-shape with variable CO2 mixing ra-
tios and constant O3 mixing ratios in the troposphere up to
about 360 K, and above that increasing O3 mixing ratios and
slowly decreasing CO2 mixing ratios. Again, the correlation
plot shows a deviation from the average correlation curve be-
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Fig. 5. Correlation between O3 and CO2. The data are coloured to
potential temperature. The black line represents the average CO2
profile for all local flights. The grey lines are the possible mixing
lines that are also displayed in Fig.4.

tween potential temperatures of about 360 and 420 K. They
occur along mixing lines corresponding to those displayed
in Fig. 4. However, similar signatures are not observed dur-
ing that part of the flight in other species like H2O, NOy and
particles (not shown). If overshooting of convection had oc-
curred one would expect clear signals of enhanced H2O and
particles as moister air with more particles from the bound-
ary layer would be entrained.Voigt et al.(2008) indicate lay-
ers with enhanced particles and NOy, but these are found at
other locations during the flight. The latter study does, how-
ever, show with backtrajectories that the air measured during
this flight was located above a mesoscale convective system
for at least 1.5 days prior to the measurements, with cloud
top levels up to at least 120 hPa (16 km altitude).

As during the flight of 7 August CO2 was not measured
due to failure of the HAGAR instrument we examine the CO
data measured by the COLD instrument. Figure6 shows the
CO profiles for both 7 and 8 August (the only flights dur-
ing which COLD measured). Around 410 K, very high CO
mixing ratios are observed, which could again be an indi-
cation of vertical mixing following overshooting. This fea-
ture is also present in the correlation plot between CO and
O3 (not shown here). However, as the two possible mixing
lines in Fig.6 indicate, this would imply mixing of air from
the main convective outflow level (355 K) with air parcels at
potential temperatures of at least 430 K, i.e. overshoot to ex-
tremely high levels. Again, other tracers do not show similar
signatures. Although enhancements are observed in mixing
ratios of NOy and CCN during that day, these only indicate
an influence up to 14–15 km, and during a later section of
the flight (not shown). Water vapour mixing ratios do not
show any signatures indicative of overshooting convection
(not shown).
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Fig. 6. CO profiles for 7 and 8 August. The black lines represent
the two most extreme possible mixing lines that could explain the
high CO values at 410 K. One mixing line would mean mixing of air
parcels with a potential temperature of 355 K and 430 K, the other
line mixing of air parcels with potential temperatures of 355 K and
470 K. Any mixing line in between these two extremes is possible
to explain the enhanced CO values at 410 K.

Overall, we conclude that signatures potentially indicating
impact of overshooting convection are observed in the lower
stratosphere in the CO and CO2 mixing ratios during the
AMMA campaign. However, these signatures are not cor-
roborated by measurements from other instruments on board
the airplane. Thus, evidence for the impact of overshooting
is inconclusive. In particular, there is no clear indication that
overshooting of convection plays a major role in troposphere-
to-stratosphere transport during the time of the campaign.

3.2 Stratospheric isentropic inmixing into the TTL

Horizontally, the tropical tropopause layer is confined by the
subtropical jets. The strength and position of these jets vary
by season, with a strong jet close to the equator in the win-
ter hemisphere and a weak, poleward shifted jet in the sum-
mer hemisphere.Haynes and Shuckburgh(2000) show that
a strong subtropical jet forms an effective transport barrier
for the meridional, isentropic transport between the lower
part of the TTL and the extratropical lower stratosphere.
Isentropic, quasi-horizontal transport from the extra-tropical
stratosphere may play a significant role in determining the
chemical (trace species) and radiative character of the TTL
(Gettelman and Forster, 2002). Analysis of previous aircraft
measurements suggests that there may be significant quasi-
isentropic transport from the lower mid-latitude stratosphere
toward the tropics (Tuck et al., 2003; Marcy et al., 2007).

In order to quantify the amount of extratropical strato-
spheric air entering the TTL we examine the N2O data.
N2O has its source located at the surface and is well mixed
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Fig. 7. Vertical profile of N2O coloured to latitude.

throughout the troposphere. Photochemical sinks in the mid-
stratosphere result in declining N2O mixing ratios above the
tropopause. Reductions in N2O mixing ratios below the
typical tropospheric value therefore indicate entrainment of
stratospheric, photochemically aged (in the order of years)
air masses.

The profiles of N2O shown in Fig.7 exhibit constant tro-
pospheric concentrations for the local flights, and a well de-
fined decrease from the tropopause upward, indicating that
mixing with stratospherical older air masses is exceedingly
rare below the tropopause, whereas the decrease just above
the tropopause indicates increasing in-mixing of older air
masses. The measurements made in Verona and during the
transfer flights (> 30◦ N) show decreasing N2O values above
330 K, indicating the level of the tropopause in the extratrop-
ical region.

