

Supplementary Information for the article, entitled “The Municipal Solid Waste Landfill as a Source of Ozone-Depleting Substances in the United States and United Kingdom”

Elke L. Hodson^{1,*}, Damien Martin², and Ronald G. Prinn¹

¹Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

²School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

*Current address: Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland

1 List of Figures and Tables

Figure 1 Relative age and size of sampled landfills

Table 1 Demographic and waste statistics for the US and UK study sites

Table 2 Comparison of ODS vs. CH₄ ratios

Table 3 2006 US and UK MSW landfill emission estimates using national waste statistics for the extrapolation

2 Addendum to ODS Emissions Estimated with National Methane Statistics

Table 2 summarizes ratios of ozone-depleting substances (ODSs) and methane (CH₄) from three sources. The average ODS/CH₄ ratios from EPA (1995) for both total emissions and gas sampled from the gas collection system are listed. CFC-12 and CH₃CCl₃ both had relatively similar emission and gas collection system ratios, while the ratio of CFC-11 to CH₄ was slightly more than double in the gas collection system. The US Environmental Protection Agency model, LandGEM (version 3.02 from www.epa.gov/ttn/catc/products.html#software), predicted landfill emission ratios which were very similar to those detected in the EPA (1995) study and to our study. The largest difference between ratios detected in the gas collection system (EPA (1995) and this study) and emitted ratios (EPA (1995) and LandGEM) was for CFC-11. Table 2 provides evidence that the ratios measured in the gas collection system are similar to what we would expect in the emitted ratios for CFC-12, CFC-113, and CH₃CCl₃. We would expect

our study to provide an upper estimate of CFC-11 landfill emissions.

3 ODS Emissions Estimated with National Waste Statistics

To provide a comparison to the estimates in the main text of this paper, which were made using recovered ODS/CH₄ ratios, we regressed recovered ODS against national landfilled waste statistics. The waste statistics used for the United Kingdom (UK) and United States (US) correlate with recovered CH₄. Thus, we would expect the estimates made using recovered ODS/CH₄ ratios to be proportional. Unlike the national CH₄ statistics, the waste statistics do not take into account recovered landfill gas. Therefore, we would expect the estimates made using the waste statistics to be roughly equivalent to the maximum emission estimates made using recovered ODS/CH₄ ratios in the main text of this paper.

To calculate ODS emissions we used Equation 1, which is based on the same principle as Equation 3 in the main text,

$$ODS_{(emitted)} = \frac{ODS_{(recovered)}}{waste_{(on-site)}} \times waste_{(national)} \quad (1)$$

where on-site waste is the waste landfilled at each individual sample landfill site and national waste is the total waste landfilled in the country. Both on-site and national waste statistics are summed over the years 1994-2005 in the US and 1997-2005 in the UK. These are the years for which both on-site and national landfilled waste statistics were available.

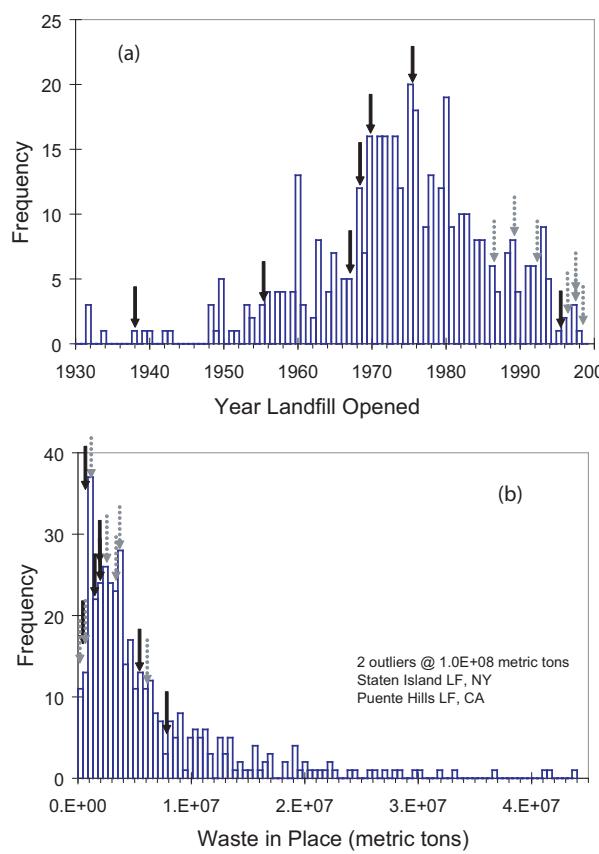
National US landfilled waste for 1994-2000, 2002, and 2004 was calculated using reported total annual US municipal solid waste (MSW) generation and percent MSW landfilled in Table 1 of Simmonds et al. (2006). Annual landfilled MSW in 2001 and 2003 were calculated as linear interpolations of the year before and after. For 2005, US population data was used to scale the Simmonds et al. (2006) 2004 estimate (U.S. Census Bureau, 2009). Reported MSW

