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Abstract. During the measurement campaign FROST
(FReezing Of duST), LACIS (Leipzig Aerosol Cloud In-
teraction Simulator) was used to investigate the immersion
freezing behavior of size selected, coated and uncoated Ari-
zona Test Dust (ATD) particles with a mobility diameter of
300 nm. Particles were coated with succinic acid (C4H6O4),
sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4).
Ice fractions at mixed-phase cloud temperatures ranging
from 233.15 K to 239.15 K (±0.60 K) were determined for
all types of particles. In this temperature range, pure ATD
particles and those coated with C4H6O4 or small amounts of
H2SO4 were found to be the most efficient ice nuclei (IN).
ATD particles coated with (NH4)2SO4 were the most ineffi-
cient IN. Since the supercooled droplets were highly diluted
before freezing occurred, a freezing point suppression due
to the soluble material on the particles (and therefore in the
droplets) cannot explain this observation. Therefore, it is rea-
sonable to assume that the coatings lead to particle surface
alterations which cause the differences in the IN abilities.
Two different theoretical approaches based on the stochas-
tic and the singular hypotheses were applied to clarify and
parameterize the freezing behavior of the particles investi-
gated. Both approaches describe the experimentally deter-
mined results, yielding parameters that can subsequently be
used to compare our results to those from other studies. How-
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ever, we cannot clarify at the current state which of the two
approaches correctly describes the investigated immersion
freezing process. But both approaches confirm the assump-
tion that the coatings lead to particle surface modifications
lowering the nucleation efficiency. The stochastic approach
interprets the reduction in nucleation rate from coating as pri-
marily due to an increase in the thermodynamic barrier for
ice formation (i.e., changes in interfacial free energies). The
singular approach interprets the reduction as resulting from a
reduced surface density of active sites.

1 Introduction

Among other factors, ice containing clouds, such as cirrus
and mixed-phase clouds have an impact on Earth’s radiative
balance by scattering and absorbing solar and terrestrial radi-
ation (Hung et al., 2003; Zuberi et al., 2002) with ice forma-
tion processes strongly influencing cloud radiative properties
(DeMott et al., 2003b). Additionally, the formation of ice
crystals affects cloud dynamics and chemical processes in
clouds and is one of the most effective pathways to form pre-
cipitation in the midlatitudes. Therefore, ice particles affect
cloud lifetime (Lohmann, 2006).

Ice formation in the atmosphere may happen via both
homogeneous and heterogeneous nucleation, the latter be-
ing induced by a foreign insoluble core called an ice nu-
cleus (IN) (Cantrell and Heymsfield, 2005). Four different
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heterogeneous ice nucleation modes are distinguished in the
literature: Deposition nucleation mode as well as conden-
sation, immersion and contact freezing modes (e.g.,Prup-
pacher and Klett, 1997). In the deposition mode, ice de-
posits on the particle directly from the vapor phase, without
an intermediate liquid phase, i.e., usually the particle envi-
ronment is super-saturated with respect to ice only. Conden-
sation freezing occurs when the particle acts as cloud con-
densation nucleus (CCN) at a certain temperature below the
melting point of ice and the freezing process takes place at
the same temperature. For immersion freezing,Pruppacher
and Klett(1997) stated that the particle becomes immersed
into a droplet above the melting point of ice and freezing is
initiated when the temperature of this droplet becomes suf-
ficiently low. But evidence exists that particles act as CCN
below 273.15 K, and then induce immersion freezing due to
further cooling (Megahed, 2007). Finally, freezing can also
be initiated by an insoluble particle which penetrates the sur-
face of a supercooled liquid droplet from the outside. This
so-called contact freezing apparently could also occur if the
particle penetrates the droplet surface from the inside out,
due to particle movement or an evaporation process (Shaw
et al., 2005; Durant and Shaw, 2005).

The relative importance of the freezing modes in the at-
mosphere is not known, and in general our understanding
of the physical and chemical processes underlying hetero-
geneous ice formation is limited. E.g., until now, it is still
unclear if heterogeneous ice nucleation is a stochastic pro-
cess (stochastic hypothesis) or if nucleation occurs on spe-
cific sites at characteristic temperatures (singular hypothe-
sis). In recent literature (e.g.,Archuleta et al., 2005; Con-
nolly et al., 2009; Marcolli et al., 2007; Vali, 1994) both hy-
potheses were used to evaluate and parameterize heteroge-
nous ice nucleation measurements but a definite answer is
still missing. Therefore, more scientific work, both theoreti-
cal and experimental, is necessary to elucidate the fundamen-
tal physical mechanisms, as well as to develop adequate pa-
rameterizations that are required for cloud models (Cantrell
and Heymsfield, 2005; Kärcher and Lohmann, 2003).

Various atmospheric observations of droplet freezing
through heterogeneous ice nucleation show that insoluble
substances, especially mineral dust particles, serve effec-
tively as IN in the atmosphere (Cziczo et al., 2004; DeMott
et al., 2003a,b; Richardson et al., 2007; Sassen et al., 2003).
As a result mineral dust particles indirectly influence cloud
properties, precipitation, and therefore Earth’s climate (De-
Mott et al., 2003a,b; Zuberi et al., 2002). Mineral dust par-
ticles originate from desert regions like the Sahara and the
Gobi and can be lifted into the free troposphere during storm
events. Subsequent to lifting, the dust particles can be trans-
ported over large distances (Prospero, 1999; Sassen et al.,
2003; DeMott et al., 2003a) and undergo aging processes,
e.g., through coatings with sulfates and other electrolytes
(Zuberi et al., 2002). As a result, IN ability may change.

