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Abstract. Given the complex interaction between aerosol,
cloud, and atmospheric properties, it is difficult to ex-
tract their individual effects to observed rainfall amount.
This research uses principle component analysis (PCA) that
combines Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol and cloud products, NCEP Reanalysis at-
mospheric products, and rainrate estimates from the Tropi-
cal Rainfall Measuring Mission (TRMM) precipitation radar
(PR) to assess if aerosols affect warm rain processes. Data
collected during September 2006 over the Amazon basin in
South America during the biomass-burning season are used.
The goal of this research is to combine these observations
into a smaller number of variables through PCA with each
new variable having a unique physical interpretation. In par-
ticular, we are concerned with PC variables whose weight-
ings include aerosol optical thickness (AOT), as these may
be an indicator of aerosol indirect effects. If they are indeed
occurring, then PC values that include AOT should change
as a function of rainrate.

To emphasize the advantage of PCA, changes in aerosol,
cloud, and atmospheric observations are compared to rain-
rate. Comparing no-rain, rain, and heavy rain only
(>5 mm h−1) samples, we find that cloud thicknesses, hu-
midity, and upward motion are all greater during rain and
heavy rain conditions. However, no statistically significant
difference in AOT exists between each sample, indicating
that atmospheric conditions are more important to rainfall
than aerosol concentrations as expected. If aerosols are af-
fecting warm process clouds, it would be expected that strat-
iform precipitation would decrease as a function increasing
aerosol concentration through either Twomey and/or semi-
direct effects. PCA extracts the latter signal in a variable
labeled PC2, which explains 15% of the total variance and is
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second in importance the variable (PC1) containing the broad
atmospheric conditions. PC2 contains weightings showing
that AOT is inversely proportional to low-level humidity and
cloud optical thickness. Increasing AOT is also positively
correlated with increasing low-level instability due to aerosol
absorption. The nature of these weightings is strongly sug-
gestive that PC2 is an indicator of the semi-direct effect with
larger values associated with lower rainfall rates. PC weight-
ings consistent with the Twomey effect (an anti-correlation
between AOT and cloud droplet effective radius) are only
present in higher order PC variables that explain less than
1% of the total variance, and do not vary significantly as a
function of rainrate. If the Twomey effect is occurring, it is
highly non-linear and/or being overshadowed by other pro-
cesses. Using the raw variables alone, these determinations
could not be made; thus, we are able to show the advantage of
using advanced statistical techniques such as PCA for analy-
sis of aerosols impacts on precipitation in South America.

1 Introduction

Modeling and observational studies indicate that cloud prop-
erties in the vicinity of high aerosol concentrations can be
significantly altered (e.g. Ackerman et al., 2000; Penner et
al., 2004; Koren et al., 2005; Rosenfeld et al., 2006). Cer-
tain types of aerosols (e.g. sulfates) are water soluble and act
as excellent CCN for cloud liquid water droplets resulting in
an increase in available CCN for cloud formation. If atmo-
spheric conditions such as temperature, water content, and
vertical motion are held constant, increasing CCN will result
in smaller water droplets compared to a less polluted region,
increasing cloud albedo and reflecting more solar radiation
back into space. This is known as the first indirect, or the
Twomey effect (Twomey, 1977; Kaufman and Fraser, 1997;
Feingold, 2003). For example, Kaufman et al. (2005) ob-
served that liquid water drop effective radius (Rc) decreased
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by 32% when AOT increased from 0.03 to 0.43 over oceanic
regions between 5◦ N and−20◦ S. These changes were at-
tributed to an increase in smoke aerosols from the Amazon
(and central Africa) owing to an increase in biomass burn-
ing. The increase in albedo due to smaller drop sizes pro-
duced a cooling at the top of the atmosphere of−1.5 W m−2.
However, this relationship does not always occur as Peng et
al. (2002) observed a positive correlation between AOT and
Rc for highly polluted regions in the Arabian Sea.

A decrease in cloud droplet size has the additional effect
of delaying the onset of collision and coalescence in warm
clouds, reducing precipitation efficiency and increasing the
lifespan and the areal coverage of the cloud, which has been
labeled as the second indirect effect (Albrecht, 1989; Quaas
et al., 2004). Reducing precipitation efficiency also acts to
increase water loading, leading to an increase in cloud liq-
uid water path (LWP) and a corresponding increase in cloud
thickness, complicating the identification of the Twomey ef-
fect in observations (Reid et al., 1998; Schwartz et al., 2002).
Both the first and second indirect effects act to cool the atmo-
sphere, partially offsetting warming due to greenhouse gases
(Lohmann and Feichter, 2005). However, absorbing aerosols
such as soot from biomass burning can suppress cloud for-
mation by warming the atmosphere, increasing evaporation
of water droplets and also increasing atmospheric stability,
which is known as the semi-direct effect (Hanson et al., 1997;
Ackerman et al., 2000; Johnson et al., 2004).

Given the complex interaction between atmospheric con-
ditions, aerosol concentrations, and cloud properties, extract-
ing aerosol effects on cloud properties and rainfall from an
observational perspective is challenging under the best of cir-
cumstances (e.g. Brenguier et al., 2003; Quaas et al., 2004,
2008). Both the first and second aerosol indirect effects and
the semi-direct effect described above should lead to a re-
duction in precipitation compared to less polluted regions
(Ramanathan et al., 2001). While the relationship between
aerosols and cloud properties has been well established, the
effect on precipitation has only been examined from an ob-
servational perspective on a limited basis (e.g. Rosenfeld et
al., 2006; Martins et al., 2008). Using numerical model-
ing output, Martins et al. (2008) observed that increases in
aerosol concentration generally reduced rainrate values as-
sociated with warm rain processes (<5 mm h−1). Numeri-
cal modeling studies by Teller and Levin (2006) and Khain
et al. (2005) have also noted that less precipitation occurred
during high levels of pollution during warm cloud processes.

However, Andreae et al. (2004), Lin et al. (2006), and Mar-
tins et al. (2008) have also observed an increase in precipi-
tation associated with an increase in pollution, at least for
high rainrate examples (>5 mm h−1). Since biomass burn-
ing aerosols delay the onset of precipitation through slower
droplet growth, the drag on updrafts produced by raindrops
is reduced, allowing a greater number of smaller droplets
to reach higher altitudes, causing additional latent heat re-
lease when they freeze (Martins et al., 2008). The resulting

increase in buoyancy in turn creates an environment for fa-
vorable for convective precipitation, which at least for local-
ized regions, can more than offset the decrease warm process
precipitation due to pollution. Since this effect impacts the
likelihood of convective rainfall, it is labeled the “convective
effect” for the remainder of this work, While modeling and
observational evidence for this occurring exists (Khain et al.,
2005; Lin et al., 2006), which effect is dominant over large
regions remains unclear.

This research focuses on the warm cloud component of
these processes where we hypothesize that if aerosol indi-
rect (or semi-direct) effects are indeed occurring, the result-
ing decrease in collision and coalescence and/or the increase
in atmospheric stability should result in a decrease in strat-
iform precipitation amount compared to the same environ-
ment in more pristine conditions. The combination of these
various processes is hereafter referred to as “aerosol effects”.
TRMM-PR separates precipitation into stratiform vs. con-
vective elements using the observed radar reflectivity charac-
teristics allowing for an assessment on the importance of pre-
cipitation type relative to aerosol indirect effects. Extracting
the physical signals from these data is a difficult task given
the uncertainties in precipitation measurements and the in-
fluence of many other atmospheric conditions to rainfall, re-
quiring the implementation of additional analysis techniques.

To accomplish this task, this research combines aerosol
and cloud data from the MODIS with atmospheric condi-
tions provided by NCEP Reanalysis and rainrate data de-
rived from the precipitation radar onboard the TRMM satel-
lite. Available parameters include aerosol optical thickness,
cloud optical thickness, liquid water droplet effective radius
(from MODIS), wind speed and direction, humidity, temper-
ature, vertical motion (from NCEP), and finally rainrate and
rain-type from TRMM-PR. Combining these parameters is a
crucial step for unraveling these effects, but also introduces
significant challenges. Given the high correlation between
many of these parameters, deriving a statistically significant
relationship between parameters such as AOT and rainrate
alone is challenging. Multiple linear regression techniques
using aerosol, cloud, and atmospheric properties have been
used to examine the presence of aerosol indirect effects (e.g.
Kaufman et al., 2005). For example, Kaufman et al. (2005)
estimated that the effect of aerosols and independent meteo-
rological observations relative to cloud cover to be roughly
equal, but that changes in aerosol and cloud cover due to the
same atmospheric conditions occurred only 30% of the time.
Thus, 70% of the change in cloud cover in the Atlantic was
attributed to dust aerosols.