Correspondence to: E. L. Hodson
(elke.hodson@wsl.ch, elkeh@alum.mit.edu)

in Simmonds et al. (2006) included total solid waste which is more than just MSW depending on how the states recorded their waste statistics. US on-site waste statistics are from the Massachusetts (MA) Department of Environmental Protection. The division of accepted waste for the MA landfills is shown in Table 1. National annual UK waste is the sum of reported landfilled municipal waste statistics from England, Scotland, Wales, and Northern Ireland (annual waste statistics are reported by the Department for Environment, Food, and Rural Affairs; Environment and Heritage Service, Northern Ireland; Scottish Environment Protection Agency, and the Welsh Assembly Government; see www.defra.gov.uk/environment/statistics/waste/kf/wrkf20.htm for a list of links). UK on-site waste statistics were provided from Viridor Waste Management, the owner and/or operator of all of the UK study sites, and include mainly commercial, industrial, and domestic waste.

The available waste statistics were often a mixture not only of MSW, but also of other solid waste streams, such as construction and demolition, industrial, etc. Thus, the resulting emission estimates shown in Table 3, should be considered as rough benchmarks only. Two of the US data sets, CFC-12 and CFC-113, had linear relationships with landfilled waste. If we compare Table 3 with the estimates in Tables 4 and 6 in the main text, we see that the ODS emissions estimated using the waste statistics are between the US best and maximum ODS emissions estimated using recovered ODS/CH₄ ratios and equal to the UK best estimates. This suggests that if there is any underestimation with the recovered ODS/CH₄ ratios, it is due to sample bias and not due to the regression methodology. This is also further evidence that the maximum estimates calculated from recovered ODS/CH₄ ratios are real upper limits and that the true emissions of CFC-12, CFC-11, CFC-113, and CH₃CCl₃ from US and UK landfills are below these values.

References


DEP: Active Solid Waste Landfills in Massachusetts, Tech. rep., Massachusetts Department of Environmental Protection (DEP), Bureau of Waste Prevention, Division of Planning and Evaluation, Boston, MA, USA, 2007.

EPA: Determination of Landfill Gas Composition and Pollutant Emission Rates at Fresh Kills Landfill: Volume I, Tech. Rep. EPA902-R-95-001a, U.S. Environmental Protection Agency, Washington, D.C., USA, 1995.

LMOP: Landfill Methane Outreach Program landfill and project database, <http://www.epa.gov/lmop/>, access: October, 2007.

Simmonds, P., Goldstein, N., Kaufman, S. M., Themelis, N. J., and Thompson Jr., J.: The State of Garbage in America: 15th Nationwide Survey of Municipal Solid Waste Management in the United States, *BioCycle*, 47, 26–43, 2006.

U.S. Census Bureau, P. D.: Annual Estimates of the Population for the United States, Regions, States, and for Puerto Rico: April 1, 2000 to July 1, 2006 (NST-EST2006-1), <http://www.census.gov/popest/states/NST-ann-est.html>, access: August, 2009.

Fig. 1. Relative age (a) and total landfilled waste (b) of sampled landfills in the US (black solid arrows) and UK (gray dashed arrows) compared to an October, 2007, distribution of landfills in the US with operational gas-to-energy projects (LMOP, 2007).

