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Abstract. Ambient particulate matter (PM) samples were
collected on quartz filters at a rural site in central Ontario dur-
ing an intensive study in 2007. The concentrations of organic
carbon (OC), pyrolysis organic carbon (POC), and elemental
carbon (EC) were determined by thermal analysis. The con-
centrations are compared to the organic aerosol mass con-
centration (OM) measured with an Aerodyne C-ToF Aerosol
Mass Spectrometer (AMS) and to the particle absorption co-
efficient (basp) obtained from a Radiance Research Particle
Soot Absorption Photometer (PSAP). The total organic mass
to organic carbon ratios (OM/OC) and specific attenuation
coefficients (SAC=basp/EC) are derived. Proportionality of
the POC mass with the oxygen mass in the aerosols esti-
mated from the AMS offers a potential means to estimate
OM/OC from thermal measurements only. The mean SAC
for the study is 3.8±0.3 m2 g−1. It is found that the SAC
is independent of or decrease with increasing particle mass
loading, depending on whether or not the data are separated
between aerosols dominated by more recent anthropogenic
input and aerosols dominated by longer residence time or
biogenic components. There is no evidence to support an
enhancement of light absorption by the condensation of sec-
ondary material to particles, suggesting that present model
simulations built on such an assumption may overestimate
atmospheric warming by BC.
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1 Introduction

Carbonaceous species, consisting of organic carbon (OC)
and elemental carbon (EC), make up a large fraction of the
fine atmospheric particulate mass in urban, rural, marine, and
forest environments (e.g., Hildemann et al., 1996; Novakov
et al., 1997; Middlebrook et al., 1998; Alves et al., 2006;
Zhang et al., 2007; Bahadur et al., 2009). These species in-
fluence air quality, human health, and climate change (e.g.,
Japar et al., 1986; Dockery et al., 1992; Novakov and Penner,
1993; Cheng and Tsai, 2000; Satheesh and Moorthy, 2005;
Viana et al., 2008).

Fine particle OC comes from direct emissions (e.g., fos-
sil fuel combustions, biomass burning) as well as from the
formation of secondary organic aerosol (SOA). SOA can
be formed from both anthropogenic and biogenic origins as
VOCs come from many anthropogenic and biogenic sources
(Seinfeld and Pandis, 1998; Hoffmann et al., 1998; Cabada
et al., 2002; Alfarra et al., 2006; Robinson et al., 2007;
Laaksonen et al., 2008; Kroll and Seinfeld, 2008). Impor-
tant biogenic VOCs include isoprene, monoterpenes, and
sesquiterpenes from vegetation (Pio et al., 2001; Kavouras
et al., 1998; Fehsenfeld et al., 1992), while the major anthro-
pogenic VOCs include various aromatics, alkanes, alkenes,
and carbonyls from vehicle emissions (Volkamer et al., 2006;
Fraser et al., 1998; Kawamura and Kaplan, 1987). VOCs
are oxidized in the atmosphere primarily by hydroxyl radical
(OH), ozone (O3), and the nitrate radical (NO3). Thus, the
amount of SOA formed is related to the amount of VOCs as
well as the available amount of oxidants.
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EC comes from direct emissions (i.e., primary sources)
due to incomplete combustion at the source (Horvath, 1993).
Major EC sources include biomass burning and fossil fuel
combustions. In the past, the term “soot” has also been used
to refer to a substance produced during incomplete combus-
tions (which generally contains primarily EC and some OC).
The ratio of OC to EC in ambient aerosols varies due to dif-
ferent emission sources and can be increased by secondary
processes.

Various thermal and thermal/optical techniques have been
used to analyse OC and EC from quartz filter measurements
(e.g., Huntzicker et al., 1982; Cachier et al., 1989a, b; Turpin
et al., 1990; Chow et al., 1993, 2001; Huang et al., 2006).
Classifications of the OC and EC using the different tech-
niques are subject to the corresponding operating conditions,
and therefore, the OC/EC determination is operationally de-
fined (Chow et al., 1993, 2001). The distinction between OC
and EC is complicated by the formation of charred organic
carbon during the thermal separation procedure. Pyrolysis
organic carbon (POC), usually referred to as charred OC, is
the thermo-decomposed organic matter formed in a pure he-
lium environment. Charred OC has similar morphological
features as the source OC and is thermally decomposed at
lower temperatures than EC (Han et al., 2007). The amount
of charred OC depends on many factors, such as the nature
of OC, the mass concentration of oxygenated compounds,
heating temperature, heating periods, and the supply of oxy-
gen (Gelencśer, 2004; Cachier et al., 1989a, b). In the past,
charred OC is often treated as an analysis artifact during ther-
mal analysis and not much attention was given to its potential
usage in relating to aerosol composition. Laboratory studies
suggest that the amount of POC, defined as the carbon ob-
tained via a thermal method from 550◦C to 870◦C under
pure helium, is related to the amount of oxygenated organic
carbon in the particles (Huang et al., 2006). Thus, the quan-
tity of the POC might be able to provide some insights into
SOA formation via photochemical oxidations.

The relative level of oxidation of the organic material in
the atmospheric aerosol (OM/OC) has been used as an esti-
mate of the degree of chemical processing in the atmosphere
(de Gouw et al., 2005; Aiken et al., 2008). The value of
the OM/OC for ambient aerosols is subject to many factors,
including the methodology in estimation (Turpin and Lim,
2001). In the past, various methods were used to estimate
OM/OC for atmospheric aerosols by different authors; these
are summarized in Table 1. A factor of 1.4 was first de-
termined by White and Roberts (1977) using the data from
Grosjean and Friendlander (1975). Turpin and Lim (2001)
re-calculated the OM/OC ratio for several published studies
and suggested the use of values of 1.6 and 2.1 for OM/OC
for urban and rural sites, respectively. Russell (2003) used
Fourier Transform InfraRed (FTIR) spectroscopy to estimate
OC for computing OM/OC and found that 90% of the results
were within the range from 1.2 to 1.6, with an average of
1.4. El-Zanan et al. (2006) estimated OM and OC in solvent

extracts of the archived filters from IMPROVE (Interagency
Monitoring of Protected Visual Environments) network for
US national parks and found that OM/OC ranged from 1.6
to 2.6. Applying the mass balance method to the same sam-
ples, El-Zanan et al. estimated the value of OM/OC to vary
between 1.5 and 2.2. An average of 2.1 was found across
IMROVE network. Bae et al. (2006) applied a reconstructed
mass balance technique to 3-year measurements at two mea-
surement sites and found that the value of OM/OC ranged
from 1.5 to 1.9 at the rural site and from 1.3 to 1.6 at the urban
site, with the rural results exhibiting a discernable seasonal
pattern. Zhang et al. (2005a) applied a de-convolution tech-
nique to AMS mass spectra measured in Pittsburgh (Zhang et
al., 2005b) to extract the mass spectra for oxygenated organic
aerosol (OOA) and hydrocarbon-like organic aerosol (HOA).
Based on them/z ratios in the individual spectra, they esti-
mated the mean OM/OC was 1.8. Aiken et al. (2008) used
the sum of the CxHyOz and Cx:Hy fragments measured with
a High Resolution Time-of-Flight AMS sampling ambient
particles in Mexico City and found the average OM/OC was
1.71 and the range over 6 days was 1.41 to 2.15. These previ-
ous studies indicate that the OM/OC ratio in ambient aerosols
varies from 1.2 to 2.2, due to influences from primary emis-
sions and secondary formations. It is noted that the uncer-
tainties of those methods might also cause some differences
in the estimations. To our knowledge, there is not a method
using thermal measurements only to estimate OM/OC ratio
(which will be explored in this study).