In the laboratory several investigations concerning the
IN ability of different kinds of mineral dust particles (with
and without coatings) were carried out utilizing a variety of
measurement methods and thermodynamic conditions (e.g.,
Archuleta et al., 2005; Cziczo et al., 2009; Field et al., 2006;
Knopf and Koop, 2006; Marcolli et al., 2007; Möhler et al.,
2006; Zobrist et al., 2008). As a consequence, our under-
standing of the influence of certain particles, especially min-
eral dusts, on different freezing modes has improved. Some
of these experiments show that coatings lower the IN effi-
ciency of dust particles. But the question remains whether
the coatings tend to only cover the particle surface or also
lead to surface modifications. The studies also had limita-
tions, some of which we are addressing in this work. In
some cases only threshold temperatures/ice saturation ratios
for freezing onset (1% of the particles activated as IN) are
given (Archuleta et al., 2005; Field et al., 2006; Möhler et al.,
2006). In other cases the IN ability of particles with broad
size distributions was investigated (Field et al., 2006; Knopf
and Koop, 2006; Marcolli et al., 2007; Möhler et al., 2006;
Zobrist et al., 2008) providing little information about the
influence of particle size on freezing. Taken together, the
studies are partly difficult to compare, and even when certain
results can be compared they are not entirely consistent. For
example measurements concerning deposition nucleation of
mineral dust particles performed byArchuleta et al.(2005)
(Asian Dust, Al2O3 and Fe2O3 particles),Knopf and Koop
(2006) (Arizona Test Dust (ATD) particles) andMöhler et al.
(2006) (ATD particles) give an inconsistent picture. For tem-
peratures at about 240 K,Möhler et al.(2006) andKnopf and
Koop (2006) determined similar ice onset supersaturations.
For lower temperatures,Möhler et al.(2006) observed ice
onsets at lower ice supersaturations compared to ice onsets
determined byKnopf and Koop(2006) andArchuleta et al.
(2005). The explanations given byKnopf and Koop(2006)
can partly resolve the observed difference but the question
remains why the results are similar for higher temperatures
and differ for temperatures below 235 K.

During the measurement campaign FROST (FReezing Of
duST) which took place in April 2008, the laminar flow
diffusion chamber LACIS (Leipzig Aerosol Cloud Interac-
tion Simulator) (Stratmann et al., 2004) was applied to in-
vestigate the ability of mineral dust particles to act as IN.
LACIS allows the investigation of immersion freezing, such
that the influence of size selected monodisperse particles on
the freezing behavior of droplets can be measured, with only
one particle being immersed in each droplet. LACIS can be
used to determine ice fractions as function of temperature.

In the following, we first describe the fundamentals of
the two above mentioned theoretical approaches, i.e., the
stochastic and the singular approach. We relate both ap-
proaches to ice fractions, the parameter that resulted from
our LACIS measurements. These measurements are sub-
sequently described. Size segregated ATD particles were
used for the freezing experiments. To simulate aging
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processes, the ATD particles were coated with various sub-
stances such as ammonium sulfate ((NH4)2SO4), sulfuric
acid (H2SO4, two different coating temperatures) and suc-
cinic acid (C4H6O4). For ice fractions derived from FROST
measurements, the stochastic and the singular approach were
applied separately to clarify and parameterize the freezing
behavior of the different kinds of particles. For the stochas-
tic approach, we derive ice nucleation rate coefficients which
are not instrument specific and therefore generally compara-
ble. For the singular approach, the determined ice fractions
can be already compared to other studies because for this ap-
proach freezing is assumed to be time-independent.

2 Theoretical approach for data interpretation and
parameterization

2.1 Stochastic approach

To begin with, we consider the stochastic nature of the freez-
ing process, based on a simplified expression obtained from
classical nucleation theory (CNT). The purpose is to quantify
the immersion freezing behavior of the particles investigated,
and we reason that its use is justified for an ice nucleus pop-
ulation with uniform properties.

CNT is far from serving as an accurate description of nu-
cleation processes, on the one side due to uncertainties in the
required parameters (e.g., different parameterizations exist
for e.g., the vapor pressures of supercooled water and ice as
well as the interfacial free energy), and on the other side due
to simplified assumptions underlying the theory itself (e.g., it
is assumed that the interfacial free energy of clusters consist-
ing of a small number of water molecules is the same as the
free energy of the bulk liquid). Nevertheless, it may be used
in a phenomenological way to interpret observations (Shaw
et al., 2005). For example, CNT provides a feasible method
for parameterizing homogenous and heterogeneous ice nu-
cleation as functions of temperature.

For heterogenous freezing the nucleation rate coefficient
jhet can be expressed as (Pruppacher and Klett, 1997):

jhet(T ) =
kT

h
exp

[
−

4F(T )

kT

]
×nsexp

[
−

4Ghet(T )

kT

]
(1)

whereh andk are the Planck and Boltzmann constants, re-
spectively. T represents the absolute temperature andns
is the number density of water molecules at the ice nu-
cleus/water interface (about 1019 m−2). 4F(T ) is the acti-
vation energy for diffusion of water molecules crossing the
liquid water/ice boundary.4Ghet(T ) represents the Gibbs
free energy for critical ice embryo formation in the presence
of an IN. In general, the first term in Eq. (1) essentially de-
scribes the flux of water molecules to the embryonic ice par-
ticles (kinetic term) and the second term represents the equi-
librium number of critical embryos in the liquid phase (ther-
modynamic term) (e.g.,Shaw et al., 2005).

Using the simplest spherical cap geometry for the ice
germ, the Gibbs free energy4Ghet(T ) can be written as (Se-
infeld and Pandis, 1998):

4Ghet(T ) =
16πvi

2(T )σw,i
3(T )

3
(
kT ln pw(T )

pi(T )

)2
fhet (2)

with vi(T ) being the volume per water molecule in the ice
phase,σw,i(T ) being the interfacial free energy between liq-
uid water and the ice embryo.fhet represents the reduction of
the energy barrier in consequence of the IN presence.pw(T )

andpi(T ) are the vapor pressures of supercooled liquid wa-
ter and ice, respectively. The strongest temperature depen-
dencies in Eq. (2) are in the vapor pressures and the surface
free energy, so we proceed by focusing on those two terms.
The ratiopw(T )/pi(T ), representing the saturation ratio, can
be written as (e.g.,Rogers and Yau, 1996):

pw(T )

pi(T )
= exp

(
lf

kT

Ts

T◦

)
(3)

wherelf is the molecular latent heat of fusion,T◦ is the melt-
ing point temperature, andTs≡T◦−T is the supercooling
temperature. From the existing expressions describing the
vapor pressures of supercooled water and ice, we chose this
expression because it captures the essential temperature de-
pendence in a simple way, and it is expressed as a function of
Ts. Using more accurate expressions belies the fact that there
are greater uncertainties embedded in other parameters.

