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Abstract. High Hg levels in the pristine lacustrine ecosys-
tems of the Nahuel Huapi National Park, a protected zone
situated in the Andes of Northern Patagonia, Argentina, have
initiated further investigations on Hg cycling and source
identification. Here we report Hg records in sedimentary se-
quences to identify atmospheric sources during the past mil-
lennium. In addition to global transport and deposition, a
potential atmospheric Hg source to be considered is the lo-
cal emissions associated with volcanic activity, because the
Park is situated in the Southern Volcanic Zone. Two sedi-
ment cores were extracted from Lake Tonček, a small, high-
altitude system reflecting mainly direct inputs associated
with atmospheric contributions, and Lake Moreno Oeste, a
much larger and deeper lake having an extended watershed
covered mostly by native forest.

The sedimentary sequences were dated based on both
210Pb and137Cs profiles. In addition, tephra layers were
identified and geochemically characterized for chronologi-
cal application and to investigate any association of volcanic
eruptions with Hg records. Hg concentrations in sediments
were measured along with 32 other elements, as well as
organic matter, subfossil chironomids, and biogenic silica.
Observed background Hg concentrations, determined from
the sequence domains with lower values, ranged from 50
to 100 ng g−1 dry weight (DW), whereas the surficial lay-
ers reached 200 to 500 ng g−1 DW. In addition to this tradi-
tional pattern, however, two deep domains in both sequences
showed dramatically increased Hg levels reaching 400 to
650 ng g−1 DW; the upper dated to the 18th to 19th centuries,
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and the lower around the 13th century. These concentra-
tions are not only elevated in the present profiles but also
many-fold above the background values determined in other
fresh water sediments, as were also the Hg fluxes, reaching
120 to 150 µg m−2 y−1 in Lake Toňcek. No correlation was
observed between Hg concentrations and the contents of or-
ganic matter, subfossil chironomids, biogenic silica, or the
other elements determined. However, distinctly increased
Hg concentrations were observed immediately above some
tephra layers, suggesting a link to volcanic events. Extended
fires might be another potential atmospheric source because
the earlier Hg peaks coincide with reported charcoal peaks,
whereas the upper Hg peaks coincide with evidences of ex-
tended forest fires from tree-ring data and historical records.

1 Introduction

Even though aquatic ecosystems are globally exposed to
mercury (Hg) by atmospheric inputs of increasing concern,
few studies have been focusing on the sources, fate and his-
tory of freshwater systems of the southern hemisphere that
are free from major contamination (Downs et al., 1998; Lam-
borg et al., 2002; Biester et al., 2007). Here, we used sedi-
ment profiles as historical archives to reveal changes in the
Hg cycling in two lakes of the southern Andes over the past
centuries. Although no relevant point source of Hg from min-
ing or industrial activities has been identified in the study
region, high Hg levels in various ecosystem compartments
have been reported, notably in both native and introduced
fish species, where levels ranged from 0.06 to 4 µg g−1 dry
weight (DW) in liver, and from 0.07 to 2.5 µg g−1 DW in
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muscle (Arrib́ere et al., 2008), whereas Hg concentrations in
lichens and mussels, used as air and water bioindicators re-
spectively, were compatible with those at locations exposed
to moderate contamination (Ribeiro Guevara et al., 2004a;
Ribeiro Guevara et al., 2004b), suggesting that the anomaly
is not limited to aquatic systems.