The high correlation between various parameters makes
physical interpretation if individual variables in the regres-
sion equation difficult, limiting their usefulness. While it
is possible to combine various atmospheric parameters into
more complex variables such as the Cloud Work Function
(Lin et al., 2006), related cloud and aerosol parameters re-
main left out. To remedy this situation, we apply PCA to the
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Figure 1. Monthly averaged AOT (a), TRMM rainrate in mm hr-1 (b), and COT (c) over South America for 3 
September, 2006. Overlaid on AOT are MODIS derived fire locations from the MOD14 product during the same 4 
month. NCEP Reanalysis wind vectors at 850 hPa are overlaid on rainrate, and relative humidity contours are 5 
overlaid on COT. Gray line in panel (a.) represents the location of a CALIPSO overpass on 22 September 2006 at 6 
approximately 1800 UTC. Panels d, e, and f represent the correlation coefficients between AOT and Rc (d.), COT 7 
(e.) and CTP (f.) for each 2.5° grid cell. Red values indicate a positive correlation while blue values indicate a 8 
negative correlation. 9 
 10 

Fig. 1. Monthly averaged AOT(a), TRMM rainrate in mm h−1 (b), and COT(c) over South America for September 2006. Overlaid on AOT
are MODIS derived fire locations from the MOD14 product during the same month. NCEP Reanalysis wind vectors at 850 hPa are overlaid
on rainrate, and relative humidity contours are overlaid on COT. Gray line in panel (a) represents the location of a CALIPSO overpass on 22
September 2006 at approximately 18:00 UTC. Panels(d), (e), and(f) represent the correlation coefficients between AOT andRc (d), COT (e)
and CTP (f) for each 2.5◦ grid cell. Red values indicate a positive correlation while blue values indicate a negative correlation.
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combined data set to reduce the overall number of parame-
ters to something more manageable by grouping linearly cor-
related observations into a fewer number of variables in PC
space (Wilks, 2006). In essence, PCA combines information
from highly correlated observations such as vertical veloc-
ity and cloud top pressure into a single variable. These new
variables each have a unique meaning and are generally un-
correlated with one another. Some represent important phys-
ical properties relating to the atmosphere and clouds, while
others may represent non-physically significant observations
and random noise.

This research is focused on the South American continent
where large aerosol concentrations produced from biomass
burning, especially during the month of September as indi-
cated by the large number of fires and smoke plumes from
MODIS (Fig. 1a). In particular, biomass burning in central
South America produces AOT>1.0 over a rather large region
(Fig. 1a). This period corresponds to the “dry season” in
the Amazon, but significant (>100 mm per month) precipi-
tation is still occurring over this region (Fig. 1b) (Williams
et al., 2002). The period of highest AOT corresponds with
the lowest overall precipitation amounts that at first glance
would seem to be an indicator of warm process aerosol indi-
rect effects. However, the changing atmospheric conditions
from season to season make extracting this effect difficult
without determining the interrelationships between atmo-
spheric conditions, clouds, and aerosols. Koren et al. (2008)
compared MODIS AOT and cloud property retrievals over
the Amazon during the dry season and observed that for
AOT>0.4, that increasing aerosol concentrations acted to de-
crease cloud cover due to an increase in atmospheric stabil-
ity in the aerosol layer. Using aircraft measurements, Reid et
al. (1999) did not observe a significant relationship between
AOT andRc while Kaufman and Fraser (1997) did find a sig-
nificant anti-correlation between AOT andRc for this region
using AVHRR data. The aerosol indirect effect observed by
Kaufman and Fraser (1997) was much smaller than that ex-
pected from model predictions. The presence of semi-direct
effects from soot and other absorbing aerosols could explain
this shortfall. If aerosol indirect effects and/or semi-direct ef-
fects are occurring, they should manifest themselves in some
combination of the aerosol, cloud, and atmospheric observa-
tions present at any one time. This combination may rep-
resent both linear and non-linear interactions between vari-
ables. The analysis method used by this research will ex-
tract the quasi-linear combinations, but not-necessarily the
non-linear combinations that certainly do exist. To examine
whether or not any linear relationships are present over this
region, data from the month of September 2006 was selected
since significant aerosol, cloud, and precipitation concentra-
tions are collocated over a large area of South America.

The goal of this research is to explore the hypothesis that
aerosol indirect and/or semi-direct effects, as they relate to
the occurrence and intensity of precipitation, can be extracted
from the combined aerosol, cloud, and atmospheric condi-

tions database to a statistically significant level. Two meth-
ods will be employed in order to test this hypothesis. First,
the basic descriptive statistics (mean and standard deviation)
of the rain vs. no rain samples are compared to determine
whether or not statistically significant differences exist be-
tween the sample means. A similar test will be conducted
using the new variables produced using PCA. Second, the
new PC variables that prove statistically significant at dis-
criminating between rain and no-rain samples are compared
with rainrate to determine if a statistically significant rela-
tionship exists here too. If aerosol indirect or semi-direct ef-
fects are affecting rainfall, then variables whose weightings
are indicative of indirect effects (e.g. AOT and cloud droplet
effective radius inversely weighed), should also show a sig-
nificant relationship to rainrate. While regression functions
between rainrate and PC variables are created as part of this
process, we stress that these functions should not be thought
of as any sort of prognostic models. The goal of this research
is to show whether or not a statistically significant relation-
ship exists, not how to accurately model it.

2 Data

2.1 Cloud properties

The Clouds and Earth’s Radiant Energy System (CERES)
Single Scanner Footprint (SSF) FM1, Edition 2F data be-
tween for September from the Terra and FM3, Edition 2C
Aqua satellites (in a sun-synchronous orbit with an equator-
crossing local time of about 10:30 a.m. and 1:30 p.m., respec-
tively) are collected for the South American region (Fig. 1).
The CERES-SSF product combines the radiative fluxes re-
trieved from the CERES instrument with aerosol properties
from the MOD04 (Collection 5) product (Remer et al., 2006)
and cloud (Minnis et al., 2003) properties retrieved from
MODIS. The CERES-SSF footprint resolution is∼20 km at
nadir with a near daily global coverage. Derived cloud prop-
erties include cloud liquid water path (LWP), water cloud
effective droplet radii (Rc), cloud optical thickness (COT),
and cloud top pressure (CTP) (Minnis et al., 2003). MODIS
is capable of providing cloud characteristics at two differ-
ent levels, one nearer to the surface, the other (if it exists)
higher in the atmosphere. The second cloud layer is retrieved
for less than 5% of all cloud observations. Since the second
cloud layer is comparatively rare and since we choose to only
investigate aerosol effects on low-level liquid water clouds,
data associated with the upper cloud layers are removed. The
only constraints placed on the data (outside normal quality
control flags) is that MODIS cloud data are only used for
pixels over land surfaces and when the MODIS cloud phase
parameter indicates that the cloud in question is at least 99%
comprised of liquid water droplets. A quantitative assess-
ment of the effects of aerosols on ice clouds are beyond the
scope of this study (e.g. Demott et al., 2004). Compared to
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the cloud retrieval in the MOD06 product (Platnick et al.,
2003), CERES-SSF generally produces smallerRc and COT
values, though the overall patterns are generally similar with
cloud amounts differing less than 10% (Minnis et al., 2003).

Platnick et al. (2003) provide a review of the various er-
ror sources in the retrieval process including calibration, as-
sumptions in atmospheric and surface properties, ambiguous
solutions for optically thin clouds calibration, vertical hetero-
geneity of clouds and cirrus contamination. One significant
uncertainty related to this research is that associated with op-
tically thin clouds (e.g. Nakajima and King, 1990). Under
these circumstances, the relationship between retrieved COT
and cloud droplet effective radius may be ambiguous. How-
ever, we cannot ignore optically thin clouds as part of this
research as they contribute a large portion of the total cloud
cover (Turner et al., 2007; Jones and Christopher, 2008). As
a result, data from both thin and thick clouds are retained for
the following analysis.

2.2 Aerosol properties

MODIS products are derived from cloud-free 500 m reso-
lution data (20×20 pixels) and aggregated to 10 km foot-
print used by the Collection 5 MODIS level 2 aerosol prod-
uct (MOD04). At least 10 pixels must remain (2.5%) after
cloud masking and other quality control procedures for an
AOT retrieval to be made. The nature of the cloud masking
algorithm used by MODIS is such that it tends to classify
very thick aerosol layers (i.e. dust over the North Atlantic)
as clouds and not aerosols (Remer et al., 2006). As a re-
sult, total AOT may be somewhat underestimated. If a re-
trieval is made, the 10 km aerosol products are convolved
within the CERES 20 km (nadir) field of view (FOV) us-
ing a point spread weighting function (Loeb et al., 2005).
Both “average” and “best” AOT retrievals are included in the
CERES-SSF AOT. The reported uncertainty of the MODIS
AOT product over land is±0.05±0.15τ (Remer et al., 2006).
Collocated CERES-SSF data are used rather than the original
level 2 MODIS aerosol and cloud products since future stud-
ies will examine the radiative impact of clouds and aerosols.