The surface free energyσw,i(T ) can also be expressed in
terms ofTs, which we obtain by adapting the expression of
Zobrist et al.(2007) (σw,i(T )=σ̃w,i [1−(Ts/C1)], valid for
230 K≤T ≤244 K) with σ̃w,i=0.0412 J m−2 andC1=82.4 K.
For 4F andvi parameterizations also exist (Zobrist et al.,
2007) but given that the absolute temperatureT does not
change significantly (FROST measurements were performed
within a temperature range<10 K), we can reasonably take
4F , lf andvi as constants for the investigated temperature
range. The temperature dependence of these parameters is
small in the interval from 233.15 K to 243.15 K, changing by
about 8%, 10% and 0.1%, respectively. Using Eqs. (2) and
(3) and the stated assumptions,jhet can be written as:

jhet(Ts) = a
′

×exp

−

C2

(
1−

Ts
C1

)3

T 2
s

fhet

 (4)

with a
′

=
kT ns

h
exp

(
−4F
kT

)
andC2=

16πv2
i T 2

◦ σ̃3
w,i

3kT l2f
.

In the following, this CNT based nucleation rate coeffi-
cient will be connected to the ice fraction (i.e., the number of
frozen dropletsNf divided by the total number of particles,
N0), as measured with LACIS during the FROST campaign.
Here, we take advantage of the fact that inside LACIS only
one IN is present per droplet. Because of the narrow particle
size distribution of the ATD particles (seeWex et al., 2010)
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and the lack of information on precise properties of single
particles, we make the simplified assumption that the inves-
tigated particles feature a similar size, a similar surface and
similar surface properties. In addition, the nucleation event
in an individual droplet is assumed to be independent of the
nucleation event in other droplets of the population and the
ice formation is the consequence of only one nucleation event
per droplet (Pruppacher and Klett, 1997). The last assump-
tion is reasonable because of the fast crystallization rate of
ice. Hence, it is likely that the first critical embryo, formed
on the particle surface, initiates the freezing before further
embryos can be formed.

Under these assumptions and considering the axial tem-
perature profile inside LACIS (see Fig.3) the temporal
change of the number of unfrozen dropletsNu can be written
as:

dNu

dt
′

= −Nuspjhet(Ts(t
′

)) (5)

with dNu=−dNf . Here,sp is the particle surface area andNf
is the number of frozen particles. Integrating Eq. (5) yields:

fice=
Nf

N0
= 1−exp

(
−sp

∫ t

0
jhet(Ts(t

′

))dt
′

)
(6)

wherefice represents the ice fraction, or the probability of
freezing (Shaw et al., 2005) andt is the nucleation time.

Assuming that the major part of ice is formed in the region
inside LACIS where the supercooling temperature is high-
est and almost constant (see the temperature profile inside
LACIS in Fig. 3) Eq. (6) simplifies to:

fice= 1−exp
(
−spjhet(Ts)t

)
. (7)

Finally, Eq. (4) can be inserted into Eq. (7) resulting in:

fice= 1−exp

−a×exp

−

C2

(
1−

Ts
C1

)3

T 2
s

fhet

t

. (8)

Here,a=a′sp andfhetare adjustable parameters for matching
theoretically and experimentally determined ice fractions.
Parametera includes information about the total particle sur-
face area and kinetic effects, whereasfhet contains informa-
tion about surface properties and thermodynamic effects. It
should be noted that the parameterization developed here can
be used to derive nucleation rates which are not instrument
specific and therefore generally comparable.

2.2 Singular approach

The singular hypothesis assumes that in a liquid droplet con-
taining an immersed insoluble particle, ice germs form on
specific sites on the particle surface at a characteristic tem-
peratureTc (Langham and Mason, 1958; Pruppacher and
Klett, 1997; Vali, 1994). These specific sites, also called ac-
tive sites, are considered as preferred sites, characterized by

a size comparable to that of a critical ice embryo and the free
energy of the particle-ice interface being minimal (Fletcher,
1969; Vali, 2008). The active site with the highest charac-
teristic temperature determines the freezing temperature of
the droplet. Being cooled toTc, a supercooled water droplet
population including IN with these active sites will freeze in-
stantaneously. If the temperature is constant afterwards, no
additional nucleation events will occur, i.e., the freezing pro-
cess is time-independent.

For this approximation, one can define the number of sites
per surface areans(Tmin) which become active between tem-
peratureT◦ = 0 ◦C andTmin, whereTmin is the minimum tem-
perature reached during one experiment.ns(Tmin) is called
ice-active surface site density and can be expressed as (Con-
nolly et al., 2009):

ns(Tmin) = −

∫ Tmin

T◦

k(T )dT . (9)

The parameterk(T ) is the density of surface sites that be-
come ice-active as the temperature is lowered bydT (Con-
nolly et al., 2009).

The change of the number of unfrozen droplets per tem-
perature interval can be expressed as:

dNu

dT
= −Nuspk(T ) (10)

with dNu=−dNf . Again,sp is the particle surface area, and
Nu andNf are the number of unfrozen and frozen particles,
respectively. Integrating Eq. (10) from the total numberN0
atT◦ to Nu atTmin and considering Eq. (9) yields:

fice=
Nf

N0
= 1−exp

(
−spns(Tmin)

)
. (11)

During FROST experiments ice fractions were determined
from which ns(Tmin) can be derived assuming that for one
particle sample (e.g., pure ATD particles)ns(Tmin) is con-
stant for fixedTmin. This assumption is justified because of
the narrow particle size distribution of the ATD particles, i.e.,
the particles should feature a similar size, a similar surface
and similar surface properties, i.e., similar active sites.

Unlike the stochastic approach, which is based on clas-
sical nucleation theory, the singular approach currently has
no theoretical foundation, and therefore the density of active
sites is a purely empirical quantity. Essentially, a functional
form is chosen that results in a satisfactory temperature de-
pendence consistent with the observations. In spite of this
empiricism, if the underlying assumption of the existence of
active sites is accepted, then the fit provides an estimate of
the temperature-dependent density of sites that can be com-
pared to that derived in other, independent studies.

For parameterizingns(T ), a polynomial expression is used
as suggested inConnolly et al.(2009):

ns(T ) =

{
α1(T +α2)

2
: T <−α2

0 : T ≥−α2,
(12)
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Hereα1 andα2 are adjustable parameters for matching the-
oretically and experimentally determined ice fractions. The
parameter−α2 determines the highest characteristic temper-
ature for the corresponding particles sample. Note that the
temperature in this polynomial fit has to be given in◦C. For
details please refer toConnolly et al.(2009).