The western part of the Park receives high precipitation,
reaching 3000 mm y−1. Therefore, global transport and wet
deposition, a well-known Hg source to aquatic environments
(Downs et al., 1998), should be considered to contribute to
the Hg burden in the study region. But other Hg sources
have to be taken into account. Forest fires, volcanoes and
geothermal vents, and Hg-enriched soils have been recog-
nized as natural Hg sources to the atmosphere (Nriagu, 1989;
Lindqvist et al., 1991; Schroeder and Munthe, 1998; Wied-
inmyer and Friedly, 2007). Geological sources are associ-
ated with plate tectonic boundaries (Varenkamp and Brusek,
1984; Rasmussen, 1994), including areas of geothermal and
volcanic activity, which are considered as the foremost nat-
ural source of Hg (Nakagawa, 1999; Ferrara et al., 2000;
Tomiyasu et al., 2000). Cataclysmic volcanoes have the po-
tential to inject enough volatile Hg into the stratosphere to
change the global and regional cycle of Hg for a few years,
while quiescent degassing and moderate eruptions exhale
directly into the troposphere and can also have long-term
effects on the local environments (Langway et al., 1995).
Geothermal activity has been associated with high Hg lev-
els in soils and air at several places (Siegel and Siegel, 1975;
Weissberg and Rohde, 1978; Varenkamp and Buseck, 1986).
Volcanogenic Hg can readily enter the aquatic food chain af-
ter being released, enlarging bio-available stocks (Nriagu and
Becker, 2003). Volcanic activity is a potential source to be
considered in the present work because the lakes under study
are within the Southern Volcanic Zone (SVZ) (Stern, 2004),
including several volcanoes active during the Holocene. For-
est fires can drastically reduce the pool of Hg in catchment
soils and release biomass inventories because of volatiliza-
tion of elemental Hg to the atmosphere (Friedli et al., 2003;
Sigler et al., 2003; Amirbahman et al., 2004, Harden et al.,
2004), potentially enlarging sediment Hg burden by transport
and wet or dry deposition. Up to 6 fold increase in Hg con-
centrations in sediments of Caballo Reservoir, New Mexico,
USA, was observed after a forest fire and storm runoff, sug-
gesting that the combination of both phenomena enhanced
the transport of Hg from the watershed to the water body
(Caldwell et al., 2000), and might contribute to increasing
Hg contents in sediments after fires. Kelly et al. (2006) ob-
served a large short-term pulse of Hg mobilized by post-fire
runoff in Lake Moab, Jasper National Park, Canada.

In an earlier screening research on lake sedimentary se-
quences in the study region (Ribeiro Guevara et al., 2005),
upper layers, associated with 20th century accumulation pe-
riods, showed in most cases concentrations elevated above
background levels, reaching values as high as 1 to 3 µg g−1

DW. However, Hg concentrations 3 to 5-fold above back-

ground levels (0.1 to 0.2 µg g−1 DW) were observed in deep
layers, focusing hence our attention on natural inputs during
the past millennium, and driving present work. Here, two
dated sedimentary sequences were studied with a more sensi-
tive technique for Hg determinations (Instrumental Neutron
Activation Analysis was used in previous works), and with
additional methods to analyze other selected elements and
environmental tracers.

2 Experimental

2.1 Study site

The Nahuel Huapi National Park is situated in Northern
Patagonia, on the eastern slope of the southern Andes (40◦20′

to 41◦40′ S, 71◦ to 72◦ W; Fig. 1) and is the largest protected
natural area of Argentina, covering approximately 7100 km2

and comprising a drainage basin that includes three major
river systems, thirteen lakes of more than 10 km2, and sev-
eral hundred small lakes and ponds. Within the Park’s limits
there are pristine as well as moderately impacted areas, such
as the city and suburbs of San Carlos de Bariloche, with a
population of circa 120 000 people. Its economy, as well as
that of other small towns and villages in the Park, is largely
based on tourism.

The Park is located in the Northern Patagonian Andes
(39◦ to 45◦ S), a region that is part of the Southern Vol-
canic Zone (SVZ). The SVZ includes at least 60 histori-
cally and potentially active volcanic edifices in Chile and
Argentina, three giant silicic caldera systems and numerous
minor eruptive centers (Stern, 2004). The Northern Patag-
onian segments of the volcanic arc include several centers
which are active since the Miocene to present (Villarrica, Ni-
lahue, Puyehue-Cordón Caulle, Cerro Puntiagudo, Osorno,
and Calbuco, among others), with several events registered
in historical records since the Spanish colonisation (Ramos,
1999; Stern, 2004). An analysis of volcanic ash records
in short lacustrine sedimentary sequences from this region
showed up to 9 tephra layers deposited in the past 1000 years
(Daga et al., 2008).

Two sedimentary sequences were extracted from Lake
Moreno Oeste and Lake Tonček (Fig. 1). Lake Moreno Oeste
is the western branch of Lake Moreno (41◦5′ S; 71◦33′ W,
758 m above sea level), draining into Lake Nahuel Huapi.
Lake Moreno Oeste has a surface area of 6 km2 and a max-
imum depth of 90 m, and is an ultraoligotrophic, warm mo-
nomictic system stratified from late spring to early autumn
(Queimalĩnos et al., 1999; D́ıaz et al., 2007). The lake
is surrounded mostly by closed native forest dominated by
Nothofagus dombeyiand lesser amounts ofAustrocedrus
chilensis. This environment has persisted, with variations in
the relative composition, during the last millennium (Whit-
lock et al., 2006). The sampling point is located at Llao Llao
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Fig. 1. Study area. Section of Nahuel Huapi National Park, Northern Patagonia, Argentina.

bay, a sub-basin with a rather flat bottom at 20 m depth, with-
out tributaries.

