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1 MEGANv2.1 details 34 
 35 
The MEGANv2.1 acetaldehyde emission parameterizations are primarily based on whole-canopy 36 
flux measurements. The exceptions are the light dependence and soil moisture response, which 37 
are based on enclosure measurements due to a lack of canopy-scale observations. Surface-38 
atmosphere exchange of acetaldehyde has been measured using tower-based flux systems 39 
deployed in ten ecosystems including tropical forest (Karl et al., 2004; Karl et al., 2007), warm 40 
conifer forest (Karl et al., 2005), cool temperate conifer forest (Schade and Goldstein, 2001; Karl 41 
et al., 2002), temperate broadleaf forest and plantation (Karl et al., 2003; Jardine et al., 2008), 42 
boreal forest (Rinne et al., 2007), and cropland/grassland (Warneke et al., 2002; Schade and 43 
Custer, 2004). Nearly all of these studies used proton-transfer reaction mass spectrometry (PTR-44 
MS) and the eddy covariance, or disjunct eddy covariance, approach (see Karl et al., 2002). The 45 
only exception is Schade and Goldstein (2001) who used an automated relaxed eddy 46 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accumulation system with on-line gas chromatography/flame ionization detector (GC-FID). The 47 
daytime fluxes observed at these sites for warm, sunny conditions range from no emission (or a 48 
net uptake) to an emission of about 350 µg m-2 h-1. The observed temperature response factor (β) 49 
ranges from 0.05 to 0.19.  The fluxes for the two cropland/grassland sites are both on the lower 50 
end of the emission range, but conifer and broadleaf forests cover the entire range of reported 51 
emissions and so are grouped together. The MEGANv2.1 acetaldehyde emission factors are 52 
based on the median values from the above studies: 200 µg m-2 h-1 for forests and 20 µg m-2 h-1 53 
for herbaceous landscapes. The median temperature response (β = 0.13) reported for these 54 
studies is used for all ecosystems. The MEGANv2.1 LDF and LAI dependence is based on the 55 
Jardine et al. (2008) analysis of leaf level observations and a comparison of above-canopy fluxes 56 
at three temperate forests. The leaf level acetaldehyde emissions reported by Holzinger et al. 57 
(2000), Kreuzwieser et al. (2000), and Rottenberger et al. (2008) provided the basis for the 58 
MEGANv2.1 soil moisture response algorithm. 59 
 60 
Due to the marginal ability of PTR-MS systems to quantify ethanol, there are relatively few 61 
observations of ethanol emissions from vegetation. Of the ten above-canopy studies used to 62 
characterize acetaldehyde fluxes, only one study (Schade and Goldstein, 2001) reports ethanol 63 
emissions. They observed ethanol emissions that were about a factor of 2 higher than 64 
acetaldehyde. The temperature response for ethanol at this site was similar to that observed for 65 
acetaldehyde. Additional field measurements of ethanol emissions (Fukui and Doskey, 1998; 66 
Kirstine et al., 1998) have used enclosure techniques and also observed ethanol emissions that 67 
are somewhat higher but of the same magnitude as acetaldehyde fluxes. As a starting point for 68 
introducing ethanol emissions in MEGANv2.1, we have used the parameterization developed for 69 
acetaldehyde to also represent ethanol emissions. As a result, these ethanol emission estimates 70 
are relatively uncertain; more observations of ethanol fluxes are needed to improve this initial 71 
approach.    72 
  73 
2 Air-sea flux calculation 74 
 75 
We compute the flux of acetaldehyde across the air-sea interface using the Liss and Slater (1974) 76 
two-layer model: 77 

, (1) 78 

where the flux F is determined by the acetaldehyde concentrations in the gas and liquid phase 79 
(CG, CL), the total transfer resistance (1/KL), and the dimensionless Henry’s law coefficient for 80 
acetaldehyde H*. In the aqueous phase acetaldehyde is partially present in the hydrated form 81 
CH3CH(OH)2, so that H* is actually the apparent Henry’s law coefficient defined as the 82 
equilibrium ratio of the concentration in air to the sum of hydrated plus unhydrated aldehyde in 83 
the aqueous phase (Betterton and Hoffmann, 1988). The overall transfer resistance is the sum of 84 
those in the individual phases, 85 

. (2) 86 

We derive kl and kg using the wind-speed dependent parameterizations of Nightingale et al. 87 
(2000) and Asher (1997), respectively. The enhancement factor α reflects the extent to which 88 
acetaldehyde hydration increases the rate of aqueous diffusion; here α = 2.0 following Zhou and 89 
Mopper (1997). 90 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Fig. S1. Global weighted emission factor distribution (Σεiχi, see Equation 1 of the main text) for 161 
acetaldehyde and ethanol used in MEGANv2.1, gridded to 0.5°×0.5°. Biogenic emissions of the 162 
two compounds are computed using the same vegetation-specific emission factors εi as described 163 
in SI Section 1 above. 164 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