While the MODIS algorithm uses strict cloud-clearing
thresholds when calculating AOT, some cloud contamina-
tion does remain (Remer et al., 2006; Zhang and Reid, 2006;
Yuan et al., 2008). Some aerosols species, such as sea salt
and sulfate, are hygroscopic and will grow in size in the
high humidity environments present in the vicinity of clouds,
producing higher visible and near infrared reflectances near
clouds for the same aerosol concentrations (Feingold et al.,
2003; Jeong et al., 2007). Humidified aerosols are still
aerosols and the increase in scattering is appropriately part
of AOT; however, the increase in AOT as a function of
humidity complicates the interpretation of the relationship
between aerosol and cloud properties (Koren et al., 2007).
The magnitude of the increase in AOT in the vicinity of
clouds compared to cloud free regions has been estimated

to be 13% and 11% for visible wavelengths when comparing
against AERONET and MODIS data respectively (Koren et
al., 2007). If the increase in AOT is a result of an increase
in aerosol size, then parameters such Angstrom exponent and
FMF should also be sensitive to cloud coverage (Koren et al.,
2007; Redemann et al., 2009). Koren et al. (2007) observed
lower Angstrom exponent values near clouds, and attributed
these values to larger, humidified aerosols and/or small cloud
droplets being improperly identified as aerosols.

The increase in AOT due to aerosols that have been acti-
vated into undetected cloud droplets represents another sig-
nificant uncertainty. Since they are not being classified
as clouds, backscattered radiation is sometimes attributed
to aerosols, in this case falsely increasing AOT. Koren et
al. (2007) suggest that both humidification and non-detected
clouds are causing an increase in AOT near clouds, increas-
ing the difficulty of determining what effects aerosols have
on cloud properties. Since aerosols and clouds cannot sam-
pled simultaneously in an independent manner, studies using
satellite observations must make an assumption that aerosol
properties near clouds are similar enough to aerosol proper-
ties within clouds to compute useful relationships between
aerosol and cloud properties. Thus, differences between
aerosol and cloud properties must change by at least 15–20%
to be considered significant outside these effects. Otherwise,
no conclusions can be drawn.

One other important consideration is that spurious scatter-
ing from nearby clouds may also lead to a high bias in AOT
retrievals, which is known as the 3-D effect (Wen et al., 2006;
Mauger and Norris, 2007; Marshak et al., 2008). However,
Wen et al. (2006) observed that this phenomena only occurs
on a spatial scale of a few kilometers. Since MODIS derived
AOT at 10 km (and we use AOT data that has been remapped
to a 20 km resolution), this effect will not be resolvable in
the MODIS data used here and should not significantly im-
pact the interpretation of the results (Koren et al., 2007). The
primary reason this phenomenon is not a major impact lies in
the manner in which MODIS AOT is retrieved. Before deriv-
ing a 10 km AOT pixels for cloud-free data, the 25% highest
and lowest reflectivity pixels at 500 m within a 10×10 km
area are removed (Remer et al., 2006). Since the number of
anomalously high reflectance 500 m pixels due to this effects
is likely small compared to the total sample, removing the
highest reflectivity values would remove much of this effect
in the final AOT product.

2.3 NCEP data

Daily wind speed and direction, relative humidity, tempera-
ture, and vertical velocity between 1000 and 700 hPa levels
are obtained from National Center for Environmental Predic-
tion (NCEP) Reanalysis data. Since we are primarily inter-
ested in warm process clouds, we focus on atmospheric con-
ditions below the freezing level. The NCEP Reanalysis con-
tains global meteorological conditions with a 2.5◦ horizontal
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resolution and a 17 level vertical resolution at 6 h time inter-
vals (Kalnay et al., 1996). This research uses the raw values
from the 925, 850, and 700 hPa levels as well as the temper-
ature difference between the surface (1000 hPa) and 700 hPa
to provide an estimate of atmospheric lapse rate and low-
level stability. Negative values indicate temperature decreas-
ing with height (more unstable) with positive values indicat-
ing temperature increasing with height (stable). Including
potential temperature was considered, but tests showed that
it did not add much independent information when included
with the raw temperature and humidity parameters. Vertical
velocity is reported in pressure coordinates (Pa s−1); thus,
positive values indicate sinking air while negative values in-
dicate rising air. As in previous aerosol indirect effect studies
such as Jones and Christopher (2008), the focus is on changes
in NCEP variables not necessarily their absolute magnitudes
owing to various uncertainties present in the NCEP product.

2.4 TRMM-PR rainrate data

The TRMM satellite was launched in 1997 into a unique or-
bit that maximizes observations of the tropical regions in a
±40◦ latitude band (Kummerow et al., 2000). Both a passive
microwave sensor (TMI) and an active microwave radar (PR)
are located onboard the satellite. For this research, data from
the PR are used (Iguchi et al., 2000). The PR derives radar re-
flectivity at 13.8 Ghz with a 250 m vertical and 4 km horizon-
tal resolution over a 215 km swath. Rainrate is derived from
the radar data in much the same way as surface based radars
using a radar reflectivity – rainrate (Z-R) relationship. When
compared to ground based rain-gauge measurements, the un-
certainty in PR rainrate was estimated (over western Africa)
to be 1.6 mm/day (0.07 mm h−1) for data aggregated over a
2.5◦ domain (Nicholson et al., 2003). The TRMM-PR 2A25
precipitation product from September 2006 was acquired for
this research. Each 2A25 file contains both vertical profiles
and total column estimates of radar reflectivity and rainfall
rate. We use the total column rainrate product to compare
with the independent atmospheric, cloud, and aerosol obser-
vations. Instantaneous rainrates are converted into daily av-
erages as described below. TRMM-PR also separates strati-
form from convective precipitation using the observed reflec-
tivity characteristics and computes stratiform and convective
rainrate for both rain types. We also examine the difference
between stratiform and convective precipitation coverage and
characteristics to determine if certain conditions are more fa-
vorable for one or the other.

2.5 Other data sets

For illustration purposes, the MOD14 MODIS fire product
was obtained for the same time period. MODIS fire product
uses a contextual algorithm for fire detection (Morisette et
al., 2005) based on strong emission of mid-IR radiation from
fires and is available at a 1 km resolution. In addition, aerosol

layer heights for this month are obtained from CALIPSO
data. The CALIOP sensor on board the CALIPSO satellite
is an active lidar on the CALIPSO satellite provides vertical
profiles of backscatter at 532 and 1064 nm that sample the
vertical distribution of clouds and aerosols in the atmosphere
(Vaughan et al., 2004). We use both the level 1 backscat-
ter (LID-L1) and the level 2 aerosol-layer height retrievals
(ALAY5-V2), which are still in their preliminary stages of
validation. Given the largely un-validated nature of this prod-
uct, we chose to only use it as an illustration tool and not as
an input to PCA.

2.6 Data fusion

Combining data from NCEP, MODIS, and TRMM is a non-
trivial task requiring several steps and important assump-
tions. The NCEP data represents the lowest common de-
nominator resolution-wise with a grid spacing of only 2.5◦.
Thus, the higher resolution MODIS and TRMM data are
placed onto the NCEP grid for further analysis. For each
day, MODIS aerosol and cloud data within a 2.5◦ box are
assigned the atmospheric conditions within±3 h of the near-
est available NCEP time. In the area of study, this usually
works out to be 12:00 UTC for Terra data and 18:00 UTC
for Aqua data. Similarly, available TRMM rainrate informa-
tion for that day and location are averaged within that box.
In doing this, the assumption is made that aerosol, cloud,
and atmospheric conditions are relatively uniform within a
2.5◦ region. Temporal sampling is another concern. In order
to trust the results, valid collocated data should exist for as
many days as possible during the one month period. Fortu-
nately, valid data from all sensors exist for at least one third
of the total possible number of days (31) with several areas
having coincident data available for more than 20 days for
each 2.5◦ grid cell.

Rainrate information collected over the entire one-day pe-
riod is averaged into the NCEP box, not just rainrate near
the time of the Terra or Aqua overpasses. Since the TRMM
not in a polar orbit like Terra or Aqua, limiting the data to
only rainrate information available within an hour or two of
their overpasses would unacceptably reduce sample size. As
a result, the rainrate used here represents a daily averaged
value. The assumption is made that aerosol concentrations
do not change substantially within a 24 h period and that the
changes to cloud and precipitation properties is also rela-
tively constant for this period of time. The resulting daily,
2.5◦ resolution data set contains 25 parameters, 24 of which
is used as inputs to principal component analysis and one
(TRMM rainrate), which are used to determine whether or
not aerosols are influencing precipitation (Table 1).
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Table 1. Mean and standard deviation values for NCEP derived atmospheric conditions and MODIS cloud and aerosol properties for South
America during September 2006 for no-rain, rain, and heavy rain (>0.5 mm h−1) samples. Variables in italics are not statistically significant
to a 99% confidence level.