Lake Toňcek (41◦12′ S; 71◦29′ W, 1750 m above sea level)
is a small lake with 0.03 km2 surface area and 12 m maxi-
mum depth, of glacial origin, situated in Catedral mountain
approximately 16 km to the south of Lake Moreno Oeste,
at the foot of high peaks with steep slopes. It is an ul-
traoligotrophic, dimictic system, with direct stratification in
summer and 6 to 8 months of ice cover reaching a thick-
ness of up to 2 m. Lake Tonček watershed is small, with
an extension of approximately 2.5 km2 including one smaller
lake situated about 100 m higher, which is connected to Lake
Tonček by a small inlet stream meandering across wetlands.
Reddish coloration and sulphydric smell in these wetlands
have been reported at the end of the summer, when eutroph-
ication processes are developed, potentially impacting Hg
cycling in the water body. The lake has two distinct sec-
tions: a deep central zone that is surrounded like a ring by
a shallow outer zone which is 0.5 m deep and up to 30 m
wide. The boundary between the two sections is a steep

slope dropping to 12 m. Lake Tonček watershed is dom-
inated by rocky ground deposits, and scattered timberline
forest (Nothofagus pumilio“krummholz”) and high-Andean
vegetation (Gaultheria pumilaandBaccharis magellanica).
The water body encloses a simple trophic structure without
fish, and the community structure of zooplankton is relatively
simple (Morris et al., 1995; Marinone et al., 2006).

2.2 Methods

Short sediment cores were extracted with a messenger-
activated gravity corer from the deepest part of the lakes
Moreno Oeste (Llao Llao bay) and Tonček (Fig. 1). Core
lengths were 43 and 70 cm for Lake Moreno Oeste, and Lake
Tonček, respectively. The sediment cores were cut opened
longitudinally using a portable circular saw to section the
tube walls, sliding afterwards a copper plate through the sed-
iment to divide it into two semi-cylindrical sections. Both
sections were sub-sampled every 1 cm. Each sub-sampled
sediment layer was freeze-dried until constant weight and
homogenised. Tephra layers were identified visually in the
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sedimentary sequence before sub-sampling, whereas they
were analyzed under binocular magnifying glass after freeze-
drying.

The sediment accumulation rates of the sediment se-
quences were determined by210Pb and137Cs dating tech-
niques (Joshi and Shukla, 1991; Robbins and Herche, 1993;
Ribeiro Guevara and Arrib́ere, 2002).210Pb,226Ra (in secu-
lar equilibrium with supported210Pb), and137Cs specific ac-
tivity was measured in each layer by high-resolution gamma
spectrometry. The Constant Rate of Supply model was used
for 210Pb dating. Correction of the old-date error of the
model was implemented by logarithmic extrapolation to in-
finite depth (Ribeiro Guevara et al., 2003). For137Cs dating,
the specific activity profiles were compared with the fallout
sequence determined in this region, associated mainly with
South Pacific nuclear tests from 1966 to 1974 (Ribeiro Gue-
vara and Arrib́ere, 2002). The dates for the events registered
in the sedimentary sequences before 1900 were obtained by
extrapolation of the sedimentation rate determined in the up-
per layers. The extrapolation was computed in depth units of
cumulative mass per surface unit, discounting volcanic ashes
from bulk sediments by estimating the fraction in each layer
from the analysis under binocular microscope.

The organic matter content (OM) of the freeze-dried sedi-
ments was estimated as loss on ignition (LOI) at 550◦C for
4 h.

Total Hg was analyzed by atomic absorption spectrom-
etry directly after high-temperature combustion and cat-
alytic reduction using a Milestone Direct Mercury Anal-
yser (DMA 80, Milestone Inc., Monroe, CT, USA,
http://www.milestonesci.com/mercury-dma.php) according
to the US-EPA Method 7473 (US-EPA, 2007), and follow-
ing the quality assurance routines of the laboratory at ITM
as specified under Swedish Accreditation (SWEDAC Nr.
1295, Swedish Board for Technical Assistance,http://www.
swedac.se). Samples were frequently replicated (up to four-
fold), and blanks and certified standard reference materials
(here GBW07405/NCS DC 73323) were analyzed daily to
assure adequate performance and accuracy. Detection limit
(3 SD of blanks) for the applied procedure was<3 ng g−1

DW. Precision (1 RSD at>100 ng g−1 DW) was 2% in ho-
mogenous reference samples and 4% in actual samples. Total
Hg was determined in bulk sediment except for tephra layers,
where the<63 µm fraction was analyzed.