In order to estimate the fraction of air transported from
the extratropical lower stratosphere the N2O mixing ratios of
the extratropical stratosphere are compared with the values
in the TTL. The fraction of aged extratropical air (χ ) can be
expressed as:

χ =
[N2O]−[N2O]trop

[N2O]extratrop−[N2O]trop
, (1)

where [N2O] is the measured N2O mixing ratio; [N2O]trop
is the average N2O mixing ratio at the bottom of the TTL,
inferred as the average between potential temperatures of
320 K and 350 K between 0–20◦ N; [N2O]extratropis the aver-
age N2O mixing ratio of the extratropical lowermost strato-
sphere, inferred as the average between potential temper-
atures of 350 K and 400 K during all flights northward of
40◦ N. The values derived here are[N2O]extratrop=309 and
[N2O]trop=320 ppb.

Figure8 shows the derived fraction of extratropical air in
the TTL. The blue line represents the average height of the
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Fig. 8. Fraction of aged extratropical air. The blue line represents
the average height of the tropopause.

cold point tropopause during the campaign. The fraction of
aged extratropical air in the TTL is around zero in the lower
part up to 370 K and is only slightly increasing towards the
top of the TTL (here defined as the cold point tropopause).
Note that this result refers to in-mixing of photochemically
aged air only and thus does not necessarily rule out in-mixing
of extra-tropical stratospheric air altogether. In fact active
isentropic exchange across the weak summer subtropical jet
with a net export of air masses from the TTL to the extrat-
ropical stratosphere is known to flush the lowermost strato-
sphere with young air over the course of the summer. Any
re-entrainment of these young air masses into the TTL would
not be detected by the above diagnostic (but would also be of
little relevance for the chemical composition of the TTL).

3.3 Isentropic mixing across the subtropical barrier

Except for its lowest part where isentropic mixing with the
extratropics is still relatively efficient, the tropical strato-
sphere is more or less isolated from the extratropical part
of the stratosphere (Volk et al., 1996; Minschwaner et al.,
1996). The subtropical barrier constitutes a region of strong
horizontal shear and maximum PV gradient along isentropes,
thereby prohibiting fast isentropic mixing between the trop-
ical stratosphere and mid-latitude stratosphere, especially in
the winter hemisphere.

Due to the isolation of the tropical stratosphere, tracer
pairs with differing source/sink structures (e.g. O3–N2O,
O3–NOy) show different correlation slopes in the tropical
and extratropical stratosphere (Volk et al., 1996; Fahey et al.,
1996). At mid-latitudes, where quasi-horizontal mixing is
faster than both vertical transport and chemical time scales,
a compact correlation evolves whose slope at any point is
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Fig. 9. Correlation between N2O and O3 coloured to latitude.

determined by the ratio of globally integrated sources and
sinks of the two species above the given altitude (Plumb
and Ko, 1992). Further, since the sources and sinks for O3
and N2O are insignificant in the lower stratosphere, this ra-
tio remains approximately constant there, and thus the lower
stratospheric correlation is fairly linear. In the tropics, on the
other hand, quasi-horizontal mixing is slower, and the corre-
lation is to a large part determined by vertical ascent and local
chemistry (Volk et al., 1996); in situ production of O3 in the
lower stratosphere thus results in a correlation slope different
from the mid-latitudes. The correlation slope is therefore a
reliable indicator for the origin of an air mass. A change in
the slope of these correlation branches marks the position of
the subtropical barrier. Mixing events between the two re-
gions manifest themselves as lines or bands connecting the
characteristic tropical and extratropical correlation branches.

Figure9 shows the correlation between O3 and N2O for
the local and the transfer flights during AMMA/SCOUT-O3.
The colours indicate the latitude of the measurements. Dif-
ferent correlation slopes are observed at different latitudes.

The slopes of these correlations are visualised in Fig.10
by plotting the ratio of the differences between the mea-
sured O3 and N2O values from tropospheric reference val-
ues, i.e. plotting the correlation slope from the tropospheric
origin of the correlation (chosen as 320 ppb N2O and 50 ppb
O3). The figure shows only data above a potential tempera-
ture of 415 K, above which a significant separation between
the tropical and midlatitude correlations can be discerned.
The lowest slope values of 0.02 observed southward of 15◦ N
indicate air within the isolated tropical region (the “tropical
pipe”), whereas the midlatitudes exhibit slope values exceed-
ing 0.04. Values in between these extremes are found in a
band between 10◦ N and 30◦ N, suggesting a wider transition
zone rather than a sharp subtropical barrier. In order to ex-
amine whether the subtropical barrier might nevertheless be
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Fig. 10. Slope dN2O/dO3 against latitude for the AMMA/SCOUT-
O3 flights.
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Fig. 11. Slope dN2O/dO3 against equivalent latitude for the
AMMA/SCOUT-O3 flights.

sharp, but undulate within that latitude band due to wave mo-
tions, we also plot the slope values against equivalent latitude
in Fig. 11. Reversible wave motions should be mostly elim-
inated in this projection as they occur at roughly conserved
potential vorticity, and thus equivalent latitude. Nevertheless,
the transition between inner tropical and midlatitude slope
values still spans a band between 10◦ N and 25◦ N equivalent
latitude. It thus appears that during AMMA there is not a
sharp barrier but a subtropical transition zone with a width of
about 15◦ latitude.