3 Experimental procedure

3.1 Particle generation and size selection

Figure1 shows the particle generation setup. The ATD par-
ticles (ISO 12103-1, A1 Ultrafine Test Dust, Powder Tech-
nology Inc., Burnsville, Minnesota, USA) were dispersed by
means of a fluidized bed generator (TSI 3400A, TSI Inc.,
St. Paul, Minnesota, USA). As a result of friction in the flu-
idized bed the particles are multiply charged and a self-built
unipolar corona discharger is used to discharge them par-
tially. Care was taken to assure that the corona discharger
did not change the IN ability of the examined particles by
comparing measurements as they were regularly done (with
the discharger) to some done without it. No changes were
observed.

Particles with an aerodynamic diameter larger than 560 nm
were removed from the aerosol flow by means of a Micro-
Orifice Uniform-Deposit Impactor (MOUDI Model 100R,
MSP Corporation, Shoreview, Michigan, USA). The remain-
ing particles were charged electrically utilizing a Krypton 85
neutralizer. Coatings were applied in vapor diffusion tubes,
heated to suited temperatures. Figure1 depicts a sketch of
the setup, showing three different tubes through either of
which the particles could be led. Tube (A) is a bypass section
where the uncoated particles were passed through. The sec-
ond tube (B) contained a small “boat” filled with C4H6O4.
This tube was heated up to 80◦C using a heating tape. The
temperature stability of this tape was about±2 K. As a result
of the heating the C4H6O4 was vaporized from the “boat”
and the vapor condensed on the ATD particles in the cooler
section downstream of the heated tube. The third tube (C)
contained a “boat” filled with H2SO4. This tube was sur-
rounded by a water jacket the temperature of which was
controlled by a thermostat (HAAKE C25P, HAAKE GmbH,
Karlsruhe, Germany). Two temperature values were used
during the experiments (50◦C and 70◦C) resulting in two
different amounts of H2SO4 on the particles. The tempera-
ture stability was±0.1 K. To generate the (NH4)2SO4 coat-
ing, the ATD particles were first led through the H2SO4 tube
heated to 70◦C. Then, the particles were passed over a water
bath. The aerosol here was humidified to dew-point temper-
ature similar to the laboratory temperature of about 25◦C.
Then, ammonia gas was added. The neutralization of the
particulate H2SO4 by the ammonia took place in a three me-
ter long reaction tube. After that the aerosol flow was dried
using a diffusion dryer.
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Fig. 1. Sketch of the generation, coating and size selection of the
particles. Also included are the different instruments which mea-
sured during FROST.

Downstream of the coating device, a DMA (Differential
Mobility Analyzer; Knutson and Whitby(1975); type “Vi-
enna Medium”) was used to select a quasi-monodisperse par-
ticle size fraction. For the freezing experiments, particles
with a mobility diameter of 300 nm were selected. This par-
ticle size was chosen because in the atmosphere the abso-
lute majority of IN is generally found below one microme-
ter (Mertes et al., 2007). To avoid a major contribution of
doubly-charged particles, also care was taken that the maxi-
mum of the generated particle size distribution was at a size
smaller than the selected particle size, i.e., the maximum ap-
peared at about 200 nm. For the selected particles, the coat-
ings amounted to masses that were equivalent to a coating
thickness in the range of 1 - 10 nm (Wex et al., 2010). There-
fore, the coating masses were similar to amounts of soluble
material that can be acquired by atmospheric particles due
to cloud processing (Mertes et al., 2005; Yuskiewicz et al.,
1999).

Downstream of the DMA the aerosol flow was split by a
flow divider with one fraction (0.66 l min−1) being directly
fed to three Aerosol Mass Spectrometers (AMS, from IFT,
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Fig. 2. Setup of particle conditioning (1) and LACIS laminar flow
tube (2).

Research Center Jülich, Germany and Max Planck Institute
for Chemistry, Mainz, Germany,Reitz et al., 2010). The
other fraction (0.34 l min−1) was led to a dilution system
where particle free air (1.5 l min−1) was added. All flows
were controlled by mass flow controllers (MKS 1179, MKS
Instruments Deutschland GmbH, Munich, Germany) and
checked on a daily basis with a bubble flow meter (Gilian®

Gilibrator™2, Sensidyne Inc., Clearwater, Florida, USA).
From here, the remaining instruments (Condensation Parti-
cle Counter (CPC, GRIMM 5.401, GRIMM Aerosol Technik
GmbH & Co. KG, Ainring, Germany); Cloud Condensation
Nucleus Counter (CCNC, DMT, Boulder, Colorado, USA,
Roberts and Nenes, 2005), High-Humidity Tandem Differ-
ential Mobility Analyzer (HH-TDMA,Hennig et al., 2005)
and LACIS) were fed with the required flows. For LACIS
measurements an aerosol flow of 0.08 l min−1 was used.

3.2 LACIS-measurement procedure and data
evaluation

During FROST, the first heterogenous freezing measure-
ments at LACIS were performed. Therefore, a straightfor-
ward and simple measurement setup was used.

The aerosol flow entered LACIS (Fig.2) with a dew-point
temperature of about 233 K. A certain fraction of particle
free sheath air flow was humidified by a saturator (Perma
Pure PH-30T- 24KS, Perma Pure LLC, Toms River, New Jer-
sey, USA) and subsequently mixed with a dry particle free
air flow resulting in a dew-point temperature of 266.15 K.
This dew-point temperature was monitored using a dew-
point mirror (DPM, Dew Prime I-S2, Edge Tech, Milford,
Massachusetts, USA) featuring an accuracy of±0.10 K.

The aerosol and sheath air flows were combined in the in-
let section of LACIS. The aerosol was confined by the sheath
air to a narrow beam (about 2 mm in diameter) at the cen-
ter axis of LACIS. The volume flow rates of sheath air and
aerosol flow were chosen such that both flows entered LACIS
in an isokinetic fashion with a velocity of about 0.4 m s−1.

LACIS is a laminar flow tube with a diameter of 15 mm.
During our experiments, we used a total length of 7 m, made
up of seven 1 m tubes, each surrounded by a thermostated
water-jacket (thermostats 1 to 5: JULABO FP50, JULABO
Labortechnik GmbH, Seelbach, Germany; thermostats 6 to
7: JULABO LH85) so that the temperature of each section
could be controlled separately (Fig.2).

For the detection of the particles at the outlet of
LACIS, a white light aerosol spectrometer (WELAS® 1000,
PALAS®, Karlsruhe, Germany) was used. Downstream of
WELAS®, the particle number concentration was measured
by means of a CPC (TSI 3010, TSI Inc., St. Paul, Minnesota,
USA). The outlet dew-point temperature was monitored us-
ing a DPM (MBW 973, MBW Calibration Ltd., Wettingen,
Switzerland).