The elemental composition of the sediment samples was
determined by Instrumental Neutron Activation Analysis, as
described by Daga et al. (2008). The elements measured
were major elements including Al, Ca, Fe, Mg, Mn, Na, K,
and Ti, rare earths elements La, Ce, Nd, Sm, Eu, Tb, Tm,
Yb, Lu, and other relevant trace elements including Sb, As,
Ba, Br, Cs, Zn, Co, Cr, Hf, Sc, Sr, Ta, Th, U, and V. The ele-
ments selected are biological and geological tracer that could
provide information on environmental changes.

Records of subfossil chironomid assemblages were stud-
ied in Lake Toňcek sediments by picking up head capsules

from the sediment according to standard methods (Walker,
2001). The chironomid head capsules were mounted on
microscope slides and identified using current taxonomic
guides, determining the relative abundance profile of each
taxon.

Biogenic silica (BSi) concentration was measured in Lake
Tonček sediments using the method outlined by DeMaster
(1981). Sediment samples that weighed about 20 mg were
leached in 1% Na2CO3 over time, and aliquots were ana-
lyzed for BSi concentrations using the reduced molybdosili-
cate acid colorimetric method. Weight percent of total silica
was plotted versus time and the extrapolated intercept was
used to calculate the BSi concentration of the sediment.

3 Results

3.1 Sediment sequences dating

A sediment accumulation rate of 13.3 mg cm−2 y−1

(0.058 cm y−1) and a210Pb flux of 23.7 Bq m−2 y−1 were
determined in the upper 5 cm of the Lake Moreno Oeste se-
quence (Daga et al., 2008), whereas a sediment accumula-
tion rate of 26.3 mg cm−2 y−1 (0.105 cm y−1) and a210Pb
flux of 74.2 Bq m−2 y−1 were obtained for the upper 7 cm of
Lake Toňcek. Tephra layers are evidenced in the210Pb pro-
file as depressed or even negligible activities of unsupported
210Pb (total210Pb minus supported210Pb, in secular equi-
librium with 226Ra). Such a decrease of unsupported210Pb
is observed in the 0.4–0.7 g cm−2 layer of the Lake Moreno
Oeste sequence (Fig. 2), corresponding to the 1948–1970
deposition period, and in the 1.0–1.3 g cm−2 layer of the
Lake Toňcek sequence (Fig. 3), corresponding to the 1953-
1964 deposition period. This decrease is compatible with
the Puyehue-Cord́on Caulle and Calbuco volcanic events in
1960–1961 (Daga et al., 2008) causing bulk sediment di-
lution by volcanic ashes, which were also identified under
binocular magnifying glass. Unsupported210Pb values in
these layers were corrected before dating. It is necessary to
emphasize that the dating before 1900, which is based on
the assumption that there was no persistent change in sedi-
mentation rate, is somewhat uncertain particularly for early
events. An independent dating corroboration was obtained
in the Lake Moreno Oeste sequence. The tephra layer MO5
(Fig. 4) could be associated with a volcanic event in 1759, in
agreement with the210Pb and137Cs dating extrapolation.

Interestingly, the210Pb flux is three fold higher in Lake
Tonček compared to Lake Moreno Oeste, and it is the highest
measured in the region based on 10 sedimentary sequences
studied in a previous work (Ribeiro Guevara et al., 2003). A
positive correlation between210Pb flux and the OM concen-
tration of the upper layer of these lakes was reported (Ribeiro
Guevara et al., 2003), however Lake Tonček210Pb flux does
not fit this correlation. The relative high210Pb flux to Lake
Tonček sediments is consistent with the assumption that due
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Fig. 2. Moreno Oeste sedimentary sequence. Specific activity pro-
files of 137Cs, 210Pb, and226Ra (in secular equilibrium with sup-
ported210Pb).

Fig. 3. Lake Toňcek sedimentary sequence. Specific activity pro-
files of 137Cs, 210Pb, and226Ra (in secular equilibrium with sup-
ported210Pb).

to the characteristics of the catchment area, the sediments of
this water body are a good recorder of atmospheric fallout,
with relative low retention in the catchment area.

3.2 Mercury

The Hg concentration profiles of Lake Tonček and Lake
Moreno Oeste, Llao Llao bay, sedimentary sequences are
shown in Fig. 4, respectively. Hg fluxes to sediments (Fig. 5)
were computed for each layer based on the core dating. The
profiles of Hg concentration and Hg fluxes to the sediments
of Lake Toňcek sequence (Figs. 4 and 5) show five domains
clearly demarcated. Low Hg levels were observed before
1200 and between 1350 and 1720, indicating background of
50 to 80 ng g−1 for concentration, and 15 to 25 µg m−2 y−1

Fig. 4. Mercury concentration profiles. Lake Tonček and Lake
Moreno Oeste (Llao Llao bay) sedimentary sequences.