Variable Units Abbr. No-Rain Rain H-Rain

Number – N 3203 4707 2642
Latitude ◦ LAT −15.3±15.8 −10.8±14.6 −4.2±12.6
Longitude ◦ LON −60.6±11.8 −61.7±11.9 −63.1±12.2
925 hPa Vertical Vel. Pa s−1 W925 0.04±0.14 0.03±0.17 0.0±0.08
850 hPa Vertical Vel. Pa s−1 W850 0.03±0.13 0.02±0.16 0.0±0.09
700 hPa Vertical Vel. Pa s−1 W700 0.02±0.11 0.01±0.13 0.0±0.09
925 hPa Zonal Vel. ms−1 U925 −1.5±5.5 −2.4±4.9 −3.0±4.5
850 hPa Zonal Vel. ms−1 U850 −1.2±6.2 −2.4±5.4 −3.5±5.0
700 hPa Zonal Vel. ms−1 U700 −0.2±7.8 −1.5±7.1 −3.7±7.0
925 hPa Merid Vel. ms−1 V925 −0.4±5.0 −0.2±5.5 0.4±3.9
850 hPa Merid Vel. ms−1 V850 −0.4±5.0 −0.2±5.1 0.3±3.9
700 hPa Merid Vel. ms−1 V700 −0.1±5.0 −0.2±5.0 0.2±3.7
925 hPa Relative Humid. % R925 63.1±19.9 66.0±21.9 70.0±16.2
850 hPa Relative Humid. % R850 58.8±19.9 60.6±22.2 65.1±16.4
700 hPa Relative Humid. % R700 48.2±23.7 47.8±26.0 53.3±20.5
925 hPa Temperature K T925 291±7.3 292±6.4 294±4.1
850 hPa Temperature K T850 287±6.7 288±5.9 290±3.6
700 hPa Temperature K T700 278±6.0 280±4.7 281±2.7
700–1000 hPa Temp K LAPSE −6.7±3.6 −6.7±2.9 −7.1±2.0
Aerosol Optical Thick. – AOT 0.32±0.5 0.30±0.4 0.31±0.4
Cloud Optical Thick – COT 3.9±2.5 4.2±2.8 4.4±2.2
Cloud Top Pressure hPa CTP 779±100 764±102 761±97
Liquid Water Path g m−2 LWP 25.0±18.4 27.5±19.6 30.2±17.3
Cloud Fraction % CF 11.6±12.0 12.4±12.8 11.5±11.5
Droplet Effective Radius µm RAD 9.9±2.2 10.1±2.4 10.5±2.1

3 Principle Component Analysis (PCA)

The statistical technique of PCA enables the reduction of
multiple and highly correlated variables from multiple data
sources into a fewer number of independent variables, each
with a unique physical interpretation (Wilks, 2006). The ini-
tial step in PCA is the calculation of a linear correlation ma-
trix (R) from the normalized data set (Z), where the mean
values have been subtracted out. Here,Z represents anm×n

array wherem is the number of input variables andn is the
sample size of the daily data set. For this research,m=24 rep-
resenting the combination of atmospheric, cloud, and aerosol
properties (Table 1). Location is also included so that the spa-
tial dependence between these conditions can be taken into
account. Rainrate is held out as the comparison variable used
later to test the aerosol indirect effect hypothesis. The corre-
lation matrix is computed from the combined aerosol, cloud,
meteorology dataset where each data point represents data
at a specific 2.5◦ grid cell for an individual day for all data
during a one month period.

Once the correlation matrix is computed, eigenvalues (λ)

and vectors (�) are calculated using Eq. (1).

E−1RE = λ (1)

The correlation matrix and eigenvectors arem × n arrays
with eigenvalues being a one-dimensional array of sizem.
Weighting coefficients (A) are calculated from the eigenval-
ues and vectors by applying Eq. (2), whereλm is a matrix of
sizem×m where the diagonal value is set to l. Otherwise,λm

is zero. Weighting values range in magnitude from−1.0 to
1.0 with 0 indicating no contribution from an input variable
to the new PC variable.

A = E
√

λm (2)

Once the weights have been determined, PC variables (F) can
be derived from the raw data (Z) using Eq. (3). Solving for
F produces the final PC variable solution given by Eq. (4).

Z = FAT (3)

F = ZA(AT A)−1 . (4)

The magnitude of an eigenvalue relative to the total vari-
ance of the dataset can be thought of as the degree of vari-
ance explained by a new variable. The larger the eigenvalue,
the more “important” its information is relative to the entire
dataset. Each eigenvalue and eigenvector is associated with a
would-be PC variable and defines the physical content of that
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Fig. 2. First 16 eigenvalues derived from the 24 parameter dataset
from both Terra and Aqua satellites. Note the values are in close
agreement for both sets of data. Dotted line indicates the amount
of variance that would be explained by random noise, which occurs
at approximately PC16. Thus, higher order PC variables are not
retained.

variable via the linear weightings derived from the eigen-
vectors. It is important to note that this form of PCA only
takes into account linear combinations of data; thus, primar-
ily non-linear interactions will not be evident from this anal-
ysis. PC variables are ordered in such away that the first vari-
able (PC1) accounts for the greatest variance in the raw data
with the next (PC2) accounting for the next highest amount
of variance and so on (Fig. 2). Eigenvalues are also used to
determine the proper number of new variables (dimensions)
to create from the original dataset. For this work, the total
number of pseudo-variables is truncated to 16 instead of the
possible maximum of 24 since the 17th and larger dimen-
sions account for less than 1% of the total variance are likely
dominated by random noise (Jones et al., 2004). A similar
threshold was attained by comparing our eigenvalues with
those created from a dataset created from a random number
generator having the same sample size and total variance as
the original dataset. If the eigenvalues fall below that pro-
duced by random noise, then it and higher order dimensions
should be removed. For this case, the highest order PC pro-
duced from the random data set explained 1.3% of the total
variance.

To further reduce noise in the new dataset, weightings less
than±0.2 are set to zero before the creation of the final PC
variables. Richman and Gong (1999) showed that including
lower weights increased noise and decreased the viability of
the new variables. The magnitude of these thresholds (±0.2
to 0.3) were derived by analyzing multiple atmospheric data
sets, and these values were found to produce the best repre-
sentation of the data in PC space. If the resulting weights
lie near this threshold, then their physical contribution to the
corresponding PC variable will be considered low. These
steps are important for this research as the data used here

Table 2. Correlation matrix between MODIS AOT and selected
cloud parameters showing the overall low correlations between
AOT and cloud properties. Importantly, AOT and Rc are not nega-
tively correlated as predicted by the Twomey effect.

Correlation AOT Rc COT LWP CTP

AOT 1.00 0.17 −0.05 −0.05 −0.15
Rc 0.17 1.00 0.05 0.30 −0.12
COT −0.05 0.05 1.00 0.93 −0.21
LWP −0.05 0.30 0.93 1.00 −0.19
CTP −0.15 −0.12 −0.21 −0.19 1.00

contains a high degree of random variability that needs to be
filtered out as much as possible prior to further analysis. The
end result of this process is a data set containing 16 PC vari-
ables, some of which contain physical signals that related to
rainrate while others contain non-physical signals not associ-
ated with rain. Principle component statistics for both Terra
and Aqua were computed and very little difference between
the two was observed. Thus, the following analysis primarily
concentrates on the Terra data alone.

Uncertainties present in the raw data, especially those as-
sociated with aerosol and cloud parameters, remain present
within the PC data set. However, the PCA methods used here
to mitigate some uncertainties to some degree. Assuming the
uncertainties are randomly distributed, they should show up
in the higher order PC variables where little to no physical
signal exists. The weighting threshold of 0.2 has a similar ef-
fect. The result is that some uncertainty is filtered out when
removing random noise within the data set. However, un-
certainties that show a dependence between one variable and
other (e.g. AOT and cloud parameters) will remain present,
though it is hoped they may also be grouped into higher order
PC variables separate from the physical signals that dominate
the lower order PCs.