During FROST, the inlet temperature and the wall tem-
perature of the first LACIS section were set to 293.15 K.
The wall temperatures of section two to five were set to
273.15 K. During the experiments, which were performed
under atmospheric pressure conditions, only the tempera-
tures of Sects. 6 and 7 were adjusted in a range where freez-
ing was observable. Here, two different measurement proce-
dures were carried out. In the first case only Sect. 7 was
cooled down to temperature values between 233.15 K and
239.15 K and Sect. 6 was kept at 273.15 K (one-section mea-
surement). In the second case Sects. 6 and 7 were cooled
down to the same temperature, ranging between 233.15 K
and 239.15 K (two-section measurement). The accuracy of
the adjusted temperatures for all temperatures in the range
from 233.15 K to 239.15 K was±0.60 K. For wall temper-
atures below 273.15 K, the corresponding inner tube walls
were covered with ice by cooling the respective tube(s) down
to 233.15 K for 5 to 10 min prior to the measurement start.
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This procedure was necessary to ensure well-defined and re-
producible wall boundary conditions.

The inlet conditions in combination with the wall temper-
atures determine the temperature and saturation profiles in-
side LACIS. As mentioned above, the inlet conditions and
the wall temperature of the first five sections were fixed and
only the temperatures of Sects. 6 and 7 were varied. There-
fore, the relevant microphysical processes as particle activa-
tion, growth and freezing of the droplets do occur in the last
two sections and are controlled by the boundary conditions
in these sections (Hartmann et al., 2010). In Fig. 3, model
simulations of the axial temperature profile the particles are
exposed to, as well as the droplet growth behavior inside the
last two sections are presented for different wall tempera-
tures (233.15 K, 238.15 K and 239.15 K). The simulations
were performed using the Computational Fluid Dynamics
(CFD) code FLUENT 6 (FLUENT, 2001) together with the
Fine Particle Model (FPM) (Particle Dynamics, 2005). The
boundary conditions for the simulations were equal to the ex-
perimental ones assuming the inner tube walls of Sects. 6 and
7 to be covered with ice.

Considering the axial temperature profiles (Fig.3), the
temperature decreases steeply within the first freezing sec-
tion and reaches the adjusted wall temperature in the sec-
ond freezing section. Note that the temperature is almost
constant within the second freezing section. Due to density
related flow velocity changes, the residence time inside the
tube increases slightly with decreasing wall temperature. In
the second freezing section the residence time is nearly con-
stant (about 1.6 s).

The trajectories in Fig.3 show at which temperatures the
water droplets are formed and which temperatures they ex-
perience during their growth and evaporation process while
traveling along the LACIS axis (from right to left). With the
temperature decreasing, particles/droplets are activated (af-
ter about 0.5 s atTaxis laying between 257 K and 260 K)
and grow dynamically, roughly until reaching the end of the
first freezing section (marked with the black squares). Fur-
ther downstream, droplets start to evaporate due to Wegener-
Bergeron-Findeisen effect (Findeisen, 1938) because the par-
ticle environment becomes subsaturated with respect to liq-
uid water but is still ice supersaturated. For a wall tempera-
ture of 239.15 K droplets evaporate, become deactivated and
reach their equilibrium diameter towards the end of the sec-
ond freezing section (marked with an open square). For a
wall temperature of 238.15 K, the behavior is somewhat sim-
ilar, but the droplets survive, although they shrink signifi-
cantly. For a wall temperature of 233.15 K, droplets only
shrink to a small extend and would leave LACIS as large ac-
tivated droplets.

From these simulations it becomes obvious that in LACIS
different ice nucleation mechanisms, i.e., immersion and
evaporation freezing, and deposition nucleation could oc-
cur. Since experiments are performed for temperatures be-
low 235 K, also homogeneous freezing would be possible.
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Fig. 3. Both panels: FLUENT/FPM model simulations for three
different wall temperatures (233.15 K, 238.15 K and 239.15 K). The
black and the open square represent the end of the first and second
freezing section. The curves are traced from right to left as particles
cool monotonically while moving along the axis of the LACIS flow
tube. Upper panel: Simulations of the axial temperature profile
the particle beam is exposed to as function of residence time inside
LACIS. Lower Panel: Simulations of the droplet growth behavior
inside the two freezing sections.Taxis is the temperature which the
particles experience in the particle beam.

An analysis concerning the actual freezing modes observed
in LACIS during FROST will be given in Sect. 4. For more
detailed information concerning the thermodynamic condi-
tions and profiles for different settings at LACIS please refer
to Hartmann et al.(2010).

The main goal of this study was to obtain ice fractions,
whereas knowing the correct size of the ice particles with
large accuracy is less relevant. Under these circumstances
WELAS® was an adequate device to meet the requirements,
with two disadvantages that, however, can be overcome.

Firstly, the distinction between seed particles (coated or
uncoated ATD particles), supercooled water droplets and ice
crystals is not straightforward. However, the optical signal
which originates from the seed particles is smaller than sig-
nals resulting from the droplets/ice crystals and is clearly dis-
tinguishable from them. Under the given conditions inside
LACIS, the spherical droplets activate and grow (or evapo-
rate) to similar sizes resulting in a narrow size distribution.
In contrast, the growth of the ice crystals results in non-
spherical shapes, and leads to optically much broader size
distributions in comparison to the droplets. This behavior is
utilized to distinguish between droplets and ice particles.

Secondly, the counting efficiency of WELAS® is particle
size dependent. The counting efficiency is close to zero for
the particles at the lower detection limit (about 300 nm for
water droplets) and 1 for particles above 1 µm (this size cor-
responds to a WELAS® size channel>80). In the transition
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Fig. 4. Measured size distributions for one-section measurements at
three different wall temperatures. The normalized number is plot-
ted versus the logarithm of WELAS® size channel. The narrow
modes are caused by supercooled liquid water droplets, while the
tails originate from ice crystals.

range the counting efficiency is a function of the scattering
signal amplitude and should be corrected if accurate mea-
surements of particle number concentrations are required.
During the FROST experiment, analyzed particles occu-
pied two clearly separated size ranges: small seed particles
(coated and uncoated ATD particles detected at WELAS®

size channels<80), and large water droplets and ice crys-
tals with sizes larger than 1 µm (detected at WELAS® size
channels>80). This allowed the application of a step-
like correction function, neglecting the transition region be-
tween the small and large particles. The necessary correc-
tion was obtained by simultaneously measuring the number
concentration of particles of known sizes with a CPC and
WELAS®. It also had to be considered that the dimension
of the particle beam in LACIS is larger than the WELAS®

optical measurement volume. To account for this, an ex-
perimentally determined correction factorCMV=0.42±0.05
was determined from measurements of droplets with sizes
clearly above 1 µm. The additional correction factor to ob-
tain the number of small seed particles was found to be
Cseed=0.05±0.03. The correction factor for the seed parti-
cles is valid for all particle types investigated during FROST.