Fig. 5. Mercury fluxes to sediments. Lake Tonček and Lake Moreno
Oeste (Llao Llao bay) sedimentary sequences.

for fluxes. In the upper core section, starting about 1900, Hg
levels increase from low values (though above background)
to reach a concentration of 200 ng g−1 and a Hg flux of
60 µg m−2 y−1 at present. Two intermediate sections show
Hg values noticeably elevated above background. From 1720
to 1900, Hg level varied dramatically, with the high concen-
trations and fluxes reaching 380 to 480 ng g−1 and 140 to
150 µg m−2 y−1, respectively. From 1200 to 1350, Hg val-
ues show two marked peaks, which reach concentrations of
360 and 420 ng g−1 and fluxes of 110 and 130 µg m−2 y−1,
respectively. Lake Moreno Oeste Hg profiles (Figs. 4 and
5) exhibit a similar pattern as Lake Tonček, showing corre-
lation in the occurrence of high Hg. Background Hg con-
centrations and fluxes range from 50 to 80 ng g−1 and from
7 to 10 µg m−2 y−1, respectively, while Hg peak concentra-
tions and fluxes range from 300 to 650 ng g−1 and 35 to
55 µg m−2 y−1, respectively.
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Fig. 6. Lake Toňcek sedimentary sequence. Organic matter, bio-
genic Si and heavy metals concentration profiles.

Fig. 7. Lake Toňcek sedimentary sequence. Selected major ele-
ments and geochemical tracer concentration profiles.

3.3 Environmental tracers

The analysis of subfossil chironomids in the Lake Tonček se-
quence allowed the identification of twelve taxa correspond-
ing to subfamilies Orthocladiinae, Tanypodinae, Podonomi-
nae and Chironominae (Tribu Chironomini). The dominant
taxon of the chironomid community along the sequence was
the cold-stenothermicPseudosmittiaGoetghebuer (Rizzo et
al., 2007). The OM contents ranged from 6 to 18%, with
the highest value in the upper most layer and decreasing in
the tephra layers (Fig. 6). The BSi concentration exhibited a
similar trend, with the exception of two peaks at the 7.5 and
25 g cm−2 depth (Fig. 6). Selected major and trace element
concentration profiles show different patterns (Figs. 6 and 7),
rather constant for major Mn and Fe and trace elements As,
Cr and Zn, and a noticeable increase of Sb at 1 g cm−2 depth
with higher variability in the lower layers.

4 Discussion

4.1 Mercury levels

Sediment Hg concentrations reaching levels as high as 400
to 650 ng g−1 DW already during pre-industrial accumu-
lation periods as observed in our pristine lakes are far
above the background values of 10 to 200 ng g−1 observed
in other lakes (Ribeiro Guevara et al., 2005). Also the
rates of Hg accumulation are higher than background lev-
els in the region, from 2 to 8 µg m−2 y−1 (Biester et al.,
2002; Cooke et al., 2009) or in the North-American Arc-
tic, where preindustrial fluxes range from 1 to 53 µg m−2 y−1

and present fluxes from 2 to 114 µg m−2 y−1 (Lockhart et
al. 1998). In the upper Midwest of the USA Hg fluxes in
pre-industrial sediment layers rarely exceed 20 µg m−2 y−1,
and the maximum fluxes observed here in a pristine area of
the southern hemisphere were only exceeded by the high-
est values in urban areas with industrial pollution (200 to
300 µg m−2 y−1, Engstrom and Swain, 1997). Even in a Hg
deposition hotspot area in the USA, recent maximum values
reached only 90 µg m−2 y−1, after increasing constantly from
7 µg m−2 y−1 in 1880 (Hutcheson et al., 2008). Accordingly,
the sediment domains with high Hg accumulation in our
lakes during pre-industrial periods (up to 150 µg m−2 y−1)
must be associated to some abrupt phenomena generating Hg
inputs to aquatic environments similar to industrial pollution
levels.