4 Results

4.1 Raw data

Prior to the analysis of variables created using PCA, the raw
observations are briefly examined relative to precipitation oc-
currence and intensity to determine what, if any significant
linear relationships exist. Without considering precipitation,
aerosol effects may still manifest themselves as significant
correlations between AOT and certain cloud properties such
asRc, COT, LWP, and CTP assuming collocated changes in
atmospheric conditions are not a significant factor. Recall
that for a given atmospheric liquid water content, increasing
AOT associated with an increase in aerosol number density
will increase the number of CCN, decreasing the size of in-
dividual cloud droplets. Thus, AOT and cloud droplet ef-
fective radius (Rc) should be negatively correlated all other
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things being equal. Of course, things are much more com-
plicated than what this idealized scenario suggests. Table 2
lists the linear correlation coefficients between these five pa-
rameters and the only obvious correlation is between COT
and LWP, which is expected since they both represent a mea-
sure of cloud thickness. AOT is weakly positively correlated
(0.17) withRc, opposite that expected when aerosol indirect
effects are occurring. A weak negative correlation (−0.15)
also exists between AOT and CTP indicating that increasing
AOT may correspond to lower toped clouds. However, both
these correlations lie on the edge of statistical significance
preventing any major conclusions being drawn from these
relationships thus far.

To determine if aerosol effects are localized to certain re-
gions in South America, the correlation between AOT and
Rc, COT, and CTP is calculated for daily data within each
2.5◦ box and plotted in Fig. 1d–f. No evidence for the first
indirect effect exists since AOT andRc are not negatively
correlated where AOT is highest (Fig. 1d). The correlation
between AOT and COT (and CTP) shows more of a spatial
dependence relative to the location of maximum AOT in cen-
tral South America (Fig. 1e). For this area, AOT and COT
are negatively correlated while AOT and CTP are positively
correlated (Fig. 1f). This would indicate that higher aerosol
concentrations are associated with thinner clouds with lower
heights compared to other regions. This is not consistent
with the second aerosol indirect effect, but is consistent with
the semi-direct effect whereby absorbing aerosols (such as
the soot and black carbon produced by the biomass burning)
warm portions of the atmosphere, increasing atmospheric
stability, which decreasing the favorability of the environ-
ment for the formation of clouds and precipitation.

To determine if aerosol effects are evident relative to pre-
cipitation measurements, data are first separated into no-rain,
rain, and “heavy” rain only (>0.5 mm h−1) samples to exam-
ine if any significant differences in variables exist for rain vs.
no rain. Table 1 lists mean and standard deviation values
for selected variables for each of the three samples. CTP,
COT, andRc all slightly larger in the rain and heavy-rain
samples compared to the no-rain samples, as would be ex-
pected. Conversely MODIS cloud fraction does not show
much difference, and remains quite low (<15%) for all three
samples. Since only data with valid AOT retrievals are used,
at least some cloud-free sky must exist within each pixel, so
100% cloudy regions are not included, reducing cloud frac-
tion compared to if AOT retrievals were not a concern. At-
mospheric wind speed and relative humidity are also greater
in the rain sample, while average vertical velocity is tiny for
all three samples. The latter is primarily a result of the poor
resolution of the NCEP data that prevents sampling of the
vertical motion associated with mesoscale features (Lin et
al., 2006).

Overall, these are differences of only a few percent and
standard deviations between all samples overlap by a large
margin. Still, statistical significance testing using both Stu-

 49

 1 
Figure 3. Percentage of precipitation in each 2.5° grid box from TRMM-PR defined as 2 
stratiform precipitation. Red coloring indicates that precipitation is mostly stratiform, while 3 
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Fig. 3. Percentage of precipitation in each 2.5◦ grid box from
TRMM-PR defined as stratiform precipitation. Red coloring indi-
cates that precipitation is mostly stratiform, while green coloring
indicates a 50–50% mix.

dent’s T and the nonparametric Wilcoxon-Mann-Whitney
methods (Wilks, 2006) show that the differences between no-
rain and heavy rain samples are significant to at least a 99%
confidence level for all parameters related to atmospheric
conditions and cloud properties with the exception of V700
and MODIS cloud fraction. These differences remain sig-
nificant when compared against the sample mean variables
calculated from the entire dataset. Breaking down precipita-
tion into stratiform and convective components, we find that
monthly mean convective rainrate is much greater the strati-
form rainrate (3.3 vs. 0.7 mm h−1). Convective rain is more
likely (50%) to occur further north compared to southern re-
gions (10%) and is associated with stronger easterly winds
and greater moisture as shown in Fig. 3. AOT is slightly
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Table 3. Weighting coefficients produced using PCA that are used to generate the new PC variables. Values less than 0.2 are set to 0.0, which
are indicated by blank spaces. First row of values is the amount of variance explained by the corresponding PC variable.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

VAR(%) 24.3 14.6 13.1 8.4 5.9 5.6 4.8 4.0 3.8 2.9 2.5 2.2 1.9 1.5 1.4 1.0
LAT 0.85 −0.28
LON −0.55 0.26 −0.39 −0.40 −0.39 −0.20
U925 −0.55 0.32 0.44 0.31 0.36 −0.20
V925 −0.66 0.26 −0.49 0.29 −0.23
W925 −0.47 −0.79 0.24
R925 0.30 −0.47 0.53 −0.24 0.22 −0.26 0.26 −0.32
T925 0.88 0.22 −0.20 0.20
U850 −0.67 0.43 0.36 0.22 0.32
V850 −0.25 −0.76 0.29 −0.42
W850 −0.49 −0.24 −0.78
R850 0.44 −0.27 0.58 −0.42 0.25
T850 0.87 0.25
U700 −0.74 0.32 0.20 −0.22 0.32
V700 −0.26 −0.70 0.27 0.24 0.30
W700 −0.34 −0.45 −0.49 −0.21 −0.50
R700 0.41 0.21 0.46 −0.37 −0.34 0.37 −0.27 0.22
T700 0.84 −0.27 0.22 −0.28
LAPSE −0.35 0.40 0.53 0.30 0.27 −0.22 −0.26
AOT 0.20 0.45 −0.47 −0.39 −0.42 0.27
COT 0.25 −0.28 0.70 0.30 0.31 −0.32
CTP −0.34 −0.53 0.20 0.53 −0.28 0.27
LWP 0.29 −0.30 0.70 0.28 0.26 −0.38
CF 0.37 0.42 0.27 −0.62 0.22 −0.29 0.21
RAD 0.24 0.21 0.51 −0.63 −0.27 −0.26

higher for the no-rain compared to the heavy rain sample
(0.32 vs. 0.30), but this difference is also not statistically
significant. Similarly, AOT is also lower for the convec-
tive rain sample compared to the stratiform rain sample (0.28
vs. 0.31).

For the heavy rainrate (>0.5 mm h−1) sample only, Fig. 4
shows the relationship between selected atmospheric, cloud,
and aerosol parameters relative to rainrate. The various num-
ber density plots indicate a generally poor relationship be-
tween these parameters. A weak linear relationship exists
between rainrate and 850 hPa vertical velocity where rain-
rate decreases as downward vertical motion (positive values
in pressure coordinates) increases. However, the magnitude
of the correlation is quite small, being only−0.1. Neither
COT norRc show any significant relationship, while AOT
has a weak positive correlation (0.13) to rainrate. Even when
the correlations are considered statistically significant, they
do not provide conclusive evidence that a single atmospheric,
cloud, or aerosol parameter is related to rainrate or not, since
all these parameters are highly correlated with each another.
Better relationships might be found when comparing the PC
variables to rainrate, since each variable is representative of
a unique set of atmospheric, cloud, and aerosol properties,
some combination of which may be sensitive to rainrate.

4.2 PC data

The application of PCA produces 16 new variables with
unique physical interpretations that can be inferred from the

weighting coefficients use to create each variable (Table 3).
The first PC variable (PC1) accounts for 25% of the total
variance and is primarily derived from the prevailing atmo-
spheric conditions and their location. Positive values of PC1
indicate higher latitudes, a stronger easterly (from east) wind
component (this can also be interpreted as corresponding to
weaker westward component of wind), relative humidity, and
upward vertical motion between 1000 and 700 hPa. PC1 also
receives a negative weighting from the lapse rate parameter
indicating that increasingly negative values of lapse rate (i.e.
greater instability) are correlated with more positive values of
PC1. Latitude is also important, with a weighting coefficient
of 0.85 in PC1. What this means is that atmospheric condi-
tions favorable for clouds and precipitation are more likely to
be found in the northern portion of the continent (e.g. Ama-
zon), which is evident from Fig. 1b. MODIS cloud proper-
ties are also present with small positive weightings (∼0.25)
associated with COT, LWP, andRc. Thus, positive values
of PC1 are clearly indicative of atmospheric conditions in
which clouds and precipitation are more likely to occur.