In Fig. 12 we compare our results with correlation slopes
(N2O vs. O3) found earlier during the ASHOE/MAESA
campaign in March and October/November 1994. The slope
values from AMMA data are coloured and plotted against lat-
itude. The ASHOE/MAESA slopes (in grey) can be viewed
in analogy to the NOy/O3 ratios published inFahey et al.
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Fig. 12. Slope dN2O/dO3 against latitude for the AMMA/SCOUT-
O3 (coloured) and ASHOE/MAESA (grey) flights.

(1996) and in fact show fairly sharp transitions between low
tropical values and extratropical values in March (around
10◦ N) and in October (around 15◦ N). In contrast, the tran-
sition during AMMA in August is more gradual and ranges
between 10◦ N and 25◦ N. We note here that the ER-2 data
from ASHOE/MAESA in the region in question are on av-
erage sampled at a higher altitude than the M55 Geophys-
ica data from AMMA, the former being mostly collected
during transfer flights at maximum altitude (20–21 km). As
the subtropical barrier increases in strength above 20 km, the
ASHOE/MAESA data are thus expected to be more suitable
to indicate the location and width of the barrier, whereas
the Geophysica during AMMA may have sampled at an al-
titude range (below 20 km) at which the barrier is weaker
and thus more permeable to mixing. On the other hand,
the subtropical barrier is also expected to be weakest dur-
ing summer on the summer hemisphere due to the absence
of strong wave activity in the surf zone, which tends to
sharpen the barrier. Thus the observed differences between
ASHOE/MAESA and AMMA in the width of the transition
between tropical and extratropical tracer values may well be
explained by differences in both sampling altitude and sea-
son.

4 Conclusions

We have presented in situ tracer data from the AMMA-
SCOUT-O3 campaign in July/August 2006 over West-
Africa. Data were obtained on board the M55 Geophys-
ica with the High Altitude Gas ANalyzer (HAGAR), mea-
suring CO2, N2O, CFC−11, CFC−12, H−1211, CH4, SF6
and H2, as well as from the FOZAN and COLD instru-
ments, measuring O3 and CO, respectively. We have used
the data to examine the dominant transport processes in the
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TTL: deep convection up to the level of main convective out-
flow, irreversible mixing after overshooting of deep convec-
tion, isentropic inmixing into the TTL across the subtropi-
cal tropopause, and horizontal transport in the region of the
stratospheric subtropical barrier. The CO2 profiles (with the
exception of 13 August) show distinct minima in the TTL,
reflecting the outflow of boundary layer air depleted in CO2.
These reductions in CO2 suggest that i) convective influence
in the TTL is quite significant in the sampled air masses and
that ii) the main convective outflow was usually located at
potential temperature levels up to∼350–360 K (13–14 km),
and for the flight of 11 August even reached up to 370 K
(∼15 km). The O3 profiles, on the other hand, indicate that
the larger part of the convective fraction in the sampled air
masses must be of rather older origin (several days or more),
as regional boundary layer mixing ratios of 30 ppb are only
occasionally found in the TTL (only during the flight of
4 August), while average O3 mixing ratios in the TTL are
observed to be 50 ppb or higher. These results agree with
those ofLaw et al.(2010) who find that a large part of the
measured air was already residing in the tropical upper tro-
posphere and lower stratosphere when arriving over West
Africa and was uplifted over Asia within ten days prior to the
measurements. According to their study, regional uplift over
Africa above 350 K was only important on 11 August, and
potentially on 8 August. Overshooting convection does not
appear to have a large impact on vertical profiles of gas-phase
tracers, which exhibit quite coherent shapes above the max-
imum level of convective outflow. Only a few small signa-
tures potentially indicative of mixing following overshooting
convection were observed in the CO2 data during the flights
of 4 and 8 August; another potential signature was observed
in CO on 7 August. However, similar signatures were not si-
multaneously observed in other tracers. The absence of fre-
quent high reaching local convection and the lack of major
overshooting events impacting the gas-phase composition of
the TTL inferred in this study is in accord with the notion
that the African region is not a major player in troposphere-
to-stratosphere transport (Berthet et al., 2007; Barret et al.,
2008), at least not in NH summer.

Stratospheric inmixing of photochemically aged air from
the extratropical stratosphere appears to be minimal up to the
mean local tropopause at 376 K. The fractions of aged ex-
tratropical air in the TTL, as estimated from N2O profiles is
0.0±0.1 up to 370 K and is increasing above this level up to
about 0.3±0.1 at 390 K.

The subtropical barrier does not manifest itself as a sharp
boundary in tracer distributions, but rather as a gradual tran-
sition region between around 10◦ N and 25◦ N where tracer
mixing ratios change from characteristic tropical to extrat-
ropical values. The subtropical barrier thus appears to be
rather permeable to horizontal mixing in the summer sub-
tropics below 20 km altitude.
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