For a better evaluation of the watershed and lake surface
incidence on the sediments record of atmospheric fallout,
Swain et al., 1992 proposed the normalization of Hg fluxes
by the watershed:lake area ratio. The normalized Hg fluxes
are 0.24, 2.4 and 0.72 µg m−2 y−1 (background, maximum
and recent values, respectively) for Lake Tonček. In the case
of Lake Moreno is not clear how to define a watershed af-
fecting the sedimentary sequence analyzed here, because it
was extracted from a semi-enclosed bay largely disconnected
from the main water course, without hydrodynamical flow
studies performed. This normalization, however, requires as-
sumptions to be made, which even if qualitatively supported
by a substantial data set may well be inadequate for quantita-
tive corrections particularly for mountain lakes, which such
a data set is not available (Meili, 1995).

4.2 Lakes and mercury

Several watershed features influence the Hg concentration in
lake sediments. Parameters of catchment morphometry, such
as large drainage area, high catchment and lakebed slopes,
and large lake depths could be associated to elevated Hg
concentrations in lake sediments (Grigal, 2002; Kainz and
Lucotte, 2006). Moreover, dense forest zones in the catch-
ment area are an important source of Hg to the aquatic sys-
tems. Due to the large surface area with canopy foliage, at-
mospheric deposition of contaminants is elevated in forests
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compared with other ecosystems. The Hg fluxes have con-
tributions due to through fall inputs (precipitation that passes
through the canopy) and litter fall (biological material that
falls to the forest floor) (Kolka et al., 2001; Porvari et al.,
2003; Driscoll et al., 2007). Therefore, according to the
general characteristics of the water bodies and catchment ar-
eas, higher sediment Hg concentrations should be expected
in Lake Moreno Oeste relative to Lake Tonček, with a smaller
drainage area, shallower lake depths and almost absence of
vegetation. Particular characteristics of the Lake Tonček wa-
tershed have to be considered regarding Hg concentrations
in sediments. An important part of the watershed is covered
by wetlands and this kind of lands and their internal pro-
cesses (high rates of organic matter decomposition, sulphate-
reducing conditions, potential for methylation) play an im-
portant role in the Hg cycle (Goulet et al., 2007; Driscoll et
al., 2007; Selvendiran et al., 2008; Larssen et al., 2008). Fur-
ther, the snow cover for 6 to 8 months per year facilitates
the snow-to-air Hg reemission after photoreduction, which
could alter the fate of Hg after atmospheric deposition when
compared with liquid precipitation or fast snow melting, as
observed in high altitude/latitude environments (Schroeder et
al. 1998; Lalonde et al., 2002; Steffen et al., 2008), although
photoreduction also occurs in the water column for all lakes.
Also, in warmer periods, the snowmelt and summer storms
can represent a significant portion of the annual water and
Hg flux from the watershed (Grigal, 2002; Schuster et al.,
2008). These features may explain the differences in Hg se-
questration between Lake Tonček and Lake Moreno Oeste,
even though a detailed evaluation of the impact exceeds the
frame of the present work.

Even though lakes may differ, our sediment data show
substantial and apparently synchronous changes over time in
both lakes. It is remarkable that the Hg profiles in both se-
quences show a similar pattern regarding the domains of high
pre-industrial Hg, supporting the hypothesis stated previ-
ously that external, abrupt phenomena generated substantial
Hg inputs to these aquatic environments. The questions aris-
ing afterwards are on the records of environmental changes
generated by these phenomena and on the Hg sources.

4.3 Environmental factors

The identification of tephra layers in the sediment sequences
is the most concrete evidence of an environmentally disrupt-
ing phenomenon, as well as a potential Hg source: a vol-
canic eruption. Environmental changes can also be traced
at the biological level. Here, the variations in chironomid
communities were studied in the Lake Tonček sequence in
order to identify population changes that could be associ-
ated with environmental events or Hg inputs although direct
heavy metal pollution is recorded better in morphological de-
formities. Changes in the chironomid assemblages were ob-
served in Lake Toňcek sequence, some of them associated
with tephra layers. The change of taxa in relative compo-

sition allowed the identification of two sections; the oldest
accumulation period corresponding to the 11th to 17th cen-
turies with taxa indicating a colder environment, followed
by a period with temperate environment (Rizzo et al., 2007).
But no correlation was observed between the variation in the
chironomid assemblages and the two domains of high Hg.
Moreover, the concentration profiles of the other elements as
well as OM and BSi contents (Figs. 6 and 7), do not repro-
duce the Hg pattern nor do they show any correlation. The
absence of correlation of the Hg concentration with the geo-
chemical tracers studied suggests that no direct geological
process in the water body or in the watershed can be associ-
ated with the high Hg values, whereas the lack of correlation
with OM and BSi is not providing any evidence of biological
processes explaining the high Hg values.