The specific attenuation coefficient (SAC) is the ratio of
the light absorption coefficient (basp) to the EC mass con-
centration. It is a measure of the relative effectiveness of
light absorption by EC. Thebasp is usually determined by
Aethalometers or by Particle Soot Absorption Photometers
(PSAP), whereas the EC is measured by a thermal or ther-
mal/optical method (Jennings and Pinnick, 1980; Japar et
al., 1986; Sharma et al., 2002). Estimates of the SAC, based
on absorption measured with Aethalometers or Particle Soot
Absorption Photometers (PSAP), vary from 2 to 55 m2 g−1

(Liousse et al., 1993; Snyder and Schauer, 2007). Variations
in SAC are caused by differences in the particle composi-
tion, size, shape, structure and refractive index, including the
possible presence of less absorbing components in the par-
ticles (Bond and Bergstrom, 2006; Bond et al., 2006; Li-
ousse et al., 1993), and hence the SAC will differ from site
to site (Liousse et al., 1993; Sharma et al., 2002). Exper-
imental factors also influence the estimate of the SAC: the
thickness of the filter used in an optical instrument to mea-
sure the light absorption (i.e., a thicker filter allows particles
to become more deeply embedded in the filter matrix; Sny-
der and Schauer, 2007); the definition of EC in the thermal
or thermal/optical method; filter-based light absorption mea-
surements can have artifacts due the deposition of additional
light scattering OM and inorganics onto the quartz fibers in
the filter medium (Moosm̈uller et al., 2009; Subramanian et
al., 2007).
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The effective value of the SAC in the atmosphere may in-
crease through a lensing effect by non-absorbing OM or inor-
ganics (e.g. sulphates, nitrates) condensing onto an EC core
(e.g., Bond et al., 2006; Cappa et al., 2008; Lack et al., 2008),
and it may decrease if the EC core collapses (Lewis et al.,
2009; Liousse et al., 1993; Bond and Bergstrom, 2006; Fuller
et al., 1999; Iskander et al., 1991). A better understand-
ing of the influence from non-absorbing materials on light
absorption helps to improve the prediction of aerosol light
absorption by fine black carbon aerosols in the atmosphere,
which eventually leads to better prediction of the global cli-
mate forcing.

Here we discuss measurements from an intensive cam-
paign at a rural site about 75 km north of Toronto, Ontario.
OC mass concentrations (determined by thermal analysis of
quartz filters) are combined with measurements of OM mass
concentrations (obtained from a C-ToF Aerodyne Aerosol
Mass Spectrometer, i.e., C-ToF-AMS) to estimate OM/OC.
The POC and EC were also determined from the thermal
analysis of the quartz filters. The SAC is estimated from the
particle light absorption coefficient (basp) and the EC from
the filters. Because the sampling location is influenced both
by air masses from the south with higher aerosol loadings
and cleaner air masses from the north, this provides the op-
portunity to study the variations of the OM/OC and SAC for
aerosols with different sources and lifetimes. We examine
the relationship between the measured POC mass and the
level of oxygenation of the ambient aerosol as well as the
variation of the SAC with increased fine particle mass load-
ing.

2 Sampling and measurements

2.1 Location of the study

During the late spring of 2007, a one month intensive field
study was conducted at the Centre for Atmospheric Research
Experiments (CARE) of Environment Canada located near
Egbert, Ontario (44◦12′ N, 79◦48′ W, 251 m a.s.l.), Canada.
About 70 km NNW of the city of Toronto, CARE is sur-
rounded by crop land with no major local anthropogenic
sources. Air that reaches the site from regions to the
south contains anthropogenic pollutants originating within
two days of urban and industrial areas of southern Ontario
and the northeastern United States (Rupakheti et al., 2005;
Chan and Mozurkewich, 2007). By comparison, air from the
north is on average relatively clean; although when the air
passes over Sudbury, Ontario, about 310 km NNW of CARE
the sulphate measured at CARE often increases due to the
SO2 emission from the metal refineries near Sudbury. Dur-
ing this study, there were periods when SOA formation from
terpenes emitted from forests north of the site contributed
significantly to the aerosol mass (Slowik et al., 2009). While
such biogenic aerosols may also contribute to SOA in the

southern air masses, such contributions are difficult to distin-
guish from the relatively large anthropogenic sources and the
subsequent SOA formation.

2.2 Sample collections and measurement methods

2.2.1 Integrated quartz filter measurements

Daily samples of particles were collected on 47-mm pre-
fired quartz filters during from 15 May to 15 June 2007
for OC/EC analysis. Ambient air was sampled through a
1.9 cm inner diameter stainless steel tube with an inverted
U-shaped inlet located about 10 m above ground. A 1.0 µm
cyclone was installed at the intake and surrounded with a
metal shield to prevent rain drops or snow from entering it.
The samples were collected at a flow rate of 31.0 L min−1.
Blank filters were taken at different times during the course
of the study. All filters were stored in freezers (< −20◦C)
and analyzed after the field study. The OC, POC, and
EC were measured by a thermal method instead of a ther-
mal/optical method although a thermal-optical transmittance
(TOT) OC/EC analyzer was used (manufactured by Sunset
Lab: www.sunlab.com). This thermal separation method
(also called “EnCanTotal-900” method) was originally de-
veloped for OC/EC isotope measurements. In the method,
no laser beam was used for OC/EC separation and much
longer retention times were used for each individual carbon
fractions to ensure good baseline separation (Huang, et al.,
2006).