Continuing on to PC2, which accounts for 15% of the to-
tal variance, we find a more interesting interaction between
atmospheric, cloud, and aerosol weightings. Positive values
of PC2 are associated with a more northerly component of
wind and upward vertical motion at 850 and 700 hPa, with
the larger weighting coefficient at 700 hPa. The humidity
weighting coefficients are interesting in that they are negative
at 925 and 850 hPa, but positive at 700 hPa. Thus, positive
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Figure 4. Number density plot of TRMM rainrate vs. selected atmospheric, cloud, and aerosol 2 
variables for September 2006 including linear least squares where N represents the number of 3 
data points with a 1.0 mm hr-1 bin. Parameters compared to rainrate include zonal, meridional, 4 
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Fig. 4. Number density plot of TRMM rainrate vs. selected atmospheric, cloud, and aerosol variables for September 2006 including lin-
ear least squares whereN represents the number of data points with a 1.0 mm h−1 bin. Parameters compared to rainrate include zonal,
meridional, and vertical velocities as well as COT,Rc, and AOT. Linear correlation coefficients (r) between each parameter and rainrate are
shown.

values of PC2 correspond to dryer air near the surface, but
increasing humidity at 700 hPa. The sign of the lapse rate
coefficient is consistent with this, as positive values would
indicate the presence of an inversion layer in the lower atmo-
sphere. COT and LWP are negatively weighted indicating
that atmospheric conditions associated with increasing PC2
values are not conducive for liquid water cloud formation,
though cloud fraction and CTP have weighting coefficients

such that positive values of PC2 indicate more cloud cover at
higher levels corresponding to 700 hPa layer where the hu-
midity weighting is also positive. MODIS AOT also has a
significant positive weighting (0.45), which indicates that the
same atmospheric conditions not favorable for thick clouds
near the surface also correspond to the highest AOT.

Recall that the relationship between only AOT itself and
rainrate is weakly positive (0.13), opposite that expected for
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Fig. 5. Spatial plots of PC1–6 created using the combined atmospheric, cloud, and aerosol property data set. Reds indicate positive PC
values while blues indicate negative PC values. Values larger than±2.0 are set to±2.0 in all figures.

the aerosol effect to warm-process precipitation, but con-
sistent with an increase in convective precipitation (Lin et
al., 2006). In PC2, increasing AOT corresponds to condi-
tions that are increasingly unfavorable for precipitation. The

weighting coefficients for AOT and cloud fraction are also
of the same sign, consistent with the second indirect ef-
fect. The positive relationship between stability and AOT
may be an indicator that radiative effects are dominating
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Figure 6. Scatter plots of rainrate vs. selected PC variables, which are statistically significant 9 
and separating rain from no-rain samples. Unfortunately, significant relationships with rainrate 10 
itself could not be found as evident by the poor correlations given in each figure. 11 
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Fig. 6. Scatter plots of rainrate vs. selected PC variables, which are statistically significant and separating rain from no-rain samples.
Unfortunately, significant relationships with rainrate itself could not be found as evident by the poor correlations given in each figure.

microphysical effects, which is quite similar to the results
of Rosenfeld et al. (2008) who observed a decrease in CAPE
when AOT>0.25. These results are also consistent with the
spatial correlation plots of AOT vs. COT and CTP shown in
Fig. 1e, f where regions associated with the highest AOT had
the thinnest and lowest clouds. Note that the spatial plot of
PC2 in Fig. 6b is quite similar to the AOT – cloud parameter
correlation plots. Given these relationships, at least a por-
tion of the inhibition of precipitation due to aerosols (if it is
indeed occurring) is accounted for by PC2.

The next PC variable, PC3, accounts for 13% of the total
variance with positive values associated with a greater west-
ward component of wind, higher humidity, and higher COT,
LWP, cloud fraction,Rc, and lower CTP all of which indi-
cate a strong sensitivity to cloud depth and coverage. Lon-
gitude is also highly weighted (−0.55) indicating that the
deeper clouds and greater atmospheric humidity are more
likely further west associated with convergence near the An-
des mountains in western South America, which is apparent
when comparing Figs. 1c and 6d. Continuing to PC4, we
find that it primarily consists of vertical motion parameters

weakly associated with northerly winds and further eastward
longitude. No significant weightings from clouds and aerosol
variables are present. PC5 contains significant weightings
from longitude, humidity at all levels, lapse rate, and cloud
parameters including LWP, cloud fraction, andRc. Inter-
estingly, the cloud weightings are inversely proportional to
the humidity weightings indicating the presence of thicker
clouds in lower moisture environments. Positive values of
PC6 are primarily sensitive to northerly winds at 925 and
850 hPa, with negative weighting associated with AOT. Less
significant positive weightings also exist for COT, CTP, and
LWP. In other words, increasing values of PC6 represent a
greater northerly component to the wind associated thicker,
but lower level clouds and a decreasing aerosol content. The
importance of AOT in PC6 (Fig. 6f) is clearly evident in its
similarity to the AOT plot in Fig. 1a.

By PC7, only 5% of the total variance is being explained
and the physical interpretations become less clear. Of par-
ticular interest with respect to this research, is which of
these higher order PC variables contain evidence for more
traditional aerosol indirect effects. Significant weighting
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Figure 7. CALIPSO level 2 aerosol heights (km) over South America during September 2006. In 2 
the central portion of the continent where biomass burning and AOT is highest, aerosols are 3 
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Fig. 7. CALIPSO level 2 aerosol heights (km) over South America during September 2006. In the central portion of the continent where
biomass burning and AOT is highest, aerosols are present up to 4 km above the surface.

coefficients exist for AOT in PC9, 10, and 13. In PC9, the
weighting coefficients for AOT, COT, LWP, andRc are all
the same sign, which would not be expected if this variable
corresponds to aerosol effects. This relationship would oc-
cur if AOT increases in the vicinity of clouds due to either
aerosol swelling and/or small cloud droplets being identified
as aerosols by the retrieval algorithm. Since it is a retrieval
problem, it should be unrelated to other atmospheric vari-
ables present in the data set, which appears to be the case
as no weights greater than 0.2 are present from atmospheric
variables with the sole exception of 925 and 850 hPa humid-
ity. The largest weighting coefficient in PC10 is also from
AOT, with smaller contributions from the zonal component

of wind speed. As expected, the spatial distribution of PC10
is very similar to that of AOT alone, though it is inversely
correlated. Given the lack of cloud property weightings in
this variable, it is also unlikely to be representative of in-
direct effects. PC13, while only explaining 2% of the total
variance, is comprised of AOT, cloud fraction, andRc among
others. The weighting coefficients for AOT and cloud frac-
tion are of the same sign, with the coefficient forRc being
the opposite. This is exactly the relationship expected for the
Twomey effect. However, the weighting coefficients are low
(<0.3) calling into question their true significance. Positive
values of PC13 are associated with higher AOT and smaller
Rc; thus, if this effect is reducing the amount of precipitation
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Table 4. Mean and standard deviations for PC1–16 for no-rain,
rain, and heavy rain samples. Variables in italics are not statistically
significant to a 99% confidence level.

Variable No-Rain Rain H-Rain
Number 3203 4707 2642

PC1 −0.15±1.1 0.1±0.9 0.46±0.7
PC2 0.05±1.1 −0.04±1.0 −0.18±0.8
PC3 −0.03±1.1 0.02±1.0 0.12±1.0
PC4 0.04±1.1 −0.02±1.0 0.08±0.7
PC5 −0.12±1.3 0.08±1.3 0.12±1.2
PC6 0.00±1.2 0.00±1.1 −0.15±1.0
PC7 0.09±1.2 −0.06±1.1 0.03±1.1
PC8 −0.04±1.4 0.03±1.3 −0.08±1.2
PC9 −0.05±1.2 0.04±1.2 0.14±1.2
PC10 −0.04±1.6 0.03±1.4 0.10±1.3
PC11 0.08±1.5 −0.05±1.4 0.12±1.4
PC12 −0.06±1.3 0.04±1.3 0.00±1.1
PC13 0.02±1.4 −0.02±1.7 0.00±1.6
PC14 −0.09±2.4 0.06±2.1 0.05±1.9
PC15 0.05±2.7 −0.04±2.5 0.19±2.4
PC16 −0.03±1.8 0.02±1.7 −0.01±1.7

through decreasing cloud droplet size, then the relationship
between PC13 and precipitation should be negatively corre-
lated. (The larger PC13, the higher the corresponding AOT,
which according to theory indicates that precipitation should
decrease).

