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Abstract. Cavity ring-down spectroscopy (CRDS) is a direct
absorption technique that utilizes path lengths up to multi-
ple kilometers in a compact absorption cell and has a signif-
icantly higher sensitivity than conventional absorption spec-
troscopy. This tool opens new prospects for study of gaseous
elemental mercury (Hg0) because of its high temporal res-
olution and reduced sample volume requirements (<0.5 l of
sample air). We developed a new sensor based on CRDS for
measurement of (Hg0) mass concentration. Sensor charac-
teristics include sub-ng m−3 detection limit and high tempo-
ral resolution using a frequency-doubled, tuneable dye laser
emitting pulses at∼253.65 nm with a pulse repetition fre-
quency of 50 Hz. The dye laser incorporates a unique piezo
element attached to its tuning grating allowing it to tune the
laser on and off the Hg0 absorption line on a pulse-to-pulse
basis to facilitate differential absorption measurements. Hg0

absorption measurements with this CRDS laboratory proto-
type are highly linearly related to Hg0 concentrations deter-
mined by a Tekran 2537B analyzer over an Hg0 concentra-
tion range from 0.2 ng m−3 to 573 ng m−3, implying excel-
lent linearity of both instruments. The current CRDS instru-
ment has a sensitivity of 0.10 ng Hg0 m−3 at 10-s time reso-
lution. Ambient-air tests showed that background Hg0 levels
can be detected at low temporal resolution (i.e., 1 s), but also
highlight a need for high-frequency (i.e., pulse-to-pulse) dif-
ferential on/off-line tuning of the laser wavelength to account
for instabilities of the CRDS system and variable background
absorption interferences. Future applications may include
ambient Hg0 flux measurements with eddy covariance tech-
niques, which require measurements of Hg0 concentrations
with sub-ng m−3 sensitivity and sub-second time resolution.

Correspondence to:X. Fäın
(xavier.fain@dri.edu)

1 Introduction

Mercury (Hg) is a toxic pollutant globally dispersed in the
environment. Natural and anthropogenic sources emit mer-
cury to the atmosphere, either as gaseous elemental mercury
(GEM or Hg0) or as divalent mercury species. Hg0 repre-
sents as much as 95% of the atmospheric mercury burden
and can be transported across long distances to remote loca-
tions. Many aspects of mercury chemical cycling in the at-
mosphere are still essentially unknown, and estimates of Hg0

atmospheric lifetime range from 5 to 24 months (Schroeder
and Munthe, 1998). Measurements of atmospheric back-
ground levels of Hg0 (∼1.7 ng m−3 in the Northern Hemi-
sphere; Valente et al., 2007) currently require preconcen-
tration of Hg0 from several liters of air using gold amal-
gamation for a duration of several minutes, followed by
thermal dissociation of collected Hg0 for measurements and
analysis by atomic fluorescence or absorption spectroscopy
(e.g., Model 2537B, Tekran Inc., Toronto, Canada; typi-
cal time resolution of 2.5 to 5 min). Laser-induced fluo-
rescence (LIF) has been developed as a promising alterna-
tive technique for detection of mercury in laboratory stud-
ies with a detection limit of 0.4 ng m−3 for a 1 s integration
(Bauer et al., 2003). The analyzer Lumex RA-915+ (Lumex
Ltd., Ohio, USA) is a commercially available unit based on
the absorption of Hg0 atom resonance radiation with Zee-
man correction for background absorption which allows for
Hg0 sampling at 1 Hz frequency. The detection limit of
Lumex analyzer, however, remains poorly elucidated. Com-
parative analysis made between a Lumex system and a tra-
ditional CVAAS method (WA-4 model, Nippon Instrument
Corp., NIC, Japan) demonstrated that both systems could
exhibit a good compatibility even in the low concentration
ranges (Kim et al., 2006). In the manufacturer’s perfor-
mance report made as continuous vehicular survey (http://
www.ohiolumex.com/download/03AE07011.pdf), the detec-
tion limit values of the system were shown to vary sensitively
from 0.3 to 2.0 ng m−3.
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2880 X. Fäın et al.: Cavity ring-down spectroscopy for detection of atmospheric mercury

A

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.001

0.01

0.1

1

10

100

30/03/07 1/04/07 3/04/07 5/04/07 7/04/07

Date

H
g

0  c
o

n
ce

n
tr

at
io

n
 (n

g
 m

-3
)

0.0 2.5 15.05.0 12.57.5 10.0

Frequency (10-4 Hz)

H
g

0  
Po

w
er

 S
p

ec
tr

u
m

 (a
. u

.)

B

Fig. 1. A High levels of gaseous elemental mercury measured as a function of time with a Tekran 2537B analyzer at Storm Peak Laboratory
(3200 m a.s.l.) in the US Rocky Mountains and attributed to long-range transport of pollutants from Asian sources.B Corresponding power
spectral density as a function of frequency for Hg0 concentrations.

Our current understanding of mercury dynamics in the
atmosphere and surface exchange processes is hindered by
the low time resolution of mercury sensors leading to sub-
stantial uncertainties in global atmospheric mercury cycling.
High-frequency Hg0 concentration fluctuations likely are
occurring at sampling intervals (1) shorter than the 2.5-
min resolution of current technology and may portray inac-
curately important information about atmospheric sources,
sinks, and chemical transformation processes. An ex-
ample of 5-min time resolution measurements of Hg0 at
the Desert Research Institute’s (DRI’s) high elevation re-
search facility (Storm Peak Laboratory, 3200 m a.s.l.) in
the US Rocky Mountains (Fig. 1a) shows Hg0 concentra-
tion enhancement attributed to long-range transport of pol-
lutants from Asian sources (Obrist et al., 2008). We used
Fourier spectral techniques to obtain the power spectral den-
sity of this data series in frequency space. The resulting
power spectrum is shown in Fig. 1b as a function of fre-
quency, which ranges from 0 Hz to the Nyquist frequency,
1/(21)=1/(10 min)=1.67×10−3 Hz, which is the highest fre-
quency at which information can be obtained. Figure 1b
shows that there is no significant drop off of the power spec-
tral density toward the Nyquist frequency, and we expect
(but are not able to quantify) significant contributions above
the Nyquist frequency. In other words, temporal changes in
Hg0 concentrations faster than the current 5-min time reso-
lution are likely to occur at a significant level and may con-
tain important information about Hg0 fluctuations which are
not measureable with current sensors. A fast-response sensor
will lead to major progress in air mass characterization, such
as in the study mentioned above (Obrist et al., 2008). Other
potential applications include quantification of Hg0 emission
and deposition fluxes with micrometeorological techniques
(e.g., Eddy Covariance) that require high measurement fre-
quencies (e.g., 1 to 10 Hz), characterization of in situ and

laboratory chemical and physical transformation pathways
of mercury (i.e., tropospheric oxidation of Hg0), and charac-
terization of global transport patterns and atmospheric mer-
cury residence notably by spatially resolved airborne mea-
surements.