In order to calculate the ice fractionfice from a LACIS
experiment, the number of ice crystalsNf has to be divided
by the total numberN0 (see Eq.6) whereinN0 andNf are
obtained through:

N0 =

Nseed
Cseed

+Ndrop/ice

CMV
,Nf =

Nice

CMV
. (13)

Here, Nseed and Ndrop/ice represent the uncorrected num-
ber of small seed particles and the number of large water
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Fig. 5. Measured size distributions for two-section measurements at
three different wall temperatures. The normalized number is plotted
versus the logarithm of WELAS® size channel. The mode below
channel 80 is the seed mode. The broad modes above channel 80
are ice crystal modes. In contrast to one-section measurement su-
percooled liquid droplets are absent.

droplets/ice crystals as obtained from the WELAS® mea-
surement, respectively. All measured particles were cor-
rected as described above. As a consistency check, during all
measurementsN0 determined from Eq. (13) was compared to
the number counted by the CPC (uncertainty of±5%). Both
numbers matched within measurement uncertainties for the
different experiments done for this study.

In the following, results of a one- and a two-section
measurement using pure ATD particles as IN are presented
(Figs.4 and5). Two different particle modes appeared dur-
ing a LACIS one-section measurement: supercooled water
droplet mode and ice crystal mode. It can be seen in Fig.4
that the water droplet and the ice crystal modes overlap, mak-
ing a clear distinction between these modes difficult. Conse-
quently, the ice fractions determined suffer from large un-
certainties. Therefore, this kind of measurements was not
used for quantifying ice fractions. Nevertheless, these mea-
surements show, that first droplets are generated which then
start to freeze. Therefore, the one-section measurements pro-
vide valuable insight into the freezing modes occurring in-
side LACIS (see next section).

In two-section measurements as depicted in Fig.5, the
supercooled droplets either freeze or evaporate due to the
Wegener-Bergeron-Findeisen effect, caused by both the ice
at the inner tube walls and the already frozen droplets. There-
fore, the sharp droplet mode is absent and clearly distinguish-
able seed and ice crystal modes remain with only the respec-
tive number concentrations varying with changing wall tem-
peratures. At the lowest temperature of 233.15 K only ice
crystals were observed (see Fig.5). These two-section mea-
surements were used to determine ice fractions for different
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Fig. 6. Ice fractionfice derived for pure ATD particles at different
Ts (orange squares) and for homogeneous freezing of highly diluted
ammonium sulfate droplets (black squares).

temperature values. A bimodal log-normal fit procedure was
performed to separate seed and ice crystal mode and to de-
termine the number of seed particles and ice crystals.

4 Results

Figure 6 presentsfice, obtained for pure ATD particles as
a function of supercooling temperature ranging from 34 K
to 40 K, where the supercooling temperature is defined as
Ts≡T◦−T , with T corresponding to the adjusted wall tem-
perature of the two freezing sectionsTw,6−7.

As mentioned above,fice were obtained from the two-
section measurements, after correction of the WELAS® size
dependent counting efficiency (Eq.13). Each data point was
measured at least three times (with 1000 to 10000 particles
for each measurement) and the error bars represent the re-
spective standard deviations.

Figure 6 shows that with increasingTs, fice increases
monotonically, reaching a value of 1 atTs=39 K, i.e., all
droplets are frozen. Due to the temperature profile inside
LACIS, each data point represents an integrated ice fraction
from T◦ to Ts at the end of the tube.

The question arises, which freezing modes occur when
running LACIS as described above. Since the measurements
were performed for values ofTs up to 40 K, homogeneous
freezing is probable for the highest supercoolings. To ver-
ify this, homogeneous freezing of highly diluted ammonium
sulfate solution droplets was studied. Homogeneous freez-
ing was clearly detectable forTs≥38 K (see Fig.6). There-
fore, heterogeneous and homogeneous freezing are not dis-
tinguishable forTs≥38 K. These data points will not be con-
sidered in the later analysis.
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Fig. 7. FLUENT/FPM model simulations for LACIS adjustments to
measure possible deposition nucleation. The maximum saturation
ratios with respect to ice (blue) and liquid water (green) are plotted
versusTs for two different inlet dew-points (265.95 K (triangle) and
260.95 K (square)). The black boxes represent the measurement
region.

To test if deposition nucleation occurred inside the tube,
specific two-section measurements were performed wherein
LACIS was operated in the water subsaturated and ice su-
persaturated mode. These additional experiments were car-
ried out for two different inlet dew-points (265.95 K and
260.15 K) to detect possible deposition nucleation in two dif-
ferent temperature intervals (fromTs=28 K to 30 K for dew-
point of 265.95 K and fromTs=36 K to 38 K for dew-point
of 260.15 K, see Fig.7). For the lowerTs interval no depo-
sition nucleation was observable. For the higherTs interval
deposition nucleation was detectable but the counted number
of ice crystals was so low that deposition nucleation can be
neglected for the FROST measurements.

Evaporation freezing could occur as the droplets gen-
erated in LACIS evaporate due to the Wegener-Bergeron-
Findeisen effect. However, the one-section measurements
clearly show that liquid droplets and ice crystals coexist. Be-
cause the droplet size distribution is narrow, the ice parti-
cles are most likely not formed by evaporation freezing (and
also not through a condensation freezing process). In other
words the ice formation observed must be due to the process
of immersion freezing. In addition, the smooth ice fraction
behavior determined from the two-section measurements for
Ts between 34 K and 37.5 K is suggestive for the occurrence
of a single heterogenous freezing mode, namely immersion
freezing.

Finally, fice values for all measured IN at differentTs are
presented in Fig.8. With increasingTs, fice increases for
all IN types, but in a different manner. Uncoated particles
and those with C4H6O4 coatings or with small amounts of
H2SO4 (1) start to act as IN at lowerTs compared to particles
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Fig. 8. Immersion freezing behavior of all types of examined parti-
cles. Each data point was measured at least three times (with 1000
to 10 000 particles for each measurement) and the error bars repre-
sent the respective standard deviations. The line atTs=38 K sepa-
rates the heterogeneous (on the left) and homogeneous (on the right)
freezing modes.