During each analysis run (using EnCanTotal-900
method), a 1.5 cm2 punch of the quartz filter is placed on a
quartz boat that sits inside the TOT analyzer. Then, stepwise
heating (from room temperature to 900◦C) is applied to
the filter to separate different carbon fractions. Most of the
low molecular weight non-refractory organic carbon (OC)
masses are released at temperatures up to 550◦C under an
oxygen-free and VOC-free He flow. In the second stage,
the temperature is increased to 870◦C to release carbonate
carbon (CC) and the pyrolysis organic carbon (POC). The
term POC is used here to refer to the carbon mass released
from 550◦C to 870◦C under pure helium environment,
excluding carbonate carbon. The POC includes the charred
OC formed during the first thermal stage (550◦C) and
the refractory OC (including both oxygenated and non-
oxygenated) that possess relatively high bonding energy
and could not be released completely at temperatures up
to 550◦C. As shown from laboratory studies (Huang et al.,
2006), the POC mass is generally related to the amount of
oxygenated OC with no POC identified in the pure n-alkanes
and PAHs mixtures. Isotope measurements are required
to distinguish between CC from POC during the second
stage. Previous isotopic measurements from filter samples
collected at Egbert showed that insignificant amount of
CC was found, indicating minimum impacts from soil dust
and sea-salt aerosols (main sources of CC), and the carbon
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Table 1. A list of the OM/OC ratio obtained from various authors
by different methodologies.

OM/OC ratio Source

1.4 White and Roberts (1977)
1.6 (urban) Turpin and Lim (2001)
2.1 (rural) Turpin and Lim (2001)
1.5 (forest) Pio et al. (2001)

1.2–1.6 Russell (2003)
1.6–2.6 El-Zanan et al. (2006)

1.3–1.6 (urban) Bae et al. (2006)
1.5–1.9 (rural) Bae et al. (2006)

1.8 Zhang et al. (2005b)
1.4–2.2 Aiken et al. (2008)

fraction released during the second stage (550–870◦C)
was dominated by POC (Huang et al., unpublished isotope
data); negligible amount of CC is to be assumed for the
measurements of all samples from the 2007 field study. At
the final stage (i.e., the third stage), all the elemental carbon
is released at 900◦C with the supply of oxygen (10% O2
with 90% He). In this thermal method, EC is separated
from POC due to the greater resistance of the former to
thermal pyrolysis, relative to the latter. The released CO2
from each stage is reduced to CH4 inside the methanator in
the presence of Ni and H2, and finally measured by a flame
ionization detector (FID). The retention time used in each
step can be found in Huang et al. (2006). The accuracy,
precision, and linearity range of this method using the TOT
analyzer are 0.2, 0.1, and 1–17 µg cm−2, respectively (Huang
et al., 2006). The majority of the measurements (>90%)
in this study were conducted within the linearity range of
the analyzer. A constant OC blank correction, obtained as
the average value of all blank filters taken during the field
campaign, was applied to all sample filters in the study. The
OC values for all samples after the blank correction are more
than twice of the standard deviation of all the blank filters.

2.2.2 Continuous measurements

An Aerodyne C-ToF-AMS was used to make 5-min av-
eraged mass concentration measurements of OM, sulphate
(pSO2−

4 ), and nitrate (pNO−

3 ) in submicron particles. A
short description follows; details on the design and opera-
tion of the AMS are available elsewhere (e.g., Jayne et al.,
2000; Jimenez et al., 2003; Allan et al., 2003; Drewnick et
al., 2005). Inside the AMS, aerosol particles are focused into
a narrow beam in an aerodynamic lens and accelerated to
a velocity dependent on their vacuum aerodynamic diam-
eter. The particles impact on a resistively heated surface
(∼600◦C), and the volatile and semi-volatile components of
the particles vaporize. The vapour is ionized by electron im-
pact and the positive ions are analyzed using time of flight

mass spectrometry. The AMS was operated in the com-
mon mode of switching between measurements of total mass
concentrations and size-dependent mass concentrations. The
AMS transmission efficiency (TE) is close to 100% for parti-
cles from about 100–700 nm vacuum aerodynamic diameter
(Liu et al., 2007). We include here measurements from a
High Resolution Time of Flight Aerosol Mass Spectrometer
(HR-ToF-AMS) that was operated beside the C-ToF-AMS to
provide a direct estimate of the O mass concentration in the
particles. Otherwise, the mass concentrations reported here
(e.g., OM,pSO2−

4 , pNO−

3 ) are from the C-ToF-AMS. The
HR-ToF-AMS is similar to the C-ToF-AMS with the notable
exception that the ions produced in the HR-ToF-AMS travel
further thus allowing substantially increased mass resolution.
The intake point for the sampling by the AMSs was located
about 6 m above ground, and the ambient aerosol particles
were continuously pulled down in a 1.9 cm OD stainless steel
tube at a flow rate of approximately 25 L min−1.

Depending on their composition and morphology, some
of the particles that impact the oven inside the AMS may
bounce, resulting in a lower particle collection efficiency
(CE). The AMS CE is reduced mostly in situations for which
ammonium sulphate represents a larger fraction (>50%) of
the fine particle aerosol (Mattew et al., 2008). For this
study, the CE of the C-ToF-AMS was estimated from a com-
parison of the AMS and Scanning Mobility Particle Sizer
(SMPS) measurements as well as a comparison of larger par-
ticle events measured using the AMS light scattering module
with events detected by the mass spectrometer (Slowik et al.,
2009). For the HR-ToF-AMS, the CE was estimated from
a comparison of the AMS and SMPS measurements. Over
the study, the C-ToF-AMS CE varied from 0.5 to 0.8 with an
overall average value of 0.6, and a similar CE was obtained
for the HR-ToF-AMS. The C-ToF-AMS CE was averaged to
the same filter sampling period and then applied individu-
ally to the different C-ToF-AMS quantities. After that, the
CE corrected C-ToF-AMS quantities were used to compare
with the filter samples. These comparisons will be deficient
if there is significant mass between the upper TE of the AMS
(0.7 µm VAD) and the 1 µm cut of the cyclone.

A Radiance Research Particle Soot Absorption Photome-
ter (PSAP) was used to measure the light absorption coeffi-
cient of the ambient particles. The PSAP provides a mea-
surement of particle absorption by monitoring the change
in the amount of light transmitted through a quartz filter as
the particles are being deposited onto the filter. The light
absorption coefficient of the sampled particles is estimated
from the ratio of the rate of decreasing transmission (com-
pared to that through a blank filter at the wavelength of
567 nm) to the sample flow rate, using Beer Lambert law.
The original PSAP data for both studies are in 1-min reso-
lution. After removing occasional outliers and data periods
during which the transmittance falls below 50%, the in-situ
data were converted to hourly averages, and then integrated
to the same sampling interval as the filter measurements. All
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Table 2. Wind occurrence for filter measurements.

The breakdown of the wind occurrence in percentage for all filter samples. The first section of the table shows the results when all
wind direction data are used whereas the second section represents results excluding data with low wind speed. The predominant wind
direction is defined based on the criteria outlined in Sect. 3.1.