4.3 Comparison of PC variables with rainrate

As with the raw variables, and mean and standard deviation
of each PC variable is compared across no-rain, rain, and
heavy rain samples (Table 4). Differences in several PC vari-
ables are clearly evident between no-rain and heavy rain sam-
ples. For example, PC1 increases by 0.6, PC2 decreases by
0.23, and PC3 increases by 0.15, differences of more than
100%. Recall that PC1 includes significant weighting coef-
ficients from many atmospheric variables, which interact in
a manner such that positive values of PC1 should indicate
an environment (and location) more favorable for precipi-
tation. PC2 includes a linear combination of atmospheric
and cloud variables along with AOT, where positive values
indicate less low-level moisture, greater low-level stability,
thinner clouds, and higher AOT. Thus, highly positive values
should be associated with less rainfall while negative values
more. This is indeed the case as PC2 values are most neg-
ative for the heavy rain sample (Table 4) providing further
evidence that AOT and the occurrence of precipitation are
negatively correlated. However, recall thatRc is not signif-
icantly weighted in PC2, so it is unlikely that PC2 is an in-
dicator of the first aerosol indirect effect, but more likely a
reflection of the semi-direct effect. Despite the presence of
AOT – cloud parameter relationships similar to that expected

by Lin et al. (2006), values for PC2 are lower for convective
precipitation compared to stratiform precipitation. Thus, it
would appear that if the convective effect is occurring over
this domain, it is more than being offset by the decrease in
precipitation due to other aerosol effects. Values for PC3 in-
crease from no-rain to heavy rain samples as expected since
this variable is positively correlated with increased humidity
and cloud thickness in the mountainous convergence zone
in western South America. The differences between no-rain
and heavy rain sample means for PC1–3 are statistically sig-
nificant to at least a 99% confidence level using the same
tests as before.

Moving on to higher order PC variables, differences be-
come less clear. PC4 is not statistically significant. PC5 in-
creases from no-rain to rain samples, even though it is nega-
tively correlated with humidity and positively correlated with
stability. However,Rc is positively weighted indicating that
positive PC5 values are correlated with larger water droplets,
which would increase the likelihood of collision and coales-
cence and thus precipitation. PC6 is lower for the heavy rain
sample, neither this difference nor the difference between the
no-rain sample and the total sample means are statistically
significant. While the difference for some higher order PC
variables are statistically significant (PC9, PC10), the overall
weak weighting coefficients in these variables make physical
interpretations difficult. In fact, some of these higher order
variables may be a reflection of various uncertainties and bi-
ases in the raw dataset as suggested by PC9, whose weight-
ings correspond to those expected when AOT increases in
close proximity to clouds.

To determine whether or not the physical relationships in-
ferred from PC variables are indeed real, we analyze as ex-
ample using CALIPSO data, which shows the location of
aerosol and cloud layers. A monthly mean plot of aerosol
layer height derived from CALIPSO level 2 data shows that
the smoke aerosols exist at least 4 km above ground level in
the west central portion of the continent (Fig. 7). A ver-
tical profile of 532 nm backscatter over South America on
22 September 2006 at 18:00 UTC clearly shows the signif-
icant aerosol concentration between−20◦ S and 0◦ N, with
aerosols ranging from near the surface all the way up to 4 km
in altitude. Recall that for the semi-direct effect to occur,
large concentrations of elevated, absorbing aerosols must ex-
ist, and the CALIPSO data demonstrates that to be the case at
least for the month of data analyzed. The positive weighting
coefficient for stability in PC2 is consistent with this effect
occurring, though the stability parameter is defined at from
a slightly lower level (1000–700 hPa). Also note that AOT
andRc are positively correlated overall, and no PC variable
that includes inverse relationship between the two provided a
statistically significant difference when compared to no-rain
vs. heavy rain samples. If aerosols are affecting the likeli-
hood of precipitation for the time period and spatial domains
examined here, it is likely more through semi-direct effects
and not traditional aerosol indirect effects.
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1800 UTC. A thick aerosol layer exists between –20°S and 0°N that corresponds to the region of 3 
maximum AOT shown in Figure 1a. Note that in this example, significant aerosol concentrations 4 
are present from near the surface up to 4 km. 5 
Fig. 8. CALIPSO 532 nm backscattered radiation from an overpass
on 22 September 2006 at 18:00 UTC. A thick aerosol layer exists
between−20◦ S and 0◦ N that corresponds to the region of maxi-
mum AOT shown in Figure 1a. Note that in this example, significant
aerosol concentrations are present from near the surface up to 4 km.

To determine if the physical relationships expressed by
individual PC variables are affecting rainrate, linear regres-
sion models between each statistically significant PC vari-
able from above are created between them and TRMM rain-
rate. Unfortunately, as with the raw atmospheric and cloud
parameters, statistically significant linear relationships be-
tween rainrate and PC variables are not found (Fig. 6). Fur-
ther stratifying the data into convective vs. stratiform precip-
itation did not improve the significance of the PC variables
compared to rainrate itself. Given the spatial and temporal
resolution differences between the data sets and their vari-
ous uncertainties, this result was not completely unexpected.
Still, we are able to show the usefulness of PC variables in
examine how aerosol concentrations are related to the prob-
ability of rain occurring, which is an important step forward.
It is important to note that we are not attempting to create
a predictive model; this research is keyed to showing that a
statistically significant relationship exists.

5 Conclusions

Overall, we find that atmospheric conditions favorable for
precipitation are correlated to a statistically significant level
with the occurrence of precipitation observed using TRMM-
PR rainrate estimates, and this correlation outweighs any
aerosol-cloud interactions. We also find that MODIS cloud
parameters such as COT, CTP, andRc show a significant cor-
relation with the occurrence of precipitation where thicker,
deeper clouds with larger water droplets are present. A com-
parison using solely AOT and TRMM-PR rain data does not
provide an unambiguous solution as to what, if any, effects

aerosols are having on precipitation. Since aerosol, cloud,
and the surrounding atmospheric conditions are highly re-
lated to one another, this research uses PCA to extract unique
physical signals from the combined dataset.

The most important PC variable in terms of total vari-
ance explained, PC1, is representative of a linear combina-
tion of atmospheric and location parameters associated with
favorable conditions for precipitation and is greater for data
where rainrate>0.5 mm h−1. PC2 is the more interesting
combination as it includes a significant weighting coefficient
for AOT in combination with other atmospheric variables.
The weighting coefficients for PC2 suggest that larger val-
ues of PC2 are associated with greater low-level stability
and drier air, which is unfavorable for precipitation. In the
case of PC2, higher values correspond to the no-rain sam-
ple compared to the rain and heavy rain samples. Also sig-
nificant in PC2 are the cloud and aerosol components. The
weighting coefficient for AOT is positive indicating the larger
AOT corresponds to a decreased likelihood for precipitation.
Two possible interpretations of this variable exist. First, is
that AOT is highly correlated with the atmospheric condi-
tions affecting rainfall present in this variable. Second is
that aerosols present within these atmospheric conditions are
directly affecting rainfall amounts. The relative importance
of one vs. the other interpretation is difficult to quantify us-
ing this method, but if aerosol concentrations were not play-
ing at least some role, then AOT should not have a signifi-
cant weighting in this (or other) parameters related to rainfall
amount. The relative weightings in PC2 are consistent with
the semi-direct effects tied to warm process clouds, but not
microphysical effects sinceRc is not included in PC2. The
positive AOT weighting coefficient also corresponds to an
increase in cloud fraction and lower cloud top temperatures.
This relationship was observed by Lin et al. (2006) under the
hypothesis that while aerosols are decreasing the efficiency
of warm process precipitation, they increase the likelihood
of convective precipitation. Even though we are analyzing
only liquid water cloud properties, the statistical relation-
ships observed in PC2 are similar to that expected through
the convective effect hypothesis with one major exception. If
the convective effect was dominant, then heavy precipitation
should correspond to higher values of PC2 when in fact the
opposite was observed. For the domain studied here, it ap-
pears that if the convective effect is occurring, the decrease
in precipitation due to more traditional aerosol effects, espe-
cially the semi-direct effect where absorbing aerosols warm
the atmosphere and increase stability, is still greater.

The difference in PC3 values between no-rain and heavy
rain samples also proved significant, with this variable being
largely sensitive to greater precipitation amounts, thicker and
higher clouds associated with convergence along the west-
ern coast of South America near the Andes mountains. Sev-
eral higher order PC variables show significant differences
between no-rain and heavy rain samples, though none ap-
pear to be associated with any known aerosol indirect effects.
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Only in PC13 are the AOT andRc coefficients significant
and inversely correlated, which should occur according to
the Twomey effect. However, no statistically significant dif-
ference in PC13 exists between rain and no-rain samples
strongly indicating that if the first aerosol indirect effect is
occurring, it is being offset by the other processes described
by several other PC variables.