4.4 Mercury sources

The other question was on potential Hg sources that could
explain in particular the older domains (1200 to 1350, and
1720 to 1900) of high Hg identified in the Lake Tonček and
Lake Moreno Oeste sequences. One potential source is the
occurrence of local geothermal emissions (Varenkamp and
Buseck, 1986; Nakagawa, 1999). Geothermal activity is usu-
ally manifested at the surface as emerging hot waters. Al-
though there are some geothermal systems associated to re-
cent magmatism near this area, they are located along the
Andean Range where the active volcanoes are located, about
50 kilometers to the west (Fig. 1). Such indications have not
been reported in or near Lake Tonček. There is no volcanic
activity in this area that could provide the heat required to
generate geothermal activity, and the geothermal energy gen-
erated from very deep heat sources is unlikely to reach the al-
titude of 1750 m without emerging at any other site of the ge-
ological formation. On the other hand, the pattern of the Hg
profile observed in Lake Moreno Oeste is similar, suggesting
that concurrent phenomena generated the high Hg records in
both lakes in pre-industrial periods. Geothermal activity was
not observed either in or near Lake Moreno. It seems un-
likely that geothermal activity can be sufficiently extended
to reach Lake Toňcek and Lake Moreno Oeste without at
the same time producing traces or reports of other geother-
mal manifestations as superficial thermal waters, occurrence
of mineralization in the surrounding landscape, unusual high
temperature lake waters, or increasing profiles of other ele-
ments in the water column. Therefore, geothermal activity
is unlikely a Hg source to be considered here. Deforestation
is another potential source of Hg to aquatic systems (Porvari
et al., 2003). There are no records of massive deforestation
before the Spanish colonization in this region, other than by
extended forest fires. These were a common deforestation
practice both before and after the Spanish colonization (Ve-
blen et al., 2003; Veblen et al., 2003), but may also have
occurred naturally together with volcanic events (see below).
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Volcanic events are a well-known source of Hg on a re-
gional or global scale (Nriagu and Becker, 2003). For ex-
ample, Schuster et al. (2002) observed in ice cores from the
Upper Fremont Glacier, Wyoming, USA, Hg records associ-
ated with the eruptions of, among others, volcanoes Tambora
(1815) and Krakatau (1883), situated in Indonesia, and deter-
mined a contribution of 6 % from remote volcanic events to
the Hg fallout over the last 270 years. Tephra layers are fall
ash deposits recording volcanic events that if associated to
an increase in Hg concentration in the deposit or in the upper
adjacent layer, give evidence of Hg releases produced by the
volcanic eruption. Tephras TK1 and MO2, which correlate
in time and correspond to a possible mixing of products from
events at the volcanoes Calbuco and Cordón Caulle (Fig. 1)
according to the geochemical characterization (Daga et al.,
2008), show a significant increase of Hg in the overlying
layer (Fig. 4), suggesting the occurrence of Hg gaseous emis-
sions concurrent with the eruption impacting the aquatic sys-
tems. Moreover, the micro-tephra in Lake Tonček and tephra
MO1 (Fig. 4), corresponding to a volcanic event in 1960-
1961, precede also an increase in the Hg level. Tephra TK6
could be correlated in time with MO5, which shows a no-
ticeable Hg increase in the overlying layers (Fig. 4). Tephra
TK6 corresponds to a mixing layer with products from both
Calbuco and Cord́on Caulle events, while MO5 corresponds
clearly to a Cord́on Caulle eruption (Fig. 1). The upper se-
quence domain with high Hg concentrations shows tephras,
or an overlying layer, with high Hg concentrations alternat-
ing layers with lower values. These Hg concentrations are
the highest determined in the profile. Due to the sharp varia-
tions it is not possible to determine an increase over previous
levels (Fig. 4), but these high Hg concentrations could be ev-
idence of a volcanic source. In the lower sequence domain
with high Hg, tephra layers are concurrent in Lake Moreno
Oeste but these volcanic events are not registered in Lake
Tonček (Fig. 4). Nevertheless, these high Hg concentrations
may be associated to gaseous emissions linked to volcanic
events since volcanic ashes can show a highly variable spa-
tial distribution (Daga et al., 2008), because the dynamics of
Hg transport could be different.