Filter start Include all data Exclude data<2 m s−1 Predominant wind
date South North South North direction

(120◦–240◦) (300◦–60◦) (120◦–240◦) (300◦–60◦)

15 May 2007 5 86 0 88 North
16 May 2007 0 54 0 35 Others
17 May 2007 57 39 33 67 Mixed
18 May 2007 43 36 0 100 North
19 May 2007 0 91 0 100 North
21 May 2007 47 35 25 75 Mixed
22 May 2007 100 0 100 0 South
23 May 2007 100 0 100 0 South
24 May 2007 65 0 65 0 South
25 May 2007 42 50 45 50 Mixed
27 May 2007 37 16 40 13 Mixed
28 May 2007 35 48 10 80 North
29 May 2007 100 0 100 0 South
30 May 2007 50 27 50 0 South
31 May 2007 64 14 100 0 South
1 Jun 2007 58 21 25 0 Others
2 Jun 2007 83 2 83 0 South
4 Jun 2007 70 26 40 60 Mixed
5 Jun 2007 30 57 8 92 North
6 Jun 2007 48 17 40 10 Mixed
7 Jun 2007 100 0 100 0 South
8 Jun 2007 26 65 31 63 Mixed
9 Jun 2007 27 60 0 100 North
10 Jun 2007 0 94 0 100 North
11 Jun 2007 0 100 0 100 North
12 Jun 2007 0 100 0 100 North
13 Jun 2007 52 13 0 17 Others
14 Jun 2007 91 9 100 0 South

the absorption coefficient measurements are corrected for fil-
ter sampling size and flows. Details of the operation and cal-
ibration of a PSAP can be found elsewhere (e.g., Bond et al.,
1999; Sharma et al., 2002).

3 Results and discussion

3.1 Characterization of carbonaceous species

Figure 1 shows the variations of OC, OCtot (i.e., OC+POC),
EC, the ratios of total organic carbon to elemental car-
bon (OCtot/EC) and total organic carbon to total carbon
(OCtot/TC) for 2007 spring study. Measurements of OM,
sulphate, andbasp, obtained by averaging the in-situ mea-
surements to the same sampling interval as the filter sam-
ples, are also included. With the notable exception of the

9–14 June biogenic period (Slowik et al., 2009), the OM,
basp, and sulphate vary correspondingly across the sampling
period, due to co-varying anthropogenic sources. The values
of OCtot/EC are opposite to the corresponding OM, sulphate
andbaspvalues.

In order to separate different source influences, we focus
on measurements taken within two wind sectors: northerly
(300◦ to 60◦; relatively clean air with some significant bio-
genic influence) and southerly (120◦ to 240◦; with a strong
anthropogenic influence). In most cases, back trajectories
(not shown here) are consistent with the local wind direc-
tions; hourly local wind directions are used to determine the
predominant wind direction for each filter sample. Periods
with mean wind speeds<2 m s−1 were excluded from the
analysis to avoid isotropic wind behavior (Kim and Hopke,
2004). Generally, the predominant wind direction for all
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Fig. 1. Variations of organic carbon (OC), total organic carbon (OCtot, i.e., OC+POC), elemental carbon (EC), total organic matter (OM),
sulphate, aerosol light absorption coefficient (basp), and the ratios of OCtot/EC and OCtot/TC during the 2007 spring study. Also given on
the graph is the predominant wind direction for each corresponding filter sampling period (N=north, S=south, M=mixed, O=others).

filter sampling periods is determined unambiguously (Ta-
ble 2). The predominant wind direction within the sampling
period of each filter measurement is based on two criteria:
1) the wind direction has to be within the given sampling
interval at least 50% of the time; 2) the second predomi-
nant wind direction can not be within the sampling period
more than 10% of the time. Based on these two criteria, the
predominant wind direction is categorized as “north” (N),
“south” (S), “mixed” (M: only criterion 1 is fulfilled), and
“others” (O, where the predominant wind direction is from
east or west and/or when criterion 1 is not fulfilled).

The values of EC,basp, OM and SO2−

4 are generally
higher in the southern air masses, whereas the OCtot/EC
and OCtot/TC ratios are generally higher in the northern air
masses (Fig. 1). The higher EC concentrations and lower
OCtot/EC in southern air reflect dominant contributions from
primary anthropogenic sources (e.g., diesel emissions) while
the relatively high SO2−

4 values imply influences from sec-
ondary formation via SO2 photo-oxidations. The relatively
high OM values, correlated with EC and SO2−

4 suggest the
contributions from both primary emissions and SOA.

9–14 June is an exceptional period that is identified as
the “biogenic period” based on the analysis of Slowik et
al. (2009). During the period, the winds were predominantly
from the north and the sulphate mass was<20% of the or-

ganic mass, there was a steady increase in the organic mass
concentration over a period of 5 days as the temperatures to
the north at Egbert steadily increased, monoterpenes (as mea-
sured with a Proton-Transfer Mass Spectometer) increased,
and the mixing ratios of acetylene (an anthropogenic tracer)
were relatively low. This is in contrast to the air masses from
the south for which acetylene VOCs and NOx increased sig-
nificantly and sulphate was a dominant component of the fine
particles. There are also a few other days with similar rela-
tive increases in OM in northerly air including 17, 22, and
30 May.

Table 3 shows the average concentrations for selected
species and the ambient temperatures during the field stud-
ies based on the predominant wind direction. The results for
the northern air masses are separated into three categories:
1) using all northern measurements (all), 2) including only
the biogenic period from 9–14 June (bio), and 3) excluding
the biogenic period (bg). During the biogenic period, the
average value of the OCtot/TC is 76±3%, close to the aver-
age value of 74±3% for the northern air masses during other
periods; these ratios are slightly higher than the 66±2% of
the OCtot/TC from the southern air masses due to the larger
contributions from EC.

Also included in Table 3 are the average val-
ues of OCtot/EC and OCtot/TC (means of the ratios;
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Table 3. Average values for different species, the average total organic carbon to elemental carbon ratio (OCtot/EC; OCtot=OC+POC), and
the average total organic carbon to total carbon ratio (OCtot/TC) measured during the 2007 study for different predominant wind directions.
Results for the northern air masses are calculated using all northern data (all), excluding the biogenic period from June 9-14 (bg), and only
the biogenic period (bio). The value given in the parenthesis is standard deviation of the mean (i.e., standard error). Also included are the
average temperatures during different periods. Organic carbon (OC), pyrolysis organic carbon (POC), and elemental carbon (EC) data are
obtained from filter measurements,baspdata are obtained from PSAP, OM data are from C-ToF-AMS.