Table 1. Demographic and waste statistics for the US and UK study sites

Landfill No.	Landfill Type	Year Closed	% Waste Type in Landfill			Total Waste as of 1/1/06	Year opened	Megawatt capacity	Main Type of Gas Collection
			% Dom ^a	% MSW ^b	% I/C ^a				
US sites^c									
1	municipal	open	80	17	5.1E+06	1967	5.7	reciprocating engine	
2	municipal	open	94	6	1.1E+06	1995	3.2	reciprocating engine	
3	corporate	open	71	28	1.9E+06	1968	1.0	reciprocating engine	
4	municipal	open	82	8	7.5E+05	1969	0	flare	
5	corporate	open	66	28	1.8E+06	1938	1.9	reciprocating engine	
6	corporate	1998	75	4	7.4E+06	1975	5.6	reciprocating engine	
7	municipal	1997	76	0	1.5E+06	1955	0.2	reciprocating engine	
UK sites^d									
1	corporate	open	52	44	3.0E+06	1973	2.1	reciprocating engine	
2	corporate	open	67	32	1.3E+06	1998	2.4	reciprocating engine	
3	corporate	open	76	18	2.2E+06	1997	2.8	reciprocating engine	
4	corporate	open	60	24	1.3E+06	1982	reciprocating engine		
5	corporate	open	63	35	5.5E+06	1982	5.1	reciprocating engine	
6	corporate	open	52	27	2.9E+06	1992	2.2	reciprocating engine	
7	corporate	open	78	14	5.7E+05	1996	1	reciprocating engine	
8	corporate	2005	75	20	6.5E+05	1997	1	reciprocating engine	
9	corporate	2001	65	33	3.3E+06	1986	1	reciprocating engine	

^aThe two major waste types for the UK landfills are domestic, which includes household waste, and industrial and commercial waste (I/C). % waste type in landfill was calculated by averaging over the years between when the landfill opened and 2005.

^bThe two major waste types for the US landfills are municipal solid waste (MSW), which includes domestic and commercial waste, and construction and demolition waste (C&D). % waste type in landfill was calculated by averaging over the portion of the years 1994-2005 for which the landfill was open. Disaggregated waste data for the US landfills was not reliable previous to 1994 (DEP, 2007).

^cUS data on landfill type, operating status, waste type, total waste, and year opened was provided by the Massachusetts Department of Environmental Protection (MA DEP). The MA DEP maintains a large publicly available database on waste statistics which is updated annually through mandatory reporting by the individual landfills. US data on megawatt capacity was taken from the Landfill Methane Outreach Program (LMOP, 2007).

^dAll of the UK data was provided by Viridor Waste Management.

Table 2. Comparison of ODS vs. CH₄ ratios^a

ODS/CH ₄	EPA (1995) ^b		This study	
	surface	gcs	LandGEM ^c	
CFC-11/CH ₄	3.8E-06	8.8E-06	3.7E-06	5.9E-06
CFC-12/CH ₄	1.4E-05	1.7E-05	1.7E-05	1.4E-05
CFC-113/CH ₄	nd	nd	8.7E-07	9.3E-07
CH ₃ CCl ₃ /CH ₄	2.0E-06	2.4E-06	2.0E-06	1.9E-06

^aAll ratios are unitless. nd = no data, surface = sum of surface flux emissions and passive vents, gcs = gas collection system

^bTable 5-17 in EPA (1995)

^cWe provided the US Environmental Protection Agency emission model, LandGEM version 3.02, with waste data (Table 1 in the SI) and average CH₄ and ODS mole fractions (Table 1 in the main text) for all 5 open US landfills and corrected for air infiltration. The emissions were linearly regressed. The listed value is the resulting slope.

Table 3. 2006 US and UK MSW landfill emission estimates using national waste statistics for the extrapolation

Country/ Compound	2006 Estimate (Waste) ^a	% Uncertainty of Estimate ^c	% of Total Emissions (Mean) ^b
US/CFC-12	0.14	±55%	1.1%
US/CFC-113	0.0085	±95%	1.2%
UK/CFC-12	0.032	±70%	6.2%
UK/CFC-11	0.0084	±86%	1.2%

^aUnits are Gg y⁻¹

^bCalculated like in Table 5 in the main text

^cThe uncertainty is the lower and upper 95% confidence interval. Only the regression error is included, because the waste statistics do not have error estimates.