Fires are a potential source of atmospheric Hg. Whit-
lock et al. (2006) studied the incidence of fires in this re-
gion during the last 10 000 years by measuring charcoal con-
centrations in a sedimentary sequence extracted from Lake
El Trébol, situated near Lake Moreno Oeste (Fig. 1). They
computed also the ratio of (grass charcoal)/(total charcoal)
which provides information about what component of the
vegetation was burning and thus a distinction of surface fires
that largely burn grass and herbs, fires that burn both sur-
face cover and woody plants in a patchy manner, and stand-
destroying crown fires. At Lake El Trébol, charcoal records
declined between 3300 to 2000 y before present (BP) and re-
turned to high values between 1500 and 500 y BP. The last
2000 y section of this sequence features variable fire-episode
magnitudes, high fire frequency, and short fire-free inter-

vals. Two fire episodes of high magnitude were registered in
the Lake El Tŕebol sequence around 800 and 900 y BP. The
most recent of them is the highest in charcoal contents reg-
istered during the 10 000 y BP period studied by Whitlock et
al. (2006). They are associated to a high peak of the ratio of
(grass charcoal)/(total charcoal), thus representing the burn-
ing of grass and herbs. These high charcoal records are coin-
cident with the lower domain of high Hg domain observed in
Lake Moreno Oeste and Lake Tonček with a date estimated
to 1200 to 1350.

Forest fires release other trace elements to the atmosphere
together with Hg (e.g. As, Br, Ca, Cr, Fe, Mg, Mn, Se, Ti, V,
or Zn) in aerosols or gaseous form, but their imprint in lake
sediment sequences depends strongly on the transport dy-
namics in the atmospheric media, in the watershed and in the
water column (Yamasoe et al., 2000; Radojevic, 2003), and
no correlation between fires and trace element contents in
lake sediment sequences was observed in some cases (Mac-
Donald et al., 1991; Virkanen, 2000). Moreover, high Hg
enrichment in air above background concurrent with no sig-
nificant variation in any other trace elements, was observed
associated with forest fires (Anttila et al., 2008). Therefore,
the lack of correlation between Hg and the other trace ele-
ments analyzed in the present work does not preclude forest
fires as a potential Hg source.

Extended forest fires associated with human activities oc-
curred indeed during the 18th and 19th centuries. Native
Americans affected fire regimes and the landscapes of North-
ern Patagonia through intentional burning for various pur-
poses, which occasionally might have lead to wildfires (Ve-
blen et al., 2003). European settlement, starting in the region
about 1850 but earlier in Chile (since the end of the 17th
century), was associated with large fires for forest clearance,
intensive livestock grazing, and opening of paths across the
Andes through the forest (Veblen et al., 1992). From 1890
to 1920 extensive areas of wet forests were burned in the
study region by European settlers, in a failed effort to convert
forests to cattle pasture (Kitzberger et al. 1997). Particularly,
direct observation of large burns was reported in 1787 in the
Lake Nahuel Huapi region, towards the lake South-West (Ve-
blen et al., 2003). By analyzing tree-ring data, Kitzberger
et al. (1997) determined the occurrence of an extended fire
in Lake Roca (Fig. 1) in 1827. These fires may well have
had an impact directly on the Lake Tonček watershed due
to the predominantly westerly winds, reaching possibly also
Lake Moreno Oeste watershed (Fig. 1). These events coin-
cide with the upper domain of high Hg at Lake Tonček and
Lake Moreno Oeste sedimentary sequences. In both periods,
the fire records are concurrent with ENSO (El Niño-Southern
Oscillation) events which may enhance environmental condi-
tions favouring extended fires.

In conclusion, the correlation of both high Hg domains
in the Lake Moreno Oeste and Lake Tonček sequences with
records of extended fires in the region suggests that this
source, as well as the volcanic activity, could have generated
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the high levels and variations of Hg concentrations and ac-
cumulation rates observed in these pristine lakes already in
pre-industrial times.
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Edited by: R. Ebinghaus

References

Amirbahman, A., Ruck, P. L., Fernández, I. J., Haine, T. A., and
Kahl, J. A.: The effect of fire on mercury cycling in the soils of
forested watersheds Acadia National Park, Maine, USA, Water
Air Soil Pollut., 152, 313–331, 2004.

Anttila, P., Makkonen, U., Hellén, H., Kyllönen, K., Lepp̈anen, S.,
Saari, H., and Hakola, H.: Impact of the open biomass fires in
spring and summer of 2006 on the chemical composition of back-
ground air in south-eastern Finland, Atmos. Environ., 42, 6472–
6486, 2008.
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Lichens of Nahuel Huapi National Park, Patagonia, Argentina, J.
Radioanal. Nucl. Ch., 261, 679–687, 2004a.

Ribeiro Guevara, S., Bubach, D., Vigliano, P. H., Lippolt, G., and
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