Gaseous elemental mercury is a unique atmospheric pol-
lutant that occurs in the form of individual mercury atoms
in contrast to virtually all other atmospheric pollutants
that occur in molecular form. As a consequence, the
transition strength of Hg0 absorption lines is concentrated
in individual, narrow lines not split into a multitude of
vibrational-rotational lines, and therefore Hg0 absorption
lines are much stronger than the usual molecular absorption
lines. Absorption measurements are a promising approach
to measuring mercury concentrations. Cavity ring-down
spectroscopy (CRDS), a sensitive absorption measurement
method, which employs very long absorption path lengths
in compact cavities (e.g., Berden et al., 2000), is especially
well suited to detecting atmospheric Hg0 concentrations and
fluxes. CRDS was investigated previously for detection of
Hg0 concentrations, although detection limits were too high
for most ambient air applications (see Sect. 2.4). In this
paper, we report advances in development of a new labora-
tory prototype CRD spectrometer, demonstrating a sensitiv-
ity of 0.10 ng m−3 at a time resolution of 10 s which makes
this technique an interesting alternative for use in ambient
air, background concentration studies. We also report de-
tailed comparison of CRDS Hg0 absorption measurements
with data from the existing Tekran 2537B analyzer both us-
ing laboratory-supplied Hg0 concentrations and ambient air,
and discuss the utility of our CRDS Hg0 instrument for use
in laboratory and field studies.
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2 Theory of absorption spectroscopy and cavity
ring-down detection

2.1 Theory of mercury absorption spectroscopy

Of particular interest for the sensitive detection of Hg0

with absorption spectroscopy is the 6 s1S0→6p3P1 electronic
transition from the 6s ground state, to the 6p excited state.
An absorption cross section of 3.3×10−14 cm2 atom−1 has
been reported for this Hg0 absorption line at 253.65 nm in
the ultraviolet (UV) (Edner et al., 1989; Spuler et al., 2000).
This line has an approximate full width at half-maximum
(FWHM) of 0.005 nm at atmospheric pressure, due to hyper-
fine splitting and atmospheric pressure broadening resulting
in a single peak containing all hyperfine components. The
high-resolution structure of the Hg0 absorption spectrum is
dominated by hyperfine splitting due to interactions of the
nuclear multipole moments of the seven (five with even and
two with odd nuclei numbers) naturally occurring isotopes
with their electrons.

Direct absorption spectroscopy of atoms and molecules in
the gas phase is a powerful tool that can yield absolute con-
centration measurements. According to Beer’s law, the trans-
mittance of light through a path lengthL (m) of an absorbing
medium is given by:

T (ν)=P
/
PO=exp(−α(ν) ·L) (1)

wherePO is the optical power before the absorber (W),P is
the optical power after the absorber (W), andα(ν) is the ab-
sorption coefficient (m−1) at the frequencyν. The absorption
is then given by:

A(ν)=1−T (ν) (2)

The absorption lineshapeA(ν) of Hg0 for a given tem-
perature and pressure can be modeled with a Voigt pro-
file, which is a convolution of Gaussian and Lorentzian
components. Detailed theoretical descriptions are available
elsewhere (e.g., Anderson et al., 2007; Finkelstein, 1998).
Briefly, the Gaussian, or inhomogeneous component, is due
to Doppler broadening with a line width proportional to the
square root of the ratio of temperature and atomic weight of
mercury. The Lorentzian profile is the homogenous compo-
nent due to natural lifetime and pressure broadening. The
Lorentzian width is the sum of the width of natural life-
time broadening and collisional broadening (a function of
pressure) widths, which have been experimentally deter-
mined.

2.2 Cavity ring-down spectroscopy

Conventional absorption spectroscopy is based on measure-
ment of the change in the optical power during transmis-
sion through an absorbing medium according to Beer’s law
(Eq. 1). Sensitivity of this method is limited by temporal

noise of the light source or incident optical power because a
small change in power due to absorption needs to be quanti-
fied. Sensitivity can be improved by measuring optical power
relative to the incident power and by using a long absorption
path, thereby increasing the absorption signal. Cavity ring-
down spectroscopy is a simple, fast, and sensitive absorption
technique that measures the relative optical power and imple-
ments very long absorption paths in compact CRDS absorp-
tion cells. The sample is placed inside a high-finesse optical
cavity consisting of highly reflective mirrors. A small frac-
tion of a short laser pulse is coupled into the cavity through
one of its mirrors; the laser pulse is reflected back and forth
inside the cavity with a small fraction of the pulse leaking
out of the cavity at every reflection due to residual mirror
transmission. If the laser pulse is shorter than the cavity’s
roundtrip length, no interference occurs.

Optical energy stored in the cavity decays exponentially
with time due to extinction between the mirrors and reflec-
tion losses at the mirrors (O’Keefe and Deacon, 1988; Ram-
poni et al., 1988). The power of the light leaking out of the
cavity through one of the mirrors is proportional to the opti-
cal energy in the cavity, and decay time of the cavity is de-
termined by measuring the optical power leaking out of the
cavity as a function of time with a fast detector and fitting an
exponential function to it. Note that this technique is in prin-
ciple not affected by laser noise, defined as pulse-to-pulse
fluctuations of laser power.

CRDS obtains total cavity extinction, which is the sum
of mirror reflection losses, sample scattering, and sample
absorption. Assuming that extinction due to mirror losses
and sample scattering are constant, they can be subtracted
from the total extinction coefficient, resulting in a calibrated
measurement of the absorption coefficient of the sample; the
more the sample absorbs, the shorter is the measured decay
time. The effective absorption path length depends on reflec-
tivity of the cavity mirrors and can be very long (up to sev-
eral kilometers), while the sample volume can be kept rather
small (Moosm̈uller et al., 2005).

2.3 Cavity ring-down signal analysis

For highly reflecting mirrors, the time-dependent CRDS sig-
nalS(t) can be written as

S(t)=S0exp[−αct ]=S0exp
[
−

(
αHg+αBG+αM

)
·ct

]
(3)

whereS0 is the initial signal (i.e., att=0) andc is the speed
of light. The total extinction coefficientα is the sum of a
strongly wavelength dependent Hg0 absorption coefficient
αHg and two additional terms: a background extinction term
αBG due to other gaseous and particulate absorption and
scattering and a mirror extinction termαM . Both of these ad-
ditional terms are largely wavelength independent within the
small wavelength range (i.e.,≈0.01 nm) of interest. We can
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estimate the mass concentrationsCHg of Hg0 from a mea-
surement of the absorption coefficientαHg as:

CHg=
αHg MHg

NA σHg
(4)

whereMHg is the atomic mass of mercury (200.59 g mol−1),
NA is Avogadro’s number, andσHg is the absorption cross
section of Hg0. The mirror extinction termαM is a func-
tion of the distanceL between the two mirrors and mirror
reflectivityR with:

S(t)=S0 ·exp[−αct ]=S0 ·exp[−(αG+αBG+αM)ct ] (5)

The effective path lengthLeff of this CRD arrangement is
given by:

Leff=
1

αHg+(αBG+αM)
=

L

αHgL+αBGL+(1−R)
(6)

where for low Hg0 concentrations,αHg can be neglected and
if particle and gaseous absorption and scattering losses are
small, the effective path lengthLeff can be estimated as:

Leff=
L

1−R
(7)

For example, for a mirror reflectivityR of 99.9% and a mir-
ror distanceL of 1 m, an effective path length of up to 1 km
can be achieved with path lengths increasing and detection
becoming more sensitive for mirrors with higher reflectivity.