2007 N (all) 2007 N (bg) 2007 N (bio) 2007 S

OC, µg m−3 1.6 (±0.4) 0.9 (±0.2) 2.5 (±0.5) 2.5 (±0.3)
POC, µg m−3 0.5 (±0.1) 0.4 (±0.0) 0.7 (±0.1) 0.9 (±0.1)
EC, µg m−3 0.7 (±0.1) 0.5 (±0.1) 1.0 (±0.1) 1.8 (±0.3)
OM, µg m−3 4.2 (±0.8) 2.4 (±0.6) 6.3 (±0.9) 9 (±1)
basp, (Mm)−1 2.0 (±0.3) 1.7 (±0.4) 2.4 (±0.3) 7.0 (±0.8)
OCtot/EC 3.3 (±0.4) 3.3 (±0.7) 3.3 (±0.5) 2.2 (±0.3)
OCtot/TC 0.75 (±0.02) 0.74 (±0.03) 0.76 (±0.03) 0.66 (±0.02)
Temp (◦C) 14 (±2) 11 (±2) 18 (±1) 21 (±1)

OCtot=OC+POC). Observations from other studies show
that the value of OC/EC derived either from the use of
emissions inventory data or ambient measurements with
limited SOA formation varies from 0.9 to 3.1 (e.g., Gray,
1986; Turpin and Huntzicker, 1991, 1995; Strader et al.,
1999; Cabada et al., 2004). With larger contributions of
SOA, the value of OC/EC can be much higher (e.g., 4.1–7.3
in Turpin and Huntzicker, 1991). At Egbert, the average
value of OCtot/EC is 2.2±0.3 for the southern air masses and
3.3±0.4 for the northern air masses. The larger OCtot/EC
values for the northern air masses suggest that SOA makes a
relatively larger contribution to the total organic carbon than
these from the southern air masses. This does not imply that
all organics in the southern air masses reaching Egbert are
from primary emissions. During the 2007 spring study, there
is evidence for significant SOA formation in the southern air
masses (Sect. 3.2.1).

The coefficients of determination (R2) between various
quantities when the air masses were from the south and from
the north are given in Table 4a and 4b, respectively. For the
southern air masses (N=8), theR2 values between EC and
POC, OC, OM are all 0.8–0.9, indicating that those compo-
nents likely originated from common sources. The corre-
spondingR2 values are 0.4–0.8 for aerosols from the north
(Table 4b) and 0.0–0.5 during the biogenic period. The lower
R2 for EC with POC, OC, and OM and the higher values of
OCtot/EC in the northern aerosol (Table 3) suggest a higher
contribution from SOA. Regional model simulations suggest
that the increase in SOA concentration for the northern bio-
genic period was primarily due to oxidation of monoterpenes
(Slowik et al., 2009).

Table 4a.The coefficients of determination (R2) between different
species measured during the 2007 spring study under heavy influ-
ence by southern air masses (N=8).

2007 South OC POC EC OM SO2−

4 basp

OC 1 0.8 0.9 0.9 0.6 0.5
POC 0.8 1 0.8 0.9 0.8 0.8
EC 0.9 0.8 1 0.9 0.7 0.7
OM 0.9 0.9 0.9 1 0.9 0.7

SO2−

4 0.6 0.8 0.7 0.9 1 0.8
basp 0.5 0.8 0.7 0.7 0.8 1

3.2 OM/OC ratio and POC

3.2.1 OM/OC and SOA formation

Atmospheric oxidation of organic compounds generally
leads to an increase in the oxygen content in the oxidized
products and thus increases the ratio of OM to OC. Contin-
ued partitioning of the oxidized products onto aerosol par-
ticles over time increases the OM/OC ratio of the aerosol
particles. One method for estimating the extent of atmo-
spheric oxidation of an urban air mass is using the toluene
to benzene ratio. Toluene and benzene are aromatic hydro-
carbons mainly emitted from anthropogenic sources. Reac-
tions of both toluene and benzene with O3 and with radical
NO3 are relatively slow, and the most significant atmospheric
removal process is by the reaction with OH radicals. Ex-
posed to the same OH levels, toluene reacts about five times
faster than benzene (Atkinson, 1990). For reasonable daily
averaged OH concentrations of 106 radicals cm−3, the atmo-
spheric lifetimes for toluene and benzene are about 1.9 and
9.4 days, respectively. Due to their different photochemical
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Table 4b. The coefficients of determination (R2) between different species measured during the 2007 spring study under heavy influence
by northern air masses. Values given in the table represent R2 (N=5) excluding the biogenic period (9–14 June). Values in the parenthesis
representR2 (N=4) during the biogenic period.

2007 North OC POC EC OM SO2−

4 basp

OC 1 0.5 (0.6) 0.4 (0.3) 0.5 (0.9) 0.0 (0.0) 0.7 (0.3)
POC 0.5 (0.6) 1 0.7 (0.0) 0.9 (0.6) 0.4 (0.0) 0.7 (0.7)
EC 0.4 (0.3) 0.7 (0.0) 1 0.8 (0.5) 0.3 (0.2) 0.9 (0.1)
OM 0.5 (0.9) 0.9 (0.6) 0.8 (0.5) 1 0.5 (0.0) 0.7 (0.4)

SO2−

4 0.0 (0.0) 0.4 (0.0) 0.3 (0.2) 0.5 (0.0) 1 0.1 (0.4)
basp 0.7 (0.3) 0.7 (0.7) 0.9 (0.1) 0.7 (0.4) 0.1 (0.4) 1

Fig. 2. The top panel shows the variations of the values of OM/OCtot and toluene/benzene for the 2007 study. Bottom panel shows the
difference in mass concentration between OM and OCtot (i.e., OM-OC-POC). Uncertainties are twice the standard error. Also included in
the bottom panel is the oxygen mass determined from the HR-ToF-AMS. The highlighted regions are the two periods with persistent southern
winds.

lifetimes, the ratio of toluene to benzene (Tol/Ben) is used as
an estimate of the photochemical aging of an air mass from
emission sources (e.g., Gelencsér et al., 1997), and an in-
crease in OM/OCtot with a decrease in Tol/Ben could be an
indicator for SOA formation.

The top panel in Fig. 2 shows the values of OM/OCtot
(blue solid line) and the values of Tol/Ben (orange solid line);
the latter are from the routine VOC measurements conducted

at the CARE site (Brickell et al., 2003). In the bottom panel
of the figure are the carbon excluded organic matter mass
concentration estimated from the difference in mass between
OM and OCtot (i.e., OM-OC-POC) and the approximated
oxygen mass concentration determined from the HR-TOF-
AMS. The HR-TOF-AMS ion fragments are quantified as
CxHy, CxHyOz, CxHyNj , and CxHyNjOz, using a custom
formulated algorithm (J. Liggio, personal communication;
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Table 5. The values of OM/OCtot observed during the 2007 field study under heavy influence by northern and southern air masses. The
value given in parenthesis is standard deviation of the mean (i.e., standard error). Also included are reference values of OM/OC observed
from primary biogenic emissions dominated environments, off coast background, as well as urban environments for comparison.