Table 1. Parametersa andfhet of the CNT type nucleation rate
expression for the immersion freezing of supercooled water droplets
containing different types of IN.

Particle Type a [s−1] fhet

ATD 1.31E+00 4.51E-02
ATD+C4H6O4 8.46E+00 6.83E-02
ATD+H2SO4 (1) 1.57E+01 7.79E-02
ATD+H2SO4 (2) 5.71E+02 1.35E-01
ATD+(NH4)2SO4 1.31E+02 1.40E-01

with larger amounts H2SO4 (2) or with (NH4)2SO4 coat-
ings. ForTs=34 K, pure ATD particles feature the largest
IN capability. ForTs≥35 K, pure ATD particles and those
coated with C4H6O4, small and large amounts of H2SO4
seem to have a similar IN ability while particles coated with
(NH4)2SO4 are the most ineffective IN for the whole temper-
ature range investigated.

5 Discussion

The question remains, what factors cause the difference in
the freezing behavior in the absence or presence of differ-
ent coatings. For the investigated temperature range the
droplets inside LACIS are activated and reach diameters
larger than 1 µm before freezing occurs. Considering the
coating amounts it follows that the water activityaw of the
supercooled droplets is about 1, i.e., the droplet solution is
highly diluted. Consequently, a freezing point suppression,
found e.g., byHung et al.(2003) andZobrist et al.(2008)
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Fig. 9. Immersion freezing behavior of all examined types of parti-
cles. The determinedfice and the parameterization curves of both
approaches are plotted (see Eqs.8 and11 together with12). The
line atTs=38 K separates the heterogeneous (on the left) and homo-
geneous (on the right) freezing modes.

for various aqueous solution droplets with immersed mineral
dust particles, could not be observed during FROST.

As the observed freezing behavior cannot be explained by
solution effects, it is straightforward to assume that it is due
to changes in the surface properties of the IN caused by the
different coatings. To test this hypothesis, we applied the
parameterizations described in Sect. 2 in the following way:

– Fit Eqs. (8) and (11)/(12) to the experimental data by
adjusting the respective free parameters.

– Identify systematic trends in the determined parameters
as a function of coating.

– Relate the trends observed to the physical meaning be-
hind the respective parameters.

By comparing the results of the stochastic and the singular
approach, with the measurements we may learn which of the
two approaches is more suitable in explaining the immersion
freezing process investigated.

First, the simplified CNT parameterization assuming the
stochastic process (Eq.8) was applied and the parametersa

andfhet were determined for all types of IN studies. This
parameterization is valid for the investigated temperature
regime: 34 K≤Ts<38 K. We repeat here, that the underly-
ing assumption for the stochastic approach is that the major
part of ice is formed in the second freezing section where
the supercooling temperature reaches its highest value and
is almost constant and where, therefore,jhet is almost con-
stant. This assumption is reasonable because the nucleation
rate coefficient increases rapidly with increasing supercool-
ing temperature. The residence time within the last freezing
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Fig. 10. Nucleation ratesjhet for all types of particles. For the
determination ofjhet, the values fora and fhet are inserted into
Eq. (4) and all types of IN are assumed to be spherical with a volume
equivalent diameter of 300 nm. The crosses represent nucleation
rates for sulfuric acid coated iron and aluminium oxide particles
determined byArchuleta et al.(2005).

section is about 1.6 s. The determined parameters are pre-
sented in Table 1 and the corresponding curves are plotted
in Fig. 9. Inserting the determined values fora andfhet into
Eq. (4) and assuming that all types of particles are nearly
spherical (volume equivalent diameter of 300 nm) with a uni-
form non-porous surface area, the corresponding nucleation
rate coefficients can be calculated (see Fig.10). Note that
the ice nucleation efficiency of identically treated particles is
assumed to be equal.

The curves of the nucleation rate coefficients in Fig.10
reflect the ice nucleation potential of the particles. E.g.,
for Ts≥35 K the nucleation rate coefficient for (NH4)2SO4
coated particles is about one order of magnitude lower com-
pared to the other coated and uncoated particles, which ex-
hibit similar nucleation rate coefficients within the uncertain-
ties.

It is obvious from Table 1 that both parameters,a and
fhet, change for the different types of IN. The factorfhet is
smallest for pure ATD particles and highest for ATD particles
coated with (NH4)2SO4. That means that the energy barrier
that has to be overcome to form a critical ice embryo on the
particle surface, is lowest for pure ATD particles and high-
est for ATD particles coated with (NH4)2SO4. This suggests
that surface properties have been altered, or, in the context
of CNT, that the interfacial free energy, or contact angle, has
changed. It is plausible, for example, that the exposure of
the sulfuric acid to water vapor, which occurs during the ad-
dition of ammonia to form (NH4)2SO4, accelerates the reac-
tion of sulfuric acid with the mineral dust, thereby leading
to the greatest reduction in ice nucleating efficiency (Lasaga,
1995).
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Fig. 11. Derived values forns(T ) from the measurements (us-
ing Eq.11) as well as curves resulting from parameterization (see
Eq.12) as function of temperature [◦C].

Concerning parametera, the lowest value is also obtained
for pure ATD particles and the highest value for ATD coated
with large amounts of H2SO4. Overall, the nucleation rate
decreases asa increases. Sincea includes information about
total particle surface and kinetic effects, the increase can be
interpreted as an increased surface area per particle, or as an
increase in the rate at which molecules can be transferred
from the liquid to ice. Since both values,a andfhet, change
in comparable manner, but with an opposite tendency com-
pared to nucleation rate coefficient, it appears that the ki-
netic/surface term (a) increases due to the coating but it is
overcompensated by the thermodynamic term (fhet). Con-
sequently, the thermodynamic term seems to be most domi-
nant for the change in immersion freezing behavior resulting
from the coating processes. However, we have to be cau-
tious not to over interpret these results because of the lack
of knowledge of how the surface area itself is changing, and
how uniform the surface properties are across the aerosol dis-
tribution.