The differences between no-rain and heavy rain values
for PC1–3 are much greater in an absolute sense compared
to several to the individual atmospheric and cloud proper-
ties. Also recall that, combined, these three variables alone
account for over 50% of the total variance. This research
clearly emphasizes the usefulness of PCA at extracting dif-
ferent physical signals from a large array of highly correlated
data. Using only PC1 and PC2, it is possible to discriminate
between conditions favorable for precipitation and those fa-
vorable for some form of aerosol effects on clouds and pre-
cipitation. Given these results, we are able to conclude that
atmospheric conditions are more important to rainrate than
aerosol – cloud interactions; however, these interactions are
an important secondary factor.

Assuming PC2 is an accurate reflection of the physical
processes occurring over South America, then it would ap-
pear the radiative effects of absorbing aerosols outweigh the
microphysical effects when reducing the probability for strat-
iform precipitation. This result is consistent with observa-
tions from both Lin et al. (2006) and Rosenfeld et al. (2008).
In addition, while PC2 would also be sensitive to the con-
vective effect, its values relative to rainrate indicate that any
increase in precipitation due to this effect is being more than
offset by the reduction in precipitation due to the semi-direct
effect. While the consistency of the results across various re-
search efforts cannot be ignored, uncertainties remain large
and it remains difficult to prove that the PC variables created
here are a reflection of the processes previously described.
Comparison with CALIPSO and other forms of data do lend
further support to our hypothesis and we strongly believe the
weights associated with at least PC1–3 are physically signif-
icant. Thus, we believe the use of PCA techniques for the
study of aerosol indirect effects is a useful endeavor applica-
ble to future research efforts.

Unfortunately, PC variables did not have statistically sig-
nificant relationships with rainrate itself, although neither
did the raw variables with the exception of vertical velocity.
Given the noise and uncertainties present in all the data sets
used in the research and the likely possibility of non-linear
interactions occurring, this null result is not unexpected. To
better quantify the relationship between aerosol concentra-
tions and rainrate in the future, additional coincident obser-
vations of these parameters with an important focus being
the relative vertical distributions of aerosols and clouds are
needed. Fortunately, the recent advent of CALIPSO and
CloudSat data open up this possibility for future research.

Acknowledgements.This research is supported by NASA’s Ra-
diation sciences, Interdisciplinary sciences, an EOS grant, and
ACMAP programs. The CERES SSF data that contains the merged
MODIS and CERES were obtained through the NASA Langley
Distributed Active Archive Systems. We would like to also
recognize Aaron Naegar for calculating CALIPSO aerosol layer
heights shown in Fig. 7.

Edited by: J. Quaas

References

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J.,
Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudi-
ness by soot, Science, 288, 1042–1047, 2000.

Ackerman, A. S., Toon, O. B., Stevens, D. E., and Coakley Jr., J.
A.: Enhancement of cloud cover and suppression of nocturnal
drizzle in stratocumulus polluted by haze, Geophys. Res. Lett.,
30, L1381, doi:10.1029/2002GL016634, 2003.

Albrecht, B.: Aerosols, Cloud Microphysics, and Fractional
Cloudiness, Science, 245, 1227–1230, 1989.

Andreae, A., Rosenfeld, D., Artaxo, P., et al.: Smoking rain clouds
over the Amazon, Science, 303, 1337–1342, 2004.

Brenguier, J.-L., Pawlowska, H., and Schuller, L.: Cloud micro-
physical and radiative properties for parameterization and satel-
lite monitoring of the indirect effect of aerosol on climate, J. Geo-
phys. Res., 108(D15), 8632, doi:10.1029/2002JD002682, 2003.

DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D.,
Rodgers, D. C., Brooks, S. D., Prenni, A. J., and Kreidenweis,
S. M.: African dust aerosols as atmospheric ice nuclei, Geophys.
Res. Lett., 30, 1732, doi:10.1029/2003GL017410, 2003.

Feingold, G.: Modeling of the first indirect effect: Analysis of
measurement requirements, Geophys. Res. Lett., 30(6), 1997,
doi:10.1029/2003GL017967, 2003.

Feingold, G., Eberhard, W. L., Veron, D. E., and Previdi,
M.: First measurements of the Twomey indirect effect using
ground-based remote sensors, Geophys. Res. Lett., 30(6), 1287,
doi:10.1029/2003GL016633, 2003.

Han, Q. Y., Rossow, W. B., and Lacis, A. A.: Near-global survey of
effective droplet radii in liquid water clouds using ISCCP data,
J. Climate, 7, 465–497, 1994.

Han, Q., Rossow, W. B., Chou, J., and Welch, R. M.: Global survey
of the relationships of cloud albedo and liquid water path with
droplet size using ISCCP., J. Climate, 11, 1516–1528, 1998.

Hanson, J., Sato, M., and Ruedy, R.: Radiative forcing and climate
response, J. Geophys. Res., 102, 6831–6864, 1997.

Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K.:
Rain-profiling algorithm for the TRMM precipitation radar, J.
App. Meteorol., 39, 2038–2052, 2000.

Jeong, M.-J., Li, Z., Andrews, E., and Tsay, S.-C.: Effect of aerosol
humidification on the column aerosol optical thickness over the
Atmospheric Radiation Measurement Southern Great Plains site,
J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176,
2007.

Johnson, B. T., Shine, K. P., and Forster, P. M.: The semi-direct
aerosol effect: Impact of absorbing aerosols on marine stratocu-
mulus, Q. J. Roy. Meteorol. Soc., 130, 1407–1422, 2004.

Jones, T. A., McGrath, K. M., and Snow, J. T.: Association Between
NSSL Mesocyclone Detection Algorithm detected vortices and

www.atmos-chem-phys.net/10/2287/2010/ Atmos. Chem. Phys., 10, 2287–2305, 2010



2304 T. A. Jones and S. A. Christopher: Statistical properties of aerosol-cloud-precipitation interactions

tornadoes, Wea. Forecasting, 19, 872–890, 2004.
Jones, T. A. and Christopher, S. A.: Seasonal variation in satellite

derived effects of aerosols on clouds in the Arabian Sea, J. Geo-
phys. Res., 113, D09207, doi:10.1029/2007JD009118, 2008.

Kalnay, E., Kanamitus, M., Kitsler, R., et al.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471,
1996.

Kaufman, Y. J. and Fraser, R. S.: The effect of smoke particles on
clouds and climate forcing, Science, 277, 1636–1639, 1997.

Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich,
Y.: The effect of smoke, dust, and pollution, aerosol on shallow
cloud development over the Atlantic Ocean, Proc. Natl. Acad.
Sci., 102(32), 11207–11212, 2005a.

Khain, A. P., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on
the dynamics and microphysics of convective clouds, Q. J. Roy.
Meteorol. Soc., 131, 2639–2663, 2005.

Koren, I., Kaufman, Y. J., Remer, L. A., Rosenfeld, D., and
Rudich, Y.: Aerosol invigoration and restructuring of At-
lantic convective clouds, Geophys. Res. Lett., 32(14), L14828,
doi:10.1029/2005GL023187, 2005.

Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y., and Martins, J.
V.: On the twilight zone between clouds and aerosols, Geophys.
Res. Lett., 34, L08805, doi:10.1029/2007GL029253, 2007.

Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke in-
vigoration versus inhibition of clouds over the Amazon, Science,
321, 946–949, 2008.

Kummerow C., Simpson, J., Thiele, O., et al.: The status of the
Tropical Rainfall Measuring Mission (TRMM) after two years in
orbit, J. Appl. Meteorol., 39, 1965–1982, 2000.

Lin, J. C., Matsui, T., Pielke Sr., R. A., and Kummerow, C.: Effects
of biomass burning derived aerosols on precipitation and clouds
in the Amazon Basin: a satellite-based empirical study, J. Geo-
phys. Res., 111, D19204, doi:10.1029/2005JD006884, 2006.

Loeb, N. G. and Manalo-Smith, N.: Top-of-atmosphere direct radia-
tive effect of aerosols over global oceans from merged CERES
and MODIS observations, J. Climate, 18, 3506–3526, 2005.

Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a
review, Atmos. Chem. Phys., 5, 715–737, 2005,
http://www.atmos-chem-phys.net/5/715/2005/.

Lohmann, U. and Lesins, G.: Comparing continental and oceanic
cloud susceptibilities to aerosols, Geophys. Res. Lett., 30(15),
1791, doi:10.1029/2003GL017828, 2003.

Mauger, G. S. and Norris, J. R.: Meteorological bias in satellite
estimates of aerosol-cloud relationships, Geophys. Res. Lett., 34,
L16824, doi:10.1029/2007GL029952, 2007.

Marshak, A., Wen, G., Coakley, J. A., Remer, L. A., Loeb, N. G.,
and Cahalan, R. F.: A simple model for the cloud adjacency ef-
fect and the apparent bluing of aerosols near clouds, J. Geophys.
Res., 113, D14S17, doi:10.1029/2007JD009196, 2008.

Martins, J. A., Silva Dias, M. A. F., Gonçalves, F. L. T.: Im-
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