Data source OM/OCtot Comments Predominant wind direction

Egbert 2007 North
(all data points)

1.9 (±0.2) N=9, all measurements from north North

Egbert 2007 North (exclude 9–
14 Jun)

1.8 (±0.3) N=5, exclude biogenic period North

Egbert 2007 North
(only 9–14 Jun)

2.0 (±0.1) N=4, biogenic period North

Pio et al. (2001) 1.5 50 VOC oxidation products average concen-
tration (primary biogenic)

n/a

Turpin and Lim (2001) 1.2 Data from Rogge et al. (1993a) (primary bio-
genic)

n/a

Turpin and Lim (2001) 1.3 Data from Rogge et al. (1993b) (off coast
background)

n/a

Egbert 2007 South (all data
points)

2.5 (±0.2) N=8, all measurements from south South

Turpin and Lim (2001) 1.7 Data from Rogge et al. (1993b) (LA down-
town)

n/a

Turpin and Lim (2001) 1.6 Data from Rogge et al. (1993b) (west LA) n/a
Aiken et al. (2008) 1.7 ∼ 2.1 as Mexico City regional OM/OC from

aircraft
n/a

El-Zanan et al. (2006) 2.1 An average value across the IMPROVE net-
work

n/a

based on the work of Aiken et al., 2007, 2008). The covari-
ance in the O mass concentrations (bottom panel of Fig. 2)
derived from the two independent methods is relatively high
(R2=0.89). The discrepancies in the absolute mass concen-
tration between the carbon excluded organic matter and oxy-
gen from the two methods may be due to several experimen-
tal uncertainties, including filter measurements, estimation of
the collection efficiency (CE) of the AMS’ and a reduction
in the transmission efficiency (TE) of the AMS’ for larger
particles that may contribute significant mass at times, par-
ticularly at Egbert (Rupakheti et al., 2005). Also, the carbon
excluded organic matter mass includes not only O mass but
also masses from other atoms such as N and H.

Owing to the fewer anthropogenic sources to the north,
the Tol/Ben for the northern air masses is closer to unity and
shows less variation relative to the southern air masses. We
highlight two periods of persistent southern winds over a few
days that exhibit strong variations in Tol/Ben. These peri-
ods are shaded in Fig. 2. At the beginning of each period
(29 May–2 June or 22–25 May), there is a sudden switch of
air masses (from north to south), a rapid increase in Tol/Ben
followed by a decrease in Tol/Ben, and an increase in both
OM/OCtot and the oxygen mass concentration suggests SOA
formation. SOA may also be formed from the oxidations of
VOCs by O3 (day and night) and NO3 (nights), which would
not be strongly reflected in Tol/Ben.

3.2.2 OM/OC ratio in the northern and southern air
masses

The values of OM/OCtot and the associated predominant
wind direction are shown in Fig. 3. The results are also sum-
marized in Table 5; and the average values of OM/OCtot are
1.9±0.2 and 2.5±0.2 for the northern (all data) and south-
ern air masses, respectively. The higher OM/OCtot from the
south reflects contributions from both primary emissions and
SOA since the oxygenated OC (POC) and OM are highly
correlated with EC as well as SO2−

4 . The OM/OCtot during
the biogenic period is 2.0±0.1, slightly higher than the aver-
age of all data from the north, and suggests relatively more
SOA for that period, which is consistent with terpene oxida-
tion. The difference in the value of OM/OCtot between the
northern and the southern group may result from several fac-
tors, such as different composition of the air masses (e.g.,
the amounts of photochemical precursors and oxidants avail-
able) as well as the temperature difference between the two
groups, which may have an effect on various atmospheric
processes such as condensation, gas-to-particle partitioning,
and oxidation. For comparison, Pio et al. (2001) measured
the organic compounds present in the total suspended PM
collected in a forest in Central Greece during July and Au-
gust of 1997. Based on the 50 reported compounds that are
formed by direct oxidation from VOC emitted by vegetation
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Fig. 3. The daily OCtot concentration, integrated AMS OM measurements, and the value of OM/OCtot for the 2007 spring study. Un-
certainties are twice the standard error. Uncertainties in OM reflect only counting statistics and do not include uncertainties such as AMS
transmission and collection efficiencies.

(e.g., α-pinene andβ-pinene), the concentration weighted
OM/OC was estimated to be 1.5±0.01. The OM/OCtot val-
ues from this work are relatively higher than those reported
from other studies (Table 5), although within the range of Ta-
ble 1, which might reflect differences in measurement tech-
niques, unique conditions at the CARE location, or combi-
nation of both.

Possible uncertainties in the values of OM/OCtot arise
from a number of sources:

– The averaging of OM measurements over occasional
data gaps due to periods of zero checks, switching mea-
surement modes and instrumental problems (Slowik et
al., 2009) will result in random biases in the OM/OCtot
during periods of significant changes in the atmospheric
compositions;

– OM will be underestimated relative to the filter OC
when the OM mass concentration between the upper
end of the AMS TE and the cyclone used in the filter
measurements is significant, i.e.,∼500 nm to 1 µm;

– The estimated AMS CE does not sufficiently represent
the CE for the entire size distribution due to the different

compositions of the aerosol particles at different particle
sizes (Slowik et al., 2009);

– OC contamination of the sample filters due to trans-
portation and/or handling during sampling or analysis,
outside of the blank correction;

– OC artefacts from condensation during sampling as well
as reduction in OC due to evaporation during the sam-
pling (Turpin et al., 2000; Viana et al., 2006).

3.2.3 Estimation of the OM/OC ratios from POC

Huang et al. (2006) found that the concentration of POC de-
termined was related to the amount of oxygen mass in the
standards (e.g., no POC fraction was identified in pure OC
compounds and POC was identified in sucrose and glucose)
with a thermal method very similar to the one used here. The
OM/OC ratio can be derived as

OM

OC
=

Cmass+Omass+Nmass+Hmass+ ...

Cmass

OM

OC
= 1+

Omass+Nmass+Hmass+ ...

Cmass
(1)
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Fig. 4. Relationship between the carbon excluded organic matter mass (i.e., OM-OCtot or OM-OC-POC) and the POC mass for the 2007
study. Uncertainties are twice the standard error. Solid line is the least squares best fit for all data. Dotted curves represent 95% confidence
interval bands.