Archuleta et al.(2005) also applied the stochastic hypoth-
esis to determine nucleation rate coefficients for size segre-
gated aluminum oxide and iron oxide particles (these sub-
stances are also components of the investigated ATD par-
ticles) which were treated with sulfuric acid. Their coef-
ficients show a similar increase with increasing supercool-
ing and have values comparable to our results (see Fig.10).
These rate coefficients, given foraw = 1, are based on ex-
trapolated intercepts from Continuous-Flow Ice-thermal Dif-
fusion Chamber studies. For details please refer toArchuleta
et al.(2005).

For data interpretation in terms of the singular hypothe-
sis a parameterization forns(T ) similar to that introduced
by Connolly et al.(2009) was applied. It was also assumed
that all particles types are nearly spherical with a volume

www.atmos-chem-phys.net/10/3601/2010/ Atmos. Chem. Phys., 10, 3601–3614, 2010



3612 D. Niedermeier et al.: Measurements and parameterization of immersion freezing

Table 2. Parametersα1 andα2 for the parameterization ofns(T )

for the immersion freezing of supercooled water droplets containing
different types of IN.

Particle Type α1[m−2◦C−2] α2[
◦C]

ATD 1.50925E+10 31.29
ATD+C4H6O4 2.01066E+10 31.66
ATD+H2SO4 (1) 2.37200E+10 31.65
ATD+H2SO4 (2) 6.32827E+10 33.54
ATD+(NH4)2SO4 1.52053E+10 33.97

equivalent diameter of 300 nm. Equation (11) was applied
to derivens(T ) directly from the measured ice fractions (see
Fig. 11). For the determination of the fit parametersα1 and
α2 (see Table 2), Eq. (12) was used by fitting the measure-
ment based values forns(T ). The resulting calculated curves
for ns(T ) using the determined fit parameters are presented
in Fig 11, too. The corresponding curves fitting the ice frac-
tions are plotted in Fig.9. These curves represent the frac-
tion of ice active particles as function ofT . Good agree-
ment can be found between the fitted curves and the derived
values forns(T ) apart from the (NH4)2SO4 coated particles.
Here, the derived value forns(T ) is under-predicted by the
parametrization forTs<35 K.

For all particle types,ns(T ) increases with decreasing tem-
perature but in different manner. The influence of the coat-
ings on the active site density is clearly visible. For example,
the values ofns(T ) for (NH4)2SO4 coated ones are about one
order of magnitude lower than values for pure ATD over the
whole investigated temperature range. This behavior is also
reflected by the parameterα2 which increases due to the coat-
ings, i.e., the highest characteristic temperatureTc = −α2
at which freezing starts to occur decreases due to the coat-
ing procedure. This suggests that surface properties have
been altered, or, in the context of singular hypothesis, ice
active sites on the particle surface are blocked, changed or
destroyed due to the coating procedure. In order to exam-
ine the accurateness of the determined parametersα1 andα2,
measurements at higher temperatures have to be performed.

To briefly summarize, the expressions from the stochas-
tic and singular approaches can be fit with reasonable con-
fidence to the experimentally determined results. Interpreta-
tion of the fitting parameters from both expressions is con-
sistent with the notion that coating of the particles leads to a
modification of the particle surface, thereby influencing nu-
cleation efficiency. More strenuous tests, including different
aerosol types and temperature range, and especially varia-
tions in exposure time (nucleation time), are needed in order
to clearly favor one interpretation over the other.

6 Conclusions

During the measurement campaign FROST, LACIS was used
to investigate the ability of size-segregated, coated and un-
coated mineral dust particles to act as IN in the immersion
freezing mode. These were the first measurements of het-
erogenous freezing performed with LACIS. For experiments
Arizona Test Dust was used as a surrogate for mineral dust.
The particles were also coated with various types of sub-
stances such as ammonium sulfate ((NH4)2SO4), sulfuric
acid (H2SO4, two different coating temperatures) and suc-
cinic acid (C4H6O4). For the freezing experiments a quasi-
monodisperse particle size distribution with a mobility di-
ameter of 300 nm was chosen. At LACIS, various temper-
ature values between 233.15 K and 239.15 K were adjusted
and corresponding ice fractions were determined. For the in-
vestigated temperature range the droplets inside LACIS are
activated and highly diluted before freezing occurred. That
means a freezing point suppression caused by the soluble
coating material was not observed during FROST. Uncoated
particles and those coated with C4H6O4 or small amounts of
H2SO4 act as IN at higher temperatures compared to particles
with larger amounts of H2SO4 or (NH4)2SO4 coatings. The
IN ability of the (NH4)2SO4 coated particles is reduced by
one order of magnitude in terms of the determined ice frac-
tions compared to the uncoated particles. In general, particle
treatment led to a decreased IN ability compared to the pure
ATD particles. This suggests that chemical aging processes
(i.e., through coatings) in the atmosphere will also lead to a
decreased IN concentration for heterogeneous freezing pro-
cesses. Indeed, these measurements would suggest that de-
creases in IN concentrations by up to one order of magnitude
are realistic for the temperature range investigated.

Two theoretical approaches based on the stochastic and the
singular hypothesis were tested separately to evaluate and pa-
rameterize the investigated freezing behavior of the different
kinds of particles. Both parameterizations confirm the hy-
pothesis that the coating of the particles leads to a modifi-
cation of the particle surface influencing the nucleation ef-
ficiency. Using the CNT type nucleation rate expression in
the stochastic approach, it is found that the energy barrier
for freezing is increased. Furthermore, this parameteriza-
tion suggests that the total particle surface and/or kinetic ef-
fects are also increased due to the coating procedure. But
it appears that the kinetic/surface term increase is overcom-
pensated by the thermodynamic term so that the thermody-
namic term seems to be most dominant for the change in im-
mersion freezing behavior resulting from coating processes.
Using the singular approach, the surface modifications are
manifested as a reduction inns(T ) which is smallest for
(NH4)2SO4 coated particles in the temperature range inves-
tigated. That can be interpreted as a decrease in the number
of ice active sites on the particle surface due to the coating
procedure.
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In summary, both approaches, representing two individual
fits, can be used to sufficiently describe the experimentally
determined results within the measurement uncertainties.
Therefore, we cannot clarify at the current state which ap-
proach correctly describes the investigated immersion freez-
ing process. Further investigations have to be performed
measuring at higher temperatures and varying particle size
and nucleation times to quantify if one of the approaches or
even a mixture of both has to be applied, e.g., followingMar-
colli et al.(2007) who could best describe their measurement
results when using the singular hypothesis while keeping the
stochastic concept of a nucleation rate.
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