2.4 Performance of previous cavity ring-down
spectrometers for Hg0 detection

Hg0 detection with CRDS systems has been demonstrated
by previous studies, but the sensitivity and time resolu-
tion needed for measurement of ambient Hg0 concentrations
and fluxes in the field have not been achieved. Jongma
et al. (1995) pioneered ultraviolet CRDS detection of trace
gases including Hg0 with a frequency-doubled, pulsed dye
laser (linewidth of 0.1 cm−1) pumped by a frequency-tripled
Nd:YAG laser at 355 nm and a 0.45 m length open-path
CRDS cavity using mirrors with 99.6% reflectivity. This
setup was used to measure Hg0 background concentrations
(i.e., 63 ng m−3) in their laboratory with a noise-equivalent
(1σ detection limit of 9 ng m−3 for 3 s averaging time. In
addition, nearby absorption lines were identified as the for-
bidden oxygen (O2) A←X(7, 0) transition (N”=19; Q mul-
tiplet). A similar laser system was used later by Tao et
al. (2000) and by Spuler et al. (2000). Tao et al. (2000) re-
ported a noise-equivalent (3σ ) detection limit of 24 ng m−3

over an unspecified averaging time with a 0.56 m length
open-path CRD cavity with a 0.18 m sample length and mir-
rors of 99.7% reflectivity. Spuler et al. (2000) achieved
a noise-equivalent (3σ ) detection limit of 4.5 ng m−3 over
75 s averaging time with a 1.25 m length closed-path CRDS
cavity and mirrors of 99.85% reflectivity and demonstrated

interference-free (i.e., from ozone and sulfur dioxide) mea-
surement of Hg0 at ambient conditions. More recently,
Carter (2004) developed a CRDS system for measurement of
Hg0 concentrations in flue gases based on an all solid state,
frequency-tripled Alexandrite laser, seeded with a single-
mode, external-cavity diode laser, thereby reducing the UV
output linewidth from 5 cm−1 to less than 0.006 cm−1. Us-
ing a 0.65 m length closed-path CRDS cavity and mirrors of
99.7% reflectivity, a sensitivity of 90 ng m−3 was achieved
over an averaging time of 10 s. Development of alternative
plasma sources for CRDS measurement of Hg0 was reported
by Duan et al. (2005) using a dye laser system similar to
that of Jongma et al. (1995) and an open-path CRDS cav-
ity with mirrors of 99.72% reflectivity. Their detection limit
was 400 ng m−3 for an average time of 5 s. Finally, Wang et
al. (2005) used a similar system with a 0.78 m length open-
path CRDS cavity with mirrors of 99.67% reflectivity and a
plasma source filling a 6 mm length of the CRDS cavity with
Hg0. They obtained a noise-equivalent (3σ ) detection limit
of 2 µg m−3 over an averaging time of 2–5 s. Table 1 summa-
rizes detection limits extrapolated to 1 Hz of previous cavity
ring-down spectrometers. Table 1 also includes comparison
with commercially available Hg0 analyzers, such as Tekran
2537B and Lumex RA 915+.

3 Instrument description and laboratory and
ambient air testing

3.1 Laser and optics

Figure 2 is a schematic diagram of our CRDS instru-
ment. This instrument uses a frequency-doubled tunable
dye laser emitting pulses at a wavelength of 253.65 nm with
a linewidth of∼0.9 GHz and a pulse repetition frequency
of 50 Hz. The dye laser system (Newport-Spectra-Physics,
Mountain View, CA) consists of a Quanta Ray, Q-switched,
frequently-tripled Nd:YAG laser operating at a fundamen-
tal wavelength of 1064 nm with 50 Hz pulse repetition fre-
quency and generating output pulses at 355 nm after 3rd har-
monic frequency conversion. The 355 nm pulses are used
to pump a dye laser (Model Sirah Cobra) to generate laser
pulses at 253.65 nm after frequency doubling. Average UV
dye laser power is∼10 mW corresponding to a pulse energy
of 200 µJ/pulse. The dye laser wavelength is tunable over a
wide range (215–280 nm) using computer-controlled Littrow
grating in the dye resonator.

The laser beam is mode-matched with an appropriate lens
into a 1 m length optical cavity consisting of two highly re-
flecting plano-concave mirrors. The sample is enclosed in the
CRDS cavity by a quartz (SiO2)-coated stainless steel tube
that shows no contamination or memory-effect for Hg0 when
flushed upstream with a mercury-free air generator (Tekran
unit 1100) and monitored downstream with a 2537B Tekran
analyzer (see Sect. 3.4 for more details on analyzer 2537B).

Atmos. Chem. Phys., 10, 2879–2892, 2010 www.atmos-chem-phys.net/10/2879/2010/
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Table 1. Overview of detection limits extrapolated to 1 Hz for Hg0,
including previous cavity ring-down and laser-induced fluorescence
spectrometers, Tekran 2537B and Lumex RA-915+ analyzers, and
our prototype.

Instruments and references Detection limit
(ng m−3 Hz−1/2)

Cavity ring-down spectrometry
Jongma et al. (1995) 15.6
Spuler et al. (2000) 39
Carter et al. (2004) 285
Duan et al. (2005) 894
Wang et al. (2005) 3714
This study 0.31

Laser induced fluorescence spectrometry
Bauer et al. (2003) 0.4

Cold vapor atomic fluorescence spectrometry
2537B, Tekran 1.7a

Atomic absorption spectrometry
RA-915+, Lumex 0.3–2.0b

a Extrapolated from a 0.1 ng m−3 detection limit at a 5-min time
resolution.
b Detection limit range observed by manufacturer during automo-
bile surveys.

The plano-concave UV mirrors (MLD Technologies, Moun-
tain View, CA) have a radius of curvature of 1 m and are
mounted with adjustable, sealed mirror mounts (Los Gatos
Inc., Los Gatos, CA) to form a stable optical cavity. Mir-
ror reflectivity was determined to be 99.895% from CRDS
measurements at 253.65 nm (i.e., the Hg0 absorption line)
for a cavity filled with ultrapure N2. In this configuration,
absorption due to N2 can be neglected, and total cavity losses
are due to mirror reflection losses plus N2 Rayleigh scatter-
ing. The N2 scattering coefficient at 253.65 nm and labora-
tory temperature and pressure (i.e., 300 K, 843 mbar, respec-
tively) was estimated as 259.4 Mm−1 using values reported
by Fröhlich and Shaw (1980).

3.2 Data acquisition and signal processing

Optical energy stored in the cavity is monitored by measur-
ing the optical power leaking through the back cavity mir-
ror (Fig. 2) as a function of time with a high-speed photo-
multiplier tube (PMT) (H6780; Hamamatsu, Japan). Sig-
nals are recorded using a 4 MS s−1 data acquisition card
(CompuScope 12100, GaGe, Lockport, Illinois, USA) and
processed in real time using Labview, a graphical program-
ming environment for instrument control and data acquisi-
tion.

3.3 Laser wavelength control using an external
mercury cell

Repeatable measurements of Hg0 concentration using CRDS
require precise control and corrections of potential drifts in
the UV dye laser wavelength. Setting the laser wavelength
to the peak of the Hg0 253.65 nm absorption line, where
most sensitive detection is feasible, was achieved by di-
rect measurement of the absorption signal of Hg0 in a low-
pressure Hg0 vapor cell. As shown in Fig. 2, a fused silicate
plate (ESCO Corp., Oak Ridge, NJ, USA) located before the
CRDS cavity allowed for extraction of a small fraction of the
laser power, which was further split into two equal power
laser beams using a UV beam splitter (Edmund Optics Inc.,
Barrington, NJ, USA), and signals were measured using two
photodiodes (PD1 and PD2, DET10M, Thorlabs, Newton,
NJ, USA). We routed one of the laser beams through a low-
pressure Hg0 cell, and its power was measured by PD1 with
this PD1 signal normalized by the PD2 signal – a measure of
laser power to correct for fluctuations in the UV laser power
(Fig. 2). The Hg0 cell consists of a 50 mm long, 8 mm diam-
eter, fused silica tube with two fused silica windows attached
at 15◦ relative to normal to avoid direct back reflections and
reduce etalons effects. Liquid mercury was held in a sealed
tube extending from the bottom of the cell, and cell Hg0 con-
centration was controlled through temperature control of the
liquid mercury using an ice bath at 273 K, prepared following
ASTM standard procedure E563-08 (2008). However, the
sealed tube was likely too small to allow for cooling of the
liquid mercury down to 273 K, as discussed in Sect. 4.1. The
photodiode signals were extracted from background noise
through time-windowing using two independent Boxcar am-
plifiers (Daly et al., 1985; Stanford Research Systems, 2001)
before data acquisition with a data acquisition (DAQ) mod-
ule (National Instruments, Austin, TX, USA). Control of
laser drifts was implemented using the hyperfine structure
of the mercury absorption line resolved when using a low
pressure Hg0 cell (i.e., 1.3×10−5 Pa). Specifically, real-time
monitoring of the laser power incident on photodiodes PD1
and PD2 allowed for (i) manual locking of the laser wave-
length to the peak of the absorption line of the202Hg iso-
tope before each measurement with an estimated precision
of 0.0002 nm, and (ii) control of potential drifts of the UV
wavelength during CRDS measurements. However, data col-
lection periods in this study were limited to 10-s time peri-
ods (see Sect. 4.2), and laser drift was never observed during
these short timescales.

3.4 Gaseous elemental mercury source permeation
and comparison to Tekran Model 2537B
mercury analyzer

To evaluate performance of the CRDS Hg0 absorption mea-
surements, we built an Hg0 vapor generation system to
supply a wide range of Hg0 concentrations to the CRDS

www.atmos-chem-phys.net/10/2879/2010/ Atmos. Chem. Phys., 10, 2879–2892, 2010
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Fig. 2. Schematic overview of CRDS laboratory system.

instrument and used a Tekran Instruments Corp. (Toronto,
Canada) Model 2537B analyzer for instrument comparison.
We obtained controlled trace concentrations of Hg0 using
an HE-SR 1.7CM permeation tube (VICI Metronics, Inc.,
Poulsbo, WA, USA) with a certified rate of 31.24±ng min−1

at 50◦C. The permeation tube was kept at constant tempera-
ture (50◦C) using a temperature-regulated water bath (Cole
Parmer, Vernon Hills, IL, US), and the permeation flow was
controlled to adjust the flushing rate above the tube resulting
in adjustable source concentrations of Hg0. A small fraction
of this primary Hg0 source was diluted with mercury-free
air (Air-Zero filter; Model Tekran 30-25150-00) with flows
regulated by two mass flow meters (Aalborg, Orangeburg,
NY, USA)-one dedicated to the concentrated primary Hg0

source adjustable from 1–10 ml min−1 and one dedicated to
the Hg0-free air adjustable from 1.1–10 l min−1. This setup
allowed for generation of stable Hg0 concentrations through
a range from well below 1 ng m3 to 600 ng m−3.

We conducted ambient-air measurements by pulling out-
side air with background Hg0 concentrations (i.e., ranging
from 1.7 to 2.3 ng m−3) through a 10 m Teflon line and a
0.2 µm Teflon filter (sampling rate: 1.5 l min−1), a common
air sampling set-up used for Tekran 2537B Hg0 measure-
ments. Ambient air runs included: (i) ambient air with no
additional air filtering (i.e., 0.2 µm cutoff), (ii) ambient air
with an ozone denuder (inserted into the sample stream),
(iii) ambient air with an ozone denuder and a HEPA filter
(HEPA capsule, Model PN 12144; Pall Corporation, Port
Washington, NY, USA) inserted into the sample stream; and
(iv) mercury-free air supplied by a Tekran 1100 unit zero-air
generator for comparison to clean, charcoal-filtered air. The
ozone denuder (ChemComb Model 3500 Speciation Sam-
pling Cartridge, Thermo Electron Corporation, East Green-
bush, NY, USA) was coated with a potassium carbonate and
sodium nitrite solution in methanol and nanopure-grade wa-
ter. We performed slow wavelength scans over the Hg0 ab-

sorption spectrum and nearby forbidden oxygen transitions
for all ambient air measurements, and three replicate scans
were performed for each for the respective sampling arrange-
ments.

Mass concentrations of Hg0 vapor generated in the lab-
oratory and from ambient-air were routed in series through
the CRDS cell followed by a Tekran 2537B vapor-phase
mercury analyzer. The 2537B instrument collects the air
stream on two gold cartridges, followed by thermal desorp-
tion and detection by cold vapor atomic fluorescence spec-
trometry at 253.65 nm. Use of dual gold cartridges allowed
alternate sampling and desorption, resulting in continuous
measurement of Hg0 on a predefined time base. The model
2537B was recalibrated every 24 h using its internal perme-
ation source with sample flow rate set to 1 l min−1. We mea-
sured blanks for the 2537B during each calibration, and these
measurements consistently yielded mercury mass concentra-
tion of 0.00 ng m−3. Set-up, accuracy, and precision of this
instrument have been evaluated previously (e.g., Ebinghaus
et al., 1999; Schroeder et al., 1995), and the manufacturer
reports a detection limit for 5 min samples of 0.10 ng m−3.

4 Measured spectral profiles, instrument performance,
and instrument comparisons

4.1 Hg0 spectral profiles and comparisons
to theoretical values

CRDS measurements of pressure-broadened absorption
spectra between 253.61 nm and 253.66 nm for different Hg0

concentrations (i.e., 46 to 535 ng m−3) supplied to the CRDS
cell are shown in Fig. 3. The Hg0 absorption line can be
located clearly at 253.65 nm, and the presence of a series
of forbidden oxygen absorption lines is observed between
253.57 and 253.62 nm. Such forbidden oxygen absorption
lines in the UV have been reported before (e.g., Tao et al.,
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X. Fäın et al.: Cavity ring-down spectroscopy for detection of atmospheric mercury 2885

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

253.610 253.615 253.620 253.625 253.630 253.635 253.640 253.645 253.650 253.655 253.660

Wavelength (nm)

A
bs

or
pt

io
n 

(M
m

-1
)

573 ng m-3

385 ng m-3

161 ng m-3

46 ng m-3

1000
1200
1400
1600
1800
2000

253.645 253.650 253.655 253.660

46 ng m-3
0 ng m-3

Hg0  line(O2) A ← X(7,0) band 

Fig. 3. Wavelength scans of CRDS absorption measured for dif-
ferent Hg0 concentrations for wavelengths between 253.61 and
253.66 nm. The Hg0 absorption line is located at 253.653 nm, and
forbidden molecular oxygen absorption lines are observed between
253.61 and 253.64 nm. A scan of the Hg0 absorption line measured
with a cavity flushed with mercury-free air is reported in inset panel
and shows a residual oxygen absorption line overlapping with the
Hg0 absorption line.

2000). Due to the relatively constant atmospheric O2 con-
tent, such oxygen absorption lines have been used for addi-
tional instrument calibration and quality assurance in ambi-
ent air as demonstrated for measurement of aerosol light ab-
sorption (Tian et al., 2009). The insert panel of Fig. 3 shows
details of absorption measurements at 253.65 (i.e., the Hg0

absorption line) for Hg0 concentrations of 0 ng m−3 (flushed
with mercury-free air) and 46 ng m−3. These measurements
clearly observe a residual absorption peak at a wavelength
of only +0.001 nm above the mercury absorption peak. This
peak very likely is due to oxygen absorption as it disappears
for an N2-filled cell.

Figure 4 shows direct (i.e., non-CRDS) transmission spec-
tra from 253.64 to 253.66 nm for mercury cells either filled
with high (i.e., 80 kPa; near ambient) N2 pressure or evacu-
ated to low pressure (i.e., 1.3×10−5 Pa). Specifically, Fig. 4
reports ratios between PD1 and PD2 voltages rescaled to
remove reflection losses on the two uncoated window sur-
faces of each cell (20% losses estimated from signal without
cells present) and normalized. The 80 kPa profile is clearly
pressure-broadened, while the low-pressure profile reveals
the hyperfine structure of the1S0-3P1 transition of Hg0 with
the presence of five distinct absorption isotope peaks as de-
scribed by others (Anderson et al., 2007; Carruthers et al.,
2005; Scheid et al., 2007; Spuler et al., 2000).

We calculated theoretical absorption coefficients as a
function of wavelength for Hg0 using a computer pro-
gram based on previous work by Finkelstein (1998). This
model includes Lorentzian and Gaussian linewidth compo-
nents described above in Sect. 2.1. Specifically, a mercury
self-pressure broadening coefficient of 7.60×104 Hz Pa−1

(Finkelstein, 1998) and a foreign-pressure broadening co-

efficient of 7.46×104 Hz Pa−1 for atomic mercury broad-
ened by N2 (Anderson et al., 2007) were used. We val-
idated our model and its parameterization by modeling a
published spectrum (Scheid et al., 2007), which was ob-
tained with a very narrowband (e.g., laser linewidth of about
10 MHz), continuous-wave, solid-state laser. Because we
used a spectrally much wider pulsed dye laser, we addition-
ally accounted for laser linewidth and shape in the calcu-
lations to reproduce our absorption spectra. A large num-
ber of model spectra using different combinations of laser
linewidth, shape, and cell temperature were generated, and
the best fit was determined by minimizing the sum of the
squared differences between measurements and model value
for 0.1 GHz frequency resolution spectra. Specifically, Gaus-
sian and Lorentzian contributions to the laser linewidth from
0 to 3 GHz were included, and temperature was varied be-
tween 273 and 290 K. Mercury vapor pressure in an Hg0 cell
depends on the temperature of liquid mercury held in a sealed
tube extending from the bottom of the cell and maintained in
an ice bath. It is likely that the sealed tube we used was
too small for efficient cooling of the liquid mercury down
to 273 K, as previously observed by Anderson et al. (2007)
with a similar setup. The best fit of our high pressure mea-
sured spectra is shown in Fig. 4 and was obtained for 280 K
and a laser linewidth modeled with Gaussian and Lorentzian
contributions with full-widths-at-half-maximum (FWHM) of
1.8 and 0.2 GHz, respectively. Figure 4 shows that our mod-
eled and experimental spectrums for the high pressure (i.e.,
80 kPa) Hg0 cell are in excellent agreement. As expected, our
modeled laser FWHM was about twice the factory specifica-
tion of 0.9 GHz reported for the Sirah Dye laser operating
in the green, before frequency doubling. Finally, modeling
our absorption measurements led to an absorption cross sec-
tion for Hg0 of 2.4×10−14 cm2 atom−1, a value lower than
the value of 3.3×10−14 cm2 atom−1 previously reported by
Edner et al. (1989) and Spuler et al. (2000).

The experimental absorption spectrum for the low pressure
(i.e., 1.3×10−5 Pa) Hg0 cell, also reported in Fig. 4, clearly
shows the hyperfine structure of Hg0 absorption with its five
individual peaks. However, peak absorption at low Hg0 pres-
sure is less than at high pressure, likely due to saturation of
the transition at our relatively high laser power due to slower
relaxation to the ground state than at high pressure because
of the greatly reduced collision frequency. As saturation of
the transition is currently not included in our spectral model,
we did not model the low pressure spectra.

The distinct peak of the202Hg isotope absorption at
253.6531 nm wavelength seen in the low pressure spec-
trum (see label on Fig. 4) was used to exactly position the
laser wavelength for Hg0 absorption measurements using the
computer-controlled Littrow grating of the dye laser. We also
used the same low-pressure202Hg absorption peak for wave-
length positioning of the differential “off-line” measurement
as described in detail below.
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Figure 4. Absorption spectra of the Hg0 1S0-
3P1 transition in a high pressure cell (80 kPa of N2 buffer gas, grey line) and an evacuated 1 
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Fig. 4. Absorption spectra of the Hg0 1S0-3P1 transition in a high
pressure cell (80 kPa of N2 buffer gas, grey line) and an evacuated
low pressure cell (1.3×10−5 Pa, black line) with a natural isotope
mixture. The spectrum from the low pressure cell clearly shows the
hyperfine structure of the1S0-3P1 transition of Hg0. A theoretical
model of the spectrum from the high pressure cell is shown in red
and faithfully reproduces the experimental spectrum.

4.2 Hg0 absorption measurements, comparisons
with a Tekran 2537B analyzer

4.2.1 Laboratory-generated Hg0 vapor concentrations

We connected the Hg0 vapor generation system to the CRDS
cavity to supply a range of Hg0 concentrations and connected
a Tekran 2537B analyzer directly downstream of the cavity
for corresponding measurements of Hg0 concentrations with
5-min time resolution. Hg0 vapor concentrations were sup-
plied to the cavity at a flow rate of 1 l min−1 and allowed to
stabilize at a constant level for at least 10 min (i.e., two sam-
pling cycles of the 2537B analyzer;1Hg0<0.1 ng m−3). For
each measurement, we calibrated the system for extinction
losses other than Hg0 absorption CRDS losses by shifting
the laser wavelength “off-line” of the Hg0 absorption spec-
trum, as described below. Specifically, Hg0 absorption was
measured in the cavity with CRDS during 10 s long mea-
surements by tuning the laser wavelength to the peak of the
202Hg hyperfine absorption line, as described in Sect. 3.3.
To measure “off-line” background extinction (i.e., extinction
losses other than Hg0 absorption: mirror losses,αM , and
background extinction,αBG; see Eq. 3), we shifted the laser
wavelength by –0.02 nm off peak202Hg absorption (i.e., off-
line) immediately after the “on-line” measurements using a
computer-controlled Littrow grating in the dye laser. Hg0

absorption was determined as a differential measurement be-
tween these on-line and off-line absorption measurements,
and measurements were repeated six times for each Hg0 con-
centration shown in Fig. 4. In addition, we performed differ-
ential measurements of the cell supplied with Hg0-free air to

measure the background extinction difference between “on-
line” and “off-line” measurements in the absence of Hg0, and
all data were corrected for this offset.

The vapor generation system could supply Hg0 concen-
trations ranging from 0.2 ng m−3 to 573 ng m−3. Our gen-
eration vapor setup provided very stable Hg0 concentra-
tions during periods as long as 30 min, generally within
a 0.05 ng m−3 range as assessed by 5-min resolution Hg0

Tekran measurements. Figure 5a–d shows direct compar-
isons between Hg0 absorption coefficientsαHg obtained from
the CRDS and Hg0 concentrations as measured by the 2537B
analyzer over the range tested. We observed excellent linear
correlations between CRDS measurements and the 2537B
analyzer across the whole range of Hg0 concentrations with
a coefficient of variability,r2, of more than 0.99 and a
linear slope of 6.03 Mm−1

/
ng m−3. Only Hg0 concentra-

tions lower than 50 ng m−3 (Fig. 5b; 90% of the data) were
considered to accurately evaluate the slope and avoid bias
due to higher and isolated values. The relationship demon-
strated that both analyzers show an excellent, linear response
through a large range of Hg0 concentrations, which is an im-
pressive result given the different mechanism of detection of
the two approaches (i.e., pre-concentrations and atomic fluo-
rescence detection versus CRDS detection). Figure 5c details
performance of the CRDS at low-level Hg0 concentrations in
the 0.2 to 6 ng m−3 range, with a particularly important range
of below 1.7 ng m−3 representing sub-ambient Hg0 concen-
trations. Even at this low range, the relationship between
measured Hg0 concentrations and CRDS absorption is still
highly linear (r2>0.99). Error bars reported on CRDS ab-
sorption data represent three standard errors calculated for a
10 s time resolution (see Sect. 4.3 and Table 2), and Tekran
error bars correspond to three times standard deviation of
individual 5-min observations (2% of the background con-
centrations; i.e., 3×0.03 ng m−3 = 0.09 ng m−3, E. Prestbo,
personal communication, 2008, Tekran Inc. Canada).

Figure 5d shows results of 1 s CRDS absorption measure-
ments obtained by difference between the last second of each
on-line 10 s measurement and the first second of each off-line
10 s measurement. Errors bars reported on Fig. 5d represent
three standards errors calculated for a 1-s time resolution (see
Sect. 4.3 and Table 2). We observed similar mean concen-
trations at this high temporal resolution, and results are still
highly linear to respective Hg0 concentration measurements
observed at 5-min resolution. Both Figs. 5c and d, however,
indicate that low-level Hg0 measurements show higher vari-
ability between individual replicates, that is, repeated com-
parisons of CRDS and Hg0 Tekran measurements with a con-
stant Hg0 concentration flushed through the cell. This indi-
cates that either one or both of the two detection methods
approaches its sensitivity or detection limits, or that the sup-
ply rate of Hg0 injected into the instruments may show some
low-level concentration fluctuations. Section 4.3 discusses
possible reasons and uncertainties in CRDS detection.
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Fig. 5. Direct comparison of Hg0 absorption coefficients measured by the CRDS system and Tekran 2537B analyzer Hg0 mass concentrations
ranging from 0.2 to 573 ng m−3 A, from 0.2 to 35 ng m−3 B, and from 0.2 to 6 ng m−3 C andD. Panels A, B, and C show 10 s averaged
values, and error bars are three standard errors at 10 s time resolution. Panel D reports 1 s averaged values, and errors bars represent three
standard errors for a 1 s time resolution. For all panels, the error bars reported for the Tekran data correspond to three standard deviations of
individual 5-min observations (i.e., 0.09 ng m−3).

4.2.2 Ambient-air Hg0 vapor concentration
measurements

Ambient air measurements at 1-s time resolution using out-
side air drawn into the cavity are shown in Fig. 6a and b.
Measurements include triplicate wavelength scans performed
for (i) ambient air with a 0.2 µm cutpoint particulate filter
(dark blue lines); (ii) ambient air with a 0.2 µm cutpoint par-
ticulate filter and an ozone denuder (light blue lines; (iii) am-
bient air with a HEPA filter and ozone denuder (red lines).
Comparison scans included (iv) air supplied by an Hg-free
air generator (charcoal filtered air; black lines). The scans
of the laser wavelength show differences due to extinction
from ultra-fine particulate matter (PM; diameter<0.2µm)
and extinction due to ambient ozone. These differences are,
within the scan from 253.647 nm to 253.654 nm, indepen-
dent of wavelength and can be interpreted by looking at the
wavelength-averaged extinction values.

Extinction of the CRD cavity filled with zero air,
generated by the Tekran model 1100 zero-air genera-
tor, is 1407±36 Mm−1, which was indistinguishable from
the extinction of the cavity filled with ambient air fil-
tered by the HEPA-type particle filter and ozone denuder
(1422±20 Mm−1) through most of the scanned wavelength
spectrum (exception of the Hg0 absorption; see Fig. 6b and

discussion below). This demonstrates that ambient air ex-
tinction in the near vicinity of the Hg0 absorption wavelength
is caused by ozone and fine PM. If the HEPA filter is removed
from this setup, the cavity filled with ambient air filtered
with an 0.2µm cutpoint particle filter, followed by an ozone
denuder, has an extinction of 1711±20 Mm−1, correspond-
ing to an extinction of about 289 Mm−1 due to ultra-fine
PM. This extinction corresponds to a typical ambient ultra-
fine PM mass concentration of about 18µg m−3, assuming an
ultra-fine PM extinction efficiency of 16 m2 g−1 at 254 nm.
Removing the ozone denuder yields a cavity filled with am-
bient air filtered only by the 0.2µm cutpoint particle filter
with an extinction of 2224±14 Mm−1, corresponding to an
ozone extinction of about 513 Mm−1. For an ozone absorp-
tion coefficient of 15.9 Mm−1 ppb−1 (Molina and Molina,
1986), this corresponds to an ambient ozone concentration
of 32.6 ppb. Ozone and ultra-fine PM concentrations consis-
tent with these measurements are in a range typically found
in wintertime Reno, Nevada, USA.

Unfiltered ambient air also shows higher variability in ab-
sorption compared to zero air and ambient air free of ozone
and fine PM. We attribute this to concentration fluctuations
of ozone and fine particulates, and hence these observed
patterns emphasize the need to account for interferences of
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Figure 6 A. Measured absorption spectra of ambient air (colored lines) and charcoal-filtered air (black lines) across Hg0 absorption 1 

spectrum and nearby forbidden oxygen lines. Dark blue lines represent ambient air with a 0.2µm cutpoint particulate filter; light blue 2 

lines represent ambient air with a 0.2µm cutpoint particulate filter and ozone denuder; red lines represent ambient air with a HEPA 3 

filter and ozone denuder; and black lines represent air supplied by an Hg-free air generator (Tekran Model 1100 zero air generator). B. 4 
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Fig. 6. A Measured absorption spectra of ambient air (colored lines) and charcoal-filtered air (black lines) across Hg0 absorption spectrum
and nearby forbidden oxygen lines. Dark blue lines represent ambient air with a 0.2 µm cutpoint particulate filter; light blue lines represent
ambient air with a 0.2 µm cutpoint particulate filter and ozone denuder; red lines represent ambient air with a HEPA filter and ozone denuder;
and black lines represent air supplied by an Hg-free air generator (Tekran Model 1100 zero air generator).B Detailed look of the wavelength
scans of Hg-free air and ambient air free of ozone and fine PM. Lines are standardized to background absorption immediately below the Hg0

absorption wavelength (i.e., set to 0 Mm−1 absorption).

Table 2. Detection limits-equivalent to sensitivities-of the CRDS
prototype at different time resolutions. Absorptions (Mm−1) were
converted to concentrations (ng m−3) using the conversion factor
measured during comparison with the 2537B Tekran gas-phase an-
alyzer (experimental approach).

Time Sensitivity, Experimental sensitivity,
resolution detection limit detection limit

(s) (Mm−1) (ng m−3)

0.1 5.90 0.98
1 1.87 0.31
10 0.59 0.10
30 0.34 0.06

ozone and fine particulates. This can be achieved in three
ways: first, ozone and fine PM can be filtered out as shown
in Fig. 6a; (ii) interference can be explained by correspond-
ing measurements of ozone and fine particulate concentra-
tions and theoretical adjustment; or (iii) fast, high-frequency
tuning of the laser from “offline” to “online” of the Hg0 ab-
sorption spectrum allows for differential absorption measure-
ments and continuously accounts for interferences of ozone
and fine PM. This latter approach seems particularly useful
since both ozone and fine PM absorption are constant in the

vicinity of the narrow Hg0 absorption spectrum. This ap-
proach also allows for continuous calibration of variability in
system background extinction losses and other interferences
such as laser or PMT power fluctuations (see also discussion
below).

Figure 6b shows a more detailed look at the wavelength
scans of Hg-free air and ambient air free of ozone and fine
PM across the Hg0 absorption spectrum. Lines are stan-
dardized to the background absorption immediately below
the Hg0 absorption wavelength (i.e., set to 0 Mm−1 absorp-
tion). All ambient air graphs show the presence of Hg0,
clearly highlighting that ambient Hg0 can be detected at 1-s
time resolution by our CRDS system. Absorption of ambient
Hg0, however, is variable, ranging between approximately
9 and 23 Mm−1 depending on position within Hg0 absorp-
tion spectra and replicate scans. These results emphasize a
need for exact laser wavelength positioning during measure-
ments, which in our CRDS system can be implemented us-
ing the external mercury cell. Using the experimental rela-
tionship between absorption and Hg0 of 6.03Mm−1

/
ng m−3

(discussed above), the calculated concentration range is 1.5
to 3.8 ng m−3. Corresponding Tekran 2537B measurements
showed Hg0 concentrations between 2.0 and 2.3 ng m−3 for
the ambient scans and 0.0 ng m−3 for Hg-free air. We
attribute variability in CRDS ambient Hg0 measurements to
fluctuations in background extinction of the system, possibly
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induced by variability in laser power or PMT instability.
Indication for such instability is evident by variable peak
heights and shapes of adjacent oxygen lines which theoret-
ically should be identical in all scans due to constant O2 con-
centrations. A solution to address such variability is to con-
tinuously account for background system extinction variabil-
ity by frequent and high-frequency “online/offline” tuning of
the laser wavelength, as further discussed in Sect. 6.

4.3 Theoretical calculation of CRDS Hg0 detection
limits

Pulse-to-pulse laser signal variability of the CRDS Hg0 ab-
sorption losses at 253.65 nm has been used to estimate the
sensitivity and detection limits of our CRDS prototype. The
detection limit is defined as the threshold where the Hg0 ab-
sorption information is lost in the signal noise (i.e., detection
limit is the same as instrument sensitivity for the CRDS ap-
proach). At Hg0 concentrations lower than 50 ng m−3, we
consistently observed a standard deviation of the CRD sig-
nal between 3.7 and 4.6 Mm−1, with an average value of
4.4 Mm−1. Similar pulse-to-pulse variability also was ob-
served for all baseline measurements (i.e. when the laser
wavelength was tuned “off” the mercury absorption line).
For higher Hg0 concentrations, however, pulse-to-pulse vari-
ability increased and reached a maximum at 573 ng m−3, at
about 2% of the measured absorption signal. The reasons for
this increase in pulse-to-pulse noise at higher Hg0 levels are
currently unclear.

Table 2 reports absorption sensitivities (similar to de-
tection limits) in Mm−1 defined as three standard errors
for different averaging times and based on the mean stan-
dard deviation observed for the CRDS signal for more than
200 measurements (i.e., 4.4 Mm−1). Experimental sensi-
tivities in ng m−3 also shown in Table 2 were obtained
applying the conversion factor determined from compari-
son of our CRDS instrument with the Tekran 2537B an-
alyzer (i.e., 6.03Mm−1

/
ng m−3). Theoretical sensitivities

in ng m−3, calculated using the Hg0 absorption cross sec-
tion of 2.4×10−14 cm2 atom−1 determined by modeling the
hyperfine structure of the1S0-3P1 mercury transition (see
Sect. 4.1) and Eq. (4), were 21% lower than experimental
values reported in Table 2. At 1 Hz, our CRDS prototype
showed an experimental sensitivity of 0.31 ng m−3. Since in-
creases in CRDS averaging time (i.e., decreases in time res-
olution of the measurements) led to decreases in CRDS de-
tection limit, this value greatly decreases with longer average
times (e.g., to 0.06 ng m−3 at 30 s average times). These de-
tection limits are based purely on pulse-to-pulse signal vari-
ability, and many other factors may make it challenging to
reach such low detection limits. The calculation, however,
holds promising evidence that the CRDS approach is a feasi-
ble technology for use in atmospheric studies requiring Hg0

detection at background levels and below (i.e.,≤1.7 ng m−3).

5 Challenges and uncertainties in measurements

5.1 Uncertainty in Hg0 absorption cross section

Calculations of Hg0 concentrations based on CRDS absorp-
tion measurements and using Eq. (4) with an Hg0absorption
cross section,σHg, of 2.4×10−14 cm2 atom−1, yielded a
conversion factor of 7.33 Mm−1

/
ng m−3. Consequently,

our Tekran-based Hg0 concentrations (i.e., experimental ap-
proach) were 21% higher than Hg0 concentrations pre-
dicted by the theory. Using the higher value ofσHg,
3.3×10−14 cm2 atom−1, reported by Spuler et al. (2000)
would further increase the discrepancies between theoretical
and Terkan-based Hg0 concentrations. Currently, we do not
understand these discrepancies.

Accuracy and precision of the Tekran 2537B analyzer have
been evaluated in a number of studies (e.g., Ebinghaus et al.,
1999; Schroeder et al., 1995), and we do not doubt its re-
liance. The internal permeation source used for daily cali-
bration of the Tekran 2537B analyzer has been checked by
external injection of known quantity of Hg0 vapor in our
laboratory, and synchronized measurements using a second
Tekran analyzer connected with a common line yielded mea-
surements within 4% of each other. It is possible that there
may be some inherent problem with the modeling approach
used for calculation of the Hg0 absorption cross section in
our study, as well as in previous studies. Further develop-
ment of our absorption model including addition of satu-
ration processes may help to evaluate this problem. Until
this issue is resolved, however, we calibrate our CRDS mea-
surements by comparison with Tekran 2537B measurements
yielding a calibration factor of 6.03 Mm−1

/
ng m−3 and cor-

responding to a Tekran/CRDS-based absorption cross section
for Hg0 of 1.9×10−14 cm2 atom−1.

5.2 Variability of repeated CRDS absorption
measurements at constant Hg0 levels

Figure 5c shows that at low Hg0 concentrations between
0.2 and 6.0 ng m−3, some variability was observed in mul-
tiple 10 s CRDS absorption measurements that were tested
within respective 5-min duration Tekran observations. An in-
herent problem in advancing temporal resolution of sensors
is that high-frequency comparisons to lower time-resolution
sensors are impossible. Hence, it is possible that the vari-
ability of repeated CRDS absorption signals at seemingly
constant Hg0 levels could be due to true high temporal res-
olution fluctuations in Hg0 concentrations during measure-
ments, and that the Hg0 supply source – seemingly deliv-
ering constant Hg0 concentrations when time averaged and
quantified over the 5 min duration of the Tekran measure-
ments – exhibits fluctuations in Hg0 concentrations. To as-
sess this possibility, we investigated at 253.65 nm (i.e., at
the Hg0 line) temporal variability in the CRDS absorption
signals across a 5-min time span while stable Hg0 vapor
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Fig. 7. Temporal variability of the total absorption signal including
background and mirror losses at different time resolutions while a
stable Hg0 vapor concentration (i.e., 0.8 ng m−3) was supplied to
the cavity for a∼5-min time span.

concentrations were supplied to the cavity by the permeation
system (0.8 ng m−3, 1Hg0<0.1 ng m−3 over four sampling
cycles of the 2537B analyzer). Figure 7 shows temporal vari-
ability in total absorption at different sampling frequencies.
For each time resolution reported, we evaluated the maxi-
mum difference between the absorption value averaged over
5 min (i.e., 1297.87 Mm−1) and individual absorption values.
Fluctuations of individual measurement from the 5-min aver-
aged value were always lower than our instrument detection
limits estimated previously for the corresponding time reso-
lutions (cf. Sect. 4.3 and Table 2). For example, maximum
variation between the 10 Hz absorption signal and the 5-min
average was 0.46 Mm−1, when we estimated our instrument
detection limit at 10 Hz to be 0.59 Mm−1.

These results indicate that the Hg0 supply source was sta-
ble, and higher frequency temporal variations in Hg0 concen-
trations were unlikely to affect our instrument comparisons.
We used a cavity that was sealed air-tight for several hours
and was hence removed from potential Hg0 concentration
fluctuations from permeation source and the environment to
further investigate the temporal variability in absorption sig-
nal during 5-min periods. We observed similar patterns as the
ones reported in Fig. 7, confirming that variability in multiple
CRDS absorption measurements may be due to system fluc-
tuations discussed in the following section. Interestingly, di-
rect evaluations of standard deviations of the absorption sig-
nals at all time resolutions reported in Fig. 7 agree well with
previously reported sensitivities (Table 2) based on the 50 Hz
standard deviation (divided by the square root of the number
of averaged measurements). These experimental data thus
confirm the scaling of our CRDS prototype detection limit
with the inverse square root of averaging time.

5.3 Possible interferences due to background/mirror
extinction fluctuations, unstable baseline
absorption losses, and laser wavelength tuning

During “online-offline” wavelength tuning using the
computer-controlled Littrow grating in dye resonator,
we found slight offsets in absorption baseline losses de-
spite careful locking of the laser wavelength to the peak
absorption line of the202Hg isotope in the low pressure Hg0

cell. Such offset was low (in the range of∼0.1% of baseline
absorption), but this effect could contribute to variability
when the CRDS operates close to its detection limit.

Equation (3) shows that the total measured CRDS sig-
nal extinction is dependent on the Hg0 absorption coefficient
(αHg) and on (i) background extinction due to other gases
and/or particulate absorption and scattering (αBG) plus (ii)
extinction due to mirror losses (αM). To calibrate for these
losses, we performed differential “online/offline” measure-
ments through wavelength tuning with the assumption that
these losses (i.e.,αBG andαM) stay constant across the short
wavelength shift of 0.02 nm. If losses are dependent even to
a low degree on the wavelength shift, this may cause some
variability specifically at low Hg0 concentrations where the
Hg0 absorption coefficient (αHg) is extremely small com-
pared to these other extinction losses. Further, ifαBG and
αM are not perfectly stable in time, differential on-line/off-
line tuning following a 10 s measurement time may not be
fully accurate.

As mentioned in Sect. 4.2, measurements of CRDS ab-
sorption losses in laboratory-supplied air were adjusted by
a baseline value when the cavity was filled with Hg0-free
air (determined once per day). Although these adjust-
ments were very small and similar to each other (i.e., –
0.99±0.19 Mm−1), we observed some differences in Hg0-
free cell absorption values. Wavelength scans performed
during ambient air measurements also indicated that back-
ground absorption losses were variable in time and needed
to be accounted at high temporal frequency. Such variabil-
ity indicated the presence of possible low-level interferences
(e.g., by etalon effects, or others) contributing to observed
CRDS absorption fluctuations. Other instrument characteris-
tics such as unstable laser power, instability of the PMT, and
ring-down signal analysis fitting procedures also may con-
tribute to instrument noise and limit current instrument sensi-
tivity. We currently are working on implementation of a fully
automated “online/offline” switching procedure on a pulse-
to-pulse basis (i.e., at 50 Hz) using a custom piezo controller,
allowing for a differential measurement at a time resolution
of 25 Hz, which also will adjust continuously for system ex-
tinction losses other than Hg0. Such high-frequency tuning
is critical for accurate and continuous adjustment of variable
system background extinction losses and will greatly help de-
tection limits and sensitivity of the sensor at low, ambient
and sub-ambient Hg0 concentrations. Further, use of mir-
rors with a reflectivity higher than that of our current mirrors
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(i.e., reflectivity of 99.895%) would reduce the influence of
most issues discussed above. Such improvements in mirror
reflectivity will lead to direct improvement in system detec-
tion limits and sensitivity by effectively reducing mirror ex-
tinction losses and extending absorption pathlengths accord-
ing to Eqs. (6) and (7).

6 Conclusions and future developments

A laboratory CRDS system with greatly improved sensitivity
and capabilities for the fast-response, sensitive detection of
atmospheric mercury has been demonstrated and discussed.
Table 1 summarizes detection limits extrapolated to 1 Hz of
our CRDS system, previous CRDS and LIF spectrometers,
and analyzer Tekran 2537B and Lumex RA-915+. Current
instrument performance shows similar sensitivity and detec-
tion limit to the frequently used Tekran analyzer 2537B, al-
beit at higher time resolutions. Our CRDS laboratory proto-
type shows that measured Hg0 absorption is highly linearly
related to Hg0 concentrations detected by Tekran 2537B an-
alyzer across an Hg0 concentration range of four orders of
magnitude, from 0.2 ng m−3 to 573 ng m−3. Ambient air
measurements show strong absorption interferences of ozone
and fine PM, which can be accounted for either by filtering
or corresponding measurements of these constituents, or by
differential online/offline wavelength tuning to account for
their absorptions which are constant across a broad wave-
length next to the narrow Hg0 absorption band. Ambient
and sub-ambient Hg0 can be detected by our current proto-
type sensor, but variability and uncertainties exist at such low
concentrations-possibly due to instability of our CRDS or
laser system, unstable permeation or ambient Hg0 concentra-
tions, or other instabilities or interferences. Another remain-
ing challenge is to better reconcile theoretical calculations
of Hg0 concentrations using reported and modeled Hg0 ab-
sorption cross sections with concentrations measured using a
Tekran 2537 mercury sensor. This issue, however, could be
avoided by direct cross-calibration of our CRDS system with
a Tekran analyzer 2537B.

With an experimental sensitivity of 0.10 ng m−3 at a 10 s
time resolution, our prototype may evolve into a real-time
sensor for atmospheric gaseous elemental mercury. Notable
improvements to the instrument performance currently un-
derway include (i) automatic pulse-to-pulse tuning for dif-
ferential “online/offline” wavelength measurements using a
custom piezo controller; (ii) automated wavelength locking
to the peak Hg0 absorption spectrum using our low-pressure
mercury cell; (iii) integration of the sensor into a mobile rack
and fiber coupling of the laser signal into the cavity for easy
field deployment of the system; and (iv) development and use
of higher reflectivity mirrors to further advance sensitivity of
CRDS measurements.
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