Figure 4 shows the relationship between the POC and the
carbon excluded organic matter mass (i.e., OM-OCtot or
OM-OC-POC). Note that the carbon excluded organic matter
mass includes not only O mass but also masses from atoms
such as N and H, this is equivalent to the numerator of the
right side of the equality in Eq. (1). The relationship between
the (OM-OCtot) and POC in Fig. 4 is wind direction indepen-
dent suggesting that this is more a result of the measurement
technique than the type of aerosol. More supporting informa-
tion is given in Fig. 5 for better understanding the relation-
ship between POC and other measured quantities. Figure 5a
shows the relationship between the POC mass and the es-
timated O mass from HR-ToF-AMS; this suggests that the
POC mass, defined as the carbon fraction released from 550
to 870◦C, is indeed related to the oxygenated compounds in
the aerosols. Figure 5b shows the relationship between the
POC mass and them/z44 to total organics mass ratio. The
m/z44 to total organics mass ratio is a general indicator of
the relative oxygen content in the total organic matter mass
measured from the C-ToF-AMS and it reflects the degree of
atmospheric oxidation in the measured aerosols. Together
with Fig. 5a, these results show that the increase in oxygen
content in the aerosols due to processing can be reflected on
the POC mass determined from the current thermal method.
The result in Fig. 4 provides an empirical solution to estimate
the carbon excluded organic matter mass concentration in the
ambient aerosols based on just the thermal measurements of
POC and OC. Substitute this relationship into Eq. (1) yields
the OM/OC ratio,

OM/OC≈ 1+
(8.3±0.8)×POC−(2.4±0.6)

OC+POC
for POC≥ 0.29 (2)

Note that base on the results from this study, Eq. (2) is
only valid for POC mass equal or larger than 0.29 µg m−3

as a minimum mass load on the filter is required in order
to get accurate measure of the POC mass. The quantities
“OC” and ”POC” on the right side of the equation are de-
fined in Sect. 2.2.1 and obtained by the thermal method (En-
CanTotal-900). Also, since the POC in the current ther-
mal method is defined differently than other thermal/optical
methods, such as IMPROVE and NIOSH, the above relation-
ship may not be valid for other thermal/optical method unless
the relationship between the POC determined from the differ-
ent methods has been established.

3.3 SAC and particle mass loading

3.3.1 SAC at Egbert

The particle light absorption coefficient (basp) increases with
the EC mass concentration (Fig. 6). The data are split be-
tween the northern and southern air masses as represented
by the blue triangles and red squares, respectively, and the
size of the marker is scaled to represent the amount of par-
ticle mass loading, defined as the sum of OM, sulphate, and
nitrate mass concentrations. The slope of the north data is
slightly lower than that of the south data, but since the num-
bers of data points are relatively low we can not say that the
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Fig. 5. (a) Relationship between the POC mass and the oxygen
mass estimated from the HR-ToF-AMS.(b) Relationship between
the POC mass and them/z44 to total organics mass ratio. The error
bars cover twice of the standard error (confidence level: 95%).

slopes differ with a high level of confidence. The slope of
the ordinary least squares regression for the combined north
and south data is 3.8±0.3 m2 g−1, which is within the SAC
range of 3.5–5.0 m2 g−1 reported by Sharma et al. (2002) for
Egbert.

3.3.2 Relationship between SAC and particle mass
loading

It is widely believed that the SAC will increase with particle
coating (e.g., Bond and Bergstrom, 2006; Bond et al., 2006).
We consider this through comparison of the SAC with the
particle mass loading as represented by the sum of sulphate,
nitrate and OM measured with the AMS (Fig. 7). We do
not have direct evidence that the EC is internally mixed with
the sulphate, nitrate and SOA, but since most of the sulphate
and nitrate and at least some of the OM are formed by sec-
ondary processes, it reasonable to conclude that the BC was

increasingly coated as the mass loading increased. Figure 8a
shows the variations of them/z44 to total organics mass ra-
tio as a function of particle mass loading. The relationship
reveals that the two quantities are positively correlated, sup-
porting the contention that photochemical oxidation played
an important role in the variations of the particle mass load-
ing for both south and north air masses. Although some of
the oxygenated OM may be primary, Fig. 8a suggests that
the use of particle mass loading as a surrogate for increasing
atmospheric oxidation at this rural site is reasonable. As for
the relationship between the SAC and particle mass loading
(Fig. 7), the slope for the northern air masses is−0.2±0.1
while the slope for the southern air masses is−0.1±0.0.
The slope of the combined north and south measurements
is nearer zero (−0.01±0.0). As the ordinary least squares fit
assumes the independent variable (particle mass loading in
this case) is error free, the geometric mean regression slopes
for the north and south data groups are also calculated using
the method of Zobitz et al. (2006). The geometric mean re-
gression slope is estimated by the ratio of the ordinary least
squares regression slope to the absolute value of the correla-
tion coefficient between the SAC and the amount of particle
mass loading. The geometric mean regression slopes for the
northern and southern air masses are−0.3 and−0.1, respec-
tively, indicating that the value of SAC at this rural site does
not increase with the particle mass loading. Information in
Fig. 8 provides further support. Figure 8b shows the varia-
tions of the SAC as a function of the estimated O mass mea-
sured from the HR-ToF-AMS. SAC values from the north
and the south show slightly decreasing trends with increas-
ing oxygen mass. In Fig. 8c, the value of SAC also shows a
negative relationship with increasing value in them/z44 to
total organics mass ratio.

We separate the data between north and south because the
sources and processes dominating the particles can be signif-
icantly different. The aerosol arriving from the north is much
less dominated by recent source anthropogenic input and has
relatively stronger contributions from natural sources (e.g.,
biogenic). The mass concentrations of all components are
low (Table 3) relative to those from the south, indicating the
limitation of source strength. The particles in the northern air
masses, particularly the black carbon (BC) component, i.e.,
the light absorption carbon, tend to have been transported
over longer distances and resided for a longer time in the
atmosphere. In contrast, much of the BC and secondary ma-
terial (e.g., sulphate, nitrate, OM) is more recent due to the
proximity of the urban and industrial areas over Toronto and
the northeast of United States. Temperatures accompanying
the northern aerosols are cooler, which can enhance nucle-
ation and condensation but the levels of precursors and ox-
idants in the northern air are much lower. Higher tempera-
tures with the southern air masses could promote photochem-
ical oxidations. Regardless of whether the data are separated
between north and south, there is nothing to indicate an en-
hancement in the particle light absorption due to the coating
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Fig. 6. Relationship between thebaspand the EC for the 2007 study. The data for the northern air masses are given in blue triangles while
the data for the southern air masses are given in red squares. Uncertainties are twice the standard error. The size of the marker represents the
amount of particle mass loading defined as the sum of OM, sulphate, and nitrate mass concentrations. Various lines represent the ordinary
least squares fit line for various sub data sets.

Fig. 7. Relationship between the specific attenuation coefficient (SAC) and the amount of particle mass loading, defined as the sum of OM,
sulphate, and nitrate mass concentrations, at Egbert for the northern (blue triangles) and southern (red diamonds) air masses. Uncertainties
are twice the standard error. Solid line represents the ordinary least squares fit line and the dotted curves represent the 95% confident interval
bands. Model I: the ordinary least squares regression; Model II: the geometric mean regression.
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Fig. 8. (a)Relationship between them/z44 to total organics mass
ratio and particle mass loading.(b) Relationship between the SAC
and the oxygen mass estimated from the HR-ToF-AMS.(c) Rela-
tionship between the SAC and them/z 44 to total organics mass
ratio. The error bars cover twice of the standard error (confidence
level: 95%).

of secondary materials on soot (Bond and Bergstrom, 2006;
Bond et al., 2006) at this rural site. The degree of potential

enhancement in light absorption depends on factors such as
the position of the soot particle within the coating (Fuller et
al., 1999), the amount and refractive index of the coating ma-
terials (Fuller et al., 1999; Slowik et al., 2007) and also the
different BC sources.

Many global models enhance light absorption by BC par-
ticles due to coating by secondary components (e.g., Jacob-
son, 2001; Chung and Seinfeld, 2002; Kim et al., 2008). The
present results, indicating a neutral or negative relationship
between the SAC and the amount of particle mass loading,
suggest that light absorption by BC may not be enhanced
with increasing processing in the atmosphere. Collapse of
the soot particle aggregates related to accumulation of sec-
ondary material has been suggested as a possible mechanism
for a reduction in the SAC (Lewis et al., 2009; Liousse et al.,
1993; Bond and Bergstrom, 2006; Fuller et al., 1995; Iskan-
der et al., 1991), although numerical calculations show that
soot collapse may either decrease or increase light absorption
by 10% or less (Liu et al., 2008). It is possible that the par-
ticles observed here are not included in the parameter space
explored by Liu et al. (2008). An increase in the soot particle
diameter can lead to a decrease in SAC (Bond et al., 2006;
Bond and Bergstrom, 2006; Dillner et al., 2001) and chemi-
cal transformation of soot over time may also have an affect
on the soot mass concentration (Decesari et al., 2002).

There is no evidence to indicate that artefacts in the PSAP
measurements led to the negative relationship between the
SAC and sulphate+nitrate+OM. The potential issues with the
PSAP measurements are as follows:

1. loading corrections, which have been applied following
Bond et al. (1999) and are correct to as applied within a
few % (Virkkula et al., 2005),

2. single scattering albedo corrections (Virkkula et al.,
2005) have not been applied here as Schmid et al. (2006)
did not found them necessary. Applying such correction
should further decrease the current absorption values for
increasing single scattering albedo caused by increasing
the total aerosol mass loading,

3. high humidities have been reported to increase reported
PSAP absorption (Arnott et al., 2003; Sedlacek and Lee,
2007) but the correction algorithm suggested by Schmid
et al. (2006) has not been used here, However, integrat-
ing the relative humidity measurements over the same
filter sampling period gives an average value of 34.6%
(SD=8.8%).

4. artefacts due to high OC and POC concentrations have
been reported to increase PSAP readings proportional
to OC concentrations (Cappa et al., 2008; Lack et al.,
2008), which does not seem to be the case in Fig. 7.

Owing to the influences from both long and mid range trans-
port, the absence of a positive relationship between SAC and
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the particle mass loading (Fig. 7) may be the result of sev-
eral factors, including an increase in soot particle diameter
due to coagulation at high mass concentrations in a plume,
collapse of the primary soot particle structure with increased
mass concentrations, and chemical transformation of soot
with time. Also, there may be a contribution from changes in
absorption by materials in the OM (i.e. brown carbon, Kirch-
stetter, 2004). Temperature differences between the northern
and southern air masses may play a role in enhancing photo-
chemical processes, affecting processes such as condensation
and gas-to-particle partitioning, but the temperatures in the
northern air mass during the biogenic period were unusually
high (Slowik et al., 2009).

4 Future work

These somewhat unexpected results reflect the complexity in
predicting aerosol light absorption of atmospheric BC when
a number of factors are contributing simultaneously. Further
examination of this requires:

– A need to measure BC inclusions smaller than 100 nm.

– A need to determine the mixing state of the ambient
aerosol.

– The study of light extinction by particles as BC is in-
creasingly coated by light scattering materials.

– A need to determine the relationship between the POC
or charred OC mass concentrations with different types
of oxygenated organic compounds (e.g. humic-like sub-
stances, organic sulfates, organic nitrates) to improve
quantification of POC.

5 Conclusions

The values of OM/OCtot for ambient fine particles col-
lected at a rural site from an intensive study in 2007 spring
were determined based on the OM measured with C-ToF-
AMS and OC determined from quartz filters by a ther-
mal analysis. Due to the impacts by different sources and
other temperature-induced atmospheric processes, the aver-
age value of OM/OCtot for the south and north air masses
were found to be 2.5±0.2 and 1.9±0.2, respectively. The air
masses from the south (i.e., strongly influenced by anthro-
pogenic emissions within 1–2 days of observation) generally
contained lower values of OC/EC, higher mass concentra-
tions of EC and sulphate, and higher values of OM/OCtot.
The higher OM/OCtot values from the south may imply the
impacts from both primary emissions and secondary OM for-
mations as the oxygenated OC (POC) and OM are highly cor-
related with EC as well as SO2−

4 . In contrast, the air masses
from the north (i.e., more influenced by biogenic emissions

or by the components with longer residence time) gener-
ally had higher values of OC/EC, lower mass concentrations
of EC and sulphate, and lower values of OM/OC. The air
masses from the north are generally much cooler than the
air masses from the south although an increase in tempera-
ture was also observed during the biogenic period from the
north. Although the temperature induced processes could not
be ignored (e.g. cooler temperature enhancing nucleation and
condensation vs. warmer temperature promoting photochem-
ical reaction), the difference in emission sources and their
strength likely play important roles in the variation of aerosol
compositions at the site.

The mass concentrations of POC determined from the
thermal filter method were proportional to the carbon ex-
cluded organic mass (which is dominated by oxygen mass)
in the particles (OM-OCtot). The relationship was found to
be independent of wind direction, suggesting it as a possible
means of estimating values of OM/OC in PM via the use of
thermal measurements only.

Values of the SAC of the ambient aerosol particles were
estimated based on thebasp measured with a PSAP and the
EC determined from the thermal method. The mean SAC for
the spring 2007 observations is 3.8±0.3 m2 g−1. The SAC
was examined in relation to the sum of the mass concentra-
tions of sulphate, nitrate and OM. Regardless of whether the
data are separated between north and south, there is nothing
to indicate an enhancement in the particle light absorption
due to the coating of secondary materials on soot as sug-
gested by others (e.g. Bond and Bergstrom, 2006; Bond et al.,
2006). We can not draw any conclusions as to the reasons for
this, but our observations indicate that the absorption of light
by soot with increasing levels of secondary materials, includ-
ing organic materials and sulphate, is more complicated than
that currently represented in models and requires consider-
